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ABSTRACT
Photoacoustic imaging is a relatively new medical imaging modality. In principle it can be used to image the
optical absorption distribution of an object by measurements of optically induced acoustic signals. Recently
we have developed a modified photoacoustic measurement system which can be used to simultaneously image
the ultrasound propagation parameters as well. By proper placement of a passive element we obtain isolated
measurements of the object’s ultrasound propagation parameters, independent of the optical absorption inside
the object. This passive element acts as a photoacoustic source and measurements are obtained by allowing the
generated ultrasound signal to propagate through the object. Images of the ultrasound propagation parameters,
being the attenuation and speed of sound, can then be reconstructed by inversion of a measurement model.
This measurement model relates the projections non-linearly to the unknown images, due to ray refraction
effects. After estimating the speed of sound and attenuation distribution, the optical absorption distribution
is reconstructed. In this reconstruction problem we take into account the previously estimated speed of sound
distribution. So far, the reconstruction algorithms have been tested using computer simulations. The method
has been compared with existing algorithms and good results have been obtained.

Keywords: photoacoustic imaging, ultrasound tomography, inhomogeneous speed of sound, ray refraction
correction

1. INTRODUCTION
Photoacoustic (PA) imaging is a relatively new imaging technique, which primarily focuses on the reconstruction
of optical properties of the imaged object. The technique is well suited for medical imaging purposes due to its
noninvasive character and its ability to penetrate through soft tissue. Photoacoustic imaging is based on the
generation of acoustic waves due to the absorption of optical energy. A good overview of photoacoustic imaging
can be found in the article of Xu and Wang.1

The reconstruction of optical properties of the imaged object is based on the measurements of ultrasound
signals. These ultrasound signals originate from inside the imaged object and have been induced by an external
light source. When the light source emits a short pulse of light, an initial pressure distribution will result in
the imaged object. The magnitude of the initial pressure distribution is proportional to the optical energy
absorption distribution.2 The generated pressure distribution will propagate outwards through the object and
can be measured by ultrasound transducers. Since the generated acoustic signals travel through the object,
the received signals are not only dependent on the optical properties but also on the acoustic properties of the
object. In most of the existing photoacoustic reconstruction algorithms, the acoustic properties are assumed to be
homogeneously distributed. Objects which do not satisfy this homogeneity can not be accurately reconstructed
with these algorithms and result in blurred and artifacted images.

Several authors have considered the incorporation of speed of sound inhomogeneities in the reconstruction
process. These methods can be divided into methods which require an a priori known speed of sound map and
methods without this requirement.
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1.1 Algorithms which require an a priori known speed of sound map

Anastasio et al3 demonstrated the reconstruction of photoacoustic measurements by assuming an a priori known
speed of sound map. Using this speed of sound map, curved iso-time of flight (TOF) contours were calculated
by assuming straight ray propagation of speed of sound. The photoacoustic measurement function, valid for
homogeneous speed of sound distributions was modified to include inhomogeneous speed of sound distributions
by specifying the integration over the curved iso-TOF contours instead of circles. The reconstruction was then
accomplished by solving the positive linear photoacoustic measurement equation by using an EM-algorithm.

Jin4 used a similar approach. The speed of sound map in this case was pre-calculated by performing a
separate ultrasound transmission tomography (UTT) step. Here linear ray paths are assumed so that a filtered
back projection reconstruction can be used in the UTT step. Curved iso-TOF contours were then calculated
using the same algorithm as Anastasio,3 i.e. by assuming straight ray sound propagation. The inversion of the
linear photoacoustic measurement equation was then performed by directly using the iterative LSQR method.5

1.2 Algorithms which do not require an a priori known speed of sound map

Jiang et al6 used a finite element discretized version of an inhomogeneous acoustic wave equation in the fre-
quency domain. In the wave equation, terms representing the optical absorption distribution, acoustic property
distributions and generated pressure are present. This results in a non-linear system of equations involving the
unknown optical absorption and acoustic property distributions and the known pressure which is measured at
the boundary of the imaging domain. The reconstruction algorithm is then implemented by iteratively solving
a linearized system of equations. The linearization is done by calculating a first order taylor expansion with
respect to the unknown optical absorption and acoustic property distributions.

