
Safety and Liveness
in Concurrent Pointer Programs

Dino Distefano1, Joost-Pieter Katoen2,3, and Arend Rensink3

1 Dept. of Computer Science, Queen Mary, University of London, United Kingdom
2 Software Modeling and Verification Group, RWTH Aachen, Germany
3 Formal Methods and Tools, University of Twente, The Netherlands

Abstract. The incorrect use of pointers is one of the most common
source of software errors. Concurrency has a similar characteristic. Prov-
ing the correctness of concurrent pointer manipulating programs, let
alone algorithmically, is a highly non-trivial task. This paper proposes
an automated verification technique for concurrent programs that ma-
nipulate linked lists. Key issues of our approach are: automata (with
fairness constraints), heap abstractions that are tailored to the program
and property to be checked, first-order temporal logic, and a tableau-
based model-checking algorithm.

1 Introduction

Pointers are an indispensable part of virtually all imperative programming lan-
guages, be it implicitly (like in Java or “pure” object-oriented languages) or
explicitly (like in the C family of languages). However, programming with point-
ers is known to be error-prone, with potential pitfalls such as dereferencing null
pointers and the creation of memory leaks. This is aggravated by aliasing, which
may easily give rise to unwanted side-effects because apparently unaffected vari-
ables may be modified by changing a shared memory cell — the so-called com-
plexity of pointer swing. The analysis of pointer programs has been a topic of
continuous research interest since the early seventies [10,15]. The purpose of this
research is twofold: to assess the correctness of pointer programs, or to identify
the potential values of pointers at compile time so as to allow more efficient
memory management strategies and the use of code optimization.

The problems of pointer programming become even more pressing in a con-
current setting where memory is shared among threads. Since the mainstream
object-oriented languages all offer shared-memory concurrency, this setting is in
fact quite realistic. Concurrent systems are difficult enough to analyze in the
absence of pointers; the study of this area has given rise to techniques such
as process algebra [30,6], temporal logic [35] and comparative concurrency the-
ory [23]. Techniques for analyzing programs that feature both concurrency and
pointers are scarce indeed.

Properties of pointer programs. Alias analysis, i.e., checking whether pairs of
pointers can be aliases, has received much attention (see, e.g., [13,26]) initially.

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 280–312, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Safety and Liveness in Concurrent Pointer Programs 281

[16] introduced and provided algorithms to check the class of so-called position-
dependent alias properties, such as “the n-th cell of v’s list is aliased to the m-th
cell of list w”. Recently, extensions of predicate calculus to reason about pointer
programs have become en vogue: e.g., BI [24], separation logic [37], pointer as-
sertion logic (PAL) [25], alias logic [8,9], local shape logic [36] and extensions of
spatial logic [11]. These approaches are almost all focused on verifying pre- and
postconditions in a Hoare-style manner.

Since our interest is in concurrent (object-oriented) programs and in ex-
pressing properties over dynamically evolving pointer (i.e., object reference)
structures, we use first-order linear-time temporal logic (LTL) as a basis and
extend it with pointer assertions on single-reference structures, such as aliasing,
position-dependent aliasing, as well as predicates to reason about the birth and
death of cells. This results in an extension of propositional logic, which we call
NTL (Navigation Temporal Logic), similar in nature to that proposed in Evo-
lution Temporal Logic (ETL) [40] — see below for a more detailed comparison.
The important distinguishing feature of these logics with respect to “plain old”
propositional logic is that quantification occurs outside the temporal modalities;
in other words, we can reason about the evolution of entities over time. This
type of logic is known as quantified modal logic; see, e.g., [21,3]. This is in con-
trast to PAL, which contains similar pointer assertions as NTL (and goes beyond
lists), but has neither primitives for the birth and death of cells nor temporal
operators.

In the semantics of NTL (in contrast to ETL, which uses 3-valued logical
structures) we follow the traditional automata-based approach: models of NTL
are infinite runs that are accepted by Büchi automata where states are equipped
with a representation of the heap. (In terms of quantified modal logic, our models
have variable domains and are non-rigidly designating.) Evolving heaps have
been lately used to model mobile computations. In that view NTL combines
both spatial and temporal features as the ambient logic introduced in [11]. In
fact in [17] one of the authors has shown how to use the NTL model to analyze
mobile ambients.

Heap abstraction. Probably the most important issue in analyzing pointer pro-
grams is the choice of an appropriate representation of the heap. As the number
of memory cells for a program is not known a priori and in general is unde-
cidable, a concrete representation is inadequate. Analysis techniques for pointer
programs therefore typically use abstract representations of heaps such as, e.g.,
location sets [39] (that only distinguish between single and multiple cells), k-
limiting paths [26] (allowing up to k distinct cells for some fixed k), or summary
nodes [38] in shape graphs. This paper uses an abstract representation that is
tailored to unbounded linked list structures. The novelty of our abstraction is
its parameterization in the pointer program as well as in the formula. Cells that
represent up to M elements, where M is a formula-dependent constant, are exact
whereas unbounded cells (akin to summary nodes) represent longer lists. The
crux of our abstraction is that it guarantees each unbounded cell to be preceded
by a chain of at least L exact cells, where L is a program-dependent constant.

282 D. Distefano, J.-P. Katoen, and A. Rensink

Parameters L and M depend on the longest pointer dereferencing in the program
and formula, respectively. In contrast with the k-limiting approach, where an ad-
equate general recipe to determine k is lacking, we show how (minimal bounds
on) the parameters L and M can be determined by a simple static analysis.

Pointer program analysis. Standard type-checking is not expressive enough to
establish properties of pointer programs such as (the absence of) memory leaks
and dereferencing null pointers. Instead, existing techniques for analyzing
pointer programs include abstract interpretation [16], deduction techniques
[8,22,24,33,37,25,32], design by derivation a la Dijkstra [28], and shape analy-
sis [38], or combinations of these techniques.

We pursue a fully automated verification technique, and for that reason we
base our approach on model checking. Our model-checking algorithm is a non-
trivial extension of the tableau-based algorithm for LTL [27], tailored to the
variable-domain models described above. For a given NTL-formula Φ, this algo-
rithm is able to check whether Φ is valid in the automaton-model of the con-
current pointer program at hand. The algorithm, like in any approach based
on abstraction, is approximative: in our case this means that it suffers from
false negatives, i.e., a verification may wrongly conclude that the program re-
futes a formula. In such a case, however, diagnostic information can be provided
(unlike ETL, and as for PAL) that may be used for further analysis. Besides,
by incrementing the parameters M and L, a more concrete model is obtained
that is guaranteed to be a correct refinement of the (too coarse) abstract rep-
resentation. This contrasts with the ETL approach where manually-provided
instrumentation predicates are needed. As opposed to the PAL approach, which
is fully automated only for sequential loop-free programs, our technique is fully
automated for concurrent pointer programs that may include loops.

Main contributions. Summarizing, the main contributions of this paper are:

1. A quantified temporal logic (with some second-order features) that contains
pointer assertions as well as predicates referring to the birth or death of
memory cells;

2. An automaton-based model for pointer programs where states are abstract
heap structures and transitions represent the dynamic evolving of these
heaps; the model deals finitely with unbounded allocations.

3. A program analysis that automatically derives an over-approximation of the
invariant of concurrent programs manipulating lists. This analysis is sound
and it is guaranteed to terminate.

4. A control on the degree of concreteness of abstract heap structures, in
the form of two parameters that are obtained by a straightforward static
analysis of the program and formula at hand. On incrementing these para-
meters, refined heap structures are automatically obtained. Vice-versa, by
decrementing them more abstract models are derived. Hence the process of
abstraction-refinement of the analysis is reduced to only tuning these two
numeric parameters.

Safety and Liveness in Concurrent Pointer Programs 283

5. A model checking algorithm to verify safety and liveness properties (ex-
pressed by formulae in our logic) against abstract representations of pointer
programs.

This results in a push-button technique: given a program and a temporal logic
property, the abstract automaton as well as the verification result for the prop-
erty are determined completely algorithmically. Moreover, to our knowledge,
we are the first to develop model-checking techniques for (possibly) unbounded
evolving heaps of the kind described above. (Recently, regular model checking
has been applied to check properties of linked lists [7])

Our current approach deals with single outgoing pointers only. This still allows
us to consider many interesting structures such as acyclic, cyclic, shared and
unbounded lists (as in [28] and [16]), as well as hierarchies (by back-pointers).
Besides, several resource managers such as memory managers only work with
lists [34]. Moreover, several kernel routines and device drivers uses lists. Our
abstract heap structures can also model mobile ambients [17].

Related work. Above we have already mentioned many sources of related work.
Two of them, however, deserve a more detailed discussion: shape analysis and
separation logic.

In [38], a framework for the generation of a family of shape analysis algorithms
based on 3-valued logic and abstract interpretation is presented. This very gen-
eral framework can be instantiated in different ways to handle different kinds of
data structures at different levels of precision and efficiency.

The similarity between the analysis in [38] and ours is mostly in the use of
summary nodes in order to obtain finite states representation of the invariant of
the program. However, our summaries are only used (and tailored) to abstract
lists whereas in [38] they can be more general. In fact, since in [38] states are
represented by 3-valued logical structures, the abstraction is done by the par-
titioning induced by the predicate values (canonical abstraction). In contrast,
our abstraction is technically implemented by means of morphisms which keep
a strong correspondence between the abstract heap and the concrete ones it
represents.

Among the differences between the two approaches, we have that [38] gives
a collecting semantics of the program. We use an automata semantics which
allows us to apply temporal reasoning and verify a wide range of safety and
liveness properties. Also, the framework of [38] makes use of instrumentation
predicates to refine the analysis whereas the refinement in our case is done by
tuning two numerical parameters. Moreover using morphisms, the soundness of
the new refined model is automatically guaranteed and therefore there is no need
to provide a proof of the equivalence for the two models.

