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Abstract. In this paper we propose a polynomial time algorithm for the
optimal rate and power allocation problem in a two cell CDMA network.
We assume continuous rates and limited powers for the base stations.

1 Introduction

The inherit capacity restrictions due to scarce resources are fundamental prob-
lems in the operation of a wireless CDMA system. At the operational level (time
scale of minutes), load fluctuations occur due to randomness in call generation
and call lengths. At this time scale, load balancing is carried out via power and
rate assignment as well as a reconfiguration of calls over cells. Power and rate
assignment requires an underlying policy or network optimality criterion.

Common optimality criteria for CDMA network optimization are equal rate
to all calls, or maximum total network data rate. Equal rates to all calls seems
fair from a call perspective, but is rather inefficient in networks sustaining a
normal load, mainly due to calls far away from base transmitter stations (BTS)
causing a large amount of interference, and therefore a substantial reduction in
network capacity. An important question in achieving maximum data rate is the
assignment of data rates to individual calls. This assignment is clearly closely
related to power assignment. This paper addresses, in an analytical setting, the
joint power and rate assignment in two cells in a CDMA network.
Literature. The joint rate and power assignment problem for CDMA systems
has received considerable attention over the last decades. Due to the complexity
of the problems, several restrictions have been made, in order to obtain mathe-
matically tractable models.

The most common simplifications are considering a cell in isolation, thus ne-
glecting the interference effects, or assuming some extra properties of rates/
powers, like unlimited rates or powers. For the simplified model of a single cell
in isolation, down link power assignment schemes for maximizing the through-
put or minimizing the total power in the cell are proposed in [8,5,12]. Resource
assignment in a multi cell environment is more complex than in one cell, due
to the interferences caused by users in adjacent cells. It has been studied in the
framework of cell-breathing for fixed data rates, see e.g. the pioneering work of
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[7], [11] that consider the uplink, that in the early days of CDMA was considered
to be the bottle-neck. For the down link, joint rate and cell assignment is stud-
ied in [9] via a dynamic pricing algorithm under the assumption that each base
station maximizes its total system utility, without considering the status of the
other cells. In [2] an distributed algorithm for assigning base station transmitter
(BTSs) powers such that the common rate of the users is maximized is described.
In [10], Perron-Frobenius theory is used to design an approximate algorithm for
a model with multiple rates, which permits the use of techniques from convex op-
timization. In [4], the authors propose a polynomial time approximation scheme
for the joint rate and power assignment problem under the assumption that the
rates allocated are discrete and the power of the base stations is unlimited.
Contribution and Outline. This paper proposes a fast and exact joint rate
and power allocation algorithm in the down link of a telecommunication network
formed by two cells, where the base stations transmit at limited powers. Thus,
we incorporate in our model two important aspects of a CDMA network, namely
interference and limited powers. We assume that the rates are continuous and
may be chosen from a given interval. This assumption seems realistic, since in a
CDMA system data rates may be rapidly modified in accordance with channel
conditions, resulting in an average rate that lies in an interval.

Section 2 provides the model and describes the resulting optimization prob-
lem. Due to the impact of the interference between users in different cells, this
problem is much more difficult then the rate/power optimization problem in one
cell, and it is more difficult then the problem with unlimited powers. In Section
3 we show that despite its non-convexity, the optimal solutions can be very well
characterized. We prove that the optimal rate allocations are monotonic in a
function of the path loss . Based on this property, we show that in the optimal
rate allocation, only 3 rates are given to users. In Section 4 we propose a poly-
nomial time algorithm in the number of users that solves optimally the joint
rate and power allocation problem. Our algorithm can be generalized to solve
the optimal rate/power allocation problem in small networks, thus providing a
first step into the direction of fast algorithms for resource allocation in a large
network. We conclude with some remarks and open problems in Section 5.

2 Model

We consider a system with mobile users served by 2 base transmitter stations
(BTSs), X and Y. Denote by UX , respectively UY , the set of mobiles served by
BTS X, respectively BTS Y. Let li,X denote the path loss from BTS X to mobile
i, let Ni be the thermal noise at the location of mobile i, and let εi denote the
energy per bit to interference ratio requirement for mobile i. Let PiX denote
the transmission power of BTS X to mobile i, and PX the maximum down link
transmission power of BTS X . The power received by mobile i from BTS X is
P rec

iX = PiX li,X . We assume that mobiles are served by a single BTS, which is
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a natural assumption for moving mobiles. A configuration of mobiles is feasible
when for each mobile i served by BTS X , say, the energy per bit to interference
ratio exceeds the threshold εi. If a configuration is feasible, then under perfect
power control the energy per bit to interference ratio

(
Eb

I0

)
i
equals this threshold.

