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Abstract. TTCN-3 is a standardized language for specifying and exe-
cuting test suites that is particularly popular for testing embedded sys-
tems. Prior to testing embedded software in a target environment, the
software is usually tested in the host environment. Executing in the host
environment often affects the real-time behavior of the software and,
consequently, the results of real-time testing.

Here we provide a semantics for host-based testing with simulated time
and a a simulated-time solution for distributed testing with TTCN-3.
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1 Introduction

The Testing and Test Control Notation Version 3 (TTCN-3) is a language for
specifying test suites and test control [17]. Its syntax and operational seman-
tics are standardized by ETSI [4,5]. Previous generations of the language were
mostly used for testing systems from the telecommunication domain. TTCN-3
is however a universal testing language applicable to a broad range of systems.
Standardized interfaces of TTCN-3 allow to define test suites and test control on
a level independent of a particular implementation or a platform [6,7], which sig-
nificantly increases the reuse of TTCN-3 test suites. TTCN-3 interfaces provide
support for distributed testing, which makes TTCN-3 particularly beneficial for
testing embedded systems. TTCN-3 has already been successfully applied to test
embedded systems not only in telecommunication but also in automotive and
railway domains [2,9].
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ropean Advancement Programm (ITEA)” [15].
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Modern embedded systems consist of many timed components working in
parallel, which complicates testing and debugging. Potential software errors can
be too expensive to test on a target environment where the system is supposed
to work. In practice, embedded software is tested in the host environment used
for developing the system. That allows to fix most errors prior to testing in the
target environment.

The host environment differs from the target environment. When being de-
veloped, the actual system does not exist until late stages of development. En-
vironment simulations are used to represent target environments. If the target
operating system is not available, emulating the target OS is used to provide
message communication, time, scheduling, synchronization and other services
necessary to execute embedded software. Monitoring and instrumentation are
used to observe the order and the external events of an SUT.

Ideally, using environment simulations, target operating system emulations,
monitoring or instrumentation should not affect the real-time behavior of an
SUT. In practice, developing simulators and emulators with high timing accu-
racy is often unfeasible due to high costs and time limitations imposed on the
whole testing process. Monitoring without affecting real time behavior of an SUT
is expensive and often requires a product-specific hardware-based implementa-
tion. In host-based testing, using simulators, emulating target OS, monitoring or
instrumentations usually affects the real-time behavior of the SUT. If the effects
significantly change timed behavior, real-time testing is not optimal and leads
to inadequate test results.

Here we propose host-based testing with simulated time where the system
clock is modelled as a logical clock and time progression is modelled by a tick-
action. The calculations and actions within the system are considered to be
instantaneous. The assumption about instantaneity of actions implies that time
progress can never take place if there is still an untimed action enabled, or in
other words, the time progress has the least priority in the system and may take
place only when the system is idle. We refer to the time progress action as tick
and to the period of time between two ticks as a time slice. We assume that
the concept of timers is used to express time-dependent behavior. Further, we
refer to this time semantics as simulated time.

In [2] we proposed host-based testing with simulated time for non-distributed
applications. There we implemented simulated time on the level of TTCN-3
specifications. Here we provide a framework for host-based testing of distributed
embedded systems with TTCN-3, where simulated time is implemented at the
level of test adapters. The framework allows to use the same test suites for host-
based testing with simulated time and for testing with real time in the target
environment.

The rest of the paper is organized as follows. Section 2 provides a brief survey
on the general structure of a distributed TTCN-3 test system. In Section 3
we provide the time semantics for host-based testing with simulated time. In
Section 5, we give an overview of two case studies where simulated time has
been used two test two systems: one from telecommunication and one from
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Fig. 1. General structure of a distributed TTCN-3 test system

transportation domain. In Sections 4, we present our testing framework. We
conclude in Section 6 with discussing the obtained results.