The closest extension of [38] to our work is the aforementioned [40] on a first-
order modal (temporal) logic (called ETL) for allocation and deallocation of
objects and threads as well as for the specification of properties related to the
evolution of the heap. Although the aims of that paper and ours are surprisingly
close (for example in the kind of properties expressible in NTL and ETL), the

284 D. Distefano, J.-P. Katoen, and A. Rensink

technical machinery has those differences mentioned above between our work
and the setting of [38]. Moreover, [40] uses a trace semantics where each trace
is encoded by first-order logical structure. Formulae of ETL are then translated
in first-order logic with transitive closure for the evaluation on a trace. We use
Büchi automata to generate traces and verify NTL by an extension of the LTL
model-checking algorithm.

Separation logic [37,24,34] is an extension of Hoare logic able to prove heap-
manipulating programs in a concise and modular manner. At the core of sepa-
ration logic there is a new operator ∗ called separating conjunction. The formula
P ∗ Q holds if P and Q hold in disjoint parts of memory. The ∗ operator stands
at the foundation of local reasoning in separation logic: it allows one to focus
only on the cells that are accessed by the program without the need to keep
track of possible aliases. Lately a lot of attention has been devoted in the design
of decision procedures and tools for program analysis that uses separation logic
as an effective model [4,5].

Although separation logic uses the random access memory model, it seems
that it would be possible to give a graph-based semantics for the logic. Interest-
ingly, for subsets of separation logic working only on lists, many features, of this
model would be very similar to the heaps we have introduced in this paper. For
example, our unbounded entities would correspond to the predicate listseg(x, y)
indicating a pure list segment from x to y. It would be interesting to see if
the frame rule of separation logic, which allows modular reasoning about heap
manipulating programs, can be proved sound for such graph model.

Outline of the paper. This paper is, in a sense, a companion to [18] and a sum-
mary (and partial revision) of [19], where we presented the technical details of
the automata, logic and (to some degree) the model checking algorithm. Here we
focus more on the usability aspects. We present the concurrent pointer language
in Section 2 and discuss a number of examples. Section 3 presents a concrete
semantics for the language. In Section 4 we define the operational semantics on
the basis of the abstract automata described above; in Section 5 we introduce
the logic and its semantics, and discuss it on the basis of the examples given in
Section 2. We also (quite briefly) discuss the principles of the model checking
algorithm, in Section 6. Details of the model checking algorithm and all proofs
can be found in [19].

2 Concurrent Pointer-Manipulating Programs

This section introduces a simple concurrent programming language dealing with
pointer structures. It incorporates means to create and destroy heap cells (re-
ferred to by pointers), and operations to manipulate them. A concurrent
producer-consumer problem and an in-place reversal program are used to il-
lustrate the kind of programs that can be written. In the discussion of these
programs, some relevant temporal properties will be introduced. Later on in the
paper, the formal specification and verification of these properties is treated.

Safety and Liveness in Concurrent Pointer Programs 285

2.1 Programming Language

Let PV be a set of program variables with v, vi ∈ PV . Each program variable is
assumed to denote a memory cell, where the constant nil is treated as a special
cell. A program variable is said to be undefined in case it is not pointing to any
cell. The syntax of programs is given by the following grammar:

p ::= var v1, . . . , vn : (s1 ‖ · · · ‖ sk)

s ::= new(�)
∣
∣
∣ dispose(α)

∣
∣
∣ � := α

∣
∣
∣ skip

∣
∣
∣ s; s

∣
∣
∣ if (b){ s }{ s }

∣
∣
∣

while (b){ s }
∣
∣
∣ 〈s〉

∣
∣
∣ error

α ::= nil
∣
∣
∣ v

∣
∣
∣ α↑

� ::= v
∣
∣
∣ �↑

b ::= α = α
∣
∣
∣ undef(α)

∣
∣
∣ b ∨ b

∣
∣
∣ ¬b

Thus, a program p is a parallel composition of a finite number of statements
preceded by the declaration of a finite number of global variables. Statements
have the following intuitive interpretation.

– new(�) creates (i.e., allocates) a new cell that will be referred to by �. The
old value of � is lost. Thus, if � is the only pointer to cell e, say, then after
the execution of new(�), e has become “unreachable”. In this case, e is auto-
matically garbage collected together with the entities that are only reachable
from e.

– dispose(α) destroys (i.e., deallocates) the cell associated to α, and makes α
and every other pointer referring to it undefined. For the sake of simplicity,
new and dispose create, respectively destroy, a single entity only; generaliza-
tions in which several entities are considered simultaneously can be added
in a straightforward manner.

– The assignment � := α assigns a reference to the cell denoted to by α to �.
(Note that nil cannot occur as left-hand side of an assignment.) Again, the
cell that � was referring to might become unreferenced, in which case it is
removed by garbage collection.

– Sequential composition, while, skip and if have the standard interpretation.
The statement 〈s〉 denotes an atomic region, i.e., all statements in s are
executed atomically, without possible interference of any other concurrent
statement.

– α stands for a pointer expression whereas � stands for a location. The suf-
fix ↑ in both cases expresses dereferencing, or following the single outgoing
pointer. We denote x↑0 = x and x↑n+1 = (x↑n)↑.

– The expression undef(α) yields true if and only if α is undefined (which can
for instance happen as a consequence of dispose(β) if originally β = α).
Obviously, this is different from testing for α = nil . The capability of testing
for undefinedness within the language can be useful if we want to express
behavior on the level of system programs.

286 D. Distefano, J.-P. Katoen, and A. Rensink

Statements containing meaningless but legal expressions, such as dispose(nil)
and nil↑, will result in a run-time error (as defined by our semantics later on).
The halting of a statement due to such error is indicated by the construct error.
This construct is thus a semantical one, and cannot be part of any program.

2.2 Some Example Programs

Producer-consumer programs. Consider the concurrent producer-consumer prob-
lem that consists of three concurrent processes. The producer process repeatedly
generates new items by allocating new memory cells referred to by the global
program variable p. It does so only when p is undefined. A one-place buffer
process copies the memory cell referred to by p (if any) and makes p unde-
fined. As soon as an item is available in the buffer, the consumer process is able
to empty the buffer by disposing the memory cell. Typical properties that the
producer-consumer program should satisfy are:

– absence of memory leaks, i.e., any produced item is eventually consumed
– first-in first-out property, i.e., items are consumed in the order of production
– unboundedness of the number of produced items

The first and last are typical liveness property, whereas the second is a safety
property.

To show the intricacy of the producer-consumer problem, we present several
programs that are slight variants of each other, and discuss their properties. A
first producer-consumer program that realizes the sketched approach is:

var c, p, w : // program variables

(while (true) if (undef(p)) {new(p); } // producer

|| while (true) if (¬undef(p)) {c := p; p := w; } // buffer

|| while (true) if (¬undef(c)) {dispose(c); } // consumer

)

This first program clearly suffers from a memory leak, as it allows produced cells
to be never consumed. This can be expressed by “possibly, a produced entity is
never referred to by c”. This stems from the fact that the producer can put a new
item in the buffer before the consumer retrieves the previous one. The following
variant avoids this problem by exploiting the auxiliary variable w (which was
used before just to make p undefined). The buffer process thus becomes:

while (true) if (¬undef(p)) {w := p; p := c; c := w; }

whereas the producer and consumer processes remain as before. This program
indeed has no memory leak — provided that the consumer process is scheduled
infinitely often — but violates the order-preservation property; i.e., items may be
consumed in a different order than they are produced. This occurs for instance
in Fig. 1, which represents an example run of the program.

Safety and Liveness in Concurrent Pointer Programs 287

cp w cp w cp w cp w

cp wcp wcp wcp w

cp w cp w

new(p) p := cw := p
new

(p)

c := ww := pp := c

c
:=

w

dispose(c)
· · · · · ·

w := p

Fig. 1. The order of consumption �= the order of production

To overcome this problem, the guard of the buffer process is strengthened such
that the producer is only allowed to put a new item into the buffer whenever
the previous item has been retrieved. This yields the following buffer process:

while (true) if (¬undef(p)∧ undef(c)) {w := p; p := c; c := w; }

The producer and consumer process are as before. It can be shown that this
program indeed satisfies all properties: it guarantees that memory leaks cannot
occur (assuming process fairness), the order of production is preserved, and an
unbounded number of items is produced.

Although the discussed programs can in the course of time produce an un-
bounded number of items, the buffer capacity is still finite. This is no longer valid
for the following variant. Rather than modeling the buffer as a separate process,
we consider the buffer to be realized as a global linked list of unbounded length.
The producer adds entities to the tail tl of the buffer, whereas the consumer
process removes and consumes them from the head hd of the buffer.

var hd , tl , t :

(new(tl); hd := tl ;while (true) {new(tl↑); tl := tl↑ } // producer

|| while (true) if (hd �= tl) {t := hd ; hd := hd↑; dispose(t) } // consumer

)

In addition to the previously mentioned properties, it is desirable that during
the execution of this program, the tail of the buffer never gets disconnected from
the head.

In-place list reversal. As a final example we consider a classical sequential list-
manipulating problem, viz. reversing the direction of a list. We show two solu-
tions, one of which is actually incorrect. Both programs try to establish reversal
in a destructive (or so-called in-place) manner as they reuse the cells of the orig-
inal list, as initially pointed to by program variable v, to built the reversed list.
Properties of interest for this problem include, for instance:

288 D. Distefano, J.-P. Katoen, and A. Rensink

– v’s list will be (and remains to be) reversed;
– none of the elements in v’s list will ever be deleted;
– v and w always point to distinct lists (heap non-interference).

Here, w is an auxiliary variable that is used in the construction of the reversed
list. The following program is taken from [2], but violates the first property.

var v, w, t, z :

if (v �= nil) {
t := v↑; w := nil ;

while (t �= nil) {
z := t↑; v↑ := w; w := v; v := t; t := z

}
}

The problem in this erroneous program is that one pointer is missing in the
reversed list. Before continue reading, the reader is invited to find the error in
the program.

