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Abstract. In this paper, we address the problem of scientific-social net-
work integration to find a matching relationship between members of
these networks. Utilizing several name similarity patterns and contex-
tual properties of these networks, we design a focused crawler to find
high probable matching pairs, then the problem of name disambiguation
is reduced to predict the label of each candidate pair as either true or
false matching. By defining matching dependency graph, we propose a
joint label prediction model to determine the label of all candidate pairs
simultaneously. An extensive set of experiments have been conducted on
six test collections obtained from the DBLP and the Twitter networks
to show the effectiveness of the proposed joint label prediction model.

1 Introduction

Expert finding addresses the problem of identifying individuals who are knowl-
edgeable in a given topic. Although most of the proposed algorithms for expert
finding restrict their analysis to the documents and relations exist in a single
environment|ll], recent studies |2, 3] suggest that besides the degree of expertise,
there are some other important factors, which should be taken into account for
ranking of experts. These factors such the availability of an expert [4] and the
authority of experts in their specialization area [5] are generally independent
of the content of the documents and can be extracted from multiple sources
of information. Experts’ Microblogs are one of the such valuable and reliable
sources of information since they usually contain up-to-date and relatively well-
formatted data as well as meaningful relationships between experts. Expert’s
microblogs can be used to estimate the effective factors for ranking (e.g. tem-
poral, geographical and contextual factors) and this makes automatic discovery
of expert’s microblogs an important step toward building a multi environment
expert finding system. In this paper, we address the problem of integration of the
DBLP and Twitter networks towards building such multi environment expert
finding system.
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Generally, integration of scientific and social networks is a challenging task
because of the following reasons: Firstly, according to a recent research study
[6], about 11% of people use nicknames in microblogs, which cannot be reached
by the naive name matching. The second main challenge in social network in-
tegration is distinguishing those entities that have very similar and sometimes
exactly the same name and yet refer to different people. This problem is known
as the disambiguation problem in name disambiguation literature [7)].

In order to find the matching relationship between DBLP and Twitter net-
works, we use several name matching patterns to find high probable matching
pairs in these networks. While these matching pairs are collected using a focused
crawling mechanism, due to name ambiguity, a lots of collected pairs are not
valid matches. Therefore, Our matching problem is reduced to find true match-
ing pairs among the collected candidate pairs by the crawler. We use several
features extracted from Twitter and DBLP profiles to train the state-of-the-art
classifiers (e.g. logistic regression, SVM, decision tree, etc.). While these clas-
sifiers basically assume label independency between instances, However, in our
matching problem, the profiles in each network are related to each other, and the
label (either true or false) of each matching candidate pair is not independent
of the label of other pairs. We consider two main types of dependencies between
candidate pairs:

1) Common friend dependency: In many cases, scientific collaborators are
also social friends. Thus, if for a matching candidate pair, a common friend
exists in both networks, it will be more likely to be a true match, but finding
a common friend in both networks is not possible until we resolve all matching
pairs. It means that we should jointly predict the label of all candidate pairs.
2) One-to-One matching dependency: Scientific networks (e.g. digital libraries)
use sophisticated algorithms [7] and manual effort to identify and disambiguate
people with similar names. So, if one specific social profile is a candidate for
matching with two or more scientific profiles, it is less likely to be a true match
for more than one of them. On the other hand, the majority of people have
at most one profile in a social network. Therefore, if a DBLP profile is already
determined as a true match for a specific Twitter profile, the probability of
matching other Twitter profiles (for the same DBLP profile) should be reduced.

To utilize the above-mentioned dependencies in network integration problem,
we transform the initial view of each network as well as their relationships into a
new graph structure called Matching Dependency Graph. Using relational learn-
ing method, we simultaneously predict the label of dependent candidate pairs.
Our experiments on an automatically generated test collection and five manually
annotated topical test collections shows significant improvement in comparision
with state of the art classification methods.

2 Related Work

Recent methods for expert finding [4, 15], consider heterogeneous sources of in-
formation to improve the quality of expert ranking. Smirnova and Balog [4]
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considered geographical location of experts to rank them based on their accessi-
bility, and Deng et al. [5] suggested to rank each expert based on his authority
in the research communities. Similar to the idea of heterogeneous information
sources for expert finding, our goal is to build a multi environment (i.e. social
and scientific) expert finding system.

