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Abstract. In the model driven world languages are usually specified by a 
(meta) model of their abstract syntax. For textual languages this is different 
from the traditional approach, where the language is specified by a (E)BNF 
grammar. Support for the designer of textual languages, e.g. a parser generator, 
is therefore normally based on grammars. This paper shows that similar support 
for language design based on metamodels is not only possible, but is even more 
powerful than the support based on grammars. In this paper we describe how an 
integrated development environment for a language can be generated from the 
language’s abstract syntax metamodel, thus providing the language designer 
with the possibility to quickly, and with little effort, create not only a new 
language but also the tooling necessary for using this language. 
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1   Introduction 

Currently, there is an increasing interest in the design of languages that are used 
somewhere in the software development process. First, domain specific modeling 
languages (DSMLs) are becoming more and more important. DSMLs are languages 
for modeling software, which are focused on describing a certain aspect or viewpoint 
of a software system. Second, there is a steady demand for occasional or little 
languages, i.e. languages that are used for a relatively small amount of time by a small 
group of people. For instance, in large, long-running projects often small (scripting) 
languages are being build that enable automation of specific, reoccurring tasks in that 
project. These languages are known under various names, amongst which domain 
specific languages [1]. Special to both types of DSLs is that they have a limited 
number of users, compared to general software languages like Java, C#, and UML. 

Often these new languages are specified by a metamodel, which accounts for the 
popularity of metamodeling toolkits like the Eclipse Modeling Framework (EMF) [2] 
and Microsoft’s DSL tools [3]. It is our view that metamodeling toolkits should 
support the creation of a language in full. Not only should they aid the language 
designer in his/her task of creating the metamodel, but they should also support the 
language designer in creating the tooling for the people that are going to use the 
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language. Note that we use the term language designer for the person who creates the 
new language, and language user for the person who uses the newly created language 
and its supporting tools. 

The current demands on tooling are high. For instance, if a dedicated text editor is 
provided, it should have syntax-highlighting and code-completion. Specially for mod-
eling languages, tooling must include code generation software and should preferably 
include a debugger that is able to address the language user in terms of the domain 
specific model instead of the code language.  

Languages targeting a limited number of users, do not warrant the effort in 
building such sofisticated tools, simply because the costs are too high. The only way 
that a language designer is able to create sofisticated tooling for such languages, is 
when most of it is generated by the metamodeling toolkit. In other words, the 
metamodeling toolkit needs to be able to generate an integrated development 
environment (IDE) for the language specified by the metamodel. 

This paper describes the first steps towards the realisation of such a metamodeling 
toolkit, more specifically it describes the generation of a compiler front-end for a text- 
based concrete syntax of a language, based on the metamodel specification of that 
language. As this work is conducted within the Grasland project, our metamodeling 
toolkit is, for lack of a better one, named the Grasland toolkit. The Grasland toolkit is 
implemented in the form of a number of Eclipse plug-ins that build upon the 
functionality provided by the Octopus tool [4]. 

Section 2 of this paper outlines the process of language design as it is supported by 
the Grasland toolkit, and it establishes the terminology used. Sections 3 and 4 
describe the two transformations that generate a grammar from a metamodel. Section 
5 describes the generated static semantic analyzer. Finally, Section 6 describes future 
and related work. 

2   Preliminaries 

This section outlines the process of language design as it is supported by the Grasland 
toolkit, and it establishes the terminology used in this paper. Furthermore, the argu-
ments for our approach are stated in the last subsection. 

2.1   Terminology 

In this paper we will use the following terms, which are formally defined to be special 
types of graphs. 

•  Abstract Syntax Model (ASM): a metamodel that specifies the abstract syntax of 

the language, which will be called L. 
•  Abstract Syntax Graph (ASG): an instance of the abstract syntax model. 
•  Concrete Syntax Model (CSM) or Parse Model (PM): a metamodel that specifies a 

concrete syntax of the language. (When talking about text-based syntaxes we will 
use parse model, when talking about graphical syntaxes we will use concrete syn-
tax model.) 
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•  BNFset: the set of (E)BNF rules that specifies a text-based concrete syntax of the 
language. Note that there is a correspondence between a BNFset and a parse model. 