The following list-reversal program (see, e.g., [8,37,38]) reverses the list in a
correct manner, i.e., this program satisfies the three aforementioned properties:

var v, w, t :

w := nil ;

while (v �= nil) {
t := w; w := v; v := v↑; w↑ := t

}

2.3 The Topic of This Paper

To check properties like the ones in the previous examples in a fully automated
manner is the challenge that is faced in this paper. We advocate an automata-
based model-checking approach in which states are equipped with (abstract)
heap representations. As property-specification language we propose to use a
first-order variant of linear temporal logic. Before explaining the heap abstraction
mechanism, we provide the concrete (and infinite-state) semantics of our example
programming language. This is characterized by the fact that each cell and
pointer is represented explicitly.

3 Concrete Semantics

We assume a universe of entities, Ent, including a distinguished element nil , used
to represent a canonical entity without outgoing references. We let PV ⊆ Ent,
i.e., program variables are assumed to correspond to special entities that exist
throughout the entire computation.

Safety and Liveness in Concurrent Pointer Programs 289

Configurations. Automata will be used as semantical model for our programming
language. States (called configurations) of these automata are equipped with
information about the current entities, their pointer structure, and the current
set of fresh entities.

Definition 1 (configuration). A configuration is a tuple c = 〈E, ≺, N〉 such
that:

– E ⊆ Ent is a finite set of entities, with nil ∈ E.
– ≺ ⊆ E × E is a binary relation over E, such that:

outdegree≺(e) � 1 for all e ∈ E and outdegree≺(nil) = 0

– N ⊆ E is the set of fresh entities

c is called reachable if for all e ∈ E, there is some e′ ∈ PV∩E such that e′ ≺∗ e
(where ≺∗ is the reflexive and transitive closure of ≺).

A configuration is used to model the heap of a program. Note that in general
these concrete heaps can grow unboundedly. The only data structure allowed is
a cell with at most a single pointer to another cell. The cells are modeled by
entities and the pointers by the binary relation ≺. Note the restriction on the
≺-outdegree, which implies that any entity has at most one ≺-successor. The
derived partial function succ : E ⇀ E is defined by:

succ(e) = e′ if e ≺ e′ .

Example 1. In Fig. 1, the configurations are depicted as ovals, program variables
stand for the entities representing them, and the dashed lines between variables
and entities represent the pointers from ev to succ(ev). The entity nil is not
depicted in these configurations. If in cells the outgoing pointer is not depicted
then it is dangling. The fresh entities in a configuration are the entities that are
absent in the previous configuration. They typically arise as a result of executing
the new statement.

Interpreting navigation expressions. The semantics of navigation expression α
in configuration c = 〈E, ≺, N〉 is given by:

[[nil]]expc = nil

[[v]]expc = succ(v)

[[α↑]]expc = succ ([[α]]expc)

where succ is assumed to be strict, i.e., succ(⊥) = ⊥. We omit the subscript c
from [[]]expc in case the configuration is clear from the context. The semantics of
left-hand sides of assignments is defined as:

[[v]]loc
c = v

[[�↑]]loc
c = succ

(

[[�]]loc
c

)

Note that [[v]]loc equals the entity denoting v in case v occurs as left-hand side
of an assignment (or as argument of new), whereas [[v]]exp is the cell referred to
by v whenever v occurs as right-hand side (or as argument of dispose).

290 D. Distefano, J.-P. Katoen, and A. Rensink

Heap manipulations. The following operations on configurations are useful to de-
fine the operational semantics of operations such as new, dispose and assignment.
All operations manipulate the heap, and yield a new heap that is obtained by
either adding or deleting entities, or by changing pointers. Assume w.l.o.g. that
Ent is totally ordered by some arbitrary natural ordering; this is convenient for
selecting a fresh entity in a deterministic way. The following operations require
[[�]]loc and [[α]]exp to be different from ⊥ and nil .

– The operation add(c, �) extends the configuration c = 〈E, ≺, N〉 with a fresh
entity e referred to by the expression �:

add(c, �) = 〈E ∪ {e}, ≺′, {e}〉with e = min(Ent \ E)
≺′ = ≺ \ {([[�]]loc, [[�]]exp)} ∪ {([[�]]loc, e)}

– The operation cancel(c, α) deletes the entity denoted by the navigation ex-
pression α from the configuration c:

cancel(c, α) = 〈E′, ≺ ∩ (E′ × E′), ∅〉, with E′ = E \ {[[α]]exp}

Note that in the resulting configuration, every pointer to [[α]]exp becomes
undefined.

– Finally, the operation modify(c, �, α) changes the configuration c such that
the entity denoted by � points to the entity referred to by α:

modify(c, �, α) = 〈E, ≺′, ∅〉 with ≺′ = ≺ \ {([[�]]loc, [[�]]exp)}
∪ {([[�]]loc, [[α]]exp)}

Stated in words, the outgoing pointer of the entity denoted by � is redirected
to the entity denoted by α.

The final operation on heap structures that is needed for the semantics is
garbage collection. This is done by explicitly determining the entities in a con-
figuration that are “reachable” (via the pointer structure) from some program
variable. We define:

gc(c) = 〈E′, ≺ ∩ (E′ × E′), N ∩ E′〉 with E′ = {e | ∃e′ ∈ PV. e′ ≺∗ e}

Example applications of the heap manipulations are provided in Fig. 2.

Pointer automata. The semantics of the programming language is given by a
pointer automaton, in fact an automaton that accepts infinite sequences of con-
figurations according to a generalized Büchi acceptance condition. Each state in
the pointer automaton is equipped with a concrete configuration that represents
the current heap content.

Definition 2 (pointer automaton). A pointer automaton A is a tuple (Q, cf,
→, I, F) where:

– Q is a non-empty, denumerable set of states
– cf : Q → Cnf is a mapping associating a configuration with every state

Safety and Liveness in Concurrent Pointer Programs 291

c′′

y

x
y

y

add(c, x) gc(c′)

c

x y

c′

c′

x
y

x y

c′′

cancel(c, x) gc(c′)

c′′
c c′

x yx

modify(c, x, y)

c

x y

x
y gc(c′)

x

Fig. 2. Example heap manipulations

– → ⊆ Q × Q is a transition relation
– I ⊆ Q is a set of initial states, and
– F ⊆ 2Q is a generalized Büchi acceptance condition.

We write q −→ q′ instead of (q, q′) ∈ −→ . According to the generalized Büchi
acceptance condition, q0q1q2 · · · is an accepting run of A if qi −→ qi+1 for all
i � 0, q0 ∈ I and |{i | qi ∈ F}| = ω for all F ∈ F . That is, each accept set
F ∈ F needs to be visited infinitely often. Let runs(A) denote the set of runs of
A. Run q0q1q2 · · · accepts the sequence of configurations cf(q0) cf(q1) cf(q2) · · · .
The language L(A) denotes the set of configuration sequences that is accepted
by some run of A.

Note that here and in the sequel we will implicitly interpret all configura-
tion sequences up to isomorphism, where a sequence c0 c1 c2 · · · is isomorphic to
c′0 c′1 c′2 · · · if each ci is isomorphic to c′i, in the natural sense of having a bijective
mapping ψi : Ei → E′

i that both preserves and reflects structure, and, moreover,
ψi(e) = ψi+1(e) for e ∈ Ei ∩ Ei+1.

Operational semantics. Let Par denote the compound statements, i.e., the state-
ments generated by r ::= s | r ‖ s with s a program statement as defined in
Section 2. The compound statements constitute the states of the pointer au-
tomaton that will be associated to a program. We first provide the inference
rules for those statements that might affect the heap structure, cf. Table 1. Any
manipulation on an undefined navigation expression results in a run-time error,
denoted by the process error. Any attempt to delete, create or assign a value
to the constant nil fails too. These errors are considered to be local, i.e., the
process attempting to execute these statements aborts, but this does not affect
other concurrent processes. This will become clear from the rules for parallel
composition.

The semantics of the other control structures is defined by the rules in
Table 2. The rules for the alternative and sequential composition as well as

292 D. Distefano, J.-P. Katoen, and A. Rensink

Table 1. Operational rules for heap manipulations

[[�]]loc �∈ {⊥,nil}
new(�), c −→ skip, gc ◦ add(c, �)

[[�]]loc ∈ {⊥,nil}
new(�), c −→ error, c

[[α]]exp �∈ {⊥, nil}
dispose(α), c −→ skip, gc ◦ cancel(c, α)

[[α]]exp ∈ {⊥, nil}
dispose(α), c −→ error, c

[[�]]loc �∈ {⊥,nil}
� := α, c −→ skip, gc ◦ modify(c, �, α)

[[�]]loc ∈ {⊥,nil}
� := α, c −→ error, c

Table 2. Operational rules for the control structures

[[b]]exp = true
if (b){s1}{s2}, c −→ s1, c

[[b]]exp = false
if (b){s1}{s2}, c −→ s2, c

s1, c −→ s′
1, c

′ ∧ s′
1 �∈ {skip, error}

s1 ; s2, c −→ s′
1 ; s2, c

′
s1, c −→ skip, c′

s1 ; s2, c −→ s2, c
′

s1, c −→ error, c
s1 ; s2, c −→ error, c

while (b){s}, c −→ if (b){ s ; while (b){s} }{ skip }, c

s, c −→ s′, c′

〈s〉, c −→ atomic s′, c′

s, c −→ s′, c′ ∧ s′ �∈ {skip, error}
atomic s, c −→ atomic s′, c′

s, c −→ s′, c′ ∧ s′ ∈ {skip, error}
atomic s, c −→ s′, c′

sj , c −→ s′
j , c

′ ∧ s′
j �= error ∧ (∀i �= j. si �= atomic s′

i)
s1 ‖ · · · ‖ sj ‖ · · · ‖ sk, c −→ s1 ‖ · · · ‖ s′

j ‖ · · · ‖ sk, c′

sj , c −→ error, c ∧ (∀i �= j. si �= atomic s′
i)

s1 ‖ · · · ‖ sj ‖ · · · ‖ sk, c −→ s1 ‖ · · · ‖ error ‖ · · · ‖ sk, c

∀0 < j � k. sj ∈ {skip, error}
s1 ‖ · · · ‖ sk, c −→ s1 ‖ · · · ‖ sk, c

for iteration are straightforward. Note that the boolean expression undef(α)
yields true whenever [[α]]exp = ⊥, and false otherwise. The semantics of the
other boolean expressions is standard (where equality is assumed to be strict)
and is omitted here. The semantics of atomic regions are determined by three
rules. On entering an atomic region, the process s is marked as “being in con-
trol”; this is indicated by the prefix atomic. This mark is lost once the atomic
region is left, or whenever an error occurs. Once marked as being atomic, the
process has control and is allowed to complete its atomic region without any
possible interference of any other process. This is established by the first two
rules for parallel composition. Once all processes are finished or aborted, the

Safety and Liveness in Concurrent Pointer Programs 293

program loops. This is established by the last inference rule, and is exploited
to impose fairness constraints. As a result, all runs of any pointer program are
infinite.