Thus, assuming perfect power control, feasibility for a configuration in which
mobile i is served by BTS X is characterized by,

(
Eb

I0

)

i

:=
W

ri

PiX li,X
αli,X(

∑
j∈UX

PjX − PiX) + li,Y
∑

j∈UY

PjY + Ni
= εi, (1)

where UX is the set of mobiles served by BTS X , W is the system chip rate, α
is the down link orthogonality factor, and ri is the data rate for mobile i.

Data rates can be assigned from the continuous interval [rmin, Rmax], with
rmin > 0. The optimization problem is to determine an assignment of rates and
powers to mobiles that maximizes the total rate.

For each fixed number of mobile calls placed in the coverage area, the rate
assignment problem can be formulated as the following optimization problem:

max
∑
i∈U

ri

s.t.
(

Eb

I0

)

i

= εi, i ∈ U,

P(n)
∑

i∈UX

PiX ≤ PX ,

∑
i∈UY

PiY ≤ PY ,

ri ∈ [rmin, Rmax], i ∈ U,

PiX ≥ 0, ∀i ∈ UX ∪ UY .

3 Characterization of an Optimal Rate Assignment

For clarity of presentation, we assume that all users have the same threshold
εi = ε. Denote V (ri) = εri

W+αεri
, and let

li =

{
li,Y

li,X
, for i ∈ UX ,

li,X

li,Y
, for i ∈ UY .

According to Lemma 1.1. in [4], P (n) can be rewritten as:
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P (n) : R(n) = max
∑
i∈U

ri

s.t.

(
1 − α

∑
i∈UX

V (ri)

)
x −

∑
i∈UX

V (ri)liy −
∑

i∈UX

V (ri)l−1
i,XNi = 0, (2)

−
∑

i∈UY

V (ri)lix +

(
1 − α

∑
i∈UY

V (ri)

)
y −

∑
i∈UY

V (ri)l−1
i,Y N i

i = 0, (3)

PX − x ≥ 0, (4)
PY − y ≥ 0, (5)
x ≥ 0, (6)
y ≥ 0, (7)
Rmax − ri ≥ 0, for i ∈ UX ∪ UY , (8)
ri − rmin ≥ 0, for i ∈ UX ∪ UY . (9)

Notice that this is neither a linear programming nor a convex programming
problem. We assume that the rate assignment problem above has at least one
feasible solution, or, in other words, that there exist powers PX , PY , such that
assigning minimum rate to all users is feasible.

For later reference, we also provide the Lagrangian. Let λ ∈ R
6, μ, ν ∈ R

|U|

be the Lagrangian multipliers corresponding to equations (2)-(9). Denote by
r = (ri)i∈UX∪UY the vector of the rates allocated to users. The Lagrangian
corresponding to P (n) is

L(x, y, r, λ, μ, ν) =
∑
i∈U

ri

+ λ1((1 − α
∑

i∈UX

V (ri))x −
∑

i∈UX

V (ri)liy −
∑

i∈UX

V (ri)l−1
i,XNi))

+ λ2

(
−

∑
i∈UY

V (ri)lix + (1 − α
∑

i∈UY

V (ri))y −
∑

i∈UY

V (ri)l−1
i,Y N0

)

+ λ3(PX − x) + λ4(PY − y) + λ5x + λ6y

+
∑
i∈U

μi(Rmax − ri) +
∑
i∈U

νi(ri − rmin).

Next we will characterize the optimal rate assignment. We start with a
monotonicity property of the rates.

Theorem 1. If P (n) is feasible, and (x∗, y∗, r∗) is an optimal solution, then for
any two calls i and j, say, in cell X,

y∗li + l−1
i,XNi < y∗lj + l−1

j,XNj ⇒ r∗i ≥ r∗j . (10)

A similar statement holds for cell Y.
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Proof. Suppose there exist two calls i, j ∈ UX such that liy
∗ + l−1

i,XNi < ljy
∗ +

l−1
j,XNj and r∗i < r∗j .
Define the following rate vector r̂ ∈ R

|UX |+|UY |:

r̂k =

⎧
⎪⎨
⎪⎩

r∗k, for k ∈ UX ∪ UY \ {i, j}
r∗j , for k = i,

r∗i , for k = j,

i.e., with rate assignment to calls i and j interchanged. As the total rate is
unchanged, the throughput of the rate assignments r and r̂ is the same. Let

x̂ =

∑
i∈UX

V (r̂i)(liy∗ + l−1
i,XNi)

1 − α
∑

i∈UX
V (r̂i)

. (11)

It can be easily seen that x̂ < x∗.

Note that (x̂, y∗, r̂) is not a feasible solution of P (n), since it does not satisfy
constraints (2) and (3). However, we can obtain a feasible solution by increasing
the rates r̂ for users in UX \ {j}, until power x∗ is reached in (11) or all rates
in UX \ {j} are maximal. Denote by (r̃)UX the rate assignment obtained in this
way. Suppose that (r̃k)k∈UX\{j} = (Rmax)UX\{j}. By decreasing y∗ such that
(3) is satisfied, while the rates for users in UY remain the same, we obtain a
power/rate allocation with a higher throughput then r∗. If x∗ was reached in
(11), then (x∗, y∗, (r̃k)k∈UX , (r∗k)k∈UY ) is a feasible solution of P (n) which gives
a higher throughput then (x∗, y∗, ((r∗k)k∈UX , (r∗k)k∈UY ). This contradicts the fact
that (x∗, y∗, r∗) is an optimal solution. Hence, it must be that r∗i ≥ r∗j .

Denote by h1(x, y, r), ..., h6(x, y, r) the functions in the left hand side of
constraints (2)-(7) and by g1(x, y, r),...,g2|UX |+2|UY |(x, y, r) the functions in the
left hand side of constraints (8)-(9).

We will first review some optimization terminology (see [3]). If an inequal-
ity constraint of P (n) is satisfied with equality in a feasible vector (x, y, r) ∈
R

|UX |+|UY |+2 of P (n), the constraint is active in (x, y, r). Denote by A(x, y, r)
the set of active inequalities in the point (x, y, r). A feasible vector (x, y, r) is
regular if the gradients ∇h1(x, y, r), ∇h2(x, y, r) and ∇hi(x, y, r), ∇gj(x, y, r)
for i ∈ A(x, y, r)

⋂
{3, 4, 5, 6}, j ∈ A(x, y, r) are linearly independent.

Notice that ∇h1(x, y, r), ∇h2(x, y, r) are linearly independent for any feasible
(x, y, r) , so that all points with A(x, y, r) = ∅ are regular. Further, note that
since rmin > 0, x 
= 0 and y 
= 0 in the optimal solution. Moreover, since the
objective function is linear, each optimum must be a global optimum.
We will start by characterizing the rate assignment for regular points. In the
proofs that follow, we will make use of the Karush-Kuhn-Tucker (KKT) neces-
sary conditions for a regular point to be an optimal solution (see [3]). They state
that for a regular point (x∗, y∗, r∗) that is an optimum of P (n) there exists an
unique multiplier vector (λ∗, μ∗, ν∗) such that:
(K1) �(x∗,y∗,r∗)L(x∗, y∗, r∗i , λ∗, μ∗, ν∗) = 0, where L denotes the Lagrangian
function corresponding to P (n).
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(K2) λ∗
k ≥ 0, for k ∈ {3, 4, 5, 6}, μ∗ ≥ 0 and ν∗ ≥ 0,

(K3) The Lagrangian multipliers corresponding to non active constraints are
equal to 0.

Theorem 2. If P (n) is feasible and (x∗, y∗, r∗) a regular optimal solution, then
a) x∗ = PX or y∗ = PY or r∗i = Rmax, for each call i ∈ UX ∪ UY .
b) If the rates of two calls i, j ∈ UX satisfy rmin < ri < Rmax and rmin < rj <
Rmax, then liy

∗ + l−1
i,XNi = ljy

∗ + l−1
j,XNj and ri = rj . A similar statement holds

for cell Y.