As the most similar research to our work, You et al.[(ﬂ, proposed a method to
integrate two networks of people namely, EntityCube | and Twitter networks.
They addressed the problem of finding Twitter pages (i.e. social profile) of a
group of related celebrities. They used several name similarity patterns to find
matching Twitter profile for each name in EntityCube. Using a couple of indica-
tive features, they used a discriminative approach to rank Twitter candidate
profiles for each name in EntityCube. They considered the common friend prop-
erty (introduced in section[Il) to improve the accuracy of integration. However,
they used independent learning approach(i.e. SVM) to model this property.

Another related line of research to our work is relational learning. Some previ-
ous research |7H9], reported significant accuracy improvement of relational learn-
ing methods (e.g. collective learning) in comparison with independent learning
methods in interdependent decision making problems. While our matching algo-
rithm, models the common friend property using relational learning method, the
main benefit of our proposed relational learning model is its flexibility that can
help us to consider various types of dependencies between candidate matching
profiles (e.g. one-to-one matching property).

3 Integration of Social-Scientific Networks

We divided the problem of social and scientific network integration into two sub
problems. The first problem (i.e. selection) concerns finding those profiles in one
network, which presumably have a corresponding profile in the other network
and the second problem (i.e. matching) concerns the name disambiguation to
find true matching profiles among some candidate profile pairs for matching.

We use a focused crawler to collect those social profiles that presumably have a
corresponding scientific profile. To find the social profiles appropriate for match-
ing, we try to find the profiles of those people who have common scientific interests.

There are some profiles in social networks (e.g. @sigir2011, @Qecir2011, @sig-
graph ic in Twitter) which correspond to scientific events (e.g. workshops, con-
ferences, etc.). People with common interests are members of these events and
share their news and opinions about them. Those individuals who follow these
social events (directly or indirectly) are more likely to have a corresponding
profile in the scientific network.

The crawler starts collecting profile of people who directly follow event profiles
(i.e. seed profiles) and uses follow relation between people to find new profiles.
For each collected profile, it uses some name similarity patterns to find the

! mttp://entitycube.research.microsoft.com/
2 Follow relationship is a directed relationship between profiles of the Twitter, but for
generality and simplicity, we ignore its direction.
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candidate scientific profiles for matching. If it cannot find any candidate for a
given social profile, it will continue crawling from other paths. It continues until
a predetermined number of candidate pairs is collected. Using several name
matching patterns introduced in [6], output of the crawler is a set of matching
profile pairs.

3.1 Matching Problem

The output of the selection phase is a set of social and scientific candidate pairs,
which match to each other according to a name similarity pattern. Due to name
ambiguity, a large portion of collected candidate pairs is not actual matching
pairs. For the matching sub-problem, the goal is to find true matching pairs
among the set of collected candidate pairs. Using several discriminative features
associated with each candidate pair, we can train a classifier to determine the
label of each candidate pair.

Independent Label Prediction. Given a set of training instances TrainSet =
{(x1;t1)...(xn; tn)}, we can use several indicative features associated with each
candidate pair to train a classifier, where x; is the feature vector associated with
the candidate pair i, t; € {true, false} is its corresponding label and n is the
number of training instances. While each candidate pair ¢ is associated with a
Twitter profile s € Vg and a DBLP profile d € Vp, the classifier determines
if the profile d is a valid match for s. We use the parametric form of logistic
regression (as an independent classification model) to predict the label of each
candidate pair p(t;|z;):

1

i = 1jxg) =
pt i) 1+ exp (0z;)

(1)
Where vector z; is the feature vector of the candidate pair i and vector 6 repre-
sents the corresponding weights for each feature. Training in this model is to find
the vector 6§ that maximizes the conditional log likelihood of the training data.
The likelihood function is convex and has a unique global maximum which can
be found numerically [10]. After learning the parameter 6, we can use equations[I]
to predict the most probable label for a given test instance (i.e. a candidate pair
of matching). As the baseline matching model, the classifier determines the label
of each candidate pair independently and does not utilize various dependencies
between candidate pairs of matching.

