
Best of Three Worlds:
Towards Sound Architectural

Dependability Models
Hichem Boudali Boudewijn R. Haverkort Matthias Kuntz Mariëlle Stoelinga

{hboudali,brh,kuntzwgm,marielle}@cs.utwente.nl

University of Twente, Department of Computer Science,
P.O. Box 217, 7500AE Enschede, The Netherlands.

Abstract

This paper surveys the most prominent formalisms for availability and reliability analysis and
discusses the pros and cons of these approaches. Based on our findings, we outline a solution that
unites the merits of the existing approaches into a sound architectural dependability model.

I. I NTRODUCTION

Dependability evaluation has become an important and integral part in the design of today’s
computer-based systems. There exists a wide range of techniques and tools for reliability and
availability analysis. One may classify these techniques/tools into three broad categories: (1)
low-level dependability models, (2) dependability-specific modeling tools, and (3) model-based
dependability modeling tools. The first category encompasses general purpose low-level formalisms
such as continuous-time Markov chains (CTMC), stochastic Petri nets (SPN) and their extensions,
stochastic process algebras (SPA), and input/output interactive Markov chains (I/O-IMC) [1]. The
second category consists of formalisms and tools which are specifically geared towards analyzing
dependability. In this category, practical tools often define a high-level modeling language, such
as (dynamic) fault trees and (dynamic) reliability block diagrams. To carry out the analysis, a
low-level model (such as Markov chains or binary decision diagrams) is automatically derived
from the dependability-specific model. The third category consists of model-based (i.e., at the
system architectural level) formalisms, such as AADL and its error annex and the UML profile for
modeling quality of service and fault tolerance characteristics and mechanisms. These approaches
annotate an architectural model with dependability properties, from which a dependability-specific
model can be (preferably in an automated fashion) generated.

In this paper, we compare these modeling approaches and discuss the shortcomings and prob-
lems found in existing formalisms/tools. We divide these issues into (a) modeling effort, (b)
expressiveness, (c) semantics and (d) compositionality and modularity. A dependability formalism
should enable the dependability analyst to create a model with a reasonable amount of effort,
providing appropriate and intuitive (preferably also graphical) syntactic constructs to model the
dependability concerns. An important issue here is expressiveness: Does the formalism allow to
model all dependability concerns of interest, or does it impose severe restrictions on what can be
modeled. Another highly desirable property is that of an unambiguous semantics. Formal semantics
pin down the meaning of a dependability formalism in a precise, and unambiguous way and form
a rigorous basis for model analysis and tool implementation: Without semantics, dependability
models are easily misunderstood, misinterpreted and become unclear and unsound. Finally, we



believe it is important that (dependability) formalisms are compositional. Compositionality means
that a model can be built and analysed by dividing it into smaller submodels that are easier
to understand and analyze. Compositionality is crucial for making large, complex dependability
models understandable and their solutions tractable.

We will see that existing formalisms score very differently on the above criteria. Hence, we
propose to unite the merits of the formalisms. Based on our findings, we propose a preliminary
solution for a dependability modeling/analysis approach that overarches formalisms in each of the
three categories.

The remainder of the paper is organized as follows. In Section II, we provide a brief survey
and explain the differences between the three categories of formalisms/tools. In Section III, we
explain the main problems and issues found in the formalisms/tools among the various categories.
Finally, Section IV sketches a solution for a dependability modeling/analysis approach that tries
to combine the merits of each of the three categories.

II. A SHORT SURVEY

This survey is not intended to be comprehensive, its sole purpose is to compare and to provide
the reader with a set of representative formalisms/tools that fall into the three categories mentioned
above.

1) Low-level dependability models:General purpose formalisms such as CTMCs, SPNs, and
SPAs, have been used successfully in dependability studies. These are often considered low-level
formalisms, since they do not provide syntactic domain-specific constructs to model dependabil-
ity. This makes them rather flexible, so that they score well in terms of expressiveness. These
models possess a clear semantics and generally (as described below) serve as a semantic domain
for other (high-level) formalisms, i.e., the high-level models are translated into these low-level
models. Finally, compositionality has been well-studied for some formalisms in this category –
compositionality was a major objective for SPAs and I/O-IMCs– whereas others (e.g., CTMCs,
SPNs) are not compositional.