Definition 3. The concrete semantics of program

p = decl v1, . . . , vn : (s1 ‖ · · · ‖ sk)

is the pointer automaton [[p]]conc = (Q, cf, →, I, F) such that:

– Q ⊆ Par × Cnf with cf(r, c) = c
– −→ ⊆ Q × Q is the smallest relation satisfying the rules in Table 1 and 2;
– I = {(s1 ‖ · · · ‖ sk, 〈{v1, . . . , vn}, ∅, ∅〉)}
– F = {F̂i | 0 � i < k} ∪ {F̃i | 0 � i < k} where:

F̂i = {(s′1‖ · · · ‖s′k, c) ∈ Q | s′i = skip ∨ s′i = error ∨ s′i = while(b){s}; s′′}
F̃i = {(s′1‖ · · · ‖s′k, c) ∈ Q | s′i = skip ∨ s′i = error ∨ s′i = s;while(b){s}; s′′}.

A few remarks are in order. For state (r, c) ∈ Q, r is the compound statement to
be executed and c is a reachable (concrete) configuration, i.e., it only contains
the entities reachable from some program variable in the program p. [[p]]conc has
a single initial state s1 ‖ · · · ‖ sk together with a heap that initially contains
a cell for each program variable only. The set of accept states for the i-th se-
quential component si consists of all states in which the component i has either
terminated (si = skip), aborted (si = error), or is processing a loop (which could
be infinite). Note that according to this acceptance condition, processes that
consist of an infinite loop are executed in a fair manner. This applies, e.g., to
both processes in the producer-consumer example.

Example 2. Consider the example programs provided in Section 2. It can be
checked that Fig. 1 indeed is a possible run that is allowed by the semantics of
the second producer-consumer program. The transition labels are provided for
convenience only. The initial part of the (infinite-state) pointer automaton that
is obtained for the producer-consumer program with the shared list is given in
Fig. 3.

4 Heap Abstractions

The most obvious way to model pointer structures is to represent each entity and
each pointer individually as we did in the previous section. For most programs,
like, e.g., the producer/consumer program with the shared linked list, this will
give rise to infinite pointer automata. To obtain more abstract (and compact)
views of pointer structures, chains of cells will be aggregated and represented
by one (or more) cells. We consider the abstraction of pure chains (and not of
arbitrary graphs) in order to be able to keep the “topology” of pointer structures
invariant in a more straightforward manner.

294 D. Distefano, J.-P. Katoen, and A. Rensink

var hd , tl , t :

(new(tl); hd := tl ;

while (true) {
new(tl↑);

tl := tl↑
}

‖ while (true) {
if (hd �= tl) {

t := hd ;

hd := hd↑;
dispose(t) }

}
)

0

1

2

3

4

5

6

13

14

12

7

8

9

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

dispose(t)

dispose(t)

new(tl)

new(tl↑)

new(tl↑)

new(tl↑)

new(tl↑)

new(tl↑)

new(tl↑)

tl := tl↑

hd := tl

tl := tl↑

tl := tl↑

tl := tl↑
t
:=

hd
t
:=

hd

t
:=

hd

hd
:=

hd
↑

hd
:=

hd
↑

hd
:=

hd
↑

· · · · · ·

· · · · · ·

· · · · · ·

new(tl↑) dispose(t)

Fig. 3. Fragment of the automaton for the producer-consumer program

4.1 Abstracting Pure Chains

Pure chains. A sequence e1, . . . , ek of entities in a configuration is a chain (of
length k) if ei ≺ ei+1, for 0 < i < k. The non-empty set E of entities is a
chain of length |E| = k iff there exists a bijection f : {1, . . . , k} → E such that
f(1), . . . , f(k) is a chain; let first(E) = f(1) and last(E) = f(k). E is a pure
chain if indegree≺(e) = 1 for all e ∈ f(2), f(3), . . . , f(k) and f is unique (which
may fail to be the case if the chain is a cycle). Note that chains consisting of a
single element are trivially pure.

Abstracting pure chains. An abstract entity may represent a pure chain of “con-
crete” entities. The concrete representation of abstract entity e is indicated by
its cardinality C(e) ∈ M = {1, . . . , M} ∪ {∗}, for some fixed constant M > 0.
Entity e for which C(e) = m � M represents a chain of m “concrete” entities; if
C(e) = ∗, e represents a chain that is longer than M . (Such entities are similar to
summary nodes [38], with the specific property that they always abstract from

Safety and Liveness in Concurrent Pointer Programs 295

pure chains.) The special cardinality function 1 yields one for each entity. The
precision of the abstraction is improved on increasing M (because more config-
urations are distinguished); moreover, as we will discuss in the next section, to
model check a given temporal property, M has to be large enough to at least
evaluate all atomic predicates in the property with certainty.

Definition 4 (abstract configuration). An abstract configuration is a tuple
c = 〈E, ≺, N, C〉 such that 〈E, ≺, N〉 is a configuration and C : E → M is a
mapping associating a cardinality to each e ∈ E, such that C(e) = 1 if e ∈ N∪PV.

Evidently, each concrete configuration (cf. Def. 1) is an abstract configuration
such that C = 1.

Configurations representing pure chains at different abstraction levels are re-
lated by morphisms, defined as follows. Let Cnf denote the set of all configura-
tions ranged over by c and c′, and C({e1, . . . , en}) = C(e1) ⊕ . . . ⊕ C(en) denote
the number of concrete cells represented by e1 through en, where n ⊕ m = n+m
if n+m � M and ∗ otherwise.

Definition 5 (morphism). For c, c′ ∈ Cnf, a morphism from c to c′ is a sur-
jective function h : E → E′ such that:

1. for all e ∈ E′, h−1(e) is a pure chain and C′(e) = C(h−1(e))
2. e ≺′ e′ ⇒ last(h−1(e)) ≺ first(h−1(e′))
3. e ≺ e′ ⇒ h(e) �′ h(e′) where �′ denotes the reflexive closure of ≺′

4. h(e) ∈ N ′ if and only if e ∈ N .

According to the first condition only pure chains may be abstracted by a single
entity, while keeping the cardinalities invariant. The second and third condition
enforce the preservation of the pointer structure under h. The last condition
asserts that the notion of freshness should be preserved. Intuitively speaking, by
means of a morphism the abstract shape of the pointer dependencies represented
by the two related configurations is maintained. The identity function id is a
morphism and morphisms are closed under composition.

2 2

*

(a) (b)

*

tl hd t tl hd t

ttl hd tl hd t

Fig. 4. Morphisms between configurations of the producer-consumer program at dif-
ferent abstraction levels

296 D. Distefano, J.-P. Katoen, and A. Rensink

Example 3. Fig. 4(a) shows two configurations of the producer-consumer pro-
gram with a shared list as buffer, at two levels of abstraction. It is assumed that
M=2. The top configurations are abstractions of the bottom ones. Open circles
denote concrete entities and filled circles denote abstract entities; their cardi-
nality is indicated next to them. The morphism is indicated by dashed arrows.
An alternative abstraction of the same configuration is depicted in Fig. 4(b).
Although the indicated mapping is indeed a morphism in the sense of Def. 5,
it is clear that this abstraction is too coarse as there is no way to distinguish
between the cells pointed to by hd and hd↑, expressions that both occur in the
producer-consumer program.

Evolving pointer structures. Morphisms relate configurations that model the
pointer structure at distinct abstraction levels. They do not model the dy-
namic evolution of such linking structures. To reflect the execution of pointer-
manipulating statements, such as either the creation or deletion of entities, or
the change of pointers — the so-called “pointer swing” —by assignments (e.g.,
x := x↑↑), we use reallocations.

Definition 6 (reallocation). For c, c′ ∈ Cnf, λ : (E⊥ × E′⊥) → M is a real-
location if:

1. (a) C(e) =
⊕

e′∈E′⊥ λ(e, e′) and (b) C′(e′) =
⊕

e∈E⊥ λ(e, e′)
2. (a) for all e ∈ E, {e′ | λ(e, e′) �= 0} is a chain, and

(b) for all e′ ∈ E′, {e | λ(e, e′) �= 0} is a chain
3. for all e ∈ E, |{e′ | λ(e, e′) = ∗}| � 1
4. {e | λ(⊥, e) > 0} = N ′

Let Λ denote the set of reallocations, and c
λ
� c′ denote that there exists a

reallocation λ between c and c′.

We explicitly use the undefinedness symbol ⊥ to model birth (allocation) and
death (deallocation) of entities: λ(⊥, e) = n �= 0 denotes the birth of (n instances
of) e whereas λ(e, ⊥) = n �= 0 denotes the death of (n instances of) e. The
conditions express that reallocation λ redistributes cardinalities on E to E′ such
that (1a) the total cardinality sent by λ from a source entity e ∈ E equals C(e)
and (1b) the total cardinality received by a target entity e′ ∈ E′ equals C′(e′);
also, (2a) the entities that send at least one instance to a given target entity
e′ ∈ E′ form a chain in the source, and likewise, (2b) the entities that receive at
least one entity from a given source e ∈ E form a chain in the target. Moreover,
(3) for each source entity e, at most one target entity e′ receives unboundedly
many instances. Finally (4) expresses the correlation between the birth of entities
and the freshness of those entities in the target. Note that, due to C′(e′) = 1 for
e′ ∈ N ′ (see 4) and condition (1b) it follows that λ(⊥, e′) = 1 and λ(e, e′) = 0
for all e ∈ E.

In some cases we can derive a reallocation λR between abstract configurations
unambiguously from a binary relation R between the sets of entities. In the
lemma below we use R(e) to denote {e′ | (e, e′) ∈ R} and R−1(e′) to denote
{e | (e, e′) ∈ R}.

Safety and Liveness in Concurrent Pointer Programs 297

Lemma 1. Let c, c′ be two abstract configurations, and let R ⊆ E × E′ be a
binary relation. We call R predictable if it satisfies the following conditions for
all (e, e′) ∈ R:

– either |R(e)|=1 and C(R−1(e′))=C′(e′) or |R−1(e′)|=1 and C′(R(e))=C(e);
– R(e) is a ≺′-chain and R−1(e′) is a ≺-chain;
– e′′ ∈ R(e) implies either e′′ = e′ or C′(e′) = 1 or C′(e′′) = 1;
– e′ /∈ N ′.

If R is predictable, there is exactly one reallocation λR between c and c′ with:

– R = {(e, e′) ∈ E × E′ | λ(e, e′) > 0};
– λ(⊥, e′) > 0 if and only if R−1(e′) = ∅;
– λ(e, ⊥) > 0 if and only if R(e) = ∅.

Note that, in particular, any one-to-one relation between c and c′ for which
C(e) = C′(e′) if (e, e′) ∈ R, is predictable. A special class are the so-called
functional reallocations, which leave all cardinalities unchanged.

It is straightforward to check that, for any configuration c, the “identity”
function that maps each pair (e, e) for e ∈ Ec onto Cc(e) is a reallocation.

(a)

2

(b)

2

hd hd tt

hd := hd↑;
dispose(t)

t := hd ;

tl hd t

tl := tl↑;
new(tl↑)

tl hd t

tl tl

Fig. 5. Reallocations for evolution in the producer-consumer program

Example 4. Fig. 5(a) shows how an abstract configuration of the producer-
consumer program (for M=2) evolves on performing two assignments and a
disposal. The corresponding reallocation is depicted by dashed arrows between
the configurations. Fig. 5(b) shows the reversed transition and its reallocation.
Note that in (a) a cell is disposed (the one without outgoing dashed arrow),
whereas in (b) a cell is created (the one without incoming dashed arrow).

The concept of reallocation can be considered as a generalization of the idea of
identity change as, for instance, present in history-dependent automata [31]: be-
sides the possible change of the abstract identity of concrete entities, it allows for
the evolution of pointer structures. Reallocations allow “extraction” of concrete
entities from abstract entities by a redistribution of cardinalities between enti-
ties. Extraction is analogous to materialization [38]. Reallocations ensure that
entities that are born do not originate from any other entity. Moreover, entities
that die can only be reallocated to ⊥. This is the way in which birth and death
of cells is modeled.

298 D. Distefano, J.-P. Katoen, and A. Rensink

Pointer automata. In order to model the dynamic evolution of programs ma-
nipulating abstract representations of linked lists, we use (abstract) pointer au-
tomata. These are the same structures as before, except that each transition is
now indexed with a reallocation, and states are equipped with abstract (rather
than concrete) configurations.

Definition 7 (abstract pointer automaton). An abstract pointer automaton
A = 〈Q, cf, →, I, F〉 with Q, cf, I and F as before (cf. Def 2), and transition
relation → ⊆ Q × Λ × Q, indexed by reallocations, such that:

q λ−−→ q′ implies that λ is a reallocation from cf(q) to cf(q′)

Runs of abstract pointer automata are alternating sequences of states and re-
allocations, i.e., q0λ0q1λ1q2 · · · such that qi

λi−−→ qi+1 for all i � 0, q0 ∈ I, and
each accept set in F is visited infinitely often. Each run can be said to accept
sequences of concrete configurations that are compatible with the reallocations,
in a way to be defined below.

4.2 Symbolic Semantics

Although the concrete semantics is rather simple and intuitive, it suffers from
the problem that it easily results in an infinite state space. To circumvent this
problem, we provide a semantics in terms of abstract pointer automata.

Informal idea of the symbolic semantics. As a start, we determine by means
of a syntactic check through the program p under consideration, the “longest”
navigation expression that occurs in it and fix constant Lp such that

Lp > max{n | v↑n occurs in program p}

Besides the formula-dependent constant M , the program-dependent constant
Lp can be used to tune the precision of the symbolic representation, i.e., by
increasing Lp the model becomes less abstract. Unbounded entities (i.e., those
with cardinality ∗) will be exploited in the semantics to keep the model finite.
The basic intuition of our symbolic semantics is that unbounded entities should
always be preceded by a chain of at least Lp concrete entities. Such states (or
configurations) are called safe. This principle allows us to precisely determine the
concrete entity that is referred to by any navigation expression in the program.1

As assignments may yield unsafe configurations (due to program variables that
are “shifted” too close to an unbounded entity), these statements require some
special treatment (as we will see).

Definition 8 (safe configuration). For fixed L > 0, configuration c is L-safe
if:

∀e ∈ PV. ∀e′ : d(e, e′) � L ⇒ C(e′) = 1

where d(e, e′) = n if e′ = succn(e), and d(e, e′) = ⊥ if e �≺∗ e′.
1 This is the sense in which the configuration is safe. The reader should not confuse

the idea of safe configuration we use here with other concepts such as memory safety.

Safety and Liveness in Concurrent Pointer Programs 299

Here, succ0(e) = e and succn+1(e) = succ(succn(e)). That is to say, in an L-safe
configuration, all entities within distance L of a program variable are concrete.

Example 5. The upper configuration in Fig. 4(a) is 2-safe, since each program
variable is at distance at least two from the abstract entity, but not 3-safe. (Recall
that each program variable is an entity.) The upper configuration in Fig. 4(b) is
not 1-safe. It follows by easy verification that all states in the concrete pointer
automaton [[p]]conc for program p are L-safe for any L > 0.

Normal form. For the symbolic semantics we consider configurations that, up
to isomorphism, uniquely represent a set of “safe” states that may be related by
morphisms. Such configurations are said to be in normal form. The notion of
normal form is based on compactness:

Definition 9 (compact configuration). For fixed L > 0, configuration c is
L-compact if for any entity e:

indegree≺(e) > 1 or d(e′, e) � L+1 for some e′ ∈ PV

Configuration c is thus called L-compact if non-trivial pure chains appear within
at most distance L+1 from some program variable. Cells that belong to a cycle
and that are “entrances” to the cycle are compact, i.e., these cells will not be
abstracted from.

Example 6. The upper configuration in Fig. 4(a) is 2-compact, as all entities
are within distance at most three from a program variable. The following L-safe
configuration (for any L > 0), on the other hand, is not L-compact for L < 3:

thdtl

as two concrete cells are “too far” from a program variable, and thus need to be
represented in a more compact way.

Definition 10 (normal-form configuration). For fixed L > 0, configuration
c is in L-normal form whenever it is L-safe and L-compact.

Given that the number of program variables is finite, and that we only consider
cells that are reachable from program variables, it follows that:

Theorem 1. There are only finitely many L-normal form configurations.

The fact that the normal form of an L-safe configuration is unique follows from
the following:

Theorem 2. For c ∈ Cnf: if c is L-safe and reachable, then there is a unique
L-normal c′ ∈ Cnf and a unique morphism between c and c′.

300 D. Distefano, J.-P. Katoen, and A. Rensink

Intuitively speaking, configurations in L-normal form are the most compact rep-
resentations of L-safe configurations. The normal form of L-safe configuration c is
denoted nf (c), and hnf (c) denotes the corresponding unique morphism between
c and nf (c).

Example 7. Let M=2. In the following figure, the right hand configuration is
the L-normal form of left hand one for L=2:

2

thdtl thdtl

In the following figure, the right hand configuration is the L-normal form of left
hand one for L=1:

*

2

v

w

v

w

For normal form configurations, we define the following relation between abstract
reallocations and pairs of concrete configurations.

Definition 11 (encoding). Let c, c′ be in L-normal form (for some L) and
let λ be a reallocation between c and c′. λ is said to encode a concrete pair of
reallocations c1, c

′
1 if c = nf (c1) and c′ = nf (c′1) with normal form morphisms

hnf and h′
nf , respectively, and for all e ∈ E and e′ ∈ E′:

λ(e, ⊥) = |h−1
nf (e) \ E′

1|

λ(⊥, e′) = |h′−1
nf (e′) \ E1|

λ(e, e′) = |h−1
nf (e) ∩ h′−1

nf (e′)|

(where the cardinalities on the right hand side are interpreted modulo M , i.e.,
they turn into ∗ if the cardinality exceeds M).

For an abstract pointer automaton A whose configurations are all in normal
form, such as the ones we will use below to give a finite-state semantics to our
language, using this notion of encoding we can define what it means for A to
simulate a concrete automaton (see Sect. 4.3), as well as the language of A. In
particular, for the latter, we consider that a run q0λ0q1λ1q2 · · · of A accepts a
sequence of concrete configurations c0 c1 c2 · · · if each λi encodes the pair ci, ci+1,
and we define L(A) to be the set of configuration sequences accepted by some
run of A.

Safe expansions. As argued above, performing an assignment to an L-safe state
may lead to a state that is not L-safe due to program variables that are moved
too close to an unbounded entity. This happens, for instance, when variable

Safety and Liveness in Concurrent Pointer Programs 301

v is assigned an entity further down in the list originally pointed to by v. To
overcome this difficulty, the semantics of assignment yields a set of possible
successor configurations that are related to each other in some sense. This is the
main source of nondeterminism (i.e., over-approximation). These configurations,
together with the morphisms that relate them to the configuration c in which
the assignment is executed, are the safe expansions of c.

Definition 12 (safe expansion). For fixed L > 0 and configuration c, ⇑c is
the set of pairs (c′, h) such that c′ is L-safe and h is a morphism from c′ to c
with shrink factor at most L.

