Anomaly Characterization
in Flow-Based Traffic Time Series

Anna Sperotto, Ramin Sadre, and Aiko Pras

University of Twente
Centre for Telematics and Information Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
P.O. Box 217, 7500 AE Enschede, The Netherlands
{a.sperotto, r.sadre, a.pras}@utwente.nl

Abstract. The increasing number of network attacks causes growing problems
for network operators and users. Not only do these attacks pose direct security
threats to our infrastructure, but they may also lead to service degradation, due to
the massive traffic volume variations that are possible during such attacks. The
recent spread of Gbps network technology made the problem of detecting these
attacks harder, since existing packet-based monitoring and intrusion detection
systems do not scale well to Gigabit speeds. Therefore the attention of the scien-
tific community is shifting towards the possible use of aggregated traffic metrics.
The goal of this paper is to investigate how malicious traffic can be character-
ized on the basis of such aggregated metrics, in particular by using flow, packet
and byte frequency variations over time. The contribution of this paper is that it
shows, based on a number of real case studies on high-speed networks, that all
three metrics may be necessary for proper time series anomaly characterization.

1 Introduction

Attacks on our networks and server infrastructures are a growing source of concerns
for network operators and users. They may be generated by both inexperienced script-
kiddies and professional hackers, but in any case, attacks create unwanted traffic that
can affect the performance and dependability of existing services. Therefore operators
employ intrusion detection systems to identify and possibly filter suspicious traffic.

The constant increase in network traffic and the fast introduction of high speed
(tens of Gbps) network equipment [16]] make it hard to still employ traditional packet-
based intrusion detection systems. Such systems rely on deep packet payload inspec-
tion, which does not scale well. In high speed environments, approaches that rely on
aggregated traffic metrics, such as flow-based approaches, show a better scalability and
therefore seem more promising. The advantage of flow-based approaches is that only a
fraction of the total amount of data needs to be analysed. For the University of Twente,
for example, we have estimated that the amount of flow data represents less than 1% of
the amount of normal packet data.

A flow is defined as an unidirectional stream of packets that share common charac-
teristics, such as source and destination addresses, ports and protocol type. In addition,
a flow includes aggregated information about the number of packets and bytes belong-
ing to the stream, as well as its duration. Flows are often used for network monitoring,
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permitting to obtain a real time overview of the network status; common tools for this
purpose are Nfsen [3]] and Flowscan [[13]], while the de facto standard technology in this
field is Cisco Netflow, particularly its versions 5 and 9 [[1/13]]. The IETF IPFIX working
group [14] is currently working on a standard for IP flow exporting, based on Netflow
version 9.

Large networks, when creating flows, often apply packet sampling in order to make
the approach even more scalable. In this case, only a percentage of the total number
of packets passing through the monitoring point is considered in the flows. Statistical
studies have been performed about correctness and precision of sampling strategies for
Internet traffic [6] and high speed environments [[7]], as well as estimation of traffic
flow characteristics from real sampled data [[T1]]. These studies show that, despite the
reduced amount of information, it is still possible to offer a correct statistical overview
of the network status [6]]. Packet sampling in flow creation is vastly deployed [12[17]. In
particular, NetFlow relies on systematic sampling, where only 1 out of every n packets
is considered for the accounting (1:n).

In the last years there has been an increasing interest in the application of flow-based
techniques for anomaly and intrusion detection. The works of [8I9I10], which applies
principal component analysis to traffic time series, and [19], which proposes a frame-
work for network anomography, are examples of contributions in this field. Another
example is provided by [2], which aims to detect worm spread in high speed network
on a connection basis. In a similar environment, [3]] addresses the problem of detecting
DoS attacks and scans. In this case, the authors particularly focus on aggregated header
information, as they can be exported by NetFlow (TCP flags). In addition, the presented
approach is interesting because it explicitly addresses the problem of measure variation
over time (with the use of value forecasting). In [4]], the role of timely analysis of flow
data is central. The author proposes a general purpose platform for parallel time-based
analysis of flow information for attack detection, focusing in particular on DoS attacks
(SYN-flood and web server overloading). From a network monitoring point of view,
time series on flows, packets, and bytes are considered to be a useful tool: they permit
to have a dynamic and real time overview of the network on the basis of the stream of
information coming from the exporter [T2/15].

