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ABSTRACT

Modern embedded multi-processors can execute several stream-
processing applications concurrently. Typically, these applications
are partitioned into tasks that communicate over buffers together
forming a task graph. The fact that these applications are started
and stopped by the user combined with the knowledge that not all
applications are necessarily completely characterised makes it at-
tractive to use run-time scheduling. We define and characterise a
class of budget schedulers that by construction bound the interfer-
ence from other applications. Furthermore, we will show that the
worst-case effects of these schedulers can be included in dataflow
process networks. The execution of the resulting dataflow process
network is shown to result in tight and conservative bounds on the
end-to-end temporal behaviour of the execution of the task graph
on a cycle-true simulator. Given that the inter-task synchronisation
of the application allows for a dataflow model that is functionally
deterministic, this enables exploration of various buffer capacities
and scheduler settings at a high level of abstraction.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]: Real-
Time and Embedded Systems

General Terms

Algorithms, Performance, Theory

Keywords
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1. INTRODUCTION
Current consumer electronic devices, such as smart-phones, of-

fer many applications, including audio/video playback and the base-
band processing for the actual phone functionality. For such stream
processing applications, often a distributed implementation on a
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multi-processor system is required for reasons of performance and
power dissipation. In order to reduce costs, the processors and
communication infrastructure are often shared between different
applications. Typically, not all applications on such a system are
completely characterised in terms of their execution times and ac-
tivation rates. In combination with the fact that users start and
stop applications, it is attractive to have run-time scheduling on the
resources that are shared by multiple applications on such multi-
processor systems.

Given an application that is partitioned into tasks that execute on
different processors of such a multi-processor system, it is not nec-
essarily straightforward to verify that the functional behaviour of
the distributed implementation equals the functional behaviour of
the reference implementation, which is typically a fully sequential
program. However, if the distributed implementation is function-
ally deterministic, i.e. a given sequence of inputs always produces
the same sequence of outputs, then this reduces the verification ef-
fort to a large extent.

For stream processing applications it is quite natural to have a
distributed implementation that is a task graph, in which tasks com-
municate data over FIFO buffers. Such task graphs can often be
intuitively modelled as dataflow process networks [15]. Sufficient
conditions are known for dataflow process networks to be function-
ally deterministic [15].

Next to the functional behaviour also the temporal behaviour
of these task graphs is of interest. While dataflow process net-
works have been extended with time [21], this was limited to task
graphs that are executed on resources without run-time scheduling.
In this paper, we will show that, for a class of run-time schedul-
ing schemes, we can conservatively model the effect of run-time
scheduling on the temporal behaviour of the task graph, given that
the task graph can be modelled as a functionally deterministic data-
flow process network. This is done by associating a suitable amount
of time to the activations of the dataflow processes of this func-
tionally deterministic dataflow graph. The resulting performance
analysis is applicable for both single processor as well as multi-
processor systems.

The proof of a conservative model as presented in this paper al-
lows to model a (cyclic) sequence of execution times. This is not
possible using the concepts used in the proof presented in [30]. This
result not only widens the scope of dataflow modelling, it also has
the following practical application. Dataflow process networks can
be straightforwardly executed in a simulation environment. The
fact that we show that such dataflow process networks can model
the effects of run-time scheduling given a sequence of execution
times means that we can include the effects of a real-time operat-
ing system at the communicating processes plus time (CP-T) ab-
straction level instead of the programmer’s view plus time (PV-T)
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abstraction level [8]. Furthermore, the results we obtain by simu-
lation of the dataflow process network are valid, i.e. conservative,
independent of the time at which applications are started and inde-
pendent of other applications. This reduces the time required by a
single simulation run, and the number of simulation runs required
to characterise the performance of a task graph. Our model is tight,
i.e. there are cases in which the actual behaviour equals the mod-
elled behaviour, and typically the end-to-end temporal behaviour is
accurately estimated.

The contribution of this paper is that we show that constrain-
ing oneself to functionally deterministic task graphs and a specific
class of schedulers allows for a model at a high level of abstraction
that provides conservative, i.e. pessimistic, estimates on end-to-end
performance. The essential property, on which this contribution
rests, is the monotonic temporal behaviour of our dataflow model.

Related work is discussed in Section 2. In Section 3, we will de-
fine functionally deterministic dataflow graphs. Then in Section 4,
we will introduce our task model and from its relation with func-
tionally deterministic dataflow graphs it will follow that the task
graphs that adhere to the presented task model have time-invariant
functional behaviour. Subsequently, in Section 5, we will show that
functionally deterministic dataflow graphs have monotonic tempo-
ral behaviour. In Section 6, we discuss sufficient conditions for
a dataflow graph to conservatively model the temporal behaviour
of a task graph. A classification of different run-time scheduling
schemes is given in Section 7. After which we show in Section 8
that a class of schedulers allow their worst-case effects to be in-
cluded in a dataflow process. Implementation issues concerning
inter-task synchronisation are discussed in Section 9. In Section 10
we evaluate the accuracy of our estimations on end-to-end temporal
behaviour. After which we discuss some implications of this work
in Section 11, and conclude in Section 12.

2. RELATED WORK
Dataflow process networks have been extended with time by Sri-

ram and Bhattacharyya [21]. However, their work does not imme-
diately extend to include the effects run-time scheduling. This is
because if tasks are scheduled by a run-time scheduler, then you
need to differentiate between the time that sufficient input data and
output space is available for a task and the time that a task is started.
This differentiation is not made in [21]. In [3, 30] the effects of
run-time scheduling are included in the dataflow model. However,
compared to [3] this paper specifies sufficient conditions for a task
graph to be functionally deterministic and specifies the class of run-
time schedulers whose effects can be modelled by dataflow pro-
cesses. Compared to [30], this paper presents a proof that the model
is conservative that does not rely on concepts from the Latency-
Rate model [25]. The consequence is that instead of a model that
uses one (worst-case) execution time, the model presented in this
paper is valid for a (cyclic) sequence of execution times. The appli-
cation of a (cyclic) sequence of execution times instead of a single
execution time potentially improves the accuracy of the analysis, as
for instance shown in [18].