2) Dependability-specific modeling tools:Fault trees (FT) [2] and reliability block diagrams
(RBD) were among the first high-level graphical modeling techniques developed for reliabil-
ity/availability system analysis. FTs and RBDs appeal to users because they are simple graphical
models whose components (i.e., gates or blocks) directly map to the physical system components
being modeled. However, these are combinatorial models where the underlying assumption is that
the components are independent. In order to model complex dependencies between components
(in the remainder of the paper we will refer to these systems asdynamic systems), Markov
chains, and their various flavors, have been extensively used in dependability modeling. MCs are
indeed a powerful and mathematically sound formalism for explicitly modeling the state space
and evolution (i.e., state transitions) of a given system. However, a MC is, as mentioned in
above, regarded as a low-level model and building a MC is indeed a tedious and error-prone task.
To overcome these problems, modeling languages have been defined where a high-level model
is built and then automatically (and transparently to the user) translated into a MC. The system
availability estimator [3] (SAVE) modeling language was one of the first such languages. The SAVE
language allows to declare components and (failure or repair) dependencies between them using
predefined constructs. The SAVE model1 is then automatically converted into a continuous-time
MC (CTMC) for analysis. Many other formalisms/tools have followed this same idea of defining
a high-level modeling language in which the user builds his/her model which is then automatically
translated into a CTMC or some other intermediate formalism such as SPNs or one of their many
extensions. Some of the formalisms/tools that fall into this category are: Dynamic fault trees
(DFT) [4], extended fault trees (eFT) [5], dynamic RBD (DRBD) [6], and OpenSESAME [7].

1In SAVE, it is also possible to construct purely combinatorial models.



Whereas these are all graphical models, the SAVE tool is only text-based. All these tools have a
predefined set of graphical (or textual) constructs which are the building blocks used to create a
system dependability model. In fact, these constructs define the basic component behavior and the
various failure/repair dependencies between components. We call these constructs the dependability
features of the tool. Such features include: spare and primary components (and their management),
repair policies, functional dependency (i.e., the failure of one component induces the failure of
another component), failure sequence dependency (i.e., a component can only fail after a certain
other component fails), fail-over-time (i.e., switching from the primary to the spare component
takes a certain amount of time during which the system is not available), etc. Unfortunately,
there is no standard set of features and dependability tools often define and use different features.
For instance, OpenSESAME uses a fail-over-time feature, whereas DRBDs ignore this feature
and assume an instantaneous switching from the primary to the spare component. Nevertheless,
reliability engineers agree, to some extent, on a comprehensive set of features that allows them
to realistically model any system. One of our goals is to identify such a set of features.

3) Model-based dependability modeling tools:Model (or architecture) based design has gained
widespread success in recent years among system developers. Indeed, model-based design has
proved to significantly reduce the time and cost of systems’ development. Model-based design
languages such as the architecture analysis and design language [8] (AADL) or the unified
modeling language [9] (UML) are gaining importance in this field. Both AADL and UML have
been extended with dependability annotations in [10] and [11] respectively, and some work has
been carried out to automatically derive dependability-specific models (such as generalized SPNs)
from these extended/annotated AADL [12] or UML [13] models.

III. PROBLEMS AND ISSUES IN EXISTING TOOLS

In this section, we mention some of the concerns and problems with existing formalisms/tools.
a) Expressiveness:On the one hand, formalisms that belong to the first category, such as

MCs, are very expressive and powerful from a modeling point of view. On the other hand,
dependability-specific modeling tools are restrictive since they often only provide a fixed set of
features. For instance, all dependability-specific formalisms/tools define a fixed number of failure
modes (or states) for a component, e.g., OpenSESAME defines 3 states:stand-by, active, and
failed, and compositional models, such as FTs and RBDs define only two states:operational and
failed, whereas SAVE provides 4 states. In a similar vein, the transitions between these modes
is also strictly enforced. It was realized that many applications require a more detailed failure
model, e.g., a valve may fail being stuck open or stuck close; a pump may be fully operational,
operating at 50% power, operating at 25% power, or failed. To this end extended FTs (eFTs) [5]
were defined, allowing arbitrary failure modes. These additional failure modes require, however,
more modeling effort in that one has to specify the various conditions under which the mode
changes, and the effect of the new failure modes on the overall system failure.