2 TTCN-3 Test Systems

TTCN-3 is a language for the specification of test suites [8]. The specifications
can be generated automatically or developed manually. A specification of a test
suite is a TTCN-3 module which possibly imports some other modules. Mod-
ules are the TTCN-3 building blocks which can be parsed and compiled au-
tonomously. A module consists of two parts: a definition part and a control part.
The first one specifies test cases. The second one defines the order in which these
test cases should be executed.

A test suite is executed by a TTCN-3 test system whose general structure
is defined in [6] and illustrated in Fig. 1. The TTCN-3 executable (TE) entity
actually executes or interprets a test suite. A call of a test case can be seen as
an invocation of an independent program. Starting a test case leads to creating
a configuration. A configuration consists of several test components running in
parallel and communicating with each other and with an SUT by message pass-
ing or by procedure calls. The first test component created at the starting point
of a test case execution is the main test component (MTC). For communication
purposes, a test component owns a set of ports. Each port has in and out di-
rections: infinite FIFO queues are used to represent in directions; out directions
are linked directly to the communication partners.

The concept of timers is used in TTCN-3 to express time-dependent behavior.
A timer can be either active or deactivated. An active timer keeps an information
about the time left until its expiration. When the time left until the expiration
becomes zero, the timer expires and becomes deactivated. The expiration of a
timer results in producing a timeout. The timeout is enqueued at the component
to which the timer belongs.
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The Platform Adapter (PA) implements timers and operations on them. The
SUT Adapter (SA) implements communication between a TTCN-3 test system
and an SUT. It adapts message- and procedure-based communication of the
TTCN-3 test system to the particular execution platform of the SUT. The run-
time interface (TRI) allows the TE entity to invoke operations implemented by
the PA and the SA.

A test system (TS) can be distributed over several test system instances TS1,
..., TSn each of which runs on a separate test device [14]. Each of the TSi has
an instance of the TE entity TEi equipped with an SAi, a test logging (TL)
entity TLi, a PAi and a coder/decoder CDi running on the node. One of TE’s
instances is identified to be the main one. It starts executing a TTCN-3 module
and calculates final testing results.

The Test Management (TM) entity controls the order of the invocation of
modules. Test Logging (TL) logs test events and presents them to the test sys-
tem user. The Coding and Decoding (CD) entity is responsible for the encoding
and decoding of TTCN-3 values into bitstrings suitable to be sent to the SUT.
The Component Handling (CH) is responsible for implementing distribution of
components, remote communication between them and synchronizing compo-
nents running on different instances of the test system. Instances of the TE
entity interact with the TM, the TLs, the CDs and the CH via the TTCN-3
Test Control Interface (TCI) [7].

3 Simulated Time in TTCN-3

Here we first define the time semantics for testing with simulated time and then
proceed with concretizing it for TTCN-3 test systems.

The first choice to be made is between dense and discrete time. It is normally
assumed that real-time systems operate in “real”, continuous time (though some
physicists contest against the statement that the changes of a system state may
occur at any real-numbered time point). However, a less expensive, discrete time
solution is for many systems as good as dense time in the modelling sense, and
better than the dense one when verification is concerned. Therefore we chose to
work with discreet time.

We consider a class of systems where (i) the snapshots are taken with a speed
that allows the system to see the important changes in the environment and
(ii) external delays are significantly larger compared to the duration of normal
computations within the system. If the system satisfies these requirements, the
duration of computations within the system is negligible compared to the external
delays and can be safely treated as instantaneous or zero-time.

The assumption about instantaneity of actions leads us to the conclusion that
time progress can never take place if there is still an untimed action enabled, or
in other words, the time-progress transition has the least priority in the system
and may take place only when the system is idle: there is no transition enabled
except for time progress and communication with the environment. It means
that some actions are urgent, as a process may block the progress of time and
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enforce the execution of actions before some delay. This property is usually called
minimal delay or maximal progress [13].