Existing approaches, such as [9, 20], that present a simulation
environment in which the effects of a real-time operating system
are included all present a simulation environment at the PV-T ab-
straction level [8]. The approach presented in this paper is at the
CP-T abstraction level. As shown in Section 10, this has major im-
plications for the time required for a single simulation run. This
is because at the CP-T level of abstraction fewer events need to
be handled by the simulation kernel than at the PV-T level of ab-
straction. Furthermore, in our approach we have that the results
obtained from a single simulation run are valid independent of the

time at which applications are started and independent of other ap-
plications. These abstractions are difficult to achieve at the pro-
grammer’s view plus time abstraction level.

In the communication by sampling method [27], tasks execute
quasi-periodically and sample their input buffers. This has the ad-
vantage of fault containment, but the disadvantage that the func-
tionality of the task graph depends on the execution times of the
tasks. In the presented approach, we require that tasks use blocking
communication primitives. Given this requirement and the require-
ment that the output values of a task execution are a function of its
input values, we can show that the task graph is functionally deter-
ministic. This means that independent of knowledge on worst-case
execution times that the output values of the task graph are com-
pletely determined by the input values of the task graph. In our
approach, the required type of run-time schedulers guarantees that
faults are contained within a single application, i.e. the bounds on
the temporal behaviour of one application are independent of other
applications.

3. DETERMINISTIC DATAFLOW GRAPH
In this section, we state the sufficient conditions, from [15], for

a dataflow graph to be functionally deterministic, i.e. output values
are only determined by input values. This will enable us to show in
Section 4 that YAPI task graphs [7] are functionally deterministic.

As defined in [15], a firing of a dataflow actor maps tokens from
input queues into tokens on output queues. A set of firing rules
specifies when an actor can fire. More specifically, a firing rule
is a condition that specifies the tokens that need to be present on
specific input queues before the actor can fire. A firing consumes,
i.e. removes, input tokens and produces output tokens. A sequence
of actor firings is called a dataflow process.

A sufficient condition for a dataflow process to be functionally
deterministic is that each actor firing in this dataflow process is
functional and that the set of firing rules is sequential. An actor
firing is functional if it is side-effect free, i.e. the produced tokens
in any firing are a function of the consumed tokens in that firing. A
set of firing rules is sequential if there exists a pre-defined order in
which the firing rules can be tested.

A network of dataflow processes interconnected by queues is
called a dataflow graph. A dataflow graph is allowed to contain
cycles. In general, initial tokens need to be placed on queues of
these cycles in order to enable a non-terminating execution of the
dataflow graph. We say that a dataflow graph is functionally deter-
ministic if the tokens produced on the output queues of the graph
are completely determined by tokens from the input queues and
initial tokens from cycles in the dataflow graph. It is clear that if
all dataflow processes in the dataflow graph are functionally deter-
ministic, then also the dataflow graph is functionally deterministic.
We define a functionally deterministic dataflow graph as a dataflow
graph in which all dataflow processes only have actor firings that
have (1) sequential firing rules and that are (2) functional.

4. TASK GRAPH
We require that an application is implemented as a task graph

that consists of tasks that communicate over fixed capacity FIFO
buffers. The capacity of a FIFO buffer is given by the number of
containers it holds, where a container is a place-holder for data
in which tasks, once they acquired the container, can do random-
access. In order to write output data on a particular buffer, we re-
quire a task to first acquire a number of empty containers on this
output buffer that is sufficient to store this data in. Similarly, a task
first needs to acquire a number of full containers on its input buffers
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before it can read input data. On all input buffers, the number of
full containers on which a task waits is only allowed to depend on
the state of the task, i.e. the values of the local variables and the
values in already acquired containers. Furthermore, we require that
the produced values are a function of the values of the local vari-
ables and the values in already acquired containers. An application
in which the tasks only communicate data using the YAPI [7] read
and write primitives would adhere to these requirements, we call
this a YAPI task graph. A code-fragment from an example YAPI
task is shown in Listing 1. This example mimics the behaviour of a

Listing 1 Example YAPI task.

// declare variables

...

while(1)

{

read(in_port, &header, HEADER_SIZE);

// parse header

...

read(in_port, &packet, this_packet_size);

// process data

...

write(out_port, &output, OUTPUT_SIZE);

}

variable length decoding task, as found in audio or video decoders.
For such a task, the input stream contains information concerning
the number of bits with which the next packet or frame is encoded,
i.e. the amount of input data that needs to be present for the second
read primitive to succeed depends on earlier acquired data.

We will now show that a YAPI task graph is functionally deter-
ministic. This is done by showing a one-to-one relation between
YAPI task graphs and functionally deterministic dataflow graphs.

We associate with each task in the task graph a unique dataflow
process in the dataflow graph. Then, we associate with each buffer
in the task graph two queues in opposite direction connecting the
corresponding dataflow processes. One of these two queues models
the flow of full containers, i.e. data, while the other queue models
the flow of empty containers, i.e. space. A full or empty con-
tainer that is present when the task graph is started is reflected in
the dataflow graph by an initial token on the corresponding queue.
An example is shown in Figure 1, where dataflow process v1 corre-
sponds with task u1, dataflow process v2 corresponds with task u2,
and the two queues with d1 initial tokens correspond with the buffer
that contains d1 initially empty containers.

Further, a task is partitioned in non-blocking code-segments by
letting each acquisition of containers start a non-blocking code-
segment. For a YAPI task graph, this means that each read and
write starts a non-blocking code-segment, leading to three non-
blocking code-segments in Listing 1. Execution of a task leads
to a (possibly non-terminating) sequence of successive executions
of this finite number of non-blocking code-segments. We required
that the number of containers on which a task is waiting to arrive
is only allowed to depend on the state of the task. Furthermore, we
required that the values in the produced containers are a function of
the values of the local variables and the values of already acquired
containers.