Jin Zhang et al7 use the same photoacoustic measurement function as Anastasio3 to relate the optical ab-
sorption distribution and curved iso-TOF contours to the measured ultrasound signals. The speed of sound
distribution was not assumed to be known a priori, however a low dimensional parametrization was used. This
parametrization allows the speed of sound distribution to be represented by a limited number of predefined areas
with unknown constant speed of sound values. The actual values of the predefined areas are a priori unknown,
but their boundaries are assumed to be known. A cost function was formulated that minimizes the difference
between predicted and observed measurements and penalizes the roughness of the reconstructed speed of sound
and optical absorption distributions. The nonlinear cost function was minimized by iteratively switching between
solving for the speed of sound distribution with constant optical absorption and solving for the optical absorption
distribution with constant speed of sound. In the first step, with constant optical absorption, a gradient descent
step was performed where the direction of the cost function gradient was calculated numerically. In the second
step, with constant speed of sound, a quadratic cost function is obtained which was solved using a conjugate
gradient method.

Chi Zhang and Wang8 also propose a method which does not assume any speed of sound distribution to be
known a priori. In this method, curved iso-TOF contours are used again in the formulation of the photoacoustic
measurement model. However, the calculation of these iso-TOF contours is completely different and does not
involve tracing rays through an intermediate speed of sound distribution. Instead, the correlation between
integrated photoacoustic signals from origin symmetric detector pairs is used. In the derivation of this method,
several approximations were used which mainly involve the assumption that the imaged object is small or
equivalently that the detectors are far away from the imaged object. Also, the speed of sound inhomogeneities
should not be too high. The approach comes down to calculating a constant speed for each projection. Projections
from origin symmetric detector pairs will share the same speed of sound.

2. APPROACH

Our approach is based on a single step photoacoustic measurement which allows for simultaneous and independent
reconstruction of the acoustic properties and optical absorption distribution. Both the speed of sound and
acoustic attenuation distributions can in principle be reconstructed. Our setup consists of a modified conventional
circular photoacoustic scanning system. By adding an extra, carefully positioned, passive element to our setup
that converts a part of the incident optical energy into acoustic energy in the form of a short acoustic pulse,
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we can obtain isolated measurements of the object’s acoustic properties. By doing this, we have effectively
created a measurement setup with can generate UTT and photoacoustic measurements simultaneously using
only optical input energy. More information about our photoacoustic measurement setup can be found in
previous publications.9–11

2.1 Photoacoustic wave propagation

The propagation of photoacoustic pressure waves in inhomogeneous speed of sound media, is governed by the
following partial differential equation:4

∇2p(r, t) − 1
c2(r)

∂2p(r, t)
∂t2

= − β

Cp

∂I(t)
∂t

A(r) (1)

Here, β is the volume thermal expansion coefficient, Cp is the specific heat, p(r, t) is the generated pressure
at location r and time t, c(r) is the acoustic speed distribution, I(t) is the laser pulse profile and A(r) is the
optical absorption distribution. A solution to this wave equation can be found for the constant speed case. The
illumination function of the laser I(t) will be seen as a delta pulse. In the case of an inhomogeneous speed of
sound distribution, an approximate solution can be found as:12

p(r, t) = η
∂

∂t

∫ ∫

t=tf (r′,r)

A(r′)
|r − r′|dr′ (2)

where η is a constant and tf (r′, r) is the TOF for a pressure wave to travel from point r to point r′. This
function is dependent on the speed of sound distribution c(r). Relation (2) shows that the generated pressure
can be seen as the projections over iso-TOF contours, which are determined by the TOF function tf (r′, r).
From this relation, we can see that given a speed of sound distribution, the relation between optical absorption
A(r) and the measured pressure p(r, t) is linear. This relation has been used by the authors of other SOS
compensated photoacoustic reconstruction3,4, 7, 8 methods. Their approaches differ in the way that the TOF
function is calculated. The first three authors use a ray integral over the speed of sound distribution:

tf (r′, r) =
∫

l(r′,r)

1
c(r′′)

dr′′ (3)

where the ray path is the straight line connecting r′ and r directly. An other approach was used by Chi Zhang
and Wang,8 which calculate the function based on the cross correlation between received signals of two opposite
detector pairs:

tf (r′, r) =
|r′ − r|

2|r| arg max
t

R(r, t) (4)

here R(r, t) is the cross correlation function between the integrated measured signals of the detector at position
r and the symmetrically opposite detector −r.

