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Abstract. We study the PageRank mass of principal components in
a bow-tie Web Graph, as a function of the damping factor c. Using a
singular perturbation approach, we show that the PageRank share of
IN and SCC components remains high even for very large values of the
damping factor, in spite of the fact that it drops to zero when c → 1.
However, a detailed study of the OUT component reveals the presence
of “dead-ends” (small groups of pages linking only to each other) that
receive an unfairly high ranking when c is close to one. We argue that
this problem can be mitigated by choosing c as small as 1/2.

1 Introduction

The link-based ranking schemes such as PageRank [1], HITS [2], and SALSA [3]
have been successfully used in search engines to provide adequate importance
measures for Web pages. In the present work we restrict ourselves to the analysis
of the PageRank criterion and use the following definition of PageRank from [4].
Denote by n the total number of pages on the Web and define the n×n hyper-link
matrix W as follows:

wij =

⎧
⎨

⎩

1/di, if page i links to j,
1/n, if page i is dangling,
0, otherwise,

(1)

for i, j = 1, ..., n, where di is the number of outgoing links from page i. A page
is called dangling if it does not have outgoing links. The PageRank is defined as
a stationary distribution of a Markov chain whose state space is the set of all
Web pages, and the transition matrix is

G = cW + (1 − c)(1/n)11T . (2)

Here and throughout the paper we use the symbol 1 for a column vector of ones
having by default an appropriate dimension. In (2), 11T is a matrix whose all
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entries are equal to one, and c ∈ (0, 1) is the parameter known as a damping
factor. Let π be the PageRank vector. Then by definition, πG = π, and ||π|| =
π1 = 1, where we write ||x|| for the L1-norm of vector x.

The damping factor c is a crucial parameter in the PageRank definition. It
regulates the level of the uniform noise introduced to the system. Based on the
publicly available information Google originally used c = 0.85, which appears
to be a reasonable compromise between the true reflection of the Web structure
and numerical efficiency (see [5] for more details). However, it was mentioned in
[6] that the value of c too close to one results into distorted ranking of important
pages. This phenomenon was also independently observed in [7]. Moreover, with
smaller c, the PageRank is more robust, that is, one can bound the influence of
outgoing links of a page (or a small group of pages) on the PageRank of other
groups [8] and on its own PageRank [7].

In this paper we explore the idea of relating the choice of c to specific prop-
erties of the Web structure. In papers [9,10] the authors have shown that the
Web graph can be divided into three principle components. The Giant Strongly
Connected Component (SCC) contains a large group of pages all having a hyper-
link path to each other. The pages in the IN (OUT) component have a path to
(from) the SCC, but not back. Furthermore, the SCC component is larger than
the second largest strongly connected component by several orders of magnitude.

In Section 3 we consider a Markov walk governed by the hyperlink matrix W
and explicitly describe the limiting behavior of the PageRank vector as c → 1.
We experimentally study the OUT component in more detail to discover a so-
called Pure OUT component (the OUT component without dangling nodes and
their predecessors) and show that Pure OUT contains a number of small sub-
SCC’s, or dead-ends, that absorb the total PageRank mass when c = 1. In
Section 4 we apply the singular perturbation theory [11,12,13,14] to analyze the
shape of the PageRank of IN+SCC as a function of c. The dangling nodes turn
out to play an unexpectedly important role in the qualitative behavior of this
function. Our analytical and experimental results suggest that the PageRank
mass of IN+SCC is sustained on a high level for quite large values of c, in spite
of the fact that it drops to zero as c → 1. Further, in Section 5 we show that the
total PageRank mass of Pure OUT component increases with c. We argue that
c = 0.85 results in an inadequately high ranking for Pure OUT pages and we
present an argument for choosing c as small as 1/2. We confirm our theoretical
argument by experiments with log files. We would like to mention that the value
c = 1/2 was also used in [15] to find gems in scientific citations. This choice
was justified intuitively by stating that researchers may check references in cited
papers but on average they hardly go deeper than two levels. Nowadays, when
search engines work really fast, this argument also applies to Web search. Indeed,
it is easier for the user to refine a query and receive a proper page in fraction of
seconds than to look for this page by clicking on hyper-links. Therefore, we may
assume that a surfer searching for a page, on average, does not go deeper than
two clicks.
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The body of the paper contains main ideas and results. An extended version
with the necessary information from the perturbation theory and the proofs can
be found in [16].

2 Datasets

We have collected two Web graphs, which we denote by INRIA and FrMathInfo.
The Web graph INRIA was taken from the site of INRIA, the French Research
Institute of Informatics and Automatics. The seed for the INRIA collection was
Web page www.inria.fr. It is a typical large Web site with around 300.000 pages
and 2 millions hyper-links. We have collected all pages belonging to INRIA. The
Web graph FrMathInfo was crawled with the initial seeds of 50 mathematics
and informatics laboratories of France, taken from Google Directory. The crawl
was executed by Breadth First Search of depth 6. The FrMathInfo Web graph
contains around 700.000 pages and 8 millions hyper-links. As the Web seems to
have a fractal structure [17], we expect our datasets to be enough representative.

The link structure of the two Web graphs is stored in Oracle database. We
could store the adjacency lists in RAM to speed up the computation of PageRank
and other quantities of interest. This enables us to make more iterations, which
is extremely important when the damping factor c is close to one. Our PageRank
computation program consumes about one hour to make 500 iterations for the
FrMathInfo dataset and about half an hour for the INRIA dataset for the same
number of iterations. Our algorithms for discovering the structures of the Web
graph are based on Breadth First Search and Depth First Search methods, which
are linear in the sum of number of nodes and links.

3 The Structure of the Hyper-link Transition Matrix

With the bow-tie Web structure [9,10] in mind, we would like to analyze a
stationary distribution of a Markov random walk governed by the hyper-link
transition matrix W given by (1). Such random walk follows an outgoing link
chosen uniformly at random, and dangling nodes are assumed to have links to
all pages in the Web. We note that the methods presented below can be easily
extended to the case of personalized PageRank [18], when after a visit to a
dangling node, the next page is sampled from some prescribed distribution.

Obviously, the graph induced by W has a much higher connectivity than the
original Web graph. In particular, if the random walk can move from a dangling
node to an arbitrary node with the uniform distribution, then the Giant SCC
component increases further in size. We refer to this new strongly connected
component as the Extended Strongly Connected Component (ESCC). Due to the
artificial links from the dangling nodes, the SCC component and IN component
are now inter-connected and are parts of the ESCC. Furthermore, if there are
dangling nodes in the OUT component, then these nodes together with all their
predecessors become a part of the ESCC.
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In the mini-example in Figure 1, node 0 represents the IN component, nodes
from 1 to 3 form the SCC component, and the rest of the nodes, nodes from 4 to
11, are in the OUT component. Node 5 is a dangling node, thus, artificial links
go from the dangling node 5 to all other nodes. After addition of the artificial
links, all nodes from 0 to 5 form the ESCC.
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ESCC

OUTPure OUT

Q

Q1

2

11
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9
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SCC+IN 0
1

2
3

Fig. 1. Example of a graph

# INRIA FrMathInfo

total nodes 318585 764119
nodes in SCC 154142 333175

nodes in IN 0 0
nodes in OUT 164443 430944

nodes in ESCC 300682 760016
nodes in Pure OUT 17903 4103

SCCs in OUT 1148 1382
SCCs in Pure Out 631 379

Fig. 2. Component sizes in INRIA and Fr-
MathInfo datasets

In the Markov chain induced by the matrix W , all states from ESCC are
transient, that is, with probability 1, the Markov chain eventually leaves this
set of states and never returns back. The stationary probability of all these
states is zero. The part of the OUT component without dangling nodes and
their predecessors forms a block that we refer to as a Pure OUT component. In
Figure 1 the Pure OUT component consists of nodes from 6 to 11. Typically, the
Pure OUT component is much smaller than the Extended SCC. However, this
is the set where the total stationary probability mass is concentrated. The sizes
of all components for our two datasets are given in Figure 2. Here the size of
the IN components is zero because in the Web crawl we used the Breadth First
Search method and we started from important pages in the Giant SCC. For the
purposes of the present research it does not make any difference since we always
consider IN and SCC together.