The shrink factor of morphism h is defined as max{|h−1(e)| − 1 | e ∈ E′}. It is
important to note that ⇑c is finite (up to isomorphism).

Operational semantics. With the use of safe expansions we are now in a position
to define the symbolic semantics of our programming language. A key observation
is that the definitions of add(c, �), cancel(c, α) and modify(c, �, α) can also be
applied if c is abstract, provided it is L-safe for some L no smaller than the
number of consecutive dereferencing operations in � and α — so that [[�]]loc,
[[�]]exp and [[α]]exp all point to a uniquely determined, concrete entity. For that
reason we can use the relation −→ as derived according to Tables 1 and 2 over
abstract configurations, as long as we ensure L-safety for sufficiently large L.
Furthermore, if we derive a transition s, c −→ s′, c′ using these rules, then the
identity relation {(e, e) | e ∈ E ∩ E′} is predictable in the sense of Lemma 1.

Definition 13. The symbolic semantics of the program

p = decl v1, . . . , vn : (s1 ‖ · · · ‖ sk)

is the (abstract) pointer automaton [[p]]symb = 〈Q, cf, →, I, F〉 where Q, cf, I and
F are defined as for the concrete semantics (see Def. 3) and −→ ⊆ Q × Λ × Q
is the smallest relation satisfying:

s, c −→ s′, c′ ∧ (c′′, h) ∈ ⇑c′

s, c −→λRs′,nf (c′′)
where R = hnf ◦ h−1 ◦ idE∩E′ .

Let us explain this rule. The idea is that, by construction, all abstract configu-
rations generated by the semantics are in L-normal form, implying that they are
L-safe for sufficiently large L, so that we can indeed apply the concrete opera-
tional semantics (as discussed above). The abstract configuration thus derived,
however, is no longer in L-normal form; therefore we take all safe expansions
(introducing non-determinism) and normalize them. These steps (derivation–
expansion–normalization) are accompanied by, respectively, a one-to-one iden-
tity relation or partial function (idE∩E′), an inverse morphism (h−1) and a
morphism (hnf). By the definition of safe expansion it follows that h(e) = h(e′)
for distinct e, e′ implies (i) either e or e′ has cardinality 1, and (ii) hnf (e) �=
hnf (e′). From this and the fact that both h and hnf are morphisms, it can be

302 D. Distefano, J.-P. Katoen, and A. Rensink

deduced that hnf ◦ h−1 ◦ idE∩E′ is predictable in the sense of Lemma 1, and
hence λR is well-defined.

It is noteworthy that the safe expansion step is only really necessary if the
original, concrete transition has been caused by an underlying modify() operation
(i.e., is the result of an assignment): the add() and cancel() operations cannot
result in unsafe configurations, and hence no expansion is necessary afterwards.
It is, therefore, only assignment statements that cause non-determinism in the
abstract semantics.

Example 8. Consider the producer-consumer program where the buffer is mod-
eled as a shared (unbounded) list:

var hd , tl , t :

(new(tl); hd := tl ;while (true) {new(tl↑); tl := tl↑ } // producer

|| while (true) if (hd �= tl) {〈t := hd ; hd := hd↑〉; dispose(t) } // consumer

)

An initial fragment of the (abstract) pointer automaton for this program has
already been provided in Example 2. For L=2 and M=1, Fig. 6 illustrates the
part of the abstract pointer automaton in which abstraction plays a role. (The
entire pointer automaton has 30 states.) With respect to the version given before,
we have introduced atomicity in the consumer, which now atomically takes an
item from the list and shifts the hd of the buffer. To avoid cluttering up the
figure, the reallocations and the program statements are omitted, as are the
accept states. The same applies to the intermediate states of the atomic regions.

Note that a collector cell is introduced as soon as two concrete cells can be
“summarized” without violating the 2-safeness constraint. This happens, e.g.,
when performing the assignment tl := tl↑ in configuration 22. A case of nonde-
terminism that arises from considering safe expansions for assignments are the
two transitions, both labeled with the statement 〈t := hd ; hd := hd↑〉, emanating
from configuration 28. As the source configuration contains a collector cell, this
cell represents a list of two or more cells. Both possibilities are considered: for a
list of exactly two elements, configuration 22 results; the other case corresponds
to configuration 26.

4.3 Properties of the Semantics

The symbolic semantics gives us an analysis that by itself already yields some
useful information on the program, such as the possibility of memory violation
(e.g., if one of the parallel components of the program in a reachable state equals
error). This analysis has two important properties: it is sound since it represents
an over-approximation of the concrete semantics; and it is finite, and therefore
computable.

In more detail, the concrete and abstract pointer automata generated by the
concrete and symbolic semantics of a given program, respectively, are related by
a forward simulation defined using the notion of encoding in Def. 11. Let q be

Safety and Liveness in Concurrent Pointer Programs 303

25

28

*

* *

*

22

27

19

20

24

26tl

tl t

t

hdtl t

new(tl↑)

tl := tl↑

tl := tl↑

dispose(t)

new(tl↑)

〈t
:=

hd
;h

d
:=

hd
↑〉

dispose(t)
tl := tl↑

ttl hd

tl := tl↑

· · ·

thdtl

〈t
:=

hd
; hd

:=
hd↑〉

ttl hd

hdtl t

〈t :=
hd

; h
d

:=
hd
↑〉hdtl t

〈t :
=
hd

; h
d
:=

hd
↑〉

di
sp

os
e(

t)

· · ·

· · ·· · ·

tl := tl↑

new(tl↑)

new(tl↑)

tl := tl↑

dispose(t)

dispose(t)

hd

hd

Fig. 6. Abstract pointer automaton for producer-consumer with shared list

a state in the concrete automaton. The abstract state qabs is said to simulate q
whenever

(i) cf(qabs) = nf (cf(q)), and
(ii) for every transition q −→ q′, there exists a reallocation λ that encodes the pair

cf(q), cf(q′), such that qabs −→λ q′abs and q′abs simulates q′.

Pointer automaton Asymb simulates Aconc, denoted Aconc � Asymb, whenever there
exists a forward simulation relation satisfying (i) and (ii) for all pairs (c, cabs) in
the relation, such that initial states and accept states correspond. The following
is then straightforward to prove:

Theorem 3. If Aconc � Asymb, then L(Aconc) ⊆ L(Asymb).

The relation between the concrete and symbolic semantics can be expressed in
terms of this notion of forward simulation (for details see [18]):

Theorem 4. For any program p: [[p]]conc � [[p]]symb.

Moreover, we have the following crucial property of the symbolic semantics:

Theorem 5. For any program p: [[p]]symb is finite state.

304 D. Distefano, J.-P. Katoen, and A. Rensink

More specifically, the number of states of the symbolic semantics is bounded by
k · 2K ·

∑K
n=0(n+1)n ·

∑K
n=0(M+1)n where k is a constant dependent on the

length of the longest sequential component and K is an upper-bound on the
number of entities in each state. Note that K is bounded since the number of
program variables is finite, and there cannot be an infinite-length chain in a
state, due to normal form.

5 Pointer Logic

To express properties of concurrent pointer programs, we use a first-order ex-
tension of linear temporal logic [35]. The logic allows to express properties over
sequences of configurations. The intention is that these sequences are generated
by the pointer automata.

5.1 Syntax of the Pointer Logic

In the logic, heap cells (i.e., entities) are referred to by logical variables, taken
from a countable set LV, ranged over by x, y, z, such that LV ∩ PV = ∅. The
connection between logical variables and cells is established by a partial valua-
tion, meaning that logical variables, like program variables, may be undefined.
Logical variables are a special case of pointer expressions, i.e., expressions that
refer to heap cells. The syntax of pointer expressions is defined as before by the
grammar:

α ::= nil
∣
∣
∣ x

∣
∣
∣ α↑

where nil denotes the special entity in Ent, x denotes the cell assigned by the
current valuation (which may be nil or undefined), and α↑ denotes the entity
referred to by (the entity denoted by) α (if any). Thus, x↑n denotes the (n+1)-st
cell in the list referred to by x.

The syntax of the logic Navigation Temporal Logic (NTL, for short) is defined
by the grammar:

Φ := α = α
∣
∣
∣ α � α

∣
∣
∣ undefα

∣
∣
∣ newα

∣
∣
∣ ∃x. Φ

∣
∣
∣ Φ ∧ Φ

∣
∣
∣ ¬Φ

∣
∣
∣ ©Φ

∣
∣
∣ ΦU Φ

The proposition α = β states that α and β are aliases. Here, equality is strict.
Proposition x↑2 = y↑3, for example, denotes that the third cell in x’s list is
also the fourth cell in y’s list. The proposition α � β expresses that (the cell
denoted by) β is reachable from (the cell denoted by) α via the pointer structure.
Thus, x � y↑3 expresses that in the current state the fourth cell in y’s list
can be reached by following the pointer structure from the cell denoted by x.
Proposition undefα states that α is dangling (i.e., undefined), and new α asserts
that the cell referred to by α is fresh. The existential quantification ∃x.Φ is
valid if an appropriate cell for x can be found such that Φ holds. The boolean
connectives, and the linear temporal connectives © (next) and U (until) have
the usual interpretation. We denote α �= β for ¬ (α = β), α �� β for ¬ (α � β),
aliveα for ¬(undefα), and ∀x. Φ for ¬ (∃x. ¬Φ). The other boolean connectives

Safety and Liveness in Concurrent Pointer Programs 305

(such as disjunction, implication and equivalence) and the temporal operators
� (eventually) and � (always) are obtained in the standard way.

Note that NTL is in fact a quantified modal logic (see, e.g., [3,21]) as quantifi-
cation and temporal operators can be mixed arbitrarily. In particular, temporal
operators can be used inside quantification.

Example 9. We illustrate the expressiveness of the logic NTL by a number of
example properties that are frequently encountered for pointer manipulating
programs.

– The third cell in x’s list and the head of y’s list eventually become aliases:

�(x↑↑ = y).

– x↑ will never be dangling:
�(alive x↑).