We associate the state of a task, which is carried from one task
execution to the next task execution, with one token on a queue
from and to the corresponding dataflow process. If a set of firing
rules of the actor firing is such that depending on the value of the
token on this self-edge the number of tokens to be consumed from
each other queue is completely determined, then the set of firing
rules is sequential. It is clear that a set of firing rules can be con-

v2v1 d1

u1 u2

Figure 1: Example one-to-one correspondence between task

graph and dataflow graph.

structed such that the number of tokens consumed from various
queues depending on the value of this token has a one-to-one cor-
respondence with the number of containers acquired from various
buffers depending on the state of the task.

This implies that each task is associated with a functionally de-
terministic dataflow process. Since all these functionally determin-
istic dataflow processes are interconnected by queues the resulting
dataflow graph is functionally deterministic. Because there is a
one-to-one relation between task graph and dataflow graph, we can
say that also the task graph is functionally deterministic.

5. TIMED DATAFLOW GRAPH
If a dataflow process is functionally deterministic, then the to-

kens produced by a dataflow process are only determined by the
tokens arriving on the input queues. This implies that the produced
tokens are independent of the arrival times of tokens on the input
queues of dataflow processes.

As in [21], we can extend a functionally deterministic dataflow
model to include time by separating the token consumption and to-
ken production of each actor firing. Instead of defining an actor
firing as an atomic action in which tokens are consumed and pro-
duced, we define an actor firing as two atomic actions. One action
consumes tokens, while the other action produces tokens. Since the
produced tokens are a function of the consumed tokens, we require
that the action that produces tokens is not before the action that
consumes tokens. It is clear that this does not change the function-
ality.

Let t(i) ∈ R
+ be the difference in time between the token pro-

duction action and token consumption action of actor firing i. In
a self-timed schedule, actor firings start as soon as the firing rule
is satisfied. Let σ(G, t) provide the start times of the self-timed
schedule of dataflow graph G, given that actor firing i requires t(i)
time. In a self-timed schedule of a dataflow graph, every actor fir-
ing starts as soon as its firing rule is satisfied.

DEFINITION 1. A dataflow graph has monotonic temporal be-

haviour if we have that

(∀i • t′(i) ≤ t(i)) ⇒ σ(G, t′) ≤ σ(G, t) (1)

THEOREM 1. Functionally deterministic dataflow graphs have

monotonic temporal behaviour.

PROOF. All dataflow processes in a functionally deterministic
dataflow graph G are functionally deterministic. A functionally
deterministic dataflow process only has actor firings that have se-
quential firing rules and where the produced tokens are a function
of the consumed tokens. This implies that the firing rules and pro-
duced tokens are independent of the arrival times. Given schedule
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σ(G, t) that is the self-timed schedule of G if actor firing i takes
t(i) time. With t′(i) ≤ t(i), we have that any actor firing i can
only take less time, which implies that this actor firing can only
produce tokens earlier. The firing rules and the number of tokens
produced by actor firings are independent of arrival times of tokens.
This means that, with a self-timed schedule, any earlier production
of tokens can only lead to earlier start times of other actor firings.
Earlier start times in turn can again only lead to earlier token pro-
ductions.

In the next section, we will apply the fact that functionally de-
terministic dataflow graphs have monotonic temporal behaviour to
introduce sufficient conditions on the dataflow graph such that up-
per bounds on container arrival times are given by the arrival times
of the corresponding tokens.

6. CONSERVATIVE MODEL
In this section we will present sufficient conditions on the rela-

tion between the dataflow model and the task graph such that the
dataflow model allows us to derive conservative times at which suf-
ficient containers are available for non-blocking code-segments to
start. The first condition is that there is the following one-to-one
correspondence between containers and tokens.

PROPERTY 1. For each buffer in the task graph, there are two

unique queues in the dataflow graph. Furthermore, for each con-

tainer in the task graph, there is one token in the dataflow graph.

Let a(c) be the arrival time of container c, and let â(c) be the
arrival time of the token that corresponds to container c. In the next
definition, consumptions destroy containers and tokens and pro-
ductions create containers and tokens. Given that Property 1 holds,
the following definition says that a dataflow graph is temporally
conservative to a task graph if the fact that container arrival times
on input buffers are bounded from above by token arrival times on
the corresponding queues implies that container arrival times on
all buffers are bounded from above by token arrival times on their
corresponding queues.

DEFINITION 2. Given that Property 1 holds for dataflow graph

G and task graph T . This dataflow graph G is temporally conser-

vative to T if

(∀ci ∈ CI • a(ci) ≤ â(ci)) =⇒ (∀c ∈ C • a(c) ≤ â(c)) (2)

where CI is the set of containers that are either initially present or

arrive on input buffers of T and C is the set of all containers.

By constructing the same dataflow graph as in Section 4, we can
derive a requirement in terms of non-blocking code-segments and
actor firings that is more straightforward to verify than the more
implicit requirement given by Equation (2). The required one-to-
one correspondence between actor firings and non-blocking code-
segments is more precisely described in the following property.

PROPERTY 2. Property 1 holds. Furthermore, for non-blocking

code-segment m there is a unique firing rule in the set of firing rules

that is only satisfied if (1) the tokens that correspond with the con-

tainers consumed by m are present, and (2) the token that signals

the finish of the previous actor firing is present. Furthermore, satis-

faction of the firing rule that corresponds with non-blocking code-

segment m enables an actor firing that computes the same function

as non-blocking code-segment m except that tokens are produced

in an atomic action on queues instead of containers being produced

on buffers.

The required one-to-one correspondence between tasks and data-
flow processes is specified in Property 3.