Let us now analyze the structure of the Pure OUT component in more detail.
It turns out that inside Pure OUT there are many disjoint strongly connected
components. All states in these sub-SCC’s (or, “dead-ends”) are recurrent, that
is, the Markov chain started from any of these states always returns back to it.
In particular, we have observed that there are many dead-ends of size 2 and 3.
The Pure OUT component also contains transient states that eventually bring
the random walk into one of the dead-ends. For simplicity, we add these states
to the giant transient ESCC component.

Now, by appropriate renumbering of the states, we can refine the matrix W
by subdividing all states into one giant transient block and a number of small
recurrent blocks as follows:



20 K. Avrachenkov, N. Litvak, and K.S. Pham

W =

⎡

⎢
⎢
⎢
⎣

Q1 0 0
. . .

0 Qm 0
R1 · · · Rm T

⎤

⎥
⎥
⎥
⎦

dead-end (recurrent)

· · ·
dead-end (recurrent)
ESCC+[transient states in Pure OUT] (transient)

(3)

Here for i = 1, . . . , m, a block Qi corresponds to transitions inside the i-th
recurrent block, and a block Ri contains transition probabilities from transient
states to the i-th recurrent block. Block T corresponds to transitions between
the transient states. For instance, in example of the graph from Figure 1, the
nodes 8 and 9 correspond to block Q1, nodes 10 and 11 correspond to block Q2,
and all other nodes belong to block T . Let us denote by π̄OUT,i the stationary
distribution corresponding to block Qi.

We would like to emphasis that the recurrent blocks here are really small,
constituting altogether about 5% for INRIA and about 0.5% for FrMathInfo.
We believe that for larger data sets, this percentage will be even less. By far
most important part of the pages is contained in the ESCC, which constitutes
the major part of the giant transient block.

Next, we note that if c < 1, then all states in the Markov chain induced by
the Google transition matrix (2) are recurrent, which automatically implies that
they all have positive stationary probabilities. However, if c = 1, the majority
of pages turn into transient states with stationary probability zero. Hence, the
random walk governed by the Google transition matrix G is in fact a singularly
perturbed Markov chain. Informally, by singular perturbation we mean relatively
small changes in elements of the matrix, that lead to altered connectivity and
stationary behavior of the chain. Using the results of the singular perturbation
theory (see e.g., [11,12,13,14]), in the next proposition we characterize explicitly
the limiting PageRank vector as c → 1.

Proposition 1. Let π̄OUT,i be a stationary distribution of the Markov chain gov-
erned by Qi, i = 1, . . . , m. Then, we have

lim
c→1

π(c) = [πOUT,1 · · · πOUT,m 0] ,

where

πOUT,i =
(

# nodes in block Qi

n
+

1
n
1T [I − T ]−1Ri1

)

π̄OUT,i (4)

for i = 1, ..., m, I is the identity matrix, and 0 is a row vector of zeros that
correspond to stationary probabilities of the states in the transient block.

The second term inside the brackets in formula (4) corresponds to the PageRank
mass received by a dead-end from the Extended SCC. If c is close to one, then
this contribution can outweight by far the fair share of the PageRank, whereas
the PageRank mass of the giant transient block decreases to zero. How large is
the neighborhood of one where the ranking is skewed towards the Pure OUT?
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Is the value c = 0.85 already too large? We will address these questions in
the remainder of the paper. In the next section we analyze the PageRank mass
IN+SCC component, which is an important part of the transient block.

4 PageRank Mass of IN+SCC

In Figure 3 we depict the PageRank mass of the giant component IN+SCC, as a
function of the damping factor, for FrMathInfo. Here we see a typical behavior
also observed for several pages in the mini-web from [6]: the PageRank first grows
with c and then decreases to zero. In our case, the PageRank mass of IN+SCC
drops drastically starting from some value c close to one. We can explain this
phenomenon by highlighting the role of the dangling nodes.