For testing purposes, we focus on closed systems (a test system together with
an SUT) consisting of multiple components communicating with each other. We
say that a component is idle if and only if it cannot proceed by performing com-
putations, receiving messages or consuming timeouts. We refer to the idleness of
a single component as local idleness. We say that a system is idle if and only if
all components of the system are idle and there are no messages or timeouts that
still can be received during the current time slice. We call such messages and
timeouts pending. We refer to the idleness of the whole system as global idleness.

Definition 1 (Global Idleness). We say that a closed system is globally idle
if and only if all components are locally idle and there are no messages and no
timeouts pending.

If the system is globally idle, the time progresses by the action tick that de-
creases time left until expiration of active timers by one. If the delay left until
the expiration of a timer reaches zero, the timer expires within the current time
slice. Timers ready to expire within the same time slice expire in an arbitrary
order. Further, we refer to this time semantics as simulated time.

The time semantics of TTCN-3 has been intentionally left open to enable the
use of TTCN-3 with different time semantics [5]. Nevertheless, the focus has
been on using TTCN-3 for real-time testing so not much attention has been
paid to implementing other time semantics for TTCN-3 [17]. Existing standard
interfaces TCI and TRI provide excellent support for real-time testing but lack
operations necessary for implementing simulated time [6,7].

Our goal is to provide a solution for implementing simulated time for a dis-
tributed TTCN-3 test system. Developing a test suite for host-based testing
costs time and efforts. Therefore, we want the test suites developed for host-
based testing with simulated time to be reusable for real-time testing in the
target environment. Therefore we provide a solution that can be implemented
on the level of adapters, not on the level of TTCN-3 code. In this way, the same
TTCN-3 test suites can be used both for host-based testing with simulated time
and for real-time testing in the target environment. Although providing such a
solution inevitably means extending the TRI and TCI interfaces, we try to keep
these extensions minimal.

According to the definition of global idleness, we need to detect situations
when all components of the system are locally idle and there are no messages
and no timeouts pending. We reformulate this definition in terms of necessary
and sufficient conditions for detecting global idleness of the closed system. For
the sake of simplicity, we take into account only messages-based communication.
Extending the conditions and the solution to procedure-based communication is
straightforward.

The closed system consists of a TTCN-3 test system and an SUT. A distributed
TTCN-3 test system (TS) consists of n test system instances running on different
test devices. Further we refer to the test instances i as TSi. Each of the TSi

consists of a TEi, SAi and PAi. Global idleness requires all the entities to be
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[∀i = 1..n : (TEi = idle) ∧ (PAi = idle) ∧ (SAi = idle)] ∧ SUT = idle (1)∑
i=1..n SAiSentSUT = EnqdSUT (2)

SentSUT =
∑

i=1..n EnqdSAi (3)∑
i=1..n TCISentTEi =

∑
i=1..n TCIEnqdTEi (4)

∀i = 1..n : TRISentTEi = TRIEnqdSAiPAi (5)
∀i = 1..n : TRISentSAiPAi = TRIEnqdTEi (6)

Fig. 2. Global Idleness Condition

in the idle state (see condition 1 in Fig. 2). Condition 1 is necessary but not
sufficient to decide on global idleness of the closed system. There still can be
some message or timeout pending which can activate one of the idle entities.

”No messages or timeouts pending” means that all sent messages and timeouts
are already enqueued at the input ports of the receiving components. When
testing with TTCN-3, we should ensure that

– There are no messages pending between the SUT and the TS, i.e. all messages
sent by the SA (SASentSUT) are enqueued by the SUT (EnqdSUT) and that
all messages sent by the SUT (SentSUT) are enqueued by the SA (EnqdSA)
(see conditions (2-3) in Fig. 2).

– There are no remote messages pending at the TCI interface, i.e. all messages
sent by all instances of the TE entity via the TCI interface (TCISentTE)
are enqueued at the instances of the TE entity (TCIEnqdTE) (see condition
(4) in Fig. 2).