PROPERTY 3. For each task u in the task graph there is a unique

dataflow process v in the dataflow graph, such that for each non-

blocking code-segment of u, the dataflow process v has a firing rule

such that Property 2 holds.

Let e(m, i) be the time at which execution i of non-blocking
code-segment m is externally enabled, which means that sufficient
containers are available on all adjacent buffers. Let ê(m, i) be the
external enabling time of the corresponding actor firing, which is
the earliest time at which the tokens are present that correspond
with the required containers of modelled non-blocking code-segment
m. This means that the external enabling time is independent of the
presence of the token signalling the finish of the previous actor fir-
ing. Furthermore, let f(m, i) be the finish time of execution i of

non-blocking code-segment m and let f̂(m, i) be the finish time of
the corresponding actor firing.

The following theorem provides a more straightforward check on
the dataflow graph, then the requirement specified in Definition 2.
This is because this check is on external enabling and finish times
of actor firings instead of token arrival times.

THEOREM 2. Given that Property 3 holds for task graph T and

a dataflow graph G. If Equation (3) holds for any execution i of any

non-blocking code-segment m, then G is temporally conservative

to T .

e(m, i) ≤ ê(m, i) ⇒ f(m, i) ≤ f̂(m, i) (3)

PROOF. Dataflow graph G is temporally conservative to task
graph T , if given a starting situation in which all token arrival times
are conservative no actor firing can lead to token arrival times that
are not conservative. In G, actor firings consume and produce the
same amount of tokens as their corresponding non-blocking code-
segments consume and produce containers. Furthermore, we have
that non-blocking code-segments consume containers not before
their start and produce containers not after their finish, while ac-
tor firings consume tokens at their start and produce tokens at their
finish. This implies that if Equation (3) holds, then no actor fir-
ing produces its tokens earlier than the corresponding non-blocking
code-segment produces its containers. This implies that given to-
ken arrival times that are conservative every actor firing leads to
token arrival times that are again conservative, which implies that
G is temporally conservative to T .

We can now create a performance evaluation set-up for the case
that the task graph executes on resources without resource sharing.
We first determine the execution time of each non-blocking code-
segment, which is the time required by this non-blocking code-
segment when run in isolation. Subsequently, we execute the task
graph in a discrete time simulation environment, by letting each
non-blocking code-segment consume all containers at the start, wait
until the simulation time has advanced by the execution time of
this non-blocking code-segment and produce all containers. In this
way, we basically create the corresponding dataflow graph while
executing the task graph. Theorem 2 tells us that the arrival times
observed in this simulation are conservative. We have now obtained
conservative arrival times for the case that the task graph executes
on resources without run-time scheduling. In the next sections, we
will show that for a class of schedulers this simulation set-up can
be extended to obtain conservative arrival times for the case that the
task graph does execute on resources with run-time scheduling.
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7. SCHEDULERS
A non-blocking code-segment can start if sufficient containers

are present on the input and output buffers of this task. The differ-
ence between the time at which sufficient containers are available
and the time at which the non-blocking code-segment finishes is de-
termined by the execution time of the non-blocking code-segment
and the interference caused by other tasks sharing the same re-
source.

We see three classes of run-time scheduling that differ in the
type of information used to bound the interference from other tasks.
Interference can be bounded by knowing (i) how often other tasks
are started, and (ii) what execution time is associated with these
starts. Often (i) is characterised by a period or a minimum inter-
arrival time, while (ii) can be characterised by e.g. a worst-case
execution time. This leads to the following three classes of run-
time scheduling

1. interference depends on (i) and (ii)

2. interference is independent of (i) but depends on (ii)

3. interference is independent of (i) and (ii)

The first class includes non-starvation free scheduling schemes,
such as static priority pre-emptive. For any task, the interference
caused by tasks with higher priorities in a certain time interval can
only be bounded, if the number of activations of higher priority
tasks together with their execution times are known within that in-
terval. The second class, which is a subclass of the first, encom-
passes the starvation-free scheduling schemes for which a latency-
rate characterisation [25] can be derived. This class of schedulers
for instance includes round-robin, where the interference of other
tasks is independent of the start frequency of other tasks, but does
depend on the execution time of other tasks. We call the third class
of scheduling schemes the class of budget schedulers as defined
in Definition 3. This third class of schedulers is a subclass of the
second class.

DEFINITION 3. A budget scheduler guarantees every task a min-

imum amount of time B in every interval of time with length P .

We call B the budget in time interval P . Budget schedulers are the
subclass of a-periodic servers [5] that satisfy Definition 3. The class
of budget schedulers includes, but is by far not limited to, time-
division multiplex, priority-based budget scheduling [24], polling
server [22] and constant bandwidth server [2]. This class excludes
the total bandwidth server [23], because it cannot provide a budget
to tasks that is guaranteed independent of the execution times.

For budget schedulers, the budget guaranteed in a specific inter-
val of time is independent of the execution times of this task. In
the next section we will model the effect of budget and time in-
terval selection on the responsiveness of a task. In Section 10, we
will investigate trade-offs that can be made in processor and buffer
utilisation by various selections of budgets and intervals on the one
hand and buffer capacities on the other hand.

8. MODELLING BUDGET SCHEDULERS
In this section, we show that budget schedulers allow for an up-

per bound on the finish times of task executions. This bound re-
quires that budget B and interval P are known, and, furthermore, a
conservative enabling time of this execution, a conservative finish
time of the previous execution, and the execution time are known.
If, instead of the execution time, an upper bound on the execution
time is known, then this upper bound on the execution time can be
used to compute a conservative finish time.

This section contains the main technical contribution of this pa-
per, and generalises [30] by providing a proof of the presented up-
per bound on the finish times that is independent of concepts from
the Latency-Rate model [25]. This independence allows to use a
sequence of execution times instead of a single (worst-case) execu-
tion time. Using a sequence of execution times instead of a single
execution time allows for a more accurate analysis.