•  Parse Graph (PG) or Parse Tree (PT): an instance of the parse model. (When 
talking about text-based syntaxes we will use parse tree, when talking about 
graphical syntaxes we will use parse graph.) 

•  Navigations: the set of outgoing associations and attributes of a metaclass. 

Furthermore, we assume that a language can have multiple concrete syntaxes, and 
a concrete syntax can be either textual, graphical, or a hybrid one that combines 
textual parts with graphical ones, e.g. a table representation. 

2.2   The Process of Language Design 

Central to the process of language design as it is supported by the Grasland toolkit, is 
the ASM of the language. To create the tooling for the language user, the language 
designer needs to perform the tasks in Table 1, which are dependent on the type of 
concrete syntax used. Next to this, the language designer is likely to create an 
exchange format for abstract syntax graphs, for instance based on XML, as well as 
transformations from the ASM to various other metamodels, one of which will 
probably implement code generation. 

Table 1. Tasks of a language designer for the two types of concrete syntax 

Step Text-based concrete syntax Graphical concrete syntax 

1 Create the PM, which will include
classes that represent references to
other elements in the parse tree. 

Create the CSM, which will include 
classes that represent graphical items 
like rectangles and lines. 

2 Create the EBNF grammar, which will
include keywords. Take an existing
parser generator, (re)write the gram-
mar for this generator, and generate a
parser that will produce the parse tree
from a text file. 

No action needed. (Usually the CSM 
suffices to create a syntax-directed 
graphical editor, thus there is no need 
to create a parser.) 

3 Create a model transformation from
parse tree to abstract syntax graph
(this is often called static analysis, it
includes binding). 

Create a model transformation from 
parse graph to abstract syntax graph. 

4 Create a text editor dedicated to this
concrete syntax, with syntax highlight-
ing etc.  

Create a graphical editor dedicated to 
this concrete syntax. 

5 Create a tool chain such that an
abstract syntax graph is created from a
text file. 

Create a tool chain such that an 
abstract syntax graph is created from a 
diagram. 
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In this paper we will show how all of steps 1, 2, 3, and 5 for text-based syntaxes 
can be automated, i.e. none of the products are created by hand, they are all generated 
by the Grasland toolkit. Automation of step 4 is also possible, but not yet 
implemented in the Grasland toolkit. 

2.3   Outline of Our Approach 

Traditionally, when a new textual language is created, the main activity is to produce 
the BNFset. Next, a parser is created using some or other parser generator, e.g. [5, 6, 7]. 
The other parts of the language’s compiler are implemented by hand, often by creating 
treewalkers that traverse the parse tree generated by the parser, as shown in  Figure 1 
(the shaded parts are created by the language designer). There is, in most cases, no ex-
plicit definition of the PM, nor of the ASM, although one can always extract the set of 
pure BNF rules, which might serve as a PM description, from the parser generator 
input.  

 

Fig. 1. The normal elements in a compiler. 

In the Grasland approach, the only manual activity is to create the ASM, i.e. a met-
amodel and its invariants. From the ASM we generate a PM, which upholds certain 
requirements that will be explained in Section 3. This transformation is called 
asm2pm. From the PM we generate a BNFset, which - for practical purposes - can be 
generated in a format that is processable by the JavaCC parser generator [6]. This 
transformation is called pm2bnf. Next JavaCC generates a parser, which is able to 
produce a parse tree that is an instance of the PM in the sense that the nodes in the 
parse tree are instances of the Java classes that correspond to the classes in the PM. 
To implement the static semantic analysis, a tool is generated that transforms a parse 
tree into an ASG. This tool implements a model transformation from PM to ASM. 
Figure 2 shows the various elements in the Grasland approach; again the manually 
created elements are shaded. 

 

Fig. 2. The alternative process using metamodels 
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2.4   Rationale of the Approach 

Specially for text-based languages, our approach is very different from the traditional 
process. Instead of focusing on BNF rules, the language designer will focus on the 
ASM. The PM and BNFset are automatically generated from the ASM. A number of 
arguments support this new design process. 