– Eventually, v will be part of a non-empty cycle:

�(∃x. x �= v ∧ x � v ∧ v � x)

– Every cell reachable from v will be eventually disposed:

∀x. (v � x ⇒ �undefx)

– Whenever y is a cell in x’s list, y and x can only become disconnected when
y is disposed:

(∀x. ∀y. x � y ⇒ (�alive y ∨ (x � y)U undef y))

– An unbounded number of cells will be created:

��(∃x. new x)

– Cells are disposed in the order of creation:

� (∀x. new x ⇒ � (∀y. new y ⇒ (alive y Uundefx)))

This can be understood as follows: any entity x that is fresh in the current
state will be dead before (or at the same time as) any younger entity y (fresh
in some later state) dies.

Program variables. To enable reasoning over program variables (rather than
just logical ones), we introduce for each relevant program variable v a logical
variable xv, which always evaluates to the entity v ∈ E. We then use v in the
logic as syntactic sugar for xv↑, so that it has the expected value. Furthermore,
when we write ∃ x. Φ we really mean ∃x. (x �= xv1 ∧ . . . ∧ x �= xvn) ⇒ Φ, where
{v1, . . . , vn} is the set of program variables occurring in the program.

306 D. Distefano, J.-P. Katoen, and A. Rensink

Example 10. Consider the list-reversal program (cf. Section 2) that intends to
reverse the list initially pointed to by variable v. Properties of interest of this
program include, for instance:

– v and w always point to distinct lists (heap non-interference):

�(∀x. v � x ⇒ w �� x)

– v’s list will be (and remains to be) reversed and the resulting list will be
given to w 2:

∀x. ∀y. ((v � x ∧ x↑ = y) ⇒ ��(y↑ = x ∧ w � y))

Note that the previous formula expresses the precise specification of the list
reversal program. In particular, it implies that the reversed list contains
precisely the same elements of the original list and that their pointers are
properly reversed. This property is not usually verifiable by shape analy-
ses that do not keep track of the evolution of entities during the program
computation.

– none of the cells in v’s list will ever be deleted:

∀x. (v � x ⇒ �alive x)

Properties for the producer-consumer program with a shared list are:

– every element in the buffer is eventually consumed:

�(hd �= tl ⇒ ∃x. (x = hd ∧ �undefx))

(Note that this is not the same as �(hd �= tl ⇒ �undef hd); in the former
property, x is frozen to the value of hd in the state where it is bound, and so
the property expresses that that particular entity dies; the latter expresses
that hd itself may become undefined.)

– the tail is never deleted nor disconnected from the head:

�(alive tl ∧ hd � tl)

Taking into account the semantics of the logic, to be defined below, from Fig. 6 it
can be observed that both formulae are valid in the abstract pointer automaton
that models the producer-consumer program. Using Theorem 4 and Corollary 1,
we conclude that the original program (as represented in the concrete semantics)
also exhibits these properties. The same applies to the ordering property that
requires elements to be consumed in the order of production.
2 If one is interested in only checking whether v’s list is reversed at the end of the

program, program locations can be added and referred to in the standard way.

Safety and Liveness in Concurrent Pointer Programs 307

5.2 Semantics of the Pointer Logic

Logical formulae are interpreted over infinite sequences of configurations. We
need a function θ that is a partial valuation of the logical variables, i.e., θ(x) is
either undefined or equals some cell, which is then the value of x — as we shall
see, this is always an entity in the initial configuration of the sequence under
consideration.

The semantics of navigation expression α is given by:

[[nil]]≺,θ = nil

[[x]]≺,θ = θ(x)

[[α↑]]≺,θ = succ ([[α]]≺,θ)

Let σ = c0 c1 c2 · · · be a sequence of concrete configurations. The semantics of
NTL-formulae is defined by the satisfaction relation σ, θ |= Φ, defined as follows:

σ, θ |= α = β iff [[α]]≺0,θ = [[β]]≺0,θ

σ, θ |= α � β iff ∃ k � 0. [[α↑k]]≺0,θ = [[β]]≺0,θ

σ, θ |= undefα iff [[α]]≺0,θ = ⊥
σ, θ |= newα iff [[α]]≺0,θ ∈ N0

σ, θ |= ∃x. Φ iff ∃e ∈ E0 : σ, θ{e/x} |= Φ

σ, θ |= Φ∧Ψ iff σ, θ |= Φ and σ, θ |= Ψ

σ, θ |= ¬Φ iff σ, θ �|= Φ

σ, θ |= ©Φ iff σ1, θ̃1 |= Φ

σ, θ |= ΦU Ψ iff ∃i. (σi, θ̃i |= Ψ and ∀j < i. σj , θ̃j |= Φ).

Here, θ̃i is defined by θ̃0 = θ and θ̃i+1 = θ̃i(x) ∩ (LV × Ei+1); i.e., as soon as an
entity is deallocated in the sequence (at some step j � i), it can no longer occur
as an image in θi. The substitution θ{e/x} is defined as usual, i.e., θ{e/x}(x) = e
and θ{e/x}(y) = θ(y) for y �= x. σi denotes the suffix of σ that is obtained by
erasing the first i items from σ. Note that the proposition α � β is satisfied if
[[β]] = ⊥ and [[α]] can reach some cell with an undefined outgoing reference.

5.3 Properties

For pointer automaton A and NTL-formula Φ, A |= Φ holds whenever for all
allocation sequences σ of configurations in L(A) we have σ, θ |= Φ. The following
is then an immediate consequence of Theorem 3.

Corollary 1. For any NTL-formula Φ and pointer automata A and A′:

A � A′ ⇒ (A′ |= Φ ⇒ A |= Φ)

In particular, as for any program p we have that [[p]]conc � [[p]]symb (Theorem 4),
it follows that any NTL-formula Φ that is valid for (the finite-state!) [[p]]symb, it
holds that Φ is valid in the (possibly infinite-state) program p. As this applies
to all NTL-formulae, this includes safety and liveness properties.

308 D. Distefano, J.-P. Katoen, and A. Rensink

6 Model Checking Pointer Logic

For the setup proposed in this paper we have developed a model checking al-
gorithm, using tableau graphs as in [27] to establish whether or not a formula
Φ is valid on a given (finite) abstract pointer automaton A. The algorithm is
described in detail in [19]; here we give a brief summary.

The parameters M and L. In the previous section, we have stressed that the
precision of automaton A is ruled by two parameters: L, which controls the dis-
tance between entities before they are collected into unbounded entities, and M ,
which controls the information we have about unbounded entities. As described
in Sect. 4, L is used in the generation of models from programs; it is no longer of
importance in the model checking stage (where we supposed to have the model
already). M , on the other hand, is a formula-dependent constant that must ex-
ceed

∑

x∈Φ max{i | x↑i occurs in Φ} for the formula Φ that we want to check on
the model A. This may mean that the A at hand is not (yet) suitable for checking
a given formula Φ, namely if M for that model does not meet this lower bound.
In that case we have to stretch the model.

Example 11. Consider, for instance, the model depicted in Fig. 6. If we want to
check whether the buffer may have size 5, this can be expressed by the formula
�(hd↑5

� tl); but in states where entities of the buffer have been collected into
an unbounded entity (states 25–29 in the figure), it is not clear whether hd↑5

is pointing to (some entity within) that unbounded entity, or to some entity
following it, in particular to tl .

To overcome this problem, we can stretch a given model without loss of infor-
mation (but with loss of compactness, and hence increase of complexity of the
model checking). Let, C(A) be the maximal concrete cardinality of some entity
in A. In [19], the operation A ⇑ M̂ is defined, which stretches A such that
C(A ⇑ M̂) is M̂ . The resulting pointer automaton copies each state in A that
contains an unbounded entity e, such that for each materialization of e from
M, M+1, . . . , M̂ and ∗ a state exists. We then have the following result:

Theorem 6. For all abstract pointer automata A such that C(A) < M̂ : L(A) =
L(A ⇑ M̂).

The automaton A ⇑ M̂ is a factor n
�M−M times as large as A, where n is the

maximum number of unbounded entities in the abstract configurations of A.

The tableau graph. The next step is to construct a tableau graph GA(Φ) for Φ
from a given pointer automaton A, assuming that stretching has been done, so
M satisfies the given lower bound for Φ. GA(Φ) enriches A, for each of its states
q, with information about the collections of formulae relevant to the validity
of Φ that possibly hold in q. These “relevant formulae” are essentially sub-
formulae of Φ and their negations; they are collected into the so-called closure

Safety and Liveness in Concurrent Pointer Programs 309

of Φ. For instance, the closure of the formula tl alive ⇒ �(tl alive) which expands
to ¬Ψ ∨ ¬(true U ¬Ψ) with Ψ = tl alive, is the set

true Ψ true U ¬Ψ ©(true U ¬Ψ) ©¬(true U ¬Ψ) Φ
¬true ¬Ψ ¬(true U¬Ψ) ¬©(true U¬Ψ) ¬©¬(true U ¬Ψ) ¬Φ .

In general, the size of the closure is linear in the size of the formula (as in [27]).
The states of GA(Φ) are called atoms (q, D) where q is a state of A and D a
consistent and complete set of valuations of formulae from the closure of Φ on
(the entities of) q. Consistency and completeness approximately mean that, for
instance, if Ψ1 is in the closure then exactly one of Ψ1 and ¬Ψ1 is “included in”
D (i.e., D contains a valuation for it), and if Ψ1 ∨ Ψ2 is in the closure then it is
“in” D iff Ψ1 or Ψ2 is “in” D, etc. For the precise definition we refer to [19]. For
any q, the number of atoms on q is exponential in the size of the closure and in
the number of entities in q.

A transition from (q, D) to (q′, D′) exists in the tableau graph GA(Φ) if
q −→ λ q′ in A and, moreover, to the valuation of each sub-formula ©Ψ in D
there exists a corresponding valuation of Ψ in D′ — where the correspondence
is defined modulo the reallocation λ.