Candidate Pairs Label Dependence. Logistic regression as an independent
label prediction model is a naive solution for our matching problem. In fact, In
our matching problem, the label of each candidate pair is not independent of
other pairs. We consider two cases of dependencies between candidate pairs.
First of all, if a common friend (in both Twitter and DBLP networks) exists
for a candidate pair, the probability of classifying this pair as a true matching
pair should be increased, but finding a common friend is impossible until we
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resolve all matching pairs. It means that we should jointly decide the labels of
two pairs (d;, s;) and (dg, s;), if d; and d; are co-author in DBLP and s; and
s; are Twitter friends. We refer to this type of dependency between candidate
pairs as dependency type 1. Secondly, since DBLP network uses sophisticated
algorithms and manual effort to disambiguate people names, we expect that in
most cases each person has at most one profile in DBLP network. On the other
hand, the majority of people have at most one profile in the Twitter network.
These assumptions mean that the label of two candidate pairs (d;, si) and (d;, sx)
are dependent on each other. Specifically, if d; is already determined as a true
match for s, the probability of matching (d;, si) should be reduced. We refer to
this type of dependency between candidate pairs as dependency type 2. Likewise,
the label of two candidate pairs (dy, s,,) and (dy, s¢) are dependent to each other.
If d; is already determined as a true match for s,,, the probability of matching
(di, st) should be reduced. We refer to this type of dependency between candidate
pairs as dependency type 3.

Each instance of the matching problem can be formulated by the following
set of profiles and relationships: Vp = {d1,ds, ...,dr} and Vs = {s1, 2, ..., Sm }
are the set of DBLP and Twitter profiles respectively. Within each network,
there exist relationships that indicate social friendship among members of Vg
and co-author relationship among members of Vp. Ep = {(d;,d;)|di,d; €
Vb A Co — author(d;,d;)} indicates the co-authorship relation between DBLP
profiles and Es = {(s1, sn)|s1, $n € Vs A Follow(s;, s,)} indicates the social tie
between Twitter profiles. During selection phase, the focused crawler finds for
each Twitter profile some few matching candidates in the DBLP network. We
can indicate the set of candidate pairs by:

Csp = {(si,d;)|si € Vs Adj € Vp A CandidMatch(s;, d;)}

In order to model mentioned dependencies between candidate pairs, we de-
fine matching dependency graph M DG(Vipa, Envipa) as follows. Each node in
MDG corresponds to exactly one candidate pair in Csp as defined by: Viyypa =
{(si,d;)|si € Vs,dj € Vp,(si,d;) € Csp}. According to those three types of
dependencies between candidate pairs, we define three types of edges in MDG
graph as Eypg = E1 U Eo U Es. The edges in E; capture the typel dependency
between nodes in Vs pe and can be defined as Ey = {((85,d;), (Sm,dn))|Si, Sm €
Vs Ndj,dn € Vp A (8i,8m) € Es A (dj,d,) € Ep}. The type2 dependency be-
tween nodes of Vjspg is indicated using the edges in Fo and it can be defined
as Eo = {((si,d;), (Sm,dn))|Si, Sm € Vs Adj,dn € VD Asi = s, ANd; # dp}. The
edges in E3 represent the type3 dependency between nodes of Va;pg and can be
defined as E3 = {((si,d;), (Sm, dn))|Si, Sm € VoAdj,dn € VDAS; # smAdj = dn}

Given the MDG graph defined above, the matching problem can be reduced
to jointly predict the label (either true or false) of all candidate pairs (i.e all
nodes in MDG) simultaneity.

Relational classification is a natural solution for our joint label prediction
problem. By definition[10], relational data has two characteristics: first, statisti-
cal dependencies exist between the entities, and second; each entity has a rich set
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of features that can aid classification. The main idea of relational classification
is to represent the distribution of target random variables (i.e. the label of each
node in MDG) by a product of local functions (i.e. potential function) that each
depends on only a small number of variables.

Considering two main effective factors on label prediction in MDG graph (i.e.
node feature set and label dependency among neighbor nodes), following the idea
of conditional random field|11], we can define two types of potential function in
our model namely, node potential function and edge potential function. Node
potential function is responsible to capture the dependency of the label ¢; on the
observed feature x; for each node v; of MDG and edge potential is responsible
to model the label dependency among neighbor nodes in MDG graph.

According to the definition of Conditional Random Field [11], we can esti-
mate the joint conditional probability of a particular label assignment T given
observed feature X as a normalized product of a set of non-negative potential
functions. Although, each potential function can be an arbitrary non-negative
function, but according to [10], the most widely-used type of potential functions
are log-linear functions. Log-linear potential functions can be defined as the
weighted combination of the observed feature variables. This type of potential
function is appealing since it is jointly convex in the parameters of the model.
Using log-linear potential functions, we can re-write conditional probability of
the label set T' given the observed feature variable X as follows:

P(TIX) = geap{ Y wn(witi) + D valtitm) +
i=1

i eim€E
> Uslteta) + Y talty,tn)}
exn€Fo EjhEEg

this equation, T" = {t1,t2,...,t,} is the set of assigned labels for all nodes of
MDG where n is the number of nodes and t; € {true, false} is the random
variable indicating the assigned label for node v;. X = {x1, 2, ...,2,} is the set
of observed feature vectors, where x; is the feature vector associated with node
v; and e;; indicates the edge connecting two nodes v; and v;. Z’ is a normalizing
factor that guarantees P(T|X) is a valid distribution.