In summary, the modeling power of dependability-specific formalisms varies significantly, and
the choice for a particular formalism is often geared by the need to model certain features.
Moreover, certain combinations of features are not catered for in any formalism.

Contrary to dependability-specific modeling approaches, architectural (model-based) approaches
allow for greater expressiveness. In fact, the user can attach any tailored failure model to a
component in the design, where the failure modes and the modes transitions are arbitrarily defined.
This increase of modeling power comes at the cost of more modeling effort, and, often, imprecision
and ambiguities of the underlying semantics.

b) Semantics:One of the main concerns with higher-level models such as DFTs or AADL
(error) models is their semantics. The semantics of these models is often given in terms of low-
level models such as CTMCs or SPNs (i.e., the semantic domain). However, the transformation2

2We will interchangeably use the word transformation, conversion, and mapping.



of the high-level model into its semantic domain often remains unclear and unsound. For instance,
in the SAVE tool (we refer the reader to [3] for details), the behavior (thus its semantics) of any
basic component is given as a labeled transition system with four states:Operational, Dormant,
Down, and Spare. It is, however, unclear (1) how a component moves back to itsSparestate
once its primary counterpart component3 has been repaired, and (2) why there is no transition
from the component’sDown state to the component’sDormantstate. Another illustration of such
imprecise and/or ambiguous semantics is given in the work we have carried out in formalizing the
DFT semantics in terms of input/output interactive Markov chains (I/O-IMC) [14], [1]. Indeed,
our work and the work by Coppit [15] have revealed some inconsistencies in the DFT semantics
which led sometimes to undefined behavior or misinterpretation of the DFT model and therefore
produced incorrect results. The problem of unclear and/or incorrect semantics is exacerbated with
model-based dependability modeling tools where the formalism is often too expressive and general
to pinpoint its correct semantics.

c) Modeling effort: Any formalism/tool should be simple, easy and intuitive to use. In this
respect, higher-level and graphical models have a clear advantage over lower-level models, which
are only manageable for very small systems. Another reason low-level models are inappropriate
is that they are ‘flat’ models and do not allow hierarchical model-building. Tool support is also
an important aspect. In fact, from an engineering point of view, a formalism is useless if it has no
adequate tool support. Of course, in order to obtain a correct tool implementation, the formalism
needs to have a clear semantics.

d) Compositionality/Modularity:Modularity is a desirable feature for any modeling formal-
ism and can be seen at two different levels: the model-building level and the model-analysis
level.

At the model-building level, modularity means that the model is hierarchical and any system
can be used as a sub-system in a larger system. A formalism is fully modular at the model-
building level if the same behavior at the basic component level is also defined at the complex
(composed of multiple interconnected basic components) component level. To illustrate this idea,
let’s consider DFTs. In DFTs, the most basic component is called a basic event and any basic
event can act as a spare. Switching from a spare (backup) mode to a primary mode is done through
an activation signal. Unfortunately, this mode switch is only defined for basic events and not for
a sub-tree (sub-system). This clearly illustrates a lack in modularity which in turn greatly reduces
the modeling power and flexibility of DFTs.

At the model-analysis level, a modeling formalism should allow for decomposition of the
model into a set of independent sub-models, solve each of the sub-models separately, and then
combine their solutions to produce the overall system solution. This is indeed readily achievable
for combinatorial models such as FTs and RBDs. Unfortunately, it is not so simple and often
not even possible for dynamic systems. This is due to the nature of the underlying low-level
models used in dynamic systems modeling. In fact, the lack of modularity at the analysis level is
due to their lack of compositionality. Indeed, for example both MC and SPNs models are either
non-compositional or have an informal definition of a composition operation. However, process
algebras have a well-defined composition operation, and formalisms that combine process algebras
and MCs have been recently defined. Interactive Markov chains and I/O-IMCs are examples of
such formalisms and have proved to greatly enhance the modularity at the analysis level [1].

IV. TOWARDS A SOLUTION

Based on the discussion above, we outline a solution towards a sound architectural dependability
model.

3The component it has replaced due to a failure.