In this section, we focus on a task u, which is further omitted
from the discussion for reasons of clarity. Let e(i) be the external
enabling time of execution i, i.e. the time at which execution i is
enabled by sufficient containers on all adjacent buffers, let f(i) be
the finish time of execution i, while x(i) is the execution time of
execution i. Let i−1 denote the previous execution. The execution
time x(i) is defined as the time interval f(i) − f(i − 1), when the
task is executed in isolation on this resource and e(i) ≤ f(i − 1),
i.e. the task is executed without interruption. We will show that
Equation (5) holds for all schedulers in the just defined class. This
equation specifies an upper bound on the finish time that holds for
all schedulers in this class, a tighter upper bound can be found for
specific schedulers.

DEFINITION 4. Execution i of task u is part of a consecutive

execution that starts with execution k of u if for all executions j
of u, with k < j ≤ i, we have that e(j) ≤ f(j − 1).

THEOREM 3. Given that execution i is part of a consecutive ex-

ecution that starts with execution k. Then for every scheduler that

guarantees a task a minimum amount of time B in every interval of

time P , an upper bound on the finish time of execution i is given by

f(i) ≤ fw(i) = e(k)+

i
X

j=k

x(j)+ (P −B)

&

Pi

j=k
x(j)

B

’

(4)

PROOF. If e(k) > f(k − 1), then at time e(k) execution k has
sufficient containers present on all adjacent buffers and execution
k − 1 has finished, which implies that from e(k) execution k can
start its execution. The worst-case finish time of execution k occurs
if previous executions have already depleted the allocated time bud-
get. In this case, execution k needs to wait for maximally P − B
time before it can start its execution. This results in a worst-case
finish time of g(k) = e(k) + x(k) + (P −B)⌈x(k)/B⌉. If for each
execution j, with k < j ≤ i, we have that e(j) ≤ f(j − 1), then
we can see executions k through i as a single execution. In this
case, we have that an upper bound on the finish time of execution i
is given by fw(i) as defined in Equation (4).

Bound fw is a tight bound. This is because bound fw equals
the actual finish time f if e(k) occurs just after the budget B is
depleted, where k is the first execution of a consecutive execution,
and the budget is always replenished with a quantum that equals B.

Bound fw can be applied if the starts of consecutive executions
can be determined. However, the condition that determines when a
consecutive execution starts depends on the actual enabling and fin-
ish times, while bound fw computes upper bounds on finish times
and container arrival times. Determining the starts of consecutive
executions based on the application of bound fw is therefore prob-
lematic. The following theorem presents a bound that is an upper
bound on fw that does not depend on the knowledge of consecutive
executions.

THEOREM 4. For every scheduler that guarantees a task a min-

imum amount of time B in every interval of time P , we have that

an upper bound on the finish time of execution i is given by

f(i) ≤ fw(i) ≤ max(e(i) + P −B, fw(i− 1)) +
P · x(i)

B
(5)
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PROOF. We conservatively bound Equation (4).

fw(j) ≤ f l(j) = e(k) + P − B +
P

Pj

i=k
x(i)

B
(6)

For any execution i, we can have two cases. Either e(i) > f(i−1)
and i is the first execution in a sequence of consecutive executions,
or e(i) ≤ f(i − 1). In case e(i) > f(i − 1), then f l(i) = e(i) +
P − B + P ·x(i)/B. In case e(i) ≤ f(i − 1), then we have that
f l(i) − f l(i − 1) = P ·x(i)/B. Therefore for any i we have that
Equation (5) holds.

The upper bound on finish times as given by Equation (5) is still a
tight bound. This is because ⌈x⌉ was bounded by x+1. Depending
on the value of x this is a tight bound.

We can now derive upper bounds on container arrival times for
the case that the task graph executes on resources with resource
sharing. We again first determine the execution time of each non-
blocking code-segment. Subsequently, we execute the task graph in
a discrete-event simulation environment, where we now use Equa-
tion (7) to determine the finish time of the actor firing.

f̂(i) = max(ê(i) + P − B, f̂(i − 1)) +
P · x(i)

B
(7)

It is clear that Equation (3) is satisfied with these finish times. We
have that Property 3 holds for the dataflow graph constructed dur-
ing the simulation. This implies that conservative container arrival
times are given by the arrival times of the corresponding tokens in
the simulation. While this model associates an execution time with
every task execution, the model from [30] only allows to associate a
single (worst-case) execution time with a task, i.e. has an execution
time that is constant over all task executions. This is an important
extension that enables the presented simulation approach.

If the finish time of firing i is computed with Equation (7), then
it is clear that an earlier external enabling time of firing i does not
lead to a later finish time of firing i. Since the bounds do not affect
the behaviour of any other actor firing, we have that the result-
ing dataflow model has monotonic temporal behaviour. This result
is quite peculiar, since it is well known that schedulers can have
non-monotonic behaviour, i.e. scheduling anomalies [10]. Also a
budget scheduler can have non-monotonic behaviour, i.e. an earlier
enabling of one task can lead to a later start of another task. How-
ever, in our model we have taken into account the latest time at
which every task obtains its budget. In this way, we have bounded
the non-monotonic effects of the scheduler. Furthermore, because
the dataflow graph has a self-timed schedule, the scheduling of the
dataflow graph is no longer a multiprocessor scheduling problem.

For the case without resource sharing, conservatism was intro-
duced by letting consumptions be at the start and productions be
at the finish. In case of resource sharing, we have that the arrival
times are conservative for all initial states of the budget scheduler,
e.g. independent of the current position in the time-division multi-
plex period when we start this application. This is because in case
of a multiprocessor system in which the processors each have their
individual clock, which are not synchronised with each other, then
inherent – unknown – variation in the clocks leads to inherent –
unknown – variation in the alignment of the time-division multi-
plex schedules, i.e. the alignment of the time-division multiplex
schedules varies over time. In case the applied budget scheduler is
a time-division multiplex scheduler, then with our dataflow model,
we compute the worst-case arrival times for every possible align-
ment of the time-division multiplex schedules.