Using log-linear potential functions [10], each potential function 1, 1q, 13,
14 is represented by weighted combinations of feature vectors in the following
form:

Mo

'(/Jl (xi7 ti) = Z[\iglzl emfm(xia ti) '(/JQ (th tj) = Z%zl amgm(tiv tj)
Y3(ti,ty) =D 02 Bmhm (tis t)) Yalti ty) =D oty CmSm(tist))

where 0, «, 8 and ( represent trainable weight vectors, f, g, h and s represent
features vectors and My, M>, M3 and My represent the number of features for
each potential function. Similar to the logistic regression method, we use an
extensive set of features to train 7 potential function and for edge potential
functions (i.e. ¥9, 13 and 14), we define a set of binary/indicative features that
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captures the compatibility of labels among two neighbor nodes. Binary features
associated with 1o are defined as follows:
g1 (ti, t]‘) = —\ti A _\t]‘
gg(ti,tj) =t At Vot At
g3(ti,tj) =1t A tj

For each combination of labels assigned to two neighbor nodes t; and t;, the
value of one of the above-mentioned features is 1 and other features will be zero.
For example, if both ¢; and t; take true labels, then the value of g1, g2 and g3 will
be zero, zero and one respectively. Specifically, feature go indicates conflicting
label assignment and ¢; and g3 indicate homogenous label assignment for two
neighbor nodes t; and ¢; . Since MDG' is an undirected graph, only three features
are sufficient to model all combinations of labels assigned to ¢; and t;. In other
words, the value of go will be 1 for conflicting combinations regardless of order
of nodes. We define the binary features of 135 and 14 analogously.

Training in the proposed model is to find vectors 8, «, 8 and ¢ that maximize
the conditional log likelihood of the training data as defined below. In our pro-
posed model, training data is an instance of MDG graph with known values of
labels and features for each node.

log L0, v, 8, | X,T) = log P(t;|wi;0) + Y log P(ts, tm; )
=1

eim€EL

+ Y log Pty te; B)+ Y log P(t;, th;()

ern€Fa ejn€EE3

In this equation, the unknown parameters are 0, «, 8 and ¢ while the value of
each t; and x; are given as an instance of MDG graph (e.g. training instance).

Despite there is no closed-form solution for the above maximization problem,
the above log likelihood function is convex and can be efficiently maximized by
iterative searching algorithms such as BFGS [12]. After learning the parameters
of the model using an instance of MDG graph, we can jointly predict the label
of all nodes for a given test instance of MDG graph. (i.e. an MDG graph with
unknown values of labels and known values of features for each node.) The
prediction (also known as inference[10]) in our conditional model is to compute
the posterior distribution over the label variables T' given a test instance of MDG
graph with observed values of node features X, i.e., to compute the following
most probable assignment of labels:

T* = argmazrP(T|X)

Although, due to loopy structure of MDG, exact inference is not applicable we
can use Belief Propagation [10] to approximatly predict the most probable label
assignement for a given (i.e. test instance) MDG. The MDG graphs resulting
from the three cases of dependencies are usually not densely connected in real
cases. Thus, the inference task can be done efficiently by belief propagation for
the proposed graphical model.



A Joint Classification Method to Integrate Scientific and Social Networks 129
4 Experiments

4.1 Data

We test our proposed models on six test collections collected from the Twitter
and the DBLP networks. To build these test collections, we use the crawler (de-
scribed in section ) to collect Twitter profiles and their corresponding candidate
DBLP profiles.

The first testcollection (i.e. URL collection) is generated automatically by
exact URL matching between homepage field of Twitter and DBLP. We found
173 Twitter profiles, which have a unique corresponding DBLP profile with the
same URL address and used these pairs as positive instances. For this set of
automatically matched Twitter and DBLP profiles, we used all other candidates
found by the crawler as the negative instances. The set of negative instances
includes non-matching DBLP and non-matching Twitter profiles.