– There are no messages pending at the TRI interface, i.e. the number of
messages sent by every TEi via the TRI (TRISentTE) should be equal to
the number (TRIEnqdSAPA) of messages enqueued by the corresponding
SAi and PAi, and the number of messages sent by every SAi and PAi is the
same as the number of messages enqueued by the corresponding TEi (see
conditions (5-6) in Fig. 2).

It is straightforward to show that the system is still active if one of the conditions
in Fig. 2 is not satisfied. If all conditions in Fig. 2 are satisfied then all entities of
the test system and the SUT are idle and there are no timeouts/messages that
still can be delivered and activate them, thus the closed system is globally idle.

Lemma 2. A closed system is globally idle if and only if the conditions (1-6)
in Fig. 2 are satisfied.

Thus to implement the simulated time for TTCN-3, we need to detect situations
where conditions (1-6) in Fig. 2 are satisfied and enforce time progression.

4 Distributed Idleness Detection and Time Progression
in TTCN-3

Detecting global idleness of a distributed system is similar to detecting its ter-
mination. Our algorithm for simulated time is an extension of the well-known
distributed termination detection algorithm of Dijkstra-Safra [3].
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In the closed system, each component has a status that is either active or
idle. Active components can send messages, idle components are waiting. An
idle component can become active only if it gets a message or a timeout. An
active component can always become idle.

In the Dijkstra-Safra’s algorithm, termination detection was built into the
functionality of components. We separate global idleness detection from nor-
mal functionality of a component by introducing an idleness handler for each
component of the closed system. Since TTCN-3 is mainly used in the context
of black-box testing where we can only observe external actions, we consider
the SUT as a single component implementing certain interfaces in order to be
tested with simulated time. In a distributed TTCN-3 test system, we consider
instances of the TS as single components. We require synchronous communica-
tion between a component and its idleness handler to guarantee the correctness
of the extension of the algorithm.

To decide on global idleness we introduce a time manager. The time manager
can be provided as a part of SUT or as a part of the test system. The time
manager and the idleness handlers are connected into a unidirectional ring.

Time Manager. The time manager initializes the global idleness detection,
decides on global idleness and progresses time by sending an idleness token along
the ring. The token consists of a global flag and a global message counter. The
flag can be ”IDLE” meaning that there are no active components in the closed
system, ”ACTIVE” meaning that maybe one of the components is still active,
”TICK” meaning time progression and “RESTART” meaning reactivating the
system in the next time slice. The counter keeps track of messages exchanged
between the components.

The time manager initiates idleness detection by sending an idleness token
with the counter equal to 0 and the flag equal to “IDLE” to the next idleness
handler along the ring. The time manager detects global idleness if it receives
back the idleness token with the counter equal to zero, meaning there are no
messages pending between instances of the TS and the SUT, and the flag equal
to ”IDLE” meaning that all instances of the TSs and the SUT are idle. Otherwise
it repeats idleness detection in the same time slice.

If the time manager detects global idleness, it progresses time by sending the
token with flag ”TICK” along the ring. After all instances of the TS and the
SUT are informed about time progress, the manager reactivates the components
of the system by sending the token with flag ”RESTART” along the ring. That
synchronizes all the TS’s instances and the SUT on time progression. After the
reactivation, the time manager restarts idleness detection in the new time slice.