9. SCHEDULING OVERHEAD
We defined budget schedulers as the class of schedulers that can

guarantee a minimum budget B in every interval of length P . How-
ever, if the scheduling overhead is difficult to bound, then it is also
difficult to guarantee such a budget. If the notification of the arrival
of containers is based on interrupts, then guaranteeing a budget is
far from trivial. This is because the maximum number of interrupts
that can occur in any interval depends on the best-case behaviour
of the task graph. The best-case behaviour of the task graph de-
pends on the best-case response times, which in turn depend on the
best-case execution times. Since determining best-case execution
times is, just like determining worst-case execution times, a diffi-
cult problem [16], we do not use interrupts to notify the arrival of
containers.

In case of time-division multiple access (TDMA) scheduling,
as applied in the experiments discussed in Section 10, we apply
the inter-task synchronisation scheme as presented in [19]. In this
scheme, the task that produces a container updates the buffer ad-
ministration. A task that is waiting for a container to arrive polls
the buffer administration for the availability of the container. Since
all tasks are guaranteed a minimum budget this does not negatively
affect the responsiveness of any of the other tasks. This set-up has
the advantage that it is easier to bound the scheduling overhead,
because accounting for the cost of polling is easier than accounting
for the cost of interrupt processing.

The work presented in [24] shows that there is a sub-class of
budget schedulers for which the polling-based inter-task synchro-
nisation scheme from [19] is applicable.

10. EXPERIMENTAL RESULTS
In this section, we first discuss three experiments that are set-

up in such a way that the results can be intuitively understood. A
subsequent fourth experiment includes more complex real-life soft-
ware. In the first experiment, we have an application with as little
as possible variation, i.e. jitter, in its temporal behaviour. In this
experiment, the execution times and the number of communicated
containers is kept constant over task executions and the run-time
scheduling can be seen as the only source of variation, i.e. jitter.
In the second experiment, we introduce variation by letting the ex-
ecution time of one task alternate between two values. In the third
experiment, we introduce another source of variation, which is a
task that communicates a variable number of containers. Commu-
nication of a variable number of containers mimics behaviour as
for instance found in video decoders, where a to be decoded frame
contains a variable number of blocks. The fourth experiment is
an MP3 playback application that includes real-life software, more
tasks, a periodic sink, and tasks with data-dependent consumption
behaviour.

We have implemented a small scheduling kernel that implements
time-division multiple access (TDMA) scheduling. With TDMA
scheduling there is a fixed sequence in which tasks are allocated
their time slices within a period. This implies that the interval of
time over which tasks are guaranteed a minimum budget is the same
for all tasks and equals the TDMA period. A typical sequence of
events is shown in Figure 2. At time t1, the scheduler sets the timer
to the size of slice Sa of the next task, i.e. task a. From time t1 to
time t2 the scheduler restores the context of task a after which task
a can continue execution from time t2. At time t3, the processor
receives an interrupt that signals that the time slice Sa is completed.
From time t3 to time t′1 the scheduler stores the context of task a,
after which at time t′1 the timer is set with the slice Sb of task b.
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Figure 2: Typical sequence of actions in TDMA scheduler.

This sequence is repeated for all slices in a period and is the same
in every period.

In all experiments, we consider an architecture with 2 ARM7
processors [1] that are directly connected to a double-ported mem-
ory. All instructions and (shared) data are in this memory. The ad-
vantage of this reduced set-up is that the limited number of sources
of variation allows for a clean discussion of the observed differ-
ences between the simulations at different levels of abstraction.
At the cost of a more elaborate model, the effects on the tempo-
ral behaviour of the application as for instance caused by resource
sharing in the memory hierarchy can be included in the dataflow
model [13]. On this architecture, we have observed an upper bound
on t2−t1 of 98 cycles and an upper bound on t′1−t3 of 249 cycles.
This implies that with n time slices the TDMA period equals the
sum of the slices plus n times 249 cycles, while the budget allo-
cated to a task equals the slice size minus 98 cycles. This is really
a guaranteed budget since apart from the timer interrupts no other
interrupts are received by this processor.

10.1 Experiment 1
In this first experiment we have a task graph consisting of a data

producing task and a data consuming task. The data producing task
produces one container in every execution and the data consuming
task consumes one container in every execution. Both tasks iterate
through a loop in which they first block on the arrival of a container,
then do some processing, subsequently copy the result of this pro-
cessing in the container, and at the end of the iteration release the
container. The tasks wait on a container by polling the buffer ad-
ministration. As soon as the consuming task releases a container,
i.e. finishes an execution, we trigger a monitor in the simulator
that prints the current time. The execution time of an execution of
a task is the time between successive finishes in case the polls al-
ways succeed and this task is the only task on the processor, i.e. no
TDMA scheduling overhead is included. We have constructed this
experiment such that we have a minimal variation in the execution
times of these tasks, an upper bound on the execution time of the
data producing task is 360794 cycles and an upper bound on the
execution time of the data consuming task is 360796 cycles. These
two tasks have a time slice of 2 Mcycles and execute on different
processors. On both processors, there is one additional task that
also has a time slice of 2 Mcycles.