The first argument is that at the start of the language creation process it need not be 
clear whether the new language is text based or graphical, and often the new language 
should support multiple syntaxes. So a specification of the concrete syntax cannot be 
a good starting point. 

Second, although compiler construction is a formally defined area of expertise, it 
has one obvious omission, which is that the true ASM is not defined at all. What is 
usually called an abstract syntax tree in compiler construction, we call a parse tree. 
The abstract syntax tree is embellished with binding information and often reshuffled 
to produce what we call an abstract syntax graph. Note that in compiler construction 
the term abstract syntax tree is used for both formats. More importantly, it is the 
abstract syntax tree that is used for further handling, like code generation, which 
means that these phases lack a formal description. On this point metamodeling 
certainly has something to add to the area of compiler construction. 

Furthermore, the power of metamodelling is larger than the power of BNF. One 
can express more in a metamodel. Therefore, starting with a BNF grammar and 
creating a metamodel from the grammar, as for instance described in [8], will result in 
a restricted metamodel. Most certainly, this metamodel will not be the one that the 
language designer wants to use as ASM. 

A fourth argument is that although the syntax of the majority of programming lan-
guages can be classified as context-free, the languages themselves are often context- 
sensitive. That is, the static analysis phase of the compiler adds context sensitive 
information. For instance, variable binding may be considered context-sensitive 
information because a variable 'a' is not always bound to the same variable 
declaration, the binding depends on the context in which ‘a’ is found. So, to support 
the language designer in creating a complete toolset for a text-based concrete syntax, 
we need not only consider parsing but also static analysis. Currently, there are many 
parser generators, but as far as we know there are no generators for static semantic 
analysers. 

From one argument comes another. Now that we have established that we have a 
need for a static semantic analyser, it is a good choice to generate the parse model 
from the abstract syntax model. In this way we have full control over the differences 
between the two models and therefore we will be able to automatically generate the 
static semantic analyser that bridges the two. 

Another consideration for our choice of design process, is that the field of parsing 
and compiler construction is very well established. The parser generators that result 
from this research are tried and tested and can be used without further ado. 

A final argument is a reduced ‘time to market’. In the Grasland approach the lan-
guage designer is able to 'play' with the abstract syntax model and for each change in 
this model he will be able to generate a working IDE with a single push of a button. 
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This means that testing the changes takes as least effort as possible. Although, as the 
title of this paper tells, we are still working towards a toolkit that is able to generate a 
complete IDE, our experiments with the generation of parts of this IDE are promising.  

The next sections describe the how the steps in Table 1 are implemented in the 
Grasland toolkit. 

3   The ASM to PM Transformation 

This section describes the algorithm for the asm2pm transformation. This algorithm 
implements the creation of the parse model (or CSM), which includes classes that 
represent references to other elements in the parse tree. Note that this algorithm 
actually is defined on the meta meta level, i.e. it is not a transformation of model to 
model, but of metamodel to metamodel.  

The algorithm, which is outlined in List 1, makes use of the composite - reference 
distinction in associations in the metamodel. We use a formal definition of metamodel 
that ensures that in any instance of the metamodel the composites form a subgraph 
that is really a tree. The composite relationships are subsequently used in the pm2bnf 
transformation to construct the BNF grammar. In the case that the subgraph formed 
by the composite associations is not a tree, but a set of unrelated trees (a forest), the 
algorithm will produce a set of unrelated sets of grammar rules. It is up to the 
language designer to decide whether this is (un)desired. Figure 4 shows an example of 
an ASM, Figure 3 shows the PM that is automatically generated from this ASM. The 
differences are marked by the colour of the classes and the font of the role names. 

Note that for each of the classes for which a reference class is created (step 3), the 
language designer must indicate which attribute of String type is used as identifier. This 
knowledge is used in the static semantic analyser to implement the binding. Implemen-
tations of the Java counterparts of the classes in the ASM are automatically generated 
using the functionality of the Octopus tool, and the same is done for the PM.  