Idleness handler for TSi. We first consider the idleness handlers for TSi. An
idleness handler for the SUT is a simplified version of the TSi idleness handler. A
fragment of the Java class IdlenessHandlerTS in Fig. 3 illustrates the behavior
of an idleness handler for an instance of the TSi. The class implements interface
Runnable [1]. The idleness handler communicates with the other handlers via
operation IdlenessTokenSend() that allows to receive an idleness token from
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public synchronized void PAIdle( int TRISentPA , int TRIEnqdPA)

{TRISentSAPA+=TRISentPA ; TRIEnqdSAPA+=TRIEnqdPA; idlePA=true ; notify ( ) ; }

public synchronized void SAIdle ( int TRISentSA , int TRIEnqdSA,

int SASentSUT, int SUTEnqdSA)

{TRISentSAPA+=TRISentSA ; TRIEnqdSAPA+=TRIEnqdSA;

SASUTcount+=SASentSUT−SUTEnqdSA ; flagSA=true ; idleSA=true ; notify ( ) ; }

public synchronized void TEIdle( int TCISentTE , int TCIEnqdTE,

int TRISentTE , int TRIEnqdTE)

{th i s . TRISentTE+=TRISentTE ; th i s .TRIEnqdTE+=TRIEnqdTE;

TCITEcount+=TCISentTE−TCIEnqdTE; flagTE=true ; idleTE=true ; notify ( ) ; }

public synchronized void PAActivate (){ idlePA=false ; }
public synchronized void SAActivate (){ idleSA=false ; }
public synchronized void TEActivate (){ idleTE=false ; }

public synchronized void run (){ IdlenessToken msg=null ;

for ( ; ; ) { i f ( idlePA & idleSA & idleTE &(TRISentTE==TRIEnqdSAPA)&

(TRIEnqdTE==TRISentSAPA)&(buffer!=null ) )

{msg=buffer ; buffer=null ;

i f (msg . tag==IdlenessToken . IDLE | msg . tag==IdlenessToken .ACTIVE)

{ i f (flagTE | flagSA){msg . tag=IdlenessToken .ACTIVE;}
i f (flagTE){msg . count+=TCITEcount ; TCITEcount=0; flagTE=false ;}
i f ( flagSA){msg . count+=SASUTcount; SASUTcount=0; flagSA=false ;}
}

i f (msg . tag==IdlenessToken .TICK)

{TRISentTE=0; TRIEnqdTE=0; TRISentSAPA=0; TRIEnqdSAPA=0;

SASUTcount=0; idlePA=false ; flagSA=true ; flagTE=true ; pa . Tick ( ) ; }
i f (msg . tag==IdlenessToken .RESTART){pa . Restart ( ) ; }
NextHandler . IdlenessTokenSend(msg ) ;

}
. . . . . wait ( ) ; }
}

Fig. 3. Idleness Handler for TSi

one neighbor and propagate it further to the next one. For this purpose the
idleness handler keeps the reference NextHandler to the next handler along the
ring. The idleness handler decides on local idleness of the TSi, propagates the
idleness token along the ring and triggers time progression at the PAi. The
TSi is locally idle iff the TEi, the SAi and the PAi are idle and there are no
messages/timeouts pending between the TEi, the SAi and the PAi.

Messages exchanged by the TEi, the SAi and the PAi via the TRI interface
are internal wrt. the TSi. Messages exchanged by the TEi via the TCI interface
and the messages exchanged by the SAi with the SUT are external wrt. the
TSi. To keep information about external and internal messages, idleness handler
maintains several local counters. TRISentTE and TRIEnqdTE keep the number
of messages sent and enqueued by the TEi via the TRI interface. TRISentSAPA
and TRIEnqdSAPA provide analogous information for the SAi and the PAi. These
four counters are necessary to detect local idleness of the TSi. TCITEcount and
SASUTcount keep the number of external messages exchanged by the TSi via the
TCI interface and with the SUT.

Two flags (for TEi and SAi) kept by the idleness handler show whether
TCITEcount or/and SASUTcount respectively contain the up-to-date informa-
tion that is not known to the idleness token. Since the PAi communicates neither
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with the SUT nor with the other instances of the TS, information on messages
exchanged by the PAi is only important to detect local idleness of the TSi.
Therefore, there is no need for a flag for the PAi. The idleness handler keeps
information on the status of the TEi, SAi and PAi in the variables idleTE,
idleSA and idlePA respectively.