Fig. 3. The PageRank mass of IN+SCC as a function of c

We start the analysis by subdividing the Web graph sample into three subsets
of nodes: IN+SCC, OUT, and the set of dangling nodes DN. We assume that
no dangling node originates from OUT. This simplifies the derivation but does
not change our conclusions. Then the Web hyper-link matrix W in (1) can be
written in the form

W =

⎡

⎣
Q 0 0
R P S

1
n11T 1

n11T 1
n11T

⎤

⎦
OUT
IN+SCC ,
DN

where the block Q corresponds to the hyper-links inside the OUT component,
the block R corresponds to the hyper-links from IN+SCC to OUT, the block P
corresponds to the hyper-links inside the IN+SCC component, and the block S
corresponds to the hyper-links from SCC to dangling nodes. In the above, n is
the total number of pages in the Web graph sample, and the blocks 11T are the
matrices of ones adjusted to appropriate dimensions.

Dividing the PageRank vector in segments corresponding to the blocks OUT,
IN+SCC and DN, namely, π = [πOUT πIN+SCC πDN], we can rewrite the well-known
formula (see e.g. [19])
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π =
1 − c

n
1T [I − cW ]−1 (5)

as a system of three linear equations:

πOUT[I − cQ] − πIN+SCCcR − c

n
πDN11T =

1 − c

n
1T , (6)

πIN+SCC[I − cP ] − c

n
πDN11T =

1 − c

n
1T , (7)

− πIN+SCCcS + πDN − c

n
πDN11T =

1 − c

n
1T . (8)

Solving (6–8) for πIN+SCC we obtain

πIN+SCC(c) =
(1 − c)α
1 − cβ

uIN+SCC

[

I − cP − c2α

1 − cβ
S1uIN+SCC

]−1

, (9)

where α = |IN + SCC|/n and β = |DN|/n are the fractions of nodes in IN+SCC
and DN, respectively, and uIN+SCC = |IN + SCC|−11T is a uniform probability
row-vector of dimension |IN + SCC|. Now, define

k(c) =
(1 − c)α
1 − cβ

, and U(c) = P +
cα

1 − cβ
S1uIN+SCC. (10)

Then the derivative of πIN+SCC(c) with respect to c is given by

π′
IN+SCC(c) = uIN+SCC

{
k′(c)I + k(c)[I − cU(c)]−1(cU(c))′

}
[I − cU(c)]−1, (11)

where using (10) after simple calculations we get k′(c) = −(1 − β)α/(1 − cβ)2,
(cU(c))′ = U(c)+ cα/(1− cβ)2S1uIN+SCC. Let us consider the point c = 0. Using
(11), we obtain

π′
IN+SCC(0) = −α(1 − β)uIN+SCC + αuIN+SCCP. (12)

One can see from the above equation that the PageRank of pages in IN+SCC
with many incoming links will increase as c increases from zero, which explains
the graphs presented in [6].

Next, let us analyze the total mass of the IN+SCC component. From (12)
we obtain ||π′

IN+SCC(0)|| = −α(1 − β)uIN+SCC1 + αuIN+SCCP1 = α(−1 + β + p1),
where p1 = uIN+SCCP1 is the probability that a random walk stays in IN+SCC
for one step if the initial distribution is uniform over IN+SCC. If 1 − β < p1
then the derivative at 0 is positive. Since dangling nodes typically constitute
more than 25% of the graph [20], and p1 is usually close to one, the condition
1 − β < p1 seems to be comfortably satisfied in Web samples. Thus, the total
PageRank of the IN+SCC increases in c when c is small. Note by the way that
if β = 0 then ||πIN+SCC(c)|| is strictly decreasing in c. Hence, surprisingly, the
presence of dangling nodes qualitatively changes the behavior of the IN+SCC
PageRank mass.