In Figure 3, the first 20 finish times of the data consuming task
as observed in our cycle-true simulator are shown for a buffer ca-
pacity of 3 containers. The simulation results named ’tdm-1’ have
been obtained by placing the data producing task as the second task
that is allocated its slice by its TDMA scheduler, and placing the
data consuming task as the first task that is allocated its slice by its
TDMA scheduler. The results named ’tdm-2’ have been obtained
by placing the data producing task as the first task that is allocated
its slice by its TDMA scheduler, and placing the data consuming
task as the second task that is allocated its slice by its TDMA sched-
uler. The results named ’tdm-3’ have been obtained by placing the
data producing task as the first task that is allocated its slice by its
TDMA scheduler, and placing the data consuming task as the first
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Figure 3: Finish times of consumer for buffer capacity of 3.
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Figure 4: Finish times of consumer for buffer capacity of 8.

task that is allocated its slice by its TDMA scheduler. The results
named ’dataflow’ have been obtained in our dataflow simulator that
together with execution of the tasks, evaluates Equation (7) in or-
der to determine the finish time of the corresponding actor firing,
which equals the token production time.

The bound on finish times and the actual finish times diverge.
The reason is that with these time slices and this buffer capacity the
throughput of this task graph is limited by the buffer capacity, the
tasks can execute at least five times in their slice, while the buffer
has a capacity of three. The consequence is that the conservative
production times by the data consuming task in our dataflow sim-
ulator lead to conservative start times of the data producing task
which again lead to conservative production times of the data pro-
ducing task, etc. In short, since the buffer capacity determines the
throughput an over-estimation of the task finish times results in a
lower throughput estimate in our dataflow simulations. Further-
more, the finish times of the different TDMA configurations di-
verge. This is because, in situation ’tdm-3’, the slices of the two
tasks occur at the same time, allowing for more than 3 executions
per slice.

In Figure 4, the first 20 finish times of the data consuming task
are shown for the same set-up except that now the buffer has a
capacity of 8 containers. In this case the rate of the start times
in the dataflow simulations closely follows the actual rate. Note
that typically a strictly periodically executing sink or source task
determines the throughput of stream processing applications, which
implies that typically the situation depicted in Figure 4 occurs.

When comparing the results for these two buffer capacities it be-
comes clear that the application of polling instead of interrupts does
not necessarily lead to low processor utilisation. While the data
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Figure 5: Finish times for cyclo-static execution times.

consuming task only used 50% of its budget for the trace shown
in Figure 3, where we had a buffer capacity of three, virtually the
complete budget was used by the data consuming task for the trace
shown in Figure 4, where we increased the buffer capacity to eight.
Since the budgets of both tasks are equal, the budget not used by the
data consuming task, in case of a buffer capacity of eight, is due to
the difference in execution time with the data producing task. Al-
ternatively, but not shown, we could have decreased the time slices
instead of increasing the buffer capacity to increase the processor
utilisation. This means that a suitable selection of buffer capaci-
ties and scheduler settings can result in an external enabling time
of the next execution of a task that is before the finish time of the
current execution. In this situation, only a single polling action per
task execution is required and a high processor utilisation can be
obtained.

10.2 Experiment 2
In this experiment, we introduced variation in the execution time

of the data producing task. In an alternating fashion, subsequent
executions of the data producing task have an upper bound on their
execution time of 2860779 and 360803 cycles. The buffer capac-
ity in this experiment is eight containers. In Figure 5, the first 20
finish times of the data consuming task are plotted as observed
in our cycle-true and dataflow simulation environments. In the
dataflow simulator, we have used the just described sequence of
worst-case execution times when computing the finish times de-
noted by ’dataflow’ with Equation (7). The finish times denoted
in Figure 5 that are denoted by ’dataflow [30]’ are computed us-
ing the model from [30] that can only include a single (worst-case)
execution time. Basically, the resulting dataflow simulator com-
putes finish times of a cyclo-static dataflow model [4]. It is known
that the self-timed execution of a cyclo-static dataflow model re-
sults in a periodic regime as again confirmed by the results from
our dataflow simulation. These finish times could have also been
computed in an analytic fashion [30, 29, 26].

10.3 Experiment 3
In this third experiment, we again changed the data producing

task. Instead of producing one container in every execution, in this
experiment the data producing task produced between zero and five
containers in every execution. We increased the execution time of
the data producing task to have an upper bound of 2861527 cycles,
while still having very little variation. Dataflow analysis [31] told
us that the chosen buffer capacity of eight containers was sufficient
for deadlock-free execution.

In Figure 6, the first 30 finish times of the data consuming task
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Figure 6: Finish times for variable production quanta.

are shown. The simulation results named ’tdm-3’ are for the case
that the slices of both tasks occur at the same time. Again upper
bounds on the finish times of the data consuming task are com-
puted in our dataflow simulator using Equation (7) and shown in
this figure under the name ’dataflow’. The finish times for the cases
’tdm-1’ and ’tdm-2’ are not shown but these are upper bounded by
the simulation results named ’dataflow’.

10.4 Experiment 4
In this fourth experiment, we add a number of interesting, more

realistic, aspects. We use real-life software, increase the number
of tasks, have a periodic sink, and have a task with data-dependent
consumption behaviour. This experiment shows that our analysis
can provide accurate conservative bounds on the finish times of
tasks in case of a strictly periodically executing sink and aperiodic
start times and finish times of tasks. This aperiodicity results from
variation in execution times, scheduler state, and data-dependent
inter-task communication behaviour. To prevent buffer overflow in
this task graph with aperiodic starts and finishes, tasks first wait
on sufficient empty buffer space before they write their data. This
flow-control mechanism results in so-called back-pressure from the
periodic sink, which is correctly taken into account in our analysis.

The task graph includes a file reader, an MP3 decoder and a
digital-to-analog converter. The file reader reads the input data
from a file and produces 2048 bytes of data in every execution.
The MP3 decoder is the MAD [28] MP3 decoder. In this experi-
ment, we used a 48kHz variable-bitrate mono MP3 file. For this in-
put stream, the decoder produces 1152 samples in every execution.
The MAD decoder has an internal input buffer of 3000 bytes, and
replenishes this internal buffer if there are not enough remaining
bytes in this internal buffer to decode the next frame. The number
of bytes required to replenish this buffer varies from replenishment
to replenishment. Furthermore, the number of replenishments rel-
ative to the number of times 1152 output samples are produced is
data-dependent and varies while processing the input stream.