In this paper, we investigate the use of traffic time series for identifying anomalies
and detecting intrusions. In particular, we are interested in whether it is necessary to
consider 1) flows, 2) packets as well as 3) bytes time series, or whether it is sufficient to
consider only one or two of these. In addition, we want to know if the conclusion also
holds in the presence of sampling. The novelty of our approach is that we rely on real
case studies, performed in high-speed networks with links of 10 Gbps. Our measure-
ments have been performed simultaneously on two different networks, the University of
Twente (UT) and SURFnet, the Dutch research network, [18]. SURFnet applies 1:100
packet sampling during the flow creation.

The paper is organized as follow. Section 2l presents the measurement environment
in which our analysis has been conducted. Sections 3l and [ analyze anomalies in flow
traces, focusing in particular on two real examples. Finally, Section [3] presents our
conclusions.
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2 Measurement Setup

The analysis presented in this paper has been conducted on flow traces collected at the
University of Twente and on the SURFnet infrastructure [18]. In particular, the ana-
lyzed traces cover a period of time of two working days, namely between Wednesday
August 1st 2007, 00:00 and Thursday August 2nd 2007, 23:59. The two networks have
different sizes and coverage. The UT one is a /16 network providing connectivity to
the employees and the students on the university buildings and the campus. SURFnet
has national coverage and connects via optical path the most important research insti-
tutions in the Netherlands. Since SURFnet is also the UT network service provider, the
majority of the incoming and outgoing UT traffic is routed through SURFnet. UT and
SURFnet traces rely on a different measurement setup. Indeed, while UT processes all
the packets passing through the measuring point, SURFnet applies a systematic sam-
pling with ratio 1:100. In this paper, the real amount of traffic is estimated scaling all
the measurements by a factor of 100.

Figure [Tl shows the bytes traffic time series in the considered time frame. In this pa-
per, all the time series have been created considering a time interval of 600 seconds,
a good compromise between accuracy and number of samples. As expected, both net-
works show a clear night-day pattern, with peak of activity between 8:00 and 18:00 and
with a minimum around 4:00. Around 16:00, on August 1st 2008, the amount of traffic
on SURFnet drops abruptly. Since no error has been detected in our measuring setup,
we suspect the down-peak to be caused by a flow creation and exporting failure in the
SURFnet infrastructure, or, less likely, to a network hardware failure. Nevertheless, this
event is not affecting our analysis. Table [Tl presents the average, minimum and maxi-
mum traffic loads and the total data volume measured on the two networks during the
observation period, together with the number of collected flows.

Table 1. Average, maximum and minimum traffic loads, data volume and number of flows during
the period of observation on UT and SURFnet

Avg Load  Max Load  Min Load  Volume  Flows

UT 652Mbps  1.01Gbps ~ 259Mbps  21.65TB 982.7M
SURFnet 7.73Gbps  10.5Gbps 4Gbps 162.3TB 523.7M

During our monitoring time, UT seemed to be object of repeated and diverse attacks,
even if apparently without real damage. Due to space constraints, we decide to concen-
trate our analysis on the following examples: ssh and dns traffic traces. The choice of
these two specific sub-traces is due to the fact that, quite surprisingly, the ssh service
resulted to be one of the major attack targets, both in intensity and in number of attacks.
Similarly, by experience we noticed that dns tends to produce a quite regular traffic
volume. This characteristic made quite easy to detect suspicious variation in traffic in-
tensity. To properly evaluate if the observation in both networks are consistent, the ssh
and dns traffic in SURFnet have been filtered in order to keep into account only the
incoming-outgoing traffic from the UT network.
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Fig. 1. Bytes time series, showing UT and SURFnet (estimated values) traffic

3 SSH Traffic

Ssh is one of the most common protocols to connect with remote machines. In general,
it corresponds to the 1% of packets and the 1.2% of bytes of the total incoming-outgoing
UT traffic.