We propose a different approach to calculate the TOF values, which takes refraction of rays into account.
Our approach is based on solving the Eikonal equation:

|∇t(r)|2 =
1

c(r)2
(5)

The Eikonal equation can be used to model acoustic wave front propagation with inhomogeneous speed of sound
distributions. A computationable efficient method for calculation of the first arrival time solution to this equation
can be obtained via the fast marching method (FMM).13 The effectiveness of the FMM method to incorporate
refraction of rays has already been demonstrated in the application area of UTT by Li et al.14,15
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2.2 Reconstructing the optical absorption distribution

We outline here our method to reconstruct the optical absorption distribution A(r) from a given number of
pressure measurements p(r, t), obtained at different positions {r1, . . . , rn} at the outside of the object. The
input measurements are sampled in the time domain with a certain sampling frequency. We represent the
pressure measurements obtained at ri in the measurement vector zp,i. So that we can construct a complete
vector with measurements zp = [zT

p,1 . . . zT
p,n]T . The continuous optical absorption distribution A(r) will be

represented in our approach as a uniform sampled rectangular grid. We store this discrete representation of the
optical absorption distribution in the vector xA. Each element in the vector corresponds to a different node in
the grid in the optical absorption distribution.

If we know, for each detector position, the corresponding TOF values at each of the grid points in A(r),
the forward model can be written as a specific sum of elements in xA followed by a differentiation operation.
In matrix calculations, we write the discretized relation between all measurements and the unknown optical
absorption map as:

zp = HdtHTOFxA (6)

where Hdt is a large and sparse matrix which represents the time derivative and HTOF is a large and sparse matrix
which represents the integral. Reconstructing the optical absorption map can now be performed by calculating
a solution to this linear system of equations. Because the number of equations and unknowns in this problem
is very large, the solution to this problem has to be found with an iterative method, since a direct method
takes too much time to compute. There are several methods to solve this problem. Anastasio et al3 use an EM
algorithm, Jin and Wang4 use LSQR, Jin Zhang et al7 use a truncated conjugate gradient (TCG) method with a
roughness penalty and Chi Zhang and Wang8 use a modified filtered back projection (FBP) applied over the iso-
TOF curves. We have chosen to use the LSQR algorithm in the reconstruction. The implementation of the EM
algorithm needs more iterations.3 The LSQR and TCG algorithm (applied to the normal equations) gave exactly
the same results, however, the LSQR method is known to possess more favorable numerical properties.5 We did
not consider the modified FBP since this is an approximation which results in less accurate reconstructions.

By solving the system without regularization, i.e. without including any other information than just the
measurements, artifacts can occur in the reconstruction. This happens when the forward model can not be
uniquely solved. Situations where this can occur is when the measurements have noise and when the system is
not overdetermined or maybe even underdetermined. A simple regularization by constraining the smoothness
of the solution can really improve the reconstruction result. We have applied a regularization by adding the
gradient of the reconstructed image in the cost function:

x̂A = arg min
x

(||zp − HdtHTOFxA||2 + λ||HGxxA||2 + λ||HGyxA||2
)

(7)

Here HGx and HGy are sparse matrices that represent the gradient of the optical absorption distribution in the
x and y direction respectively. The parameter λ controls the amount of smoothness we want in our solution. It
selects the trade off between the mismatch of the observed and predicted measurements and the smoothness of
the image. In statistical terms the λ parameter can be interpreted as the ratio between the expected variance of
the measurement noise and the expected variance of the smoothness ’noise’.

It is important to consider the correct way to calculate the gradient matrices HGx and HGy. A second order
accurate central difference scheme might seem a good choice, however, this can result in saw tooth artifacts in
the reconstruction and therefor it should not be used. This is caused by the fact that the central difference does
not consider the central point and only the two neighboring points. A first order forward or backward difference
scheme results does not suffer from these artifacts, so that is the implementation we apply.