The file reader has an execution time of 33247 cycles for its first
execution and a constant execution time of 2058 cycles for the sub-
sequent executions. The execution times of the first three execu-
tions of the MP3 decoder are around 106 cycles, while subsequent
executions have an execution time of 1.5 · 106 cycles with a varia-
tion of 5%. We bound the file reader and MP3 decoder to different
SWARM processors on which they both share the processor with
another task. On both processors these other tasks are allocated a
slice of 500000 cycles, while the file reader is allocated a slice of
50000 cycles and the MP3 decoder is allocated a slice of 500000
cycles. This results in a budget of 49902 cycles in an interval of
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Figure 7: Finish times of MP3 decoder in cycle-true and

dataflow simulator. Plot emphasises that throughput is ac-

curately modelled. Dataflow simulator is conservative with a

maximum difference of 6 · 106 cycles.

550498 cycles for the file reader and a budget of 499902 cycles
in an interval of 1000498 cycles for the MP3 decoder. We select
a buffer capacity of 5500 bytes for the buffer from the file reader
to the MP3 decoder and a buffer capacity of 2000 samples for the
buffer from the MP3 decoder to the digital-to-analog converter. The
digital-to-analog converter samples at 48 kHz, which in this exper-
iment corresponds to 5000 cycles.

In Figure 7, the first 42 finish times of the MP3 decoder are
shown. The MP3 decoder produces 1152 samples in every exe-
cution and the digital-to-analog converter consumes a single sam-
ple in every execution. Because we selected settings such that data
arrives in time at the digital-to-analog converter, the sampling fre-
quency of the digital-to-analog converter determines the distance
between subsequent enablings of the MP3 decoder. The variation in
execution times and the variation in the state of the TDMA sched-
uler at the enabling time result in aperiodic start and finish times of
the MP3 decoder.

For our input stream, we have that 42 executions of the MP3
decoder allow 12 executions of the file reader. The first 12 finish
times of the file reader are shown in Figure 8. Even though the vari-
ation in execution times and scheduler state result in aperiodic start
and finish times of the MP3 decoder, the dominant factor causing
these aperiodic finish times of the file reader is that the MP3 de-
coder has a consumption behaviour that depends on the processed
data-stream and varies while processing the stream.

The third and fourth experiments show that the combination of
budget scheduler and polling can immediately handle tasks that
have aperiodic activations. Furthermore, we are still able to give
accurate conservative bounds on the finish times of a task that ex-
ecutes aperiodically. Note that the bounds provided in this paper
are only valid for the given input stream or for input streams that
result in both (1) the same inter-task communication behaviour and
(2) smaller than or equal execution times. The other streams are
allowed to result in smaller than or equal execution times, because
of the monotonic temporal behaviour of the dataflow model and
the required one-to-one correspondence between task graph and
dataflow model.

In these experiments, the dataflow simulator finished in a frac-
tion of a second, while the cycle-accurate model required a couple
of minutes to finish. A run of a thousand executions of the tasks
of experiment 1 with a buffer capacity of eight required tens of
milliseconds in our dataflow simulator and about an hour on the
cycle-accurate model. However, note that we first need to deter-
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Figure 8: Finish times of file reader in cycle-true and dataflow

simulator. Plot emphasises that throughput is accurately mod-

elled. Dataflow simulator is conservative with a maximum dif-

ference of 4 · 106 cycles.

mine execution times in a cycle-accurate simulator before we can
use the dataflow simulator to explore various buffer capacities and
scheduler settings.

11. DISCUSSION
We constrained applications to be task graphs as defined in Sec-

tion 4, and required schedulers that guarantee a minimum budget
B every interval of time P . These constraints lead to the fact that
the functional behaviour of our applications is time-invariant, i.e.
schedule independent, and that the bounds on temporal behaviour
we obtain from our analysis are independent of the container ar-
rival times and execution times of other applications. Approaches
like [11, 14, 6] have weaker restrictions on the application model
and support a larger class of schedulers. However, these approaches
both have a more difficult analysis problem and stronger conditions
under which the analysis results hold. For instance, cyclic resource
dependencies [6] can occur, for which the analysis requires that
worst-case execution times and typically also best-case execution
times of all tasks, i.e. including tasks of other applications, need to
be known.

These alternative approaches advocate the use of traffic shapers
in order to obtain tight bounds on end-to-end behaviour [12, 17].
However, the presented approach, which is completely data-driven,
obtains higher throughput and lower latency, while still being ame-
nable to performance analysis. We see as the main reasons that bud-
get schedulers by construction bound the interference from other
tasks and that blocking inter-task communication by construction
bounds the jitter in the application.

12. CONCLUSION
In this work, we have defined constraints on the implementa-

tion of applications such that the implementation is functionally
deterministic. This implies that the functional behaviour is time-
invariant. Subsequently, we defined the class of budget schedulers
and presented an upper bound on the finish times of task executions
for schedulers from this class. A budget scheduler guarantees every
task a minimum time budget in an interval of time. We showed that
dataflow graphs can be annotated with time and that the self-timed
execution of a dataflow graph has monotonic temporal behaviour,
which implies that an earlier finish time cannot lead to a later start
time in the dataflow graph. This lead to the conclusion that upper
bounds on the finish times of task executions can be observed in a
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simulation of the corresponding dataflow graph, given that the im-
plementation is functionally deterministic and only budget sched-
ulers are applied.

We showed that simulation of this dataflow graph which is at the
communicating processes plus time abstraction level results in tight
bounds on the behaviour observed in a cycle-accurate simulator,
while at the same time resulting in significantly reduced run-times
of the simulations. Therefore, placing constraints on the imple-
mentations of applications and on the applied schedulers enables
efficient exploration of various system settings such as scheduler
configurations and buffer capacities.
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