3.1 Traffic Analysis

Figure 2] shows the byte traffic time series in the observation time frame. In the same
graph, both UT and SURFnet (estimated) traffic volume are shown. It is possible to
notice that the two measurements show the same trends, and only occasionally SURFnet
strongly differs from UT. In general, the bytes trend in the observation period is quite
irregular with sharp peaks and down-peaks. This situation is understandable because
ssh can be used for both remote communications and file transfers. As a consequence,
in the byte time series there is no clear evidence of attacks.

On the other side, looking at the packet time series (Figure[3)), it is possible to notice
that during the two days of observations, the UT network saw a massive increase of its
ssh traffic. The time series is indeed characterized by sudden peaks during which the
number of packets per time interval can raise of several millions. In some cases, we
observe a difference of up to almost 8 millions packets. If we consider the flow time
series, as in Figure[d] we can observe how the trend is also in this case characterized by
peaks during which the number of flows per time interval raises form few thousand to
half million. Again, the number of flows per time interval in SURFnet increases follow-
ing the same behavior of the UT trace, despite the use of sampling. This phenomenon
is particularly visible during the massive peaks, namely in the early morning of August
Ist and in the late morning of August 2nd.
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Fig. 2. Bytes time series, showing UT and SURFnet (estimated values) ssh traffic
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Fig. 3. Packets time series, showing UT and SURFnet (estimated values) ssh traffic

Summarizing, in the moments of major ssh activity, we observe a suspiciously high
number of flows, matched by a very high number of packets, but with almost negligi-
ble amount of sent and received bytes. This suggest that the hosts involved are send-
ing/receiving relatively small packets to many different hosts, scenario that suggests
the possibility of a scan. A more detailed inspection of the trace shows indeed that few
source hosts made the UT network object of massive ssh scans, during which the at-
tackers were performing user-guessing on almost all the hosts in the UT network. It is
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Fig. 4. Flows time series, showing UT and SURFnet ssh traffic

important to underline that it is the contemporaneous observation of all the three mea-
sure that permits to discriminate between normal and malicious traffic. For example,
considering only peaks in the packet time series would not permit to distinguish file
transfers from scanning activities. On the contrary, considering also bytes and flows
would show that a file transfer has a different behavior from a scan, with peaks in the
byte time series but not in the flow one. The traffic characteristics during the peaks
made the ssh traffic trace worthy of deeper analysis. In the following, we concentrate
only on the peak in the time frame from 7:50 to 10:10 on August 2nd, when the num-
ber of flows per time interval rises up to a maximum of almost 600000 flows ((ssh)
anomalous time frame).

3.2 Normal vs Anomalous Traffic

The following analysis proves indeed that the previously identified peak is due to an
attack. In order to characterize the network behavior during the anomaly, we need to
compare it with a second observation time frame, that will provide us an overview of
the network during a not suspicious interval. The second time windows span over a
period of 2 hours, between 8:00 and 10:00 of August 1st. During this time frame, we
are not observing any fast variation of the flow frequency. Since we are interested in
scans and we are assuming that ssh scans produce variation in the flow frequency,
we also assume the second time frame to be an example of normal network behavior
(normal time frame).

Looking at the number of active hosts in the anomalous and normal time frames,
Table [2] shows that the normal time frame is characterized by a balanced number of
sources and destinations, both in UT and SURFnet. On the contrary, in the anomalous
time frame, we can observe an increased number of destinations, several times bigger
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Table 2. Number of distinct source and destination addresses during the anomalous and normal
time frames in the UT and SURFnet traces

Anomalous time frame Normal time frame
Sources  Destinations Sources  Destinations
uT 2763 65342 629 647
SURFnet 597 3020 192 192

than the number of sources. The number of destination hosts in the UT trace suggests
that the scan covers the entire UT network (that is, as reported in Section2] a /16 net-
work), while the increased number of source hosts is an effect of the scanning activity
(some of the destination hosts react to the probes). A similar trend is visible in SURFnet.