2.3 Calculating the TOF values

For each detector position, TOF values have to be calculated for each of the points in the grid. As explained
before, we will use the first arrival time solution to the Eikonal equation to obtain these TOF values using the
FMM13 method.
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The FMM method is an algorithm that solves the Eikonal equation in a single pass using upwind finite
differences. We have implemented the high accuracy FMM (HAFMM) which uses second order accurate ap-
proximations to the gradient. When a good initialization is used, the numerical errors that occur in the solution
are very small. The grid that we will use to represent the TOF values will enclose the same area as the optical
absorption map, but does not need to have a the same grid spacing (it can be coarser). The grid is the same as
the grid in which we know the speed of sound distribution. In this section we assume that this speed of sound
distribution is known and in the next section we will see how we obtain this distribution.

We initialize the FMM method by assuming that the speed of sound outside the defined speed of sound grid
has a constant and known value. The boundaries of the TOF grid which are in sight from the detector position
are then initialized by assuming we can calculate it directly simply from the distance to the detector and the
background speed of sound value. The in sight boundary grid points and their direct neighbor grid points are
then pre calculated. This gives a good initialization to start with the HAFMM (this method requires the two
neighboring grid points to be known for second order accurate propagation). After initialization the algorithm
is run until the TOF values at all grid points have been calculated.

This procedure is repeated for all different detector positions, resulting in n different TOF maps. Since the
grids of the optical absorption map and the TOF maps are not necessarily the same, we use bicubic interpolation
to obtain the TOF values at off grid points.

2.4 Obtaining the speed of sound map

In our algorithm, a speed of sound map has to be known before the optical absorption reconstruction can start.
We obtain this speed of sound map indirectly from measurements which are contained in the photoacoustic
measurement signals p(r, t). This is possible because we have placed a passive element in our photoacoustic
setup, which acts as a ultrasound point source, allowing us to take UTT measurements. Due to the geometrical
placement of the passive element opposite to the ultrasound detectors, the generated ultrasound signal does not
interfere with the simultaneously generated photoacoustic signals from our object. We have developed a method
to obtain accurate projections of acoustic attenuation and (inverse) speed of sound through the object in a
maximum likelihood framework16 from these ultrasound measurements. This method has been further improved
and its results will be published elsewhere.

Once the projections of speed of sound and acoustic attenuation are determined, we can proceed with esti-
mating the speed of sound distribution inside the object. The projections of speed of sound are given in the form
of a TOF value of path through the object connecting the passive element rp with the detector ri:

tf (ri, rp) =
∫

l(ri,rp,c)

1
c(r)

dr (8)

Here l(ri, rp, c) is the (possibly curved) ray path connecting the passive element with the detector element.
Because the path l(ri, rp, c) is dependent on the speed of sound distribution c(r) this is a nonlinear problem.
It can be iteratively solved in a linear way by using a previous estimate ĉ(i)(r) to calculate the next estimate
ĉ(i+1)(r). When the ray path is calculated using the previous estimate, the resulting relation is linear.

In order to obtain the path l(ri, rp, c) we will look again at the Eikonal equation:

|∇t(r)|2 =
1

c(r)2
(9)

where we can set as initial condition t(rp) = 0. If we use the HAFMM again, we can find the first arrival
time solution to this partial differential equation. Given that solution for t(r), we can trace the ray path from
anywhere in the domain to rp, via a gradient descent approach. We can see this by realizing that the path from
detector location ri to rp is described by the solution to the differential equation:

dl

dτ
= −∇t

(
l(τ)

)
(10)
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with initial condition l(0) = ri. We solve this equation via the fourth order Runge-Kutta (RK4) method. The
RK4 method is iterated, until we are at a predefined distance from the final point rp. We then step in a straight
path from there to the final point in order to avoid strange behavior close to the final point where the gradient
of t(r) might not be well defined.