A fulfilling path in GA(Φ) is then an infinite sequence of transitions, starting
from an initial state, that also satisfies all the “until” sub-formulae Ψ1 U Ψ2 in
the atoms, in the sense that if a valuation of Ψ1 U Ψ2 is in a given atom in the
sequence, then a corresponding valuation of Ψ2 occurs in a later atom — where
correspondence is the same notion as above, but now modulo a sequence of
reallocations. We have the following result:

Proposition 1. A |= Φ iff there does not exist a fulfilling path in GA(¬Φ).

Hence the validity of the formula Φ is related to the existence of a fulfilling path
in the graph GA(¬Φ). To decide this, we seek for the existence of a self-fulfilling
strongly connected sub-component (SCS) of the tableau graph that is reachable
from an initial state through some prefix trace. This gives a necessary criterion
for the existence of a fulfilling path. In particular, if we use Inf (π) to denote
the set of atoms that occur infinitely often in an (arbitrary) infinite path π in
GA(Φ), then we have:

Proposition 2. Inf(π) is not a self-fulfilling SCS ⇒ π is not a fulfilling path.

Since the number of SCSs of any finite tableau graph is finite, and the property of
self-fulfillment is decidable, this gives rise to a mechanical procedure for verifying
the validity of formulae. This is formulated in the following theorem:

Theorem 7. For any finite abstract pointer automaton A, it is possible to verify
mechanically whether A |= Φ.

This, combined with Th. 4, implies that, for any concrete automaton Aconc of
which A is an abstraction, it is also possible to verify mechanically whether
Aconc |= Φ. Note that although this theorem leaves the possibility of false neg-
atives (as usual in model checking in the presence of abstraction), it does not

310 D. Distefano, J.-P. Katoen, and A. Rensink

produces false positives. This applies to both safety and liveness properties. Hav-
ing false negatives means that if the algorithm fails to show A |= Φ then it cannot
be concluded that Φ is not satisfiable (by some run of A). However, since such
a failure is always accompanied by a “prospective” fulfilling path of ¬Φ, further
analysis or testing may be used to come to a more precise conclusion.

The algorithm is summarized in Table 3.

Table 3. Procedure for validity of Φ in A

procedure valid(A, Φ)
begin

construct GA(¬Φ);
construct the set Π of reachable self-fulfilling SCS

satisfying the accept condition on FA;
if Π = ∅

then return: “Φ is valid in A”;
else return G′ ∈ Π with its prefix as a (possible) counterexample;
fi

end

7 Concluding Remarks

In this paper, we have introduced a sound analysis of concurrent programs ma-
nipulating heap-allocated linked lists. The analysis is based on an automaton
model where states are equipped with abstract heap representations and tran-
sitions with mappings that allow to model the evolution of heap during the
program computation. Moreover, the analysis is parametric in two constants.
This latter feature reduces the process of abstraction-refinement to simply in-
creasing/decreasing these parameters.

Furthermore, we define a temporal logic called NTL with pointer assertions as
well as predicates referring to the birth or death of memory cells. Although NTL is
essentially a first-order logic, it contains two second-order features: the reachabil-
ity predicate α � β (which computes the transitive closure of pointers), and the
freshness predicate new α (which expressesmembership of the set of fresh entities).

For NTL, we introduce a sound (but not complete) model-checking algorithm
to verify formulae against our automata models. Thus, safety and liveness prop-
erties of heap mutating programs can be verified. We like to mention that for the
(much) simpler framework in which pointers are ignored, it is possible to check
dynamic properties such as the creation and disposal of heap cells in a sound
and complete manner, as described in [20].

References

1. S. Bardin, A. Finkel, and D. Nowak. Towards symbolic verification of programs
handling pointers. In: AVIS 2004.

2. A. Barr. Find the Bug in this Java Program. Addison-Wesley, 2005.

Safety and Liveness in Concurrent Pointer Programs 311

3. D. Basin, S. Matthews and L. Vigano. Labelled modal logics: quantifiers. J. of
Logic, Language and Information, 7(3);237–263, 1998.

4. J. Berdine, C. Calcagno, P.W. O’Hearn. A decidable fragment of separation
logic. In: FSTTCS, LNCS 3328, pp. 97-109, 2004.

5. J. Berdine, C. Calcagno, P.W. O’Hearn. Symbolic execution with separation
logic. APLAS, LNCS 3780, pp. 52-68, 2005.

6. J. Bergstra, A. Ponse and S.A. Smolka (editors). Handbook of Process Algebra.
Elsevier, 2001.

7. A. Bouajjani, P. Habermehl, P. Moro and T. Vojnar. Verifying programs with
dynamic 1-selector-linked list structures in regular model checking. In: TACAS,
LNCS 3440, pp. 13–29, 2005.

8. M. Bozga, R. Iosif, and Y. Lakhnech. Storeless semantics and alias logic. In:
PEPM, pp. 55–65. ACM Press, 2003.

9. M. Bozga, R. Iosif and Y. Lakhnech. On logics of aliasing. In: SAS, LNCS 3148,
pp. 344-360, 2004.

10. R. Burstall. Some techniques for proving correctness of programs which alter data
structures. Machine Intelligence 6: 23–50, 1971.

11. L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In:
ICALP, LNCS 2380, pp. 597–610. Springer, 2002.

12. L. Cardelli and A.D. Gordon. Anytime, anywhere: modal logics for mobile ambi-
ents. In: POPL, pp. 365–377. ACM Press, 2000.

13. D.R. Chase, M. Wegman and F. Zadeck. Analysis of pointers and structures. In:
PLDI, pp. 296–310. ACM Press, 1990.

14. S. Chong and R. Rugina. Static analysis of accessed regions in recursive data
structures. In: SAS, LNCS 2694, pp. 463–482, 2003.

15. S.A. Cook and D. Oppen. An assertion language for data structures. In: POPL,
pp. 160–166. ACM Press, 1975.

16. A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting. In:
PLDI, pp. 230–241. ACM Press, 1994.

17. D. Distefano. A parametric model for the analysis of mobile ambients. In: APLAS,
LNCS 3780, pp. 401–417, 2005.

18. D. Distefano, J.-P. Katoen, and A. Rensink. Who is pointing when to whom? –
On the automated verification of linked list structures In: FSTTCS, LNCS 3328,
pp. 250–262, 2004.

19. D. Distefano, A. Rensink and J.-P. Katoen. Who is pointing when to whom? – On
the automated verification of linked list structures CTIT Tech. Rep. 03-12, 2003.

20. D. Distefano, A. Rensink, and J.-P. Katoen. Model checking birth and death. In:
TCS, pp. 435–447. Kluwer, 2002.

21. M. Fitting. On quantified modal logic. Fundamenta Informatica, 39(1):5–121,
1999.

22. P. Fradet, R. Gaugne, and D. Le Métayer. Static detection of pointer errors: an
axiomatisation and a checking algorithm. In: ESOP, pp. 125–140, LNCS 1058,
1996.

23. R.J. van Glabbeek. The linear time-branching time spectrum I. In [6], Chapter 1,
pp. 3–101, 2001.

24. S. Ishtiaq and P.W. O’Hearn. BI as an assertion language for mutable data struc-
tures. In: POPL, pp. 14–26, ACM Press, 2001.

25. J. Jensen, M. Jørgensen, M. Schwartzbach and N. Klarlund. Automatic verification
of pointer programs using monadic second-order logic. In: PLDI, pp. 226–236. ACM
Press, 1997.

312 D. Distefano, J.-P. Katoen, and A. Rensink

26. N.D. Jones and S.S. Muchnick. Flow analysis and optimization of Lisp-like struc-
tures. In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory
and Applications, Chapter 4, pp. 102-131, Prentice-Hall, 1981.

27. O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In: POPL, pp. 97–107. ACM Press, 1985.

28. G. Nelson. Verifying reachability invariants of linked structures. In: POPL, pp.
38–47. ACM Press, 1983.

29. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction and
canonical abstraction for singly-linked lists. In: VMCAI, LNCS 3385, pp. 181–198,
2005.

30. R. Milner. A Calculus of Communicating Systems. LNCS 92, Springer, 1980.
31. U. Montanari and M. Pistore. An introduction to history-dependent automata.

ENTCS 10, 1998.
32. A. Møller and M. Schwartzbach. The pointer assertion logic engine. In: PLDI, pp.

221–213. ACM Press, 2001.
33. J. Morris. Assignment and linked data structures. In: Th. Found. of Progr. Meth.,

pp. 25–34. Reidel, 1981.
34. P.W. O’Hearn, H. Yang, and J.C. Reynolds. Separation and information hiding.

In: POPL, pp. 268–280. ACM Press, 2004.
35. A. Pnueli. The temporal logic of programs. In: FOCS, pp. 46–57. IEEE CS Press,

1977.
36. A. Rensink. Canonical graph shapes. In: ESOP, LNCS 2986, pp. 401–415. Springer,

2004.
37. J.C. Reynolds. Separation logic: A logic for shared mutable data structures. In:

LICS, pp. 55–74. IEEE CS Press, 2002.
38. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages

with destructive updating. ACM TOPLAS, 20(1): 1–50, 1998.
39. L. Séméria, K. Sato and G. de Micheli. Resolution of dynamic memory allocation

and pointers for the behavioural synthesis from C. In: DATE, pp. 312–319. ACM
Press, 2000.

40. E. Yahav, T. Reps, M. Sagiv, and R. Wilhelm. Verifying temporal heap properties
specified via evolution logic. In: ESOP, LNCS 2618, pp. 204–222. Springer, 2003.

41. T. Yavuz-Kahveci and T. Bultan. Automated verification of concurrent linked lists
with counters. In: SAS, LNCS 2477, pp. 69–82, 2002.

	Introduction
	Concurrent Pointer-Manipulating Programs
	Programming Language
	Some Example Programs
	The Topic of This Paper

	Concrete Semantics
	Heap Abstractions
	Abstracting Pure Chains
	Symbolic Semantics
	Properties of the Semantics

	Pointer Logic
	Syntax of the Pointer Logic
	Semantics of the Pointer Logic
	Properties

	Model Checking Pointer Logic
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