Proof. a) Note that since the minimum rate can be ensured to all accepted users,
constraints (2) and (3) imply that x∗ > 0 and y∗ > 0. Thus, based on condition
(K3), we conclude that λ∗

5 = λ∗
6 = 0. Suppose that x∗ < PX , y < PY and

rmin ≤ ri < Rmax for a call i ∈ UX , say.
From (K3), follows that λ∗

3 = λ∗
4 = 0 and that μ∗

i = 0.
Moreover, (K1) imply that ∂L

∂x (x∗, y∗, r∗, λ∗, μ∗, ν∗)= 0,∂L
∂y (x∗, y∗, r∗i , λ∗, μ∗, ν∗)

= 0, and ∂L
∂ri

(x∗, y∗, r∗, λ∗, μ∗, ν∗) = 0. Hence,
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ∗
1

(
1 − α

∑
i∈UX

V (r∗i )

)
− λ∗

2
∑

i∈UY

V (r∗i )li = 0

−λ∗
1

∑
i∈UX

V (r∗i )li + λ∗
2

(
1 − α

∑
i∈UY

V (r∗i )

)
= 0.

1 + ν∗
i − μ∗

i − λ∗
1V

′(ri∗)(αx∗ + liy
∗ + l−1

i,XNi) = 0.

(12)

Observe that the first two equations in λ∗
1, λ

∗
2 are linearly independent (recall

constraints (2)-(3) and the assumption that a minimal rate assignment is feasi-
ble), so the only solution is λ∗

1 = λ∗
2 = 0.

Further, since μ∗
i = 0, from the third equation in (12) follows that νi = −1,

which contradicts condition (K2), that ν∗
i ≥ 0.

Hence, in an optimal solution, either the rates of all users are maximal, or the
power in one of the cells is maximal.
b) Suppose that there exist two different values liy

∗ + l−1
i,XNi, ljy

∗ + l−1
j,XNj ,

respectively, for which the corresponding rates are rmin < r∗i < Rmax and rmin <
r∗j < Rmax. Without loss of generality, we assume that liy

∗ + l−1
i,XNi < ljy

∗ +
l−1
j,XNj. From Theorem 1, it follows that r∗i ≥ r∗j .

Since rmin < r∗i < Rmax and rmin < r∗j < Rmax, condition (K3) imply that

μi = μj = νi = νj = 0.

Hence, (12) implies that

V ′(r∗i )
V ′(r∗j )

=
αx∗ + ljy

∗ + l−1
j,XNj

αx∗ + liy∗ + l−1
i,XNi

.

Our assumption ljy
∗+l−1

j,XNj > liy
∗+l−1

i,XNi implies that V ′(r∗i ) > V ′(r∗j ). Since
the function V ′ is decreasing, it follows that r∗i < r∗j , which contradicts Theorem
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1. We conclude that if the rates of two users i, j ∈ UX satisfy rmin < r∗i < Rmax
and rmin < r∗j < Rmax, then liy

∗+l−1
i,XNi = ljy

∗+l−1
j,XNj . Clearly, it then follows

that r∗i = r∗j .

Corollary 1. Let (x∗, y∗, r∗) be regular and an optimal solution of problem
P (n). Suppose that calls in cell X, respectively in cell Y are ordered in increasing
order of their liy

∗ + l−1
i,XNi, respectively ljx

∗ + l−1
j,Y Nj values. Then, there exists

a positive number A(y∗), such that for each i ∈ UX with liy
∗ + l−1

i,XNi < A(y∗),
r∗i = Rmax and for each i ∈ UX with liy

∗ + l−1
i,XNi > A(y∗), r∗i = rmin. More-

over, there exists a positive number B(x∗), such that for each j ∈ UY with
ljx

∗ + l−1
j,Y Nj < B(x∗), r∗j = Rmax and for each j ∈ UY with ljx

∗ + l−1
j,Y Nj >

B(x∗), r∗j = rmin.

For a non regular point, the following theorem gives a complete characterization
of the optimal power and rate assignment.

Theorem 3. For each non regular point (x, y, r), the following conditions are
satisfied:
a) x = PX or y = PY

b) If x = PX and y 
= PY , then ri ∈ {rmin, Rmax}, for each i ∈ UX.
c) If y = PY and x 
= PX , then ri ∈ {rmin, Rmax}, for each i ∈ UY .