3.1   Possibilities to Tune the asm2pm Transformation 

The algorithm in List 1 is fully automatic and produces a parse model without any 
extra user effort. However, if the algorithm for the asm2pm transformation is 
executed as is, then the differences between the ASM and PM are minimal. Often the 
language designer wants a larger difference between the two, therefore there are 
options to tune the asm2pm transformation. Note that these differences are taken into 
account in the generation of the static semantic analyser as well. 

The first option is to indicate that certain metaclasses in the ASM should not 
appear at all in the PM. Examples are the classes PrimitiveType and NullType in 
Figure 3. These types are only present in the ASM to provide for a number of basic 
elements in the language, but the language user is not meant to create new instances 
of these metaclasses. The language designer can indicate that these classes are hidden 
to the concrete syntax. Currently this is done by means of a properties file. We are 
investigating the possibility of indicating hidden elements using Eclipse project 
properties. 
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Fig. 3. Example ASM 

1. Every class in the ASM becomes a class in the PM. The language designer may indi-
cate prefix and postfix strings that are used to name the classes in the PM, in order to 
distinguish them from the classes in the ASM. E.g. the ASM class named Variable-
Declaration becomes the PM class named prefixVariableDeclarationpostfix.

2. Every composite association is retained.
3. For every non-composite association from class A to class B a new class is introduced 

that represents a reference to an instance of class B. A new composite association is 
added from class A to this new reference class. The role name of the old association is 
copied to the new one, as well as the multiplicities.

4. Every attribute with non-primitive type, i.e. whose type is another class in the meta-
model, is transformed into a composite association from the owner of the attribute to 
the class that is the attribute type. The name of the attribute becomes the role name. 
Any multiplicities are copied.

5. Enumerations and datatypes are retained.
6. Additionally, three attributes are added to every PM class. They hold the line number, 

column number, and filename of the parsed instance of the class.
 

List. 1. The algorithm for asm2pm 

The second option is to indicate that certain attributes and outgoing associations of 
a metaclass need not be present in the input text file, instead their value will be deter-
mined based on the values of other elements that are present. In fact these elements  
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Fig. 4. Example PM 

are what is known in OCL [9, 10] as derived elements. The language designer may 
indicate that a certain element need not be taken into account in the parse model, if an 
OCL derivation rule for this element in the ASM is provided. An example of a 
derived element in Figure 3 is the type of an Expression. 

4   The PM to BNF Grammar Algorithm 

This section describes the algorithm for the pm2bnf transformation, which implements 
the creation of the BNF rules that are used by a parser generator to produce a parser. 
Note that like the asm2pm algorithm, this algorithm too resides on the meta meta 
level, i.e. it is not a transformation of model to model, but of metamodel to 
metamodel. Alanen and Porres [11] present algorithms for the relation between PM 
and BNFset, which we have used and extended.  

The generation of the BNFset from the PM is implemented in a single algorithm. 
Yet, the language designer may choose between two different output formats; either 
BNF, or a grammar that can directly be used as input to the JavaCC parser 
generator [6]. The BNF grammar that is produced is actually an extension of EBNF 
that uses labelling of non-terminals in the right hand side of a grammar rule. (Not to 
be confused with Labelled BNF [12], which uses labels on the non-terminals at the 
left hand side of each rule.) The labels correspond with the names of the attributes or 
association roles in the PM. An example in which the labels are highlighted, can be 
found in List 3. 
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1. Every class in the PM becomes a non-terminal in the grammar. The rules for these non-
terminals are formed according to the following rules.

2. If a class has subclasses then the BNF rule becomes a choice between the rules for the 
subclasses. All attributes and navigations of the superclass are handled in the subclass 
rules.

3. For every composite association from A to B, B will appear in the right hand side of the 
grammar rule for A. The multiplicity is the same as in the association (for 0..1, 1, 0..*, 
1..*; multiplicities of the form 3..7 are considered to be specified using invariants). 
Using an extension of BNF, we associate the rolename with the non-terminal in the 
right hand side of the rule.