Initially, the statuses are false meaning TSi is possibly active. The flags are
initiated to true, meaning the idleness token does not have the up-to-date infor-
mation about messages exchanged by the TSi via TCI and messages exchanged
by the TSi and the SUT. The counters are initially zero.

To detect global idleness, the TEi, the SAi and the PAi should support a num-
ber of interfaces. To detect idleness of a TEi, we use TCI-operation TEIdle( int
TCISentTE, int TCIEnqdTE, int TRISentTe, int TRIEnqdTE) called by a TEi

at the idleness handler when the TEi becomes idle. The first two parameters keep
track of external messages exchanged via the TCI and the last two parameters
capture the same information for internal messages. Calling this operation leads
to changing the value of idleTE to true, updating the local counters TRISentTE,
TRIEnqdTE and TCITEcount and setting flagTE to true.

To detect local idleness of the PAi, we use operation PAIdle(int TRISentPA,
int TRIEnqdPA) called by PA at the idleness handler when an active PAi be-
comes idle. Two parameters correspond to the number of messages sent and the
number of messages received by the PAi via the TRI respectively. Calling PAIdle
at the idleness handler leads to changing variable idlePA to true and updating
local counters TRISentSAPA and TRIEnqdSAPA.

To detect local idleness of an SAi we use operation SAIdle(int TRISentSA,
int TRIEnqdSA, int SASentSUT, int SUTEnqdSA) called by SA at the idleness
handler when an active SAi becomes idle. TRISentSA and TRIEnqdSA denote
the numbers of internal messages sent and enqueued by the SAi. Parameters
SASentSUT and SUTEnqdSA keep analogous information about external messages
exchanged between the SAi and the SUT. Calling SAIdle() leads to changing
the status of SAi to true, updating the local counters and changing the flag of
SAi to true.

The TSi can be activated by receiving an external message. To detect an acti-
vation, we use operations TEActivate() called by the CH at the idleness handler
when a remote message is being enqueued at the idle TEi, SAActicvate() called
by the SAi at the idleness handler when an idle SAi gets a message or a timeout,
and PAActivate() called by the PAi at the idleness handler when an idle PAi

is activated. Calling these operation leads to updating the idleness status of the
corresponding entity to false.

Checking local idleness of the TSi is implemented by the method run(). Local
idleness of the TSi is detected iff status variables idleSA, idlePA and idleTE are
true and all internal messages sent via the TRI interface have been enqueued. This
is expressed by local idleness condition at the first if-statement of method run().

If the local idleness conditions are satisfied and the idleness handler is in the
possession of the idleness token with flag ”IDLE” or ”ACTIVATE” , the han-
dler propagates up-to-date information about the external messages exchanged
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between instances of the TS and the external messages exchanged between the
TS and the SUT by updating the idleness token and sending it further along the
ring to the time manager.

If flagTE is true then the number of external messages exchanged by the TSi

via TCI has changed since the last detection round. Thus the idleness handler
adds TCIcount to the counter of the idleness token. If flagSA is true, the number
of messages exchanged with the SUT has change. Thus the idleness handler
updates the token’s counter by adding the number of messages sent by the SAi

to the SUT and subtracting the number of messages from the SUT enqueued by
the SAi. If at least one of the local flags is true the flag of the token changes to
“ACTIVATE”, meaning one of TS instances or the SUT may still be active.

If the idleness handler gets an idleness token with flag ”TICK”, it prepares for
detecting idleness in the next time slice by setting all the flags to true, setting
idlePA to false , calling operation Tick() at the PAi, and sending the token
to the next handler along the ring. Upon Tick(), the PAi look-ups the timers
ready to expire in the new time slice. If the idleness handler gets an idleness token
with flag ”RESTART”, it calls operation Restart() at the PAi and propagates
the token to the next idleness handler. Upon Restart(), the PAi expires the
ready timers. The status of TEi and of SAi remains idle until explicit activation
because both TEi and of SAi may remain idle during a time slice.