Distribution of PageRank Mass Among Principle Components 23

Now let us consider the point c = 1. Again using (11), we obtain

π′
IN+SCC(1) = − α

1 − β
uIN+SCC[I − P − α

1 − β
S1uIN+SCC]−1. (13)

Note that the matrix in the square braces is close to singular. Denote by P̄ the
hyper-link matrix of IN+SCC when the outer links are neglected. Then, P̄ is
an irreducible stochastic matrix. Denote its stationary distribution by π̄IN+SCC.
Then we can apply Lemma A.1 of [16] from the singular perturbation theory
to (13) by taking A = P̄ , εC = P̄ − P − α/(1 − β)S1uIN+SCC, and noting that
εC1 = R1 + (1 − α − β)(1 − β)−1S1. Combining all terms together and using
π̄IN+SCC1 = ||π̄IN+SCC|| = 1 and uIN+SCC1 = ||uIN+SCC|| = 1, by Lemma A.1 of [16]
we obtain

||π′
IN+SCC(1)|| ≈ − α

1 − β

1
π̄IN+SCCR1 + 1−β−α

1−β π̄IN+SCCS1
.

It is expected that the value of π̄IN+SCCR1 + 1−β−α
1−β π̄IN+SCCS1 is typically small

(indeed, in our dataset INRIA, the value is 0.022), and hence the mass
||πIN+SCC(c)|| decreases very fast as c approaches one.

Having described the behavior of the PageRank mass ||πIN+SCC(c)|| at the
boundary points c = 0 and c = 1, now we would like to show that there is at
most one extremum on (0, 1). It is sufficient to prove that if ||π′

IN+SCC(c0)|| ≤ 0
for some c0 ∈ (0, 1) then ||π′

IN+SCC(c)|| ≤ 0 for all c > c0. To this end, we apply
the Sherman-Morrison formula to (9), which yields

πIN+SCC(c) = π̃IN+SCC(c) +
c2α

1−cβ uIN+SCC[I − cP ]−1S1

1 + c2α
1−cβuIN+SCC[I − cP ]−1S1

π̃IN+SCC(c), (14)

where

π̃IN+SCC(c) =
(1 − c)α
1 − cβ

uIN+SCC[I − cP ]−1. (15)

represents the main term in the right-hand side of (14). (The second summand
in (14) is about 10% of the total sum for the INRIA dataset for c = 0.85.) Now
the behavior of πIN+SCC(c) in Figure 3 can be explained by means of the next
proposition.

Proposition 2. The term ||π̃IN+SCC(c)|| given by (15) has exactly one local max-
imum at some c0 ∈ [0, 1]. Moreover, ||π̃′′

IN+SCC(c)|| < 0 for c ∈ (c0, 1].

We conclude that ||π̃IN+SCC(c)|| is decreasing and concave for c ∈ [c0, 1], where
||π̃′

IN+SCC(c0)|| = 0. This is exactly the behavior we observe in the experiments.
The analysis and experiments suggest that c0 is definitely larger than 0.85 and
actually is quite close to one. Thus, one may want to choose large c in order to
maximize the PageRank mass of IN+SCC. However, in the next section we will
indicate important drawbacks of this choice.
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5 PageRank Mass of ESCC

Let us now consider the PageRank mass of the Extended SCC component
(ESCC) described in Section 3, as a function of c ∈ [0, 1]. Subdividing the Page-
Rank vector in the blocks π = [πPureOUT πESCC], from (5) we obtain

||πESCC(c)|| = (1 − c)γuESCC[I − cT ]−11, (16)

where T represents the transition probabilitites inside the ESCC block, γ =
|ESCC|/n, and uESCC is a uniform probability row-vector over ESCC. Clearly,
we have ||πESCC(0)|| = γ and ||πESCC(1)|| = 0. Furthermore, by taking derivatives
we easily show that ||πESCC(c)|| is a concave decreasing function. In the next
proposition, we derive upper and lower bounds for ||πESCC(c)||.

Proposition 3. Let λ1 be the Perron-Frobenius eigenvalue of T , and let p1 =
uESCCT1 be the probability that the random walk started from a randomly chosen
state in ESCC, stays in ESCC for one step.