4. Every attribute, all of which have a primitive type, is transformed into an occurrence of 
a predefined non-terminal for that primitive type in the right hand side of the rule for 
its owner. (We support the primitive types String, Integer, Real.)

5. Every attribute that has Boolean type, is transformed into an optional keyword. If 
present, the attribute has value true, if not the attribute’s value is false.

 

List. 2. The algorithm for pm2bnf 

The input for the JavaCC parser generator is such that the generated parser 
produces instances of the Java implementations of the classes in the PM. The 
algorithm that implements pm2bnf is given in List 2. An example can be found in  
List 3, which shows the BNF rules generated from the parse model in Figure 4. Note 
that tokens in the right hand side of the grammar rules are surrounded by angled 
brackets (‘<‘ and ‘>’). 

4.1   Possibilities to Tune the pm2bnf Transformation 

The algorithm in List 2 is fully automatic and produces a grammar without any extra 
user effort. However, there are a number of differences between the metamodel 
formalism used for the parse model and the BNF formalism and the language designer 
is able to influence how these differences appear in the generated grammar, thus 
tuning the pm2bnf generation. 

The most apparent difference is the lack of ordering in navigations from a 
metaclass, versus the ordering of the elements in the right hand side of a BNF rule for 
a non-terminal. To indicate a certain ordering in the BNF rules the language designer 
can associate an index to all navigations This is done in a so-called properties file. An 
example can be found in List 4, where the order of the navigations from the metaclass 
ObjectType in Figure 3 is given. The first element to be included in the right hand side 
of the corresponding BNF rule is the attribute called name, the second is the optional 
reference to a super type, etc. Without directions from the language designer the 
Grasland toolkit will randomly assign an ordering. 

Another difference between a metamodel and a grammar is that most grammar 
rules contain one or more keywords, whereas the metamodel does not. These 
keywords are relevant in the parser because they enable the parser to differentiate 
between language elements (rules). Therefore the Grasland toolkit provides the option 
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************ The grammar rules **************

1. BlockStat ::= <CURLY_OPEN> ( subStats:Statement )* <CURLY_CLOSE> 
2. CreateExp::= <CREATEEXP_BEGIN> type:ObjectTypeREF <CREATEEXP_END> 
3. ExpStat ::= expression:Expression
4. Expression ::= (LiteralExp

| OperCallExp
| VarCallExp
| CreateExp) 

5. ObjectTypeREF ::= ID:<IDENTIFIER> 
6. ObjectType ::= <OBJECTTYPE_BEGIN> name:<IDENTIFIER> [ 

<OBJECTTYPE_SUPERTYPE_BEGIN> superType:ObjectTypeREF] [ 
attributes:VarDecl( <SEMICOLON> attributes:VarDecl )* <SEMICOLON> ] ( 
operations:OperDecl )* <OBJECTTYPE_END> 

7. OperCallExp ::= referredOper:OperDeclREF <BRACKET_OPEN> [ actual-
Pars:Expression( <COMMA> actualPars:Expression )* ] <BRACKET_CLOSE> [ 
<OPERCALLEXP_SOURCE_BEGIN> source:Expression ] 

8. OperDeclREF ::= ID:<IDENTIFIER> 
9. OperDecl ::= (OperImpl) 
10. OperImpl ::= name:<IDENTIFIER> <BRACKET_OPEN> [ params:VarDecl( 

<COMMA> params:VarDecl )* ] <BRACKET_CLOSE> <COLON> return-
Type:TypeREF ( locals:VarDecl )* body:BlockStat 

11. Program ::= <PROGRAM_BEGIN> name:<IDENTIFIER> startExp:ExpStat ( 
types:Type )* <PROGRAM_END> 

12. Statement ::= (BlockStat
| ExpStat) <SEMICOLON> 

13. TypeREF ::= ID:<IDENTIFIER> 
14. Type ::= (ObjectType) 
15. VarCallExp ::= referredVar:VarDeclREF [ <VARCALLEXP_SOURCE_BEGIN> 

source:Expression]
16. VarDeclREF ::= ID:<IDENTIFIER> 
17. VarDecl ::= name:<IDENTIFIER> <COLON> type:TypeREF [ 