The solution proposed in this section strongly resembles the termination de-
tection algorithm of Dijkstra-Safra when detection of messages pending on the
level of TCI and communication with an SUT is concerned. The condition de-
tected by an idleness handler in order to decide on local idleness of an instance of
the TS, guarantees that all entities of the TSi are idle and no messages/timeouts
are pending on the level of TRI.

Corollary 3. The solution for simulated time proposed in Section 4 detects
global idleness iff the conditions (1-6) in Fig. 2 are satisfied.

5 Case Studies

In this section we consider two case studies: one from the telecommunication
domain and another one from the railway domain.

5.1 2G/3G Mobile Phone Application

Here we consider embedded software for a 2G/3G dual-mode mobile terminal
that supports both WCDMA and GSM. GSM (Global System for Mobile Com-
munication) [11] is a mobile network technology that has a global footprint in
providing the second generation (2G) mobile services like voice, circuit-switched
and packet-switched data and short message service (SMS). WCDMA (Wide-
band Code Division Multiple Access) [10] is one of the 3G mobile network tech-
nologies that meets the performance demands of mobile services like the Mobile
Internet, including Web access, audio and video streaming, video and IP calls.
WCDMA provides a cost efficient wireless technology for high data throughput.
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Fig. 4. Structure of embedded software for a 2G/3G dual-mode mobile terminal

Equipping the third generation mobile phones with both WCDMA and GSM
technologies enables seamless, practically worldwide mobile service for their end-
users [10,11].

The software for a dual-mode WCDMA/GSM phone implements an inter-
working mechanism for both technologies (see Fig. 4). In case a phone user first
establishes a voice call using WCDMA technology and then moves outside of
WCDMA coverage, the software is able to provide voice call service over GSM.
Handovers from WCDMA to GSM and vice versa are handled in such a way
that no noticeable disturbance happens.

In this case study, an implementation of the third layer have been tested. It
combines the functionality of the third layers of WCDMA and GSM respectively,
solves WCDMA to GSM (and vice versa) handover issues and a mobile terminal
application (see Fig.4). In order to access and to control the implementation of
the third layer, the actual system under test (SUT) also includes layers 1 and
2 and a mobile terminal application. The SUT is a timed system. For example
handover from WCDMA to GSM should be accomplished within certain time
bounds. Otherwise handover would become visible to an end-user.

We have tested the SUT on a workstation, so the air interface connecting the
mobile terminal to the network is simulated by an Ethernet connection. The
network is mimicked by a test system that interacts with the SUT through the
simulated interfaces. There are three points available to control and observe the
SUT: CTRL can be used to control the phone driver on the top of the SUT,
L1 GSM and L1 WCDMA are used to exchange messages between the SUT and
the test system.

To test the implementation of the third layer of a 2G/3G mobile terminal, we
mimic the GSM/WCDMA air interfaces by Ethernet connections, emulate ser-
vices of the target operating system and simulate the mobile terminal hardware.
The test system simulates behavior of layers 1-3 of the mobile network. The OS
services have been emulated. We used host based testing with simulated time to
check behavioral time-dependant features of the SUT.



TTCN-3 for Distributed Testing Embedded Software 109

At the time of developing the test system for this case study the TCI had
not been defined yet, hence proprietary APIs of the TTCN-3 tool had to be
used to implement it. The operations at this API are however comparable to
the operations in the TCI relevant for message exchange and indicating idleness.
Despite these technical differences to the approach in this paper, it is possible
to achieve that the implementation of simulated time is not visible on the level
of TTCN-3 code.

Testing the SUT with the developed test system sufficiently increased the
possibilities for debugging the SUT. Throughout the test execution the test
system the SUT could be suspended and inspected with a debugger. These time
intervals could be arbitrarily long, but due to the usage of simulated time no
timer expired in such an interval and testing could be continued after such a
long interval.