Apart from the automatically generated test collection, we also build five
other manually annotated test collections to evaluate the proposed matching
algorithms. According to the topic of each seed event introduced in [3, we cate-
gorized them into five main topics in computer science

400 Twitter profiles are randomly chosen for each main topic to build the
topical test collections. For these randomly selected Twitter profiles and their
corresponding DBLP candidate profiles, two human assessors are asked to de-
termine the label of each candidate pair. They used several external evidence
to determine the label of each candidate pair. For example, they used the infor-
mation on the web (e.g. homepage) as well as other social-networking websites
(e.g. the Facebook social network, the LinkedIn professional network) to decide
the label of each pair. In some cases, they also decided the label of candidate
pairs based on the topic similarity of their associated Tweets and papers. Table
[ gives detailed statistics of the data collections.

We can notice that the test collections have different characteristics. In partic-
ular, the number of the Twitter profiles which do not have any DBLP matching
profile is smaller in the URL test collection in comparison with other test collec-
tions. It comes from the method, we select the Twitter profiles for the URL test
collection. As mentioned before, we use exact URL matching to select Twitter
profiles (positive instances) for this test collection, but for other test collections,
we randomly select the Twitter profiles from the output of the focused crawler.
Furthermore, there are more edges of type two and three in the DM-IR test col-
lection in comparison with other test collections. This may come from the fact
that in this collection, more ambiguous names are occurred.

In our experiments, we used the negative and the positive candidate pairs
of five collections to train each proposed discriminative model and used the
candidate pairs of the remaining collection as the test set.

3 Five main topics related to the seed profiles. DB= Database, DM-IR= Data mining
and Information Retrieval, HCI = Human Computer Interaction, OS = Operating
Systems, SF= Software.
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Table 1. Detailed statistics of the test collections. URL is the automatically generated
test collection and other test collections are named by the abbreviations introduced in
the page 8.

Statistics/Dataset DB DM-IR HCI OS SF URL
Number of candidate pairs collected by crawler 540 873 617 800 732 619
Number of Twitter having no DBLP 145 305 197 256 264 35
Number of edges of typel in MDG 28 8 27 9 38 31
Number of edges of type2 in MDG 383 807 433 656 597 290
Number of edges of type3 in MDG 132 515 201 308 353 205

4.2 Experiments Setup

In our experiments,we compared the matching performance of 1) a simple heuris-
tic method, 2) independent label predication methods and 3) proposed joint label
prediction method. Simple heuristic method which is called SIMPLE method in
our experiments, matches each Twitter profile to exactly one DBLP profile. For
each Twitter profile, the SIMPLE method selects the DBLP profile with most
name similarity as the true match between the set of DBLP candidate profiles
found by the crawler. In other words, the SIMPLE method assumes that each
Twitter profile has exactly one matching profile in DBLP and selects it based
on the name similarity@.

To train the independent and joint classification models, we use five groups
of features including 1) Twitter homepage URL features (2-features), 2) Twit-
ter location feature (1-feature), 3) Twitter-DBLP name similarity features (5
features), 4) Twitter Description features (10 features) and 5) Twitter-DBLP
crawling information features (10 features).

5 Results

In this section, an extensive set of experiments were conducted on the six test
collections to address the following questions: 1) How good are the discriminative
independent label prediction approaches compared with the SIMPLE heuristic
method? 2) Can the prediction performance be improved by considering the
dependency between the labels of the candidate pairs?

5.1 SIMPLE Heuristic Method versus Independent Label
Prediction

In this section, we compare the matching performance of the SIMPLE heuris-
tic method described in the Section with the independent label predica-
tion methods (i.e. logistic regression, support vector machine and decision tree.)
Table 2] contains the comparisons in precision, recall and F-score.

* We used the edit distance algorithm to measure the name similarity between DBLP
and Twitter names.
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Table 2. SIMPLE method versus independent label prediction. Comparisons are based
precision(P), recall(R) and on F-measure(F).