<VARDECL_INITEXP_BEGIN> initExp:Expression]
************ The token definitions **************

CREATEEXP_BEGIN ::= "new"
CREATEEXP_END ::= "()"
NULLLITEXP_BEGIN ::= "null"
OBJECTTYPE_BEGIN ::= "class"
OBJECTTYPE_END ::= "end_class"
OBJECTTYPE_SUPERTYPE_BEGIN ::= "extends"
OPERCALLEXP_SOURCE_BEGIN ::= "on"
OPERDECL_LOCALS_BEGIN ::= "locals"
PROGRAM_BEGIN ::= "program"
PROGRAM_END ::= "end_program"
VARCALLEXP_SOURCE_BEGIN ::= "on"
VARDECL_INITEXP_BEGIN ::= "="
IDENTIFIER ::= ["a"-"z", "A"-"Z", "_"] ( ["a"-"z", "A"-"Z", "0"-"9", "_" ] )*

 

List. 3. The resulting BNF rules 
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BLOCKSTAT_BEGIN=CURLY_OPEN
BLOCKSTAT_END=CURLY_CLOSE
CREATEEXP_BEGIN=new
CREATEEXP_END=()
NULLLITEXP_BEGIN=null
OBJECTTYPE_ATTRIBUTES_END=SEMICOLON
OBJECTTYPE_ATTRIBUTES_SEPARATOR=SEMICOLON
OBJECTTYPE_BEGIN=class
OBJECTTYPE_END=end_class
OBJECTTYPE_SUPERTYPE_BEGIN=extends
OBJECTTYPE_ORDER_1=name
OBJECTTYPE_ORDER_2=superType
OBJECTTYPE_ORDER_3=attributes
OBJECTTYPE_ORDER_4=operations
OPERCALLEXP_ACTUALPARS_BEGIN=BRACKET_OPEN <MANDATORY>
OPERCALLEXP_ACTUALPARS_END=BRACKET_CLOSE <MANDATORY>
OPERCALLEXP_ACTUALPARS_SEPARATOR=COMMA

 

List. 4. Part of the properties file for pm2bnf 

for the language designer to indicate which keywords should be used in the grammar 
rule corresponding to a metaclass instance. Without keyword directions the Grasland 
toolkit will generate keywords based on the class and association role names. 

For each metaclass there are two options to use a keyword: (1) at the start of the 
right hand side, (2) at the end of the right hand side. An example is the keyword 
‘new’, indicated by CREATEEXP_BEGIN, that should appear at the start of a 
CreateExp instance. For each navigation there are three possibilities: (1) a keyword 
that should appear before the navigated element, (2) a keyword that should appear 
after the element, and (3) a keyword that separates the elements in a list. The last is 
sensible only when the multiplicity of the association is larger than one. In case that 
the element is optional (i.e. lower bound of multiplicity is zero), the language 
designer is able to indicate whether the keyword should still appear even if the 
element is not present. This is useful, for instance to indicate that the opening and 
closing brackets of a parameter list should be present even if there are no parameters. 
An example can be found in List 4, where the brackets are mandatory for the 
navigation OPERCALLEXP_ACTUALPARS. Note that a keyword in this approach can be 
any string, including brackets etc. 

A third difference between a metamodel and a grammar is that the parsing 
algorithm used poses a number of requirements on the rules. For instance, the JavaCC 
parser generator creates LL(n) parsers, and its input should be an LL(n) grammar, 
where n indicates the number of lookahead tokens used. If the language designer 
decides to create a grammar with too few keywords, then the parser generator will 
produce errors and/or warnings. As the Grasland toolkit is a prototype we regard 
resolving these to be the responsibility of the language designer for now. By adding 
more keywords or by adding (by hand) lookaheads to the generated grammar the 
language designer will always be able to generate a grammar that is correct. Even so, 
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the Grasland toolkit provides a minimal support in the form of the generation of 
lookaheads in the rule for a class with subclasses, where choice conflicts are likely 
because the attributes and navigations of the superclass appear in the rules for each 
subclass. 