The study of the top active sources w.r.t. the number of originated flows shows that
the anomalous time frame is dominated by the presence of three major senders, that
caused the attack. TableBlshows how the traffic, expressed in flows, packets and bytes,
is distributed with respect to the sources during the anomalous time frame. Together,
the three most active sources are responsible for the 98 - 99% of the total amount of
flows in both UT and SURFnet. All the three hosts were scanning the UT network.
As already suspected during the time series analysis, also the packet repartition is un-
balanced towards the major senders (responsible of ~ 70% of the packets in both UT
and SURFnet). Finally, it is important to notice that the scan does not deeply affect the
bytes distribution: the 75% and the 69% of the bytes volumes respectively in UT and
SURFnet is still due to normal traffic.

In order to give a visual representation of the network behavior during the anomalous
and normal time frame, the scatter-plot in Figure[3is presented. A time interval is char-
acterized by a number of packets, bytes and flows. Let us suppose to assign to each mea-
sure an axis in a 3D space and plot each time interval as a point in this space. Figure[3]
shows a representation of the anomalous and normal time frame. In the case of the
anomalous time frame, also the projections on the planes are plotted. The graph permits
to see that points belonging to the normal time frame tend to group together in a part of
the space characterized by relatively small number of packets and bytes. Moreover, the
time intervals in this group show a very low number of flows. On the contrary, the spa-
tial disposition of the anomalous time frame describe a totally different behavior. Also
in this case, the time intervals during the anomaly tend to be spatially close. This is an

Table 3. Percentage of flows, packets and bytes for the attackers and the not suspicious hosts
during the ssh anomalous time frame

Flow Percentage  Packets Percentage  Bytes Percentage
UT  SURFnet UT SURFnet UT  SURFnet

SSHTOP1 82.6% 89.5% 65.7%  71.2% 223% 28.1%
SSHTOP2 13.5%  9.2% 6.7% 7.3% 2.3% 2.8%
SSHTOP3 2.1% 0.3% 0.4% 0.3% 0.1% 0.1%
SSH OTHERS 1.8% 1% 272%  21.2% 75.3%  69.0%
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Fig. 5. ssh anomalous and normal time frame space disposition (UT trace)

indication of the fact that they share common features. In addition, as emphasized by
the projections, points in this group present high values of the coordinates = (packets)
and z (flows), while only few cases show a massive byte volume (y axis). Most impor-
tantly, the two groups are spatially distant to each other, confirming that anomalous and
normal time intervals show clearly detectable differences.

4 DNS Traffic

Dns is the second trace we analyze in this paper. Commonly, dns is responsible of the
less than 1% of the incoming-outgoing data volume at the UT network.

4.1 Traffic Analysis

In Section B ssh traffic seems to suggest that the flow frequency analysis can easily
enlighten the presence of anomalies. Unfortunately, this hypothesis does not hold for
dns traffic. As it is possible to see in Figure [6l the number of flows per time interval
is almost constant during the entire observation period and nothing would suggest the
presence of an anomaly.

The situation appears to be different if we are interested not in the flow time series
but in the packet and byte ones. Figures[7land[8] indeed, show that in the time windows
between 1:40 and 7:00 am on August 1st, the UT network saw a massive increase in the
volume of dns traffic, both in packets and in bytes. In particular, both measures raise
abruptly from few thousands to millions (between 10 to 28 millions in a time interval).
The SURFnet trace shows the same behavior, even in presence of sampling.

The just described anomaly is unnoticeable if only the flow time series is taken
into account. This observation is particularly relevant because it witness how flow fre-
quency variation is not expressive enough to characterize anomalies. By definition,
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Fig. 7. Packets time series, showing UT and SURFnet (estimated values) dns traffic
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dnstraffic produces quite small UDP packets during the query process and it relies
on TCP only in case of databases updates. Since the analysis of the protocol repartition
during the anomaly shows that the 99.7% of the flows are UDP and they are responsi-
ble of the 99.9% of the bytes volume, we can exclude that the anomalies is caused by
a database update. Under this consideration, we proceed for a more detailed analysis of

the anomaly.
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Fig. 8. Bytes time series, showing UT and SURFnet (estimated values) dns traffic