In our proposal, we start from a –preferably existing– architectural model: Since such a model
is often available during the system design, we avoid duplicating modeling effort. Moreover,
the architectural layout will, e.g., through the component dependencies or the number of spares
and repair stations, heavily influence the reliability and availability characteristics. Therefore, we
believe that the system architecture is the right level to include dependability information.

To overcome the two main drawbacks of existing architectural approaches to dependability (viz.
the considerable modeling effort required and the lack of semantics) we envisage the following
approach.

First of all, to reduce the modeling effort, we propose to develop standard component de-
pendability models. These could for instance be the four-state SAVE models, or the three-state
OpenSESAME models. Just as when using SAVE (or OpenSESAME), the dependability analyst
has to specify only the component failure rates, their dependencies and the repair policies; all
the other information is present in the standard model. If the designer needs more or different
internal component states, tailored component dependability models can be developed, as in the
current AADL approach. In this way, the modeling effort is focused on those system parts where
the particularities are.

Secondly, we propose to develop rigorous semantics for the developed (standard or tailored)
models. We propose to follow the lines of [14]: We present a I/O-IMC model for each component
dependability model and each dependability feature in general. We then obtain the semantics of the
entire system by composing the component semantics in parallel. At the same time, this approach
allows us to analyse the system by compositional aggregation, which turns out to be a powerful
technique to combat the state space explosion problem.

Summarizing, we propose to attach a flexible dependability-specific formalism to an (preferably
existing) architectural language and to formalize its semantics. In this way, we combine the best
of all categories of dependability formalisms/tools.

REFERENCES

[1] H. Boudali, P. Crouzen, and M. Stoelinga, “A compositional semantics for Dynamic Fault Trees in terms of Interactive
Markov Chains,” accepted to ATVA 2007 conference.

[2] W. E. Veseley, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, “Fault tree handbook, NUREG-0492,” NASA, Technical
report, 1981.

[3] A. Goyal, W. C. Carter, E. de Souza e Silva, S. S. Lavenberg, and K. S. Trivedi, “The system availability estimator,”
in Proceedings of the 16th Int. Symp. on Fault-Tolerant Computing, July 1986, pp. 84–89.

[4] J. B. Dugan, S. J. Bavuso, and M. A. Boyd, “Dynamic fault-tree models for fault-tolerant computer systems,”IEEE
Transactions on Reliability, vol. 41, no. 3, pp. 363–377, September 1992.

[5] K. Buchacker, “Modeling with extended fault trees,” inFifth IEEE International Symposium on High Assurance
Systems Engineering (HASE 2000), Nov 2000, pp. 238–246.

[6] S. Distefano and L. Xing, “A new approach to modeling the system reliability: dynamic reliability block diagrams,”
in Reliability and Maintainability Symposium, Jan 2006, pp. 189–195.

[7] M. Walter, M. Siegle, and A. Bode, “Opensesame: the simple but extensive, structured availability modeling
environment,”Reliability Engineering and System Safety, vol. In Press, corrected proof, April 2007.

[8] “Architecture Analysis and Design Language (AADL),” SAE standards AS5506, Nov 2004.
[9] The Unified Modeling Language, “http://www.uml.org/.”

[10] “SAE Architecture Analysis and Design Language (AADL) Annex Volume 1,” SAE standards AS5506/1, June 2006.
[11] O. Group, “Uml profile for modeling quality of service and. fault tolerance characteristics and mechanisms,” Tech.

Rep., june 2006.
[12] A. E. Rugina and K. Kanoun and M. Kaâniche, “An Architecture-based Dependability Modeling Framework Using

AADL.” Dallas, USA: International Conference on Software Engineering and Applications (SEA2006), Nov 2006.
[13] A. Bondavalli, I. Majzik, and I. Mura, “Automatic dependability analysis for supporting design decisions in UML,”

in Proc. of the 4th IEEE International Symposium on High Assurance Systems Engineering, 1999.
[14] H. Boudali, P. Crouzen, and M. Stoelinga, “Dynamic fault tree analysis using input/output interactive markov chains.”

in Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2007, UK. IEEE Computer Society, 2007, pp. 708–717.

[15] D. Coppit, K. J. Sullivan, and J. B. Dugan, “Formal semantics of models for computational engineering: A case
study on dynamic fault trees,” inProceedings of the International Symposium on Software Reliability Engineering.
IEEE, Oct 2000, pp. 270–282.