5   The Static Semantic Analyser 

The two most important aspects of static semantic analysis are binding and type 
checking. This section describes how the Grasland toolkit implements these issues. 

5.1   Binding 

Binding is the general term for the binding of names to their definitions. These names 
may refer to types, for instance in a variable declaration, or to variables or operation/ 
functions, for instance in assignments or operation calls. Binding is often context sen-
sitive in the sense that not all occurrences of the same name are bound to the same 
definition, depending on the context of the name it may be bound to a different 
definition, sometimes even to a definition of a different kind of element. For instance, 
in one context “message” may be bound to a variable, in another to a type or 
operation. Such a context is usually called a namespace. 

In a Grasland generated PM all elements that need to be bound are instances of ref-
erence metaclasses (see List 1, rule 3). For each reference metaclass we know the 
metaclass from which it is derived. We call this metaclass the target metaclass.  

Simple Binding. The most primitive way of binding these elements is by searching 
the parse tree for all instances of the target metaclass and comparing their names with 
the name of the element to be bound. This is the default implementation of binding. 

However, it is possible for the language designer to indicate that certain 
metaclasses in the ASM act as namespaces. For instance in our example, the classes 
Type, OperDecl, and Program all act as namespaces. If there is a class labelled as 
namespace, then the asm2pm algorithm will produce a metamodel in which every 
class has the operation findNamespace, which will return the element’s surrounding 
namespace. An INamespace interface is added to the metaclass(es) that act as 
namespaces for this purpose. The implementation of each of the findNamespace 
operations is specified by an OCL body expression.  

The binding algorithm is in this case implemented as follows. First, find the sur-
rounding namespace of the instance of the reference metaclass, then search this name-
space for occurrences of the target metaclass and compare their names with the name 
of the reference element. If a match is found then the reference is bound to the found 
instance of the target metaclass. If no match is found, then the surrounding namespace 
of the searched namespace is searched in the same manner, and so on and so forth, 
until the outmost namespace has been searched. If no match was found, an error 
message is given. The search of a namespace goes down the parse tree to the leaves of 
the tree, unless one of the nodes is itself a namespace, then the search stops at this 
node. 
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Complex Binding. A more complex way of binding is based not only on the name of 
the reference element but also on the occurrence of surrounding elements. For 
instance, the binding of an operation call is usually determined not only by the name 
of the operation but also by the number and types of the parameters. In our example, 
the link called referredOper between an OperCallExp instance and an instance of the 
reference class OperDeclREF is an example of such a complex binding.  

The language designer may indicate the use of a complex binding by stating an in-
variant in the ASM that must hold after the reference element is bound. For instance, 
for the example in Figure 3, the following entry in the properties file indicates the use 
of complex binding. 

 OperCallExp.referredOper=paramsCheck 

In this case, the invariant called paramsCheck must be present for the class Oper-
CallExp. It is specified by the following OCL expression. Note that the use of names 
for invariants is a standard OCL feature. 

 context OperCallExp 

 inv paramsCheck: referredOper.params.type = actualPars.type 

Having this in place the Grasland toolkit implements complex binding more or less in 
the same manner as simple binding. First a list of possible matches is found based on 
the name only, then for each element in this list the invariant is checked. If no correct 
element is found then the search continues in the next namespace, etc. 

An advantage of this approach is that normally these invariants need to be part of 
the ASM anyhow, so there is no extra effort needed from the language designer. 
Another advantage is that all the information that the language designer must provide 
is based on the ASM. The ASM is truly the focus of the language design process, 
even though a text-based language is being specified. This leaves room for the 
creation of multiple views each based on a different concrete syntax, with the 
possibility of combining textual and graphical views all working together on the same 
ASG. 

Please note that this algorithm implements static semantic checking. This means 
that dynamic binding and dynamic scoping are by definition not covered. 