Proof. Let (x, y, r) be a non regular point, feasible for P (n). Consider the matrix
M formed by the ∇h1(x, y, r), ∇h2(x, y, r) and ∇hi(x, y, r), ∇gj(x, y, r) for i ∈
A(x, y, r)

⋂
{3, 4, 5, 6}, j ∈ A(x, y, r). Let K be the number of active inequality

constraints. Notice that for a non-regular point it must be that K > 0, since
∇h1(x, y, r), ∇h2(x, y, r) are linearly independent. Clearly, 2 ≤ rank(M) ≤
K + 2.

a) Suppose that x 
= PX and that y 
= PY . In other words, the active inequality
constraints correspond to the constraints on rates. Then, matrix M has the
following form:

M =

⎛
⎜⎜⎜⎜⎝

1 − α
∑

i∈UX
V (ri) −

∑
i∈UX

V (ri)li A 0
−

∑
i∈UY

V (ri)li 1 − α
∑

i∈UY
V (ri) 0 B

0 0 C 0
0 0 0 D

⎞
⎟⎟⎟⎟⎠

,

where the vectors A ∈ R
|UX |, B ∈ R

|UY | are defined as follows:

A = [−V ′(ri)(αx+ liy+ l−1
i,XNi)]i∈UX , B = [−V ′(ri)(αy+ lix+ l−1

i,Y Ni)]i∈UY ,

and the matrices C ∈ R
|{i∈UX :gi∈A(x,y,r)}|×R

|{i∈UX}|, D ∈ R
|{i∈UY :gi∈A(x,y,r)}|

×R
|{i∈UY }| are obtained from the diagonal square matrices with diagonal

diag(C) = [I{ri=rmin})−I{ri=Rmax}]{i∈UX}, diag(D) = [I{ri=rmin})−I{ri=Rmax}]{i∈UY },
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by deleting all rows for which the diagonal elements equals zero, where I{a} = 1
if a is true, and 0 otherwise.

Clearly, rank(C) + rank(D) = K. Since constraints ∇h1(x, y, r), ∇h2(x, y, r)
are linearly independent, it follows that rank(M) = K + 2, which contradicts
the fact that (x, y, r) is non regular. Hence, in a non regular point, the power
assigned to one of the cells has to be maximal.

b) Suppose that x = PX and y 
= PY and that there exist i ∈ UX such that
rmin < ri < Rmax. It can be proved that the rank of the matrix M is again
rank(M) = K + 2, which contradicts the fact that (x, y, r) is non regular.

c) The proof is similar to b).

4 Algorithm for Optimal Rate and Power Assignment

Based on Theorems 1-3 and Corollary 1, we now propose on algorithm for finding
the optimal solution of P (n). The algorithm relies on a reduction of the opti-
mization problem P (n) to a series of optimization problems in R. Notice that
the algorithm considers the regular and non regular points.

If maximum rate to all users is feasible, then the optimal solution has been
found. To check whether the maximum rate is feasible, one only has to check
if the corresponding powers calculated from (2)-(3) satisfy 0 ≤ x ≤ PX and
0 ≤ y ≤ PY . If this is not the case, then the algorithm calculates the rate
allocation achieving maximum throughput for the case when the power in cell
X is maximal, respectively the power in cell Y is maximal. The algorithm will
choose among these 2 allocations the one with higher throughput. Note that if
the rates are known, from (2), (3) and (1) the powers of each user can be derived.

Next we will consider the case when in cell X the base station transmits at
maximum power, i.e., x∗ = PX . The case y∗ = PY can be treated similarly. The
algorithm provides a reduction of the optimization problem P (n) that is based
on a search procedure to find the values B(x∗) and A(y∗) introduced in Corollary
1 to obtain the set of mobiles at which the rate drops from Rmax to rmin in both
cells. As the set of mobiles for maximum power at cell X also depends on the
power assignment in cell Y , these sets cannot be determined independently.

Order the locations in cell Y in increasing order of ljPX + l−1
j,Y Nj .