For the discretization of this problem, we will use a uniform sampled rectangular grid to hold the speed of
sound distribution c(r). The values of the the grid points are represented in the vector xc. These points will
contain the inverse speed of sound distributions, thus actually the slowness distribution, which is necessary to
make the relation linear. We do not want to reconstruct the whole domain of the ray path, which includes the
detector as well as the passive element, but only the part which is occupied by the object. To make the projection
correct, we hold in the vector with slowness values xc the actual slowness value in the object subtracted with
the slowness of the background medium:

xc,k =
1

c(rk)
− 1

c0
(11)

The projection measurements (which are also TOF values) are denoted by zt. For a given ray path, we can
describe the linear relation via the matrix operation Ht. This matrix thus dependents on the ray path, so
implicitly it is dependent on the initial speed of sound distribution.

zt = Ht(xc)xc (12)

Here the notation Ht(xc) stands for the projection matrix created from a given slowness distribution xc. To
solve this problem iteratively, we start with an initial guess of the vector x

(i)
c and calculate a solution to the

regularized cost function:

x̂(i+1)
c = arg max

xc

(
||zt − Ht(x̂

(i)
c )xc||2 + λ||HGxxc||2 + λ||HGyxc||2

)
(13)

The same regularization is used here as is explained before in the section on reconstruction of the optical
absorption distribution. We solve this iteratively with the LSQR method.

2.5 Reconstructing the acoustic attenuation map

Once the speed of sound map is known, the reconstruction of the acoustic attenuation map is possible. The same
ray paths as from the last iteration of the speed of sound reconstruction can be used. The projections that are
measured, are projections of the frequency independent attenuation constant α0 from the frequency dependent
attenuation function:

α(ω) = α0|ω|y (14)

The projection measurements are related to acoustic attenuation distribution α0(r) via:

a(ri, rp) =
∫

l(ri,rp,c)

α0(r)dr (15)

Here we show the attenuation measurement over the path l(ri, rp, c) connecting detector ri with the passive
element rp. Our maximum likelihood algorithm16 can be used to extract these projections from photoacoustic
signals generated by the passive element. As reconstruction method, we use exactly the same LSQR algorithm
as in the final iteration of the speed of sound reconstruction.

3. RESULTS

We validate our approach on computer simulations, because the experimental setup is not yet fully operational.
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(c) Optical absorption phantom

Figure 1. Overview of the numerical phantoms used in this study
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Figure 2. Sinogram measurements obtained from the numerical phantoms

3.1 The simulation data

The geometrical parameters of our physical experimental setup were used in the generation of simulation data.
To generate the measurements, we use high resolution numerical phantoms on which we apply the forward model
(2) of the photoacoustic measurements. The numerical phantoms are displayed in Fig 1. For the generation of
speed of sound and acoustic attenuation projection measurements, we calculated the ray paths based on the
numerical phantom with the HAFMM method. Projections were then obtained by tracing the ray paths over
the speed of sound and acoustic attenuation distributions. These result in the sinograms of time of flight and
integrated attenuation. The generated sinograms are displayed in Fig.2.

3.2 Reconstructions of the acoustic parameters

To investigate the impact of the curved rays on the reconstructions of the acoustic parameters, we reconstructed
the data using a straight ray approach and the proposed bend ray approach. The results of applying both
approaches on the speed of sound and acoustic attenuation reconstructions are displayed in Fig. 3.

We can clearly see that using the straight ray approach we are unable to reconstruct both distributions
correctly. The acoustic attenuation reconstruction (Fig. 3b) is not anymore recognizable to the original phantom.
The speed of sound reconstruction 3a) gives the correct trends, but the shape is very much distorted.

Next we investigated the iterative approach with ray refraction correction. The reconstruction from a previous
iteration is now used to calculate the bend rays in the next iteration. The results look very successful. Both
the speed of sound (Fig. 3c) and the acoustic attenuation (Fig. 3d) distribution are correctly distributed. Only
minor artifacts remain visible in the acoustic attenuation reconstruction. The displayed results were obtained
using 15 iterations which were enough for the algorithm to converge to a stable solution.
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Figure 3. Speed of sound and acoustic attenuation map reconstruction results. The top row show the results of assuming
linear propagation of sound rays and the bottom row shows the results of using the iterative correction algorithm with
curved rays (15 iterations were used). The images on the left are the speed of sound reconstructions and the images on
the right the acoustic attenuation reconstructions.