(i) If p1 < λ1 then

||πESCC(c)|| <
γ(1 − c)
1 − cλ1

, c ∈ (0, 1). (17)

(ii) If 1/(1 − p1) < uESCC[I − T ]−11 then

||πESCC(c)|| >
γ(1 − c)
1 − cp1

, c ∈ (0, 1). (18)

The condition p1 < λ1 has a clear intuitive interpretation. Let π̂ESCC be the
probability-normed left Perron-Frobenius eigenvector of T . Then π̂ESCC, also
known as a quasi-stationary distribution of T , is the limiting probability dis-
tribution of the Markov chain given that the random walk never leaves the block
T (see e.g. [21]). Since π̂ESCCT = λ1π̂ESCC, the condition p1 < λ1 means that
the chance to stay in ESCC for one step in the quasi-stationary regime is higher
than starting from the uniform distribution uESCC. Although p1 < λ1 does not
hold in general, one may expect that it should hold for transition matrices de-
scribing large entangled graphs since quasi-stationary distribution should favor
states, from which the chance to leave ESCC is lower.

Both conditions of Proposition 3 are satisfied in our experiments. With the
help of the derived bounds we conclude that ||πESCC(c)|| decreases very slowly for
small and moderate values of c, and it decreases extremely fast when c becomes
close to 1. This typical behavior is clearly seen in Figure 4, where ||πESCC(c)||
is plotted with a solid line. The bounds are plotted in Figure 4 with dashed
lines. For the INRIA dataset we have p1 = 0.97557, λ1 = 0.99954, and for the
FrMathInfo dataset we have p1 = 0.99659, λ1 = 0.99937.

From the above we conclude that the PageRank mass of ESCC is smaller than
γ for any value c > 0. On contrary, the PageRank mass of Pure OUT increases
in c beyond its “fair share” δ = |PureOUT|/n. With c = 0.85, the PageRank
mass of the Pure OUT component in the INRIA dataset is equal to 1.95δ. In
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Fig. 4. PageRank mass of ESCC and bounds, INRIA (left) and FrMathInfo (right)

the FrMathInfo dataset, the unfairness is even more pronounced: the PageRank
mass of the Pure OUT component is equal to 3.44δ. This gives users an incentive
to create dead-ends: groups of pages that link only to each other. Clearly, this
can be mitigated by choosing a smaller damping factor. Below we propose one
way to determine an “optimal” value of c.

Let v be some probability vector over ESCC. We would like to choose c = c∗

that satisfies the condition

||πESCC(c)|| = ||vT ||, (19)

that is, starting from v, the probability mass preserved in ESCC after one step
should be equal to the PageRank of ESCC. One can think for instance of the
following three reasonable choices of v: 1) π̂ESCC, the quasi-stationary distribu-
tion of T , 2) the uniform vector uESCC, and 3) the normalized PageRank vector
πESCC(c)/||πESCC(c)||. The first choice reflects the proximity of T to a stochastic
matrix. The second choice is inspired by definition of PageRank (restart from
uniform distribution), and the third choice combines both these features.

If conditions of Proposition 3 are satisfied, then (17) and (18) hold, and thus
the value of c∗ satisfying (19) must be in the interval (c1, c2), where

(1 − c1)/(1 − p1c1) = ||vT ||, (1 − c2)/(1 − λ1c2) = ||vT ||.

Numerical results for all three choices of v are presented in Table 1.
If v = π̂ESCC then we have ||vT || = λ1, which implies c1 = (1−λ1)/(1−λ1p1)

and c2 = 1/(λ1 + 1). In this case, the upper bound c2 is only slightly larger
than 1/2 and c∗ is close to zero in our data sets (see Tabel 1). Such small c
however leads to ranking that takes into account only local information about
the Web graph (see e.g. [22]). The choice v = π̂ESCC does not seem to represent
the dynamics of the system; probably because the “easily bored surfer” random
walk that is used in PageRank computations never follows a quasi-stationary
distribution since it often restarts itself from the uniform probability vector.