According to Theorem 2 b) all users j in cell Y with rate rj ∈ (rmin, Rmax)
are characterized by the same value of ljPX + l−1

j,Y Nj and have the same rate rX .
Let B(PX) be this value and UY (B(PX )) = {j ∈ UY : ljPX + l−1

j,Y Nj = B(PX)}.
From Theorem 1 and Theorem 2 follows that for each j ∈ UY with ljPX +
l−1
j,Y Nj < B(PX), r∗j = Rmax and for each j ∈ UY with ljPX + l−1

j,Y Nj > B(PX),
r∗j = rmin. Suppose that s users in UY (B(PX)) have rate Rmax, v users have
rate rmin and the rest have rate rY . The rate rY is unknown at this stage of the
algorithm. The power assigned to cell Y , as a function of rY , can be determined
from constraint (3), and is given by



Optimal Joint Rate and Power Allocation in CDMA Networks 209

y∗(rY ) =
�

j∈UY \UY (B(PX )) V (rj)(ljPX+l−1
j,XNj)+(sV (Rmax)+vV (rmin)+tV (rY ))B(PX)

1−α(
�

j∈UY \UY (B(PX )) V (rj)+sV (Rmax)+vV (rmin))+tV (rY )) .

Similarly, for a specific y∗(rY ), Theorem 2 b), implies that all the users i in cell
X with ri ∈ (rmin, Rmax) are characterized by the same value of liy

∗(rY )+l−1
i,Y N i

0,
say A(y∗(rY )). Denote by UX(A, B) = {i ∈ UX : liy

∗(rY )+l−1
i,XNi = A(y∗(rY ))}.

Then all i ∈ UX with liy
∗(rY ) + l−1

i,XNi < A(y∗(rY )), have rate Rmax and all
i ∈ UX with liy

∗(rY )+ l−1
i,XNi > A(y∗(rY )) have rate rmin. Suppose that u users

in UX(A, B) have rate Rmax, z users have a rate rX ∈ (rmin, Rmax) and the rest
have rate rmin. Then the rate rX can be expressed from (2) as follows:

rX(rY ) = W
ε

PX−�i∈Uz
X

(A,B) V (ri)(αPX+liy
∗(rY )+l−1

i,XNi)

(z−1)αPX+zA(y∗(rY ))+α
�

i∈Uz
X

(A,B) V (ri)(αPX+liy∗(rY )+l−1
i,XNi)

,

where Uz
X(A, B) denotes the set of users in UX with rate r ∈ (rmin, Rmax).

Note that if B(PX), s, v, u, z were known, rY would be the only unknown.
This suggests that by enumerating all the possible values of B(PX), s, v, u, z, the
problem could be reduced to an optimization problem in one variable, rY . The
optimization problem is not easy to formulate due to the fact that the value of
rY , more precisely y∗(rY ), is a decision variable in the assignment of Rmax and
rmin to users in UX (see Corollary 3). However, it can be easily seen that only
some values of y∗(rY ) induce a different rate allocation in cell X. Let

L = {
l−1
j1,X

Nj1 − l−1
j2,XNj2

lj2 − lj1
, j1, j2 ∈ UX}

⋂
R+.

Suppose that L 
= ∅. For all y∗(rY ) ∈ [Li, Li+1) the ordering of mobiles in
cell X, as determined by their value of liy

∗(rY ) + l−1
i,XNi is the same, but for

different intervals [Lj , Lj+1) this ordering may be different. Note that V (r) is
strictly increasing, so that y∗(rY ) is strictly increasing. As a consequence, each
unknown y∗(rY ) ∈ [Li, Li+1) yields a unique rY .
Hence, for y∗(rY ) ∈ [Li, Li+1), P (n) can be reduced to the following optimization
problem in R:

max zrX(rY ) + trY

s.t. y∗(rY ) ≤ PY

y∗(rY ) ∈ [Li, Li+1] (13)
rX(rY ) ∈ [rmin, Rmax]

rY ∈ [rmin, Rmax].

Thus, the original rate optimization problem can be reduced to O(|UX |2) opti-
mization problems in R, one for each interval [Li, Li+1).

If L = ∅, then the order of the users in UX does not depend on y∗(rY ) and we
obtain a similar optimization problem to (13), without the second constraint.

Note that the optimization problems (13) are constraint optimization prob-
lems in one variable, which can be easily solved.
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5 Conclusions

In this paper we have proposed an exact algorithm for the joint rate and power
allocation problem in two cells of a CDMA network. We have analyzed several
properties of the optimal solutions, based on which, we have proposed a poly-
nomial time algorithm for solving the problem. Our results can be extended to
non-decreasing utility functions at the cost of a rather involved notation. More-
over, the algorithm can be extended to iteratively solve the rate/power allocation
problem in a small number of cells.
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