3.3 Reconstructions of the optical absorption parameters

When the speed of sound distribution was reconstructed, we proceeded with the reconstruction of the optical
absorption distribution. Here we use the photoacoustic measurements displayed in Fig. 2c. Different algorithms
were tested.

Uniform speed of sound The first algorithm we implemented is based on a constant speed of sound distri-
bution. It does not take into account curved iso-TOF contours. We set the speed of sound equal to 1500
m/s, which is the speed of sound of the background medium. The reconstruction result is displayed in Fig.
4a and a profile plot is displayed in Fig. 4e. We can see that there are blurring artifacts resulting from the
incorrect speed of sound assumption. Especially the small structure above the center is distorted.

No speed of sound distribution We implemented the algorithm of Chi Zhang and Wang8 which does not
need an a priori known speed of sound distribution. For the reconstruction, we did not use their modified
FBP approach, but used our approach to solve the resulting linear system of equations, which should give
better results. The reconstructed image is displayed in Fig. 4b and a profile in Fig. 4f. The reconstructed
image still contains artifacts, in fact it is not much better than using the assumption of a uniform speed of
sound. The advantage, however, is that no speed of sound value needs to be given to the algorithm, which
might not always be known accurately. The authors claim that the algorithm should be able to deal with
small speed of sound inhomogenities of up to 10%. This is not true for our simulation study which also
has inhomogenities of up to 10%, however the inhomogenities are above and below the background speed
of sound. Their algorithm performs better when all inhomogenities are either all above or all below the
background speed of sound.

Assuming straight ray propagation To investigate the effect of using straight ray propagation, we used the
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Figure 4. Optical absorption distribution reconstruction results. Shown here are the four different implementations
with the corresponding RMSE with respect to the ground truth data. The top row shows the reconstructed images. The
bottom row shows profile plots along the horizontal center of the image. (a) and (e): Reconstruction assuming a uniform
speed of sound of 1500 m/s. (b) and (f): Reconstruction assuming no sound speed distribution, with the correlation
method of Chi Zhang and Wang.8 (c) and (g): Reconstruction based on straight ray approximations. (d) and (h):
Reconstructions using our proposed ray refraction correction method.

straight ray reconstruction result of the speed of sound map. The iso-TOF contours were subsequently
calculated by tracing straight rays through the obtained speed of sound map. The obtained linear system
was solved and the solution is displayed in Fig. 4c. A profile of the reconstruction is displayed in Fig. 4g.
The result is a lot improved compared to the uniform speed of sound reconstruction. The are hardly any
artifacts visible anymore and most of the RMSE error is probably due to the limited bandwidth of the
reconstructed image.

Assuming bend ray propagation Finally, our proposed method to reconstruct a speed of sound distribution
with refraction corrections and using the result with the HAFMM method to calculate iso-TOF curves is
tested. The results of the reconstruction are displayed in Fig. 4d and Fig. 4h. The results are artifact free
and good reconstructions can be obtained.

4. CONCLUSIONS AND FUTURE WORK

A new method to reconstruct speed of sound, acoustic attenuation and optical absorption distributions from only
photoacoustic measurements was proposed. The improvements over other existing methods include the use of ray
refraction correction in the speed of sound reconstruction procedure, the way to calculate the iso-TOF contours
with the HAFMM algorithm and the fact that no separate UTT measurement is necessary. The performance of
the method was verified against three other implementations. The first implementation was based on assuming a
known constant speed of sound. The second implementation did not assume any speed of sound distribution and
uses a correlation approach to correct for the inhomogenities. The third method does not assume ray refraction
and calculates the iso-TOF contours explicitly with ray tracing along straight lines. The main results can be
seen in Fig. 4.

Experiments are performed on numerically simulated data and the results indicate that the method performs
well. The results are better than the first two implemented methods and slightly better or comparable to the
third approach. However, the proposed method is more efficient than the third method in terms of computational
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complexity. This is caused by the fact that the TOF values are calculated in a way which only considers each
value in the speed of sound grid once per projection.

In the future we plan to do more numerical simulations, we will look at the influence of noise and the influence
of using different numerical phantoms. Also we are planning to get our experimental setup operational so that
we can verify our method to real physical data.
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