5.2 Railway Interlockings

Railway control systems consist of three layers: infrastructure, logistic, and inter-
locking. The infrastructure represents a railway yard that basically consists of a
collection of linked railway tracks supplied with such features as signals, points,
and level crossings. The logistic layer is responsible for the interface with hu-
man experts, who give control instructions for the railway yard to guide trains.
The interlocking guarantees that the execution of these instructions does not
cause train collisions or derailments. Thus it is responsible for the safety of the
railway system. If the interlocking considers a command as unsafe, the execu-
tion of the command is postponed until the command can be safely executed or
discarded. Since the interlocking is the most safety-critical layer of the railway
control system, we further concentrate on this layer.

Here we consider interlocking systems based on Vital Processor Interlock-
ing (VPI) that is used nowadays in Australia, some Asian countries, Italy, the
Netherlands, Spain and the USA [12]. A VPI is implemented as a machine which
executes hardware checks and a program consisting of a large number of guarded
assignments. The assignments reflect dependencies between various objects of a
specific railway yard like points, signals, level crossings, and delays on electri-
cal devices and ensure the safety of the railway system. An example of a VPI
specification can be found in [16]. In the TTMedal project [15], we develop an
approach to testing VPI software with TTCN-3. This work is done in coopera-
tion with engineers of ProRail who take care of capacity, reliability and safety
on Dutch railways. They have formulated general safety requirements for VPIs.
We use these requirements to develop a TTCN-3 test system for VPIs.

The VPI program has several read-only input variables, auxiliary variables
used for computations and several writable variables that correspond to the
outputs of the program. The program specifies a control cycle that is repeated
with a fixed period by the hardware. The control cycle consists of two phases: an
active phase and an idle phase. The active phase starts with reading new values
for input variables. The infrastructure and the logistic layer determine the values
of the input variables. After the values are latched by the program, it uses them



110 S. Blom et al.

to compute new values for internal variables and finally decides on new outputs.
The values of the output variables are transmitted to the infrastructure and to
the logistic, where they are used to manage signals, points, level crossings and
trains. Here we assume that the infrastructure always follows the commands of
the interlocking. The rest of the control cycle the system stays idle.

The duration of the control cycle is fixed. Delays are used to ensure the safety
of the system. A lot of safety requirements to VPIs are timed. They describe
dependencies between infrastructure objects in a period of time. The objects
of the infrastructure are represented in the VPI program by input and output
variables. Thus the requirements defined in terms of infrastructure objects can be
easily reformulated in terms of input and output variables of the VPI program.
Hence VPIs are time-critical systems.

We have tested VPI software without access to the target VPI hardware. To
execute VPI program, we simulated the VPI hardware/software interfaces and
the VPI program itself. The duration of the control cycle of VPI program is fixed.
The VPI program sees only snapshots of the environment at the beginning of
each control cycle, meaning the program observes the environment as a discrete
system. Timing constraints in a VPI program are expressed by time delays that
are much longer than the duration of the control cycle. That leads us to the
conclusion that we may safely use simulated time to test VPI software.

Based on the concept of the simulated time we have developed a test sys-
tem for executing the test cases. The experiments showed that our approach
to host-based testing with simulated time allows to detect violations of safety
requirements in interlocking software.

6 Conclusion

In this paper we proposed a simulated-time framework for host-based testing of
distributed systems with TTCN-3. Simulated time has been successfully applied
to testing and verification of systems where delays are significantly larger than
the duration of normal events in the system (see e.g. [2]). Our framework con-
tributes to the repeatability of test results when testing embedded software and
also solves some time-related debugging problems typical for distributed embed-
ded systems. It allows to use the same test suites for simulated time and for real
time testing. We also provide two case studies where host-based testing with
simulated time has been applied to two systems: one from telecommunication
domain and one from transportation domain.
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