For the uniform vector v = uESCC, we have ||vT || = p1, which gives c1, c2, c
∗

presented in Table 1. We have obtained a higher upper bound but the values of
c∗ are still much smaller than 0.85.
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Table 1. Values of c∗ with bounds

v c INRIA FrMathInfo
π̂ESCC c1 0.0184 0.1956

c2 0.5001 0.5002
c∗ .02 .16

uESCC c1 0.5062 0.5009
c2 0.9820 0.8051
c∗ .604 .535

πESCC/||πESCC|| 1/(1 + λ1) 0.5001 0.5002
1/(1 + p1) 0.5062 0.5009

Finally, for the normalized PageRank vector v = πESCC/||πESCC||, using (16),
we rewrite (19) as

||πESCC(c)|| =
γ

||πESCC(c)||πESCC(c)T1 =
γ2(1 − c)

||πESCC(c)||uIN+SCC[I − cT ]−1T1,

Multiplying by ||πESCC(c)||, after some algebra we obtain

||πESCC(c)||2 = γ
c ||πESCC(c)|| − (1−c)γ2

c .

Solving the quadratic equation for ||πESCC(c)||, we get

||πESCC(c)|| = r(c) =
{

γ if c ≤ 1/2,
γ(1−c)

c if c > 1/2.

Hence, the value c∗ solving (19) corresponds to the point where the graphs of
||πESCC(c)|| and r(c) cross each other. There is only one such point on (0,1),
and since ||πESCC(c)|| decreases very slowly unless c is close to one, whereas
r(c) decreases relatively fast for c > 1/2, we expect that c∗ is only slightly
larger than 1/2. Under conditions of Proposition 3, r(c) first crosses the line
γ(1− c)/(1−λ1c), then ||πESCC(c)||1, and then γ(1− c)/(1−p1c). Thus, we yield
(1 + λ1)−1 < c∗ < (1 + p1)−1. Since both λ1 and p1 are large, this suggests that
c should be chosen around 1/2. This is also reflected in Tabel 1.

Last but not least, to support our theoretical argument about the undeserved
high ranking of pages from Pure OUT, we carry out the following experiment.
In the INRIA dataset we have chosen an absorbing component in Pure OUT
consisting just of two nodes. We have added an artificial link from one of these
nodes to a node in the Giant SCC and recomputed the PageRank. In Table 2
in the column “PR rank w/o link” we give a ranking of a page according to
the PageRank value computed before the addition of the artificial link and in
the column “PR rank with link” we give a ranking of a page according to the
PageRank value computed after the addition of the artificial link. We have also
analyzed the log file of the site INRIA Sophia Antipolis (www-sop.inria.fr)
and ranked the pages according to the number of clicks for the period of one
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year up to May 2007. We note that since we have the access only to the log file
of the INRIA Sophia Antipolis site, we use the PageRank ranking also only for
the pages from the INRIA Sophia Antipolis site. For instance, for c = 0.85, the
ranking of Page A without an artificial link is 731 (this means that 730 pages
are ranked better than Page A among the pages of INRIA Sophia Antipolis).
However, its ranking according to the number of clicks is much lower, 2588.
This confirms our conjecture that the nodes in Pure OUT obtain unjustifiably
high ranking. Next we note that the addition of an artificial link significantly
diminishes the ranking. In fact, it brings it close to the ranking provided by
the number of clicks. Finally, we draw the attention of the reader to the fact
that choosing c = 1/2 also significantly reduces the gap between the ranking by
PageRank and the ranking by the number of clicks.

Table 2. Comparison between PR and click based rankings

c PR rank w/o link PR rank with link rank by no. of clicks
Node A
0.5 1648 2307 2588
0.85 731 2101 2588
0.95 226 2116 2588
Node B
0.5 1648 4009 3649
0.85 731 3279 3649
0.95 226 3563 3649

To summarize, our results indicate that with c = 0.85, the Pure OUT compo-
nent receives an unfairly large share of the PageRank mass. Remarkably, in order
to satisfy any of the three intuitive criteria of fairness presented above, the value
of c should be drastically reduced. The experiment with the log files confirms
the same. Of course, a drastic reduction of c also considerably accelerates the
computation of PageRank by numerical methods [23,5,24].
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