4.2 Normal vs Anomalous Traffic

As already for ssh, a not-anomalous interval has been chosen for sake of comparison.
The dns normal time frame spans between 12:00 and 17:00 of August Ist. The large
amount of bytes sent depicts a different scenario compared to the one presented in Sec-
tion3t the sharp variation in the byte and packets time series, together with the use of a
large percentage of UDP packets suggests indeed the possibility of a DoS against a few
number of destination hosts. The study of the anomalous time frame w.r.t the volume
of byte sent clearly show the prevalence of three sources. Far away from the scenario
of the ssh anomaly, the three sources are creating in average less that 300 flows each,
being in this way responsible of only the 0.003% of the total UT flows. On the other
side, each one of the major sources generates a packets volume almost 50 times bigger
than all the other sources together. The proportion in the case of bytes is 20. SURFnet
shows the same proportions. More generically, as it is possible to see in Table [ the top
senders host are responsible of more than 99% of the packets and the 98% of bytes in
both UT and SURFnet traces. A deeper analysis of the traces shows that the three major
sources share a single destination, towards which 33GB of data have been sent during
the entire anomalous time frame (with packets of constantly exactly 46B in size). This
configuration support the thesis that the destination host has been victim of a Distributed
DoS targeting the dns service.

As previously in Section Bl a 3D representation of the anomalous and normal time
frames is presented in Figure [0l Also in this case, the spatial disposition of the points
in the two groups confirms the diversity between anomalous and normal time intervals.
Points in the normal time frame show a relative variability in the number of flows, but
almost no changes in the number of packets and bytes. On the contrary, the points in the
anomalous group are characterized by large x and y coordinates (packets and bytes).
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Table 4. Percentage of flows, packets and bytes for the attackers and the not suspicious hosts
during the dns anomalous time frame

Flow Percentage  Packets Percentage  Bytes Percentage
UT  SURFnet UT SURFnet UT  SURFnet
DNS TOP 1 0.01% 0.14% 35.3%  35.3% 34.9% 34.8%
DNSTOP2 0.01% 0.15% 32.6%  32.6% 32.3%  32.5%
DNSTOP3 0.01%  0.14% 31.4%  31.4% 31% 31%
DNS OTHERS 99.97% 99.56%  0.7% 0.7% 1.8% 1.7%
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+
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Fig. 9. dns anomalous and normal time frame space disposition (UT trace)

Only two time intervals during the anomalies are distant from the majority: they show
indeed a relatively small number of packets and bytes. Nevertheless, the zy-projection
of the anomaly confirms that this points are in any case anomalies. All the points in the
anomalous time frame, with no exception of the two just described, belong to the same
straight line. This is a consequence of the fact that the attackers were flooding the victim
with fixed size packets. As final observation, in the graph it is possible to see that the
number of flows during the anomalous and normal time frames does not differ enough
to detect the ongoing attack, confirming the observation about the flow time series.

5 Conclusions

An important contribution of this paper is that our conclusions are based on extensive
measurements on real, high speed networks, with line speeds of 10 Gbps. Our analysis
confirm previous findings, that indicate that flows contain sufficient information to de-
tect network intrusions. In particular, our study investigated whether flow, packet and
byte time series are all needed to identify intrusions, or whether it is sufficient to con-
sider only one or two of these metrics. Detailed analysis of two anomalies brought us to
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the conclusion that, to correctly identify suspicious traffic in general, all three metrics
should be taken into consideration.

Our analysis also showed that, for certain classes of attacks, the choice to monitor
only a single metric may still be sufficient. This is for example the case in our flow time
series for ssh traffic. On the other hand, such choice entails the risk of hiding other
attacks. This is, for example, the case for the dns DoS attack, which does not appear
in the flow time series. Therefore it is important to observe flow, packet as well as byte
time series variation, to properly characterize anomalies.

Our study proves that this conclusion also holds in the presence of sampling.
Sections 3] and @] showed that the sampled traces closely approximate the non-sampled
traces, which means that accurate anomaly detection is possible even in case of sam-
pling. This observation suggest that the development of scalable, but still accurate in-
trusion detection solutions is possible.

Finally, Sections and [£.2] ouline directions for future work. Normal traffic and
traffic generated during an anomaly show a clear spatial division. This ensures us that
modelling network behaviours is possible. Our future studies will deal with the cre-
ation of models suitable, first of all, for the problem of detection and, at the same time,
effective for real time analysis of high speed networks.
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