Collection/Method Simple Decision Tree SVM LR
Measure P R F P R F P R F P R F

DB 0.460 0.944 0.619 0.879 0.693 0.775 0.826 0.743 0.782 0.891 0.732 0.804
DM-IR 0.242 0.908 0.382 0.693 0.674 0.683 0.652 0.730 0.689 0.671 0.752 0.709
HCI 0.420 0.875 0.569 0.650 0.620 0.635 0.680 0.590 0.632 0.760 0.615 0.678
(O 0.321 0.899 0.474 0.780 0.754 0.767 0.768 0.760 0.764 0.802 0.749 0.775
SF 0.261 0.902 0.405 0.715 0.699 0.707 0.699 0.699 0.699 0.726 0.737 0.731
URL 0.763 0.826 0.794 0.802 0.802 0.802 0.811 0.768 0.789 0.786 0.783 0.785

We can see that all the independent classification methods improve upon
the SIMPLE approach and usually LR, SVM and Decision Tree have almost
the same performance. The SIMPLE method has almost the same behavior on
all test collections except for two cases. Its F-score on the DM-IR collection
is very low and on the URL test collection is very high. It may come from the
ambiguity level of these test collections. As mentioned in Section Il the DM-IR
collection is the most ambiguous and the URL collection is the least ambiguous
collection among other collections. Therefore, it seems that matching problem
is easier to solve for the URL collection in comparison with other collections. In
contrast, independent classification methods have almost the same performance
on all test collections. On the other hand, the SIMPLE method usually has large
recall in comparison with the independent classification methods, but it has very
low precision (except for URL test collection). The high recall property of the
SIMPLE method can be explained by the fact that people usually use very similar
names in Twitter and DBLP networks. Therefore, if multiple DBLP candidates
exist for a given Twitter profile, the most likely DBLP profile for matching will
be the one with the most similar name to that Twitter name (exactly the same
heuristic is used by the SIMPLE method). In contrast, the SIMPLE method has
very low precision, which means that it is not able to recognize non-matching
pairs that have very similar names. The independent classification methods can
improve the F-score by enhancing the precision score, but these methods decrease
the recall score substantially. It means that these methods tend to select only
candidate pairs with very similar names as true matches. As a result, these
methods miss a lots of true matching pairs (i.e. low recall).

5.2 Independent versus Joint Label Prediction

In this experiment, we compare the matching performance of the logistic re-
gression method (as an independent label prediction model) with the joint label
prediction method trained on the dependency type 1, type 2, type 8 and the
combination of them. Table Bl contains the comparisons in F-score. In this ta-
ble, CRF-1, CRF-2 and CRF-3 indicate the joint label prediction method for
the MDG graph that has only edges of type 1, type 2 and type 3 respectively.
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CRF-123 indicates the joint label prediction method for the MDG graph with
all mentioned dependency types.

Table 3. Independent versus joint label prediction. Comparisons are based on F-
measure. The * symbol indicates statistical significance at 0.9 confidence interval.

Collection/Method LR CRF-1 CRF-2 CRF-3 CRF-123

DB 0.804 0.842 0.846* 0.817 0.861*
DM-IR 0.709 0.710 0.760* 0.718 0.774*
HCI 0.678 0.692 0.732* 0.682 0.736*
(O} 0.775 0.763 0.783 0.752 0.797*
SF 0.731 0.739 0.793* 0.751 0.812*
URL 0.785 0.796 0.871* 0.785 0.891%*

TableBlshows that the method CRF-2 substantially improves the F-score in all
test collections in comparison with the logistic regression method. Inspired from
the SIMPLE method, CRF-2 only selects the most probable DBLP candidate
for each Twitter profile as a true match, but using discriminative features it
also prevents from many false negatives. In other words, this method improves
the recall score but retains the precision in the same level in comparison with
logistic regression. In fact, CRF-2 brings together the advantages of the SIMPLE
method (i.e. high recall) and the logistic regression method (i.e. high precision).
The average improvement of F-score using CRF-2 is 6.8% for all test collections
in comparison with logistic regression. According to this experiment, CRF-3
improves the F-score 0.6% on average and CRF-1 can improve it up to 1.3%
on average. Specifically, CRF-1 improves the precision on all the collections,
but in two cases, slightly reduces the recall score (i.e. the DM-IR and the OS
collections). CRF-123 considers all the dependency types in the MDG graph
to predict the label of each candidate pair. In all the test collections, CRF-123
improves the precision and recall scores in comparison with logistic regression
method, and it also has the best performance in F-score in comparison with
other methods in all collections. The improvement of F-score using CRF-123 is
8.7% averaged on all the test collections in comparison with logistic regression.

6 Conclusions and Future Work

In this paper, we designed a focused crawler to collect high probable matching
profile pairs in the DBLP and the Twitter networks. The network integration
problem is then reduced to finding true matching pairs among these collected
candidate pairs. We introduced a joint label predication method to predict the
label of candidate pairs simultaneously. Our experiments indicate that the joint
label prediction method can improve the F-score of matching up to 8.7% in
comparison with the independent classification methods.
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