5.2   Static Checking 

An important observation with regard to static checking is that the rules that are 
checked during this phase are easily specified by OCL invariants on the ASM. These 
are the so called well-formedness rules. For instance, in our (simple) example the 
following rule provides enough information to perform type checking. 

 context VariableDecl 

 inv: self.type = initExp.type 

Static checking is therefore implemented in the generated static semantic checker 
as the checking of invariants on the abstract syntax graph. Whenever an invariant is 
broken, an error message is given to the language user. 
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Even more complex forms of type checking involving type conformance can be 
handled in this manner. For instance, given the existence of an operation in the Type 
class that implements the type conformance rules, the following invariant allows for 
type checking with type conformance. The type conformance operation itself can also 
be specified using OCL. 

 context VariableDecl 

 inv: self.type.conformsTo(initExp.type) 

 

 context Type::conformsTo( actualType: Type) : Boolean 

 body: if ( actualType = self) 

    then true 

    else if not actualType.superType.oclIsUndefined() 

         then self.conformsTo( actualType.superType) 

         else false 

         endif 

    endif 

The advantage of this approach is that the invariants can be used for all concrete 
syntaxes that may be defined for the ASM. Thus static checking becomes a common 
functionality instead of a functionality that needs to be implemented for each of the 
different concrete syntaxes. 

6   Conclusion and Related Work 

In this paper we have shown that it is possible to generate (parts of) an IDE, more 
specifically the front-end of a text-based compiler, from a metamodel. Given the 
tuning possibilities offered in both the asm2pm and pm2bnf transformations, the 
language designer can influence the resulting grammar considerably, with minimal 
effort from his part. Not yet mentioned is the fact that the Grasland toolkit is able to 
produce a deparser for the textual syntax, as well as a parser and deparser for an XML 
based interchange format for ASGs, and that all the generated tools described in this 
paper are combined to create an integrated language user environment. Because we do 
not foresee large difficulties in generating a language-specific editor, we conclude 
that it is indeed feasible to generate a text-based IDE from a metamodel, as was our 
initial ambition. 

The idea of generating an IDE from a language specification is not new. In fact a 
number of metacase tools exist that perform this task, e.g. [13, 14]. What is new in our 
approach is that the focus of the language designer is on the metamodel, not on the BNF 
grammar. Keeping the focus on the ASM, instead of the grammar, is much more in line 
with the model driven process in which instances of the ASM are being transformed.  

The process described by Wimmer and Kramler [8] starts with a grammar, from 
which a (raw) metamodel is built. Because this metamodel is (as they call it) “not user 
friendly”, it is transformed into an ASM. The Eclipse plug-in set xText [15] also starts 
with a grammar and produces a metamodel. Hearnden et. al. describe the use of Anti- 
Yacc [16], which also forces the language designer to create a grammar. This 
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grammar and a metamodel are fed to Anti-Yacc, which generates the bridging 
between the PM and the ASM. However, no evidence is given of how binding is 
handled. Finally, HUTN [17] uses an abstract base syntax that is applied to all 
models, which is customized to exploit specific properties of particular models. 
Again, our approach offers more flexibility to the language designer. 

The graph grammar community has also been working on generating IDEs, see for 
instance [18, 19, 20]. However, their focus is on visual concrete syntaxes. Likewise, 
Fondement and Baar [21] describe a way to specify a visual syntax. Here too, a com-
pletely different metamodel is defined for the concrete syntax. Their approach is com-
plementary to the one described here, as we focus on textual syntax.  

The only other reference that focuses on the ASM instead of the grammar, is 
Jouault et al. [22]. They define a template language in which the language designer 
may specify the textual syntax. This syntax specification is very similar to BNF rules, 
thus this approach does not relieve the language designer from writing a grammar(-
like) specification. Furthermore, they do not deal with complex references, nor do 
they handle type checking.  

Concluding we can state that the Grasland toolkit produces a good, workable IDE 
from a metamodel. As is always the case with the generation of software, the creation 
of an IDE by hand could produce a better and more efficient IDE. However, it is 
important to compare the time and effort needed to create a reasonable well IDE using 
the Grasland toolkit with the time and effort needed to create a perfect IDE manually. 
We are confident that the comparison will favour the Grasland approach. 
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