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Abstract. Localization schemes for wireless sensor networks can be
classified as range-based or range-free. They differ in the information
used for localization. Range-based methods use range measurements,
while range-free techniques only use the content of the messages. None of
the existing algorithms evaluate both types of information. Most of the
localization schemes do not consider mobility. In this paper, a Sequential
Monte Carlo Localization Method is introduced that uses both types of
information as well as mobility to obtain accurate position estimations,
even when high range measurement errors are present in the network and
unpredictable movements of the nodes occur. We test our algorithm in
various environmental settings and compare it to other known localiza-
tion algorithms. The simulations show that our algorithm outperforms
these known range-oriented and range-free algorithms for both static and
dynamic networks. Localization improvements range from 12% to 497 in
a wide range of conditions.

1 Introduction

A wireless sensor network is a network where small sensors with limited hard-
ware capabilities communicate wirelessly with each other. First all nodes are
placed in a random matter (like dropping them from an airplane). “When the
nodes are dropped”, they are capable of communicating with each other within a
certain communication radius. The network can be considered as an undirected
graph using its connectivity and range measurement information. When certain
information is propagated through the network, nodes can be located by using
that information.

Wireless sensor networks hold the promise of many new applications in the
area of monitoring and control. Examples include target tracking, intrusion de-
tection, wildlife habitat monitoring, climate control, and disaster management
([3]). Localization of the nodes is one of the main issues in a wireless sensor
network. While many algorithms have been proposed to estimate the position of
the nodes, there is still no algorithm that performs best in all networks.

As range measurements between nodes contain some error, the nodes’ loca-
tions can only be estimated. This is called “the range error” problem (]2]). Node
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localization algorithms dependent on range measurements are sensitive to range
errors. While range-free algorithms overcome this problem, they perform badly
in irregular networks ([3], [4]). Several studies have been performed to minimize
the impact of these range measurement errors. These studies estimate a node’s
position by giving a certain weight to each measurement or estimated node’s
location. These weights are then used to compute a least square solution by
using an Iterative Weighted Least Square Method (IWLSM) ([2], [7], [19]).

In general, localization algorithms follow the following scheme ([3]): anchor-
unknown distance determination, deriving a node’s position given the anchor
distances, and then refinement of the position estimates. Because mobile sensor
networks are changing fast as time progresses, not much effort has been invested
in researching the refinement phase. However, this phase can be successfully
applied to static networks ([I], [2]).

Most of the current proposed localization algorithms apply an Iterative
Weighted Least Square Method ([I], [2], [6], [7], [I8], [19]). They differ in deter-
mination of the anchor-unknown distances and in weights used in the IWLSM.

Improved MDS-MAP ([5]) uses a different technique: Multi-Dimensional Scal-
ing (MDS). This method uses all available local information around a node and
computes a local map for each node. By merging these local maps and known
anchor positions, a global map can be computed. With this global map avail-
able, the nodes can estimate their position. This centralized localization tech-
nique uses a lot of communication and is therefore not applicable in mobile
sensor networks. In this study, we compare our algorithm with an IWLSM, us-
ing the same weights as our localization scheme. These weights are based on
standard and available knowledge of the accuracy of the range measurement
hardware.

In addition, we compare our algorithm with the following range-free algo-
rithms: DV-hop ([18]) and an SMCL method ([13]). With increasing range mea-
surement error, the positioning error increases of the range-based algorithms. We
made a comparison with range-free algorithms when high range measurement
errors are present in the network.

Our algorithm adapts a Monte Carlo Localization (MCL) method, which has
been successfully implemented in robotics localization ([11]], [12]) and range-free
localization in a mobile wireless sensor networks ([I3]). Our Monte Carlo Local-
ization algorithm combines range-free and range-based information to improve
its performance. It uses the range-free information to increase its robustness even
when high range measurement errors are present in the network. In addition, it
improves the localization accuracy and lowers the computational costs by us-
ing the range measurements. In addition, we use the mobility in the network to
increase accuracy.

This paper is organized as follows: After the problem formulation in Section 2,
Section 3 describes a known Sequential Monte Carlo Localization solution in a
range-free mobile wireless sensor network. In section 4, we introduce our new
algorithm that uses all of the range-free information described in Section 3.
Section 5 presents the simulation reports and comparisons with other localization
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algorithms. In Section 6, we analyze the results of our algorithm and compare
them with the results of other localization algorithms. Section 7 summarizes the
conclusions.

2 Problem Formulation

In a mobile sensor network, we assume that the time is divided into fixed constant
time units. In a time unit, the node moves away from its previous location to its
current location. When a time unit has elapsed, the localization algorithm has to
locate the unknowns with the information available. Our algorithm is interested
in estimating the filtering distribution of a node when range measurements are
available in the network. The Sequential Monte Carlo approach provides simula-
tion based solutions to estimate the posterior distribution of nonlinear discrete
time dynamic models ([9]).

We formulate the mobile localization problem in a state space form as follows:
Let t be the discrete time given in time units; [; is the position distribution of a
node given at time t; o; represents the observations of a node received from the
anchors between time ¢t — 1 and t. We are interested in estimating recursively
in time the so-called filtering distribution: P(It|og.¢). The filtering distribution
is represented by N weighted samples which are updated every time unit, using
an importance function. The performance of the Sequential Monte Carlo Local-
ization algorithm is highly dependent on this latter distribution function. In the
ideal case samples are drawn from the posterior distribution: P(lg.t|0g.¢), but
most of the time it is impossible to sample directly from the posterior distribu-
tion. The general Sequential Monte Carlo method looks like ([15]):

t
P(lo.t|oo:t) = P(loloo) H (Ukllo:(k—1)> 00:k) (1)

Different importance functions have been proposed through the years, which are
most of the time special cases of this general algorithm ([15]). An overview of
Sequential Monte Carlo methods can be found in ([I5]).

3 Known SMCL Solution

A Sequential Monte Carlo Localization algorithm for mobile wireless networks
is described in [13]. In this article no range measurements are present so the
observations of the node (o) only consists of anchor positions. Connectivity con-
straints are constructed from these anchor positions. They use a prior importance
function ([I7]), which implies that the importance function draws samples with-
out any knowledge of the observations. They use the following recursive function:

t

P(l]oo) = H (lie|le—1) (2)

a) = faﬁ?lP(otuﬁ ) (3)
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Their algorithm is divided into three phases which are described in the next
three subparagraphs. In the last subparagraph we discuss the observations and
extensions.

3.1 Prediction Phase

In the prediction phase the samples are drawn from the previous predictions:
P(l4|ls—1). The algorithm assumes that nodes know their maximum speed Va4
Given a previous position l;_; and speed constraint V.., possible predicted
positions by l;_1 are within a circular region with origin [;_; and radius V-
This gives the following constraint:

1 lf d(lt, ltfl) S Vmara

P(lt‘lt_1> = {‘”VE"‘” (4)

0 otherwise.

Here d(l4,1:—1) is the distance between the current prediction I; and the previous
prediction I;—1. Our algorithm also uses this speed constraint (Section 4.2).

3.2 Filtering Phase

In the filtering phase the predictions that do not lie within the connectivity
constraints are filtered (Equation Bt P(o:|l;)). Because the transmission range is
modelled as a perfect circle and only two-hop away information is available, the
following condition holds:

filter(p) = Va € S,d(p,a) <trNVb e T,tr <d(p,b) < 2tr (5)

Here is p the prediction; S is the set of one-hop away anchors, T is the set
of two-hop away anchors; tr is the transmission range and d(p,a) is the dis-
tance between prediction p and anchor a. Because P(o|l;) (Equation [B)) can
only be 1 or 0, the weights associated with the predictions are also 1 (valid) or
0 (invalid). Our algorithm uses an extended version of this filtering condition
(Section 4.2).

3.3 Re-sampling

After one prediction and filtering step, the number of valid predictions is of
variable size. To keep the number of valid predictions of constant size, the process
of predicting and filtering is repeated until N valid samples are drawn. The
simulations proved that N = 50 was sufficient ([I3]). The final position estimate
is the mean of the predictions.

3.4 Observations and Extensions

In the first time unit, no previous predictions are available (P(lp)). In [13],
these previous predictions are placed randomly in the possible area. Placing
the previous predictions randomly gives poor results in the first few time units.
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We propose that if no previous predictions are available, the algorithm makes
predictions based upon the first connectivity constraint received: P(ly \ogl)). This
proposal, shortly mentioned in [I3], not only improves the results in the first few
time units but also decreases the “initialization phase” time. We then use the
following recursive function:

t

P(li]oos) = P(l1]o{") H (lele—1) (6)

The importance function draws predictions based only on previous predictions.
This means that if the constraints based upon connectivity and previous predic-
tions are tight, many predictions have to be made to come to N valid predictions.
It is even possible that this algorithm cannot make any valid predictions. That
is why we use a looping limit that limits the number of times the process of
predicting and filtering is done. When the looping limit is reached and no valid
predictions are made, the algorithm makes predictions as if it had no previous
predictions.

4 SMCL and Range Measurements

In this section, we discuss the case when range measurements are present in the
network. When we include the range measurements into the recursive Sequential
Monte Carlo computation, we obtain the following filtering distribution:

P(lt|occ,O:t7 Orm,O:t) (7>

Here o.,0.¢ are the connectivity constraints and 0,y .+ are the range measurements.

We made an approximation of the optimal solution ([10]) by dividing the
optimal solution into several suboptimal solutions as the optimal solution cannot
be evaluated directly. We propose the following new recursive computation:

P(lt|occ,O:t7 Orm,O:t) ~ Z P(ll‘occ,17o/$”i’2’)‘7l)
(4)

05,1 €0rm, 1

t
H Z P(lk|lkflaocc,kaov(~l7)n,k) (8)

k=2 ()
Oym, ks €EOrm k

Figure[I] shows an overview in pseudocode of the algorithm. The nodes locally
use this algorithm to estimate their positions with the received information of
the anchors. The different phases of the algorithm are discussed in the following
subsections.
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FOR EVERY "time unit" DO

saved predictions become saved previous predictions (section 4.2)
receive, save and forward anchor-unknown distances (section 4.1)
FOR ALL "received range measurements" DO
Compute Nlocal (section 4.3)
Predict and save Nlocal predictions (section 4.2)
END FOR;
Compute weight for each saved prediction (section 4.4)
Compute final position (section 4.4)
END FOR;

Fig. 1. Pseudocode of the range-based SMCL algorithm

4.1 Anchor-Unknown Distances

In this phase, the nodes determine their distance to one or multiple anchors by
using different range measurements. This information is needed by our algorithm
to localize the nodes. Our algorithm uses sum-dist to determine this distance,
nameless in [I] and later named in [3]:

First, anchors start flooding the network with their position, a hop distance
and path length set to zero. Each receiving node adds the measured range to the
path length and increases the hop distance by one. Only the shortest hop distance
and path length is forwarded for each anchor. At the end of this phase, every
node has stored the anchor positions, minimum hop distances, and minimum
path lengths to several anchors.

4.2 Prediction Phase

In the prediction phase, samples are drawn from the previous predictions, con-
nectivity constraints and one range measurement:

P(lk|lk71aocc,kaov(~?n,k) ©)

Our algorithm assumes that the nodes know their maximum speed V;,ax (Sec-
tion 3.1, Equation M), and the filtering condition that represent the connectivity
constraints (Section 3.2, Equation[d]) is updated to support n-hop away anchors:

filter(p) = Va € S,d(p,a) <trNVb e T,tr <d(p,b) <n-tr (10)

Here is T' the set of n-hop away anchors, where n > 2. We also assume that the
transmission range is a perfect circle.

The algorithm needs to evaluate one extra observation compared to the other
SMCL scheme: the range measurement. By using standard geometry, we can
easily evaluate Equation[@l We must do this for all range measurements. We use
this construction because the optimal solution cannot be evaluated directly. An
approximation is made by dividing the optimal solution into several suboptimal
solutions:

P(lt‘lt—hocc,horm,t) ~ Z P(lt|lt—1zocc,t70$~%7t) (11)

o)

rm,t €0rm,t
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In this case, every range measurement can be seen as a sampling function, not
considering the other range measurements. Given range measurement rm to an-
chor position a, the predictions according to the range measurement are some-
where located at the edge of the circle with origin a and radius rm. This gives
the following constraint:

1 if d(lt,a) = rm,

. (12)
0 otherwise.

P(lt|opm) = {

Note that after the prediction phase we only have valid predictions, so we do
not need a filtering phase.

4.3 Weights and Sample Size

Our algorithm uses a constant number of predictions: N. This is done to keep
the computational costs at a low and constant level. In the prediction phase,
the sampling of the predictions is divided into several sampling functions by
the range measurements. So every sampling function samples a portion of NV
predictions: Njoeqi- The size of Nj,eqi depends on the precision of the range
measurement, formulated as: U% . 02, stands for the variance of the range mea-
surement. This variance is based on the hop distance associated with the range
measurement. Every range measurement consists of “hop count” independent
range measurements. We use an approximation made in [I9]:

o2 . ~i-02 (13)

m,: rm,1

Here i stands for the number of hops. Our algorithm uses this approximation
to compute the ratio between the precisions of the various range measurements.
This ratio is used to compute the size of Njoeq;, and is later used to compute
the final position estimation. Note that this ratio can be calculated only using
the “hop count” because we assume that the nodes have the same distance
measurement hardware (07, ; is a constant).

4.4 Computing the Final Position Estimation

In this phase, the algorithm uses the predictions, made in the prediction phase,
to compute its position estimation. With the available range measurements and
associated weights (Equation [[3]), a weight is estimated for each prediction. Let
p1...p; be all predictions with locations x1,y1. ..z, y;. Let A;... A; be all known
anchor positions with associated range measurements R;...R; to the specific
node. The weights of the predictions are computed by the summed squared
error multiplied by the appropriate range measurement weights:

J 2
=Y ()~ Re) (19)
k=1 Tm,

,'  stands for the precision estimate of range measurement Rj. We take the

rm,k

summed square error as an estimate of the variance of prediction p;: agi. Using



Range-Based Localization in Mobile Sensor Networks 171

this estimate, the precision of prediction p; is 012 . If we have N predictions then

P;
N 1
i—=1 o2
=1 oz,

This weighted least square solution can be clomputed with an iterative weighted
least square method. It can also be computed with a weighted mean method.
The weighted mean method uses less computation power and is therefore a good
replacement:

the optimal position (z,y) is where: ) ((xl —2)2+(y; fy)z) is minimized.

N
1 -2
T=_ N - E o, T
Zi:l Opi =1

N
1 § —2
Yy= N —2 : in Y
Zi=1 Opi =1

This algorithm uses the ratio between the weights to compute the weighted least
square solution.

(15)

4.5 Observations

It is possible that no valid predictions can be made. In this case, the algorithm
makes predictions as if it had no previous predictions. When the range measure-
ments are really bad, it is even possible that our algorithm cannot make any
valid predictions with no speed constraints. In that case, the recursive function
proposed in Section 3.4 is used (Equation []).

A range measurement that does not satisfy its own connectivity constraint
changes its value to the nearest number that satisfies this constraint. This in-
creases the performance of the algorithm in several ways:

- More predictions can be made, giving a better representation of the position
distribution.

- Peaks in the range measurements have less influence on the final position
estimation.

5 Simulations

In this section, we analyze our algorithm by running several simulations using
MatLab. In these simulations, we test our algorithm with different values for
algorithm-specific parameters and under various environmental settings. In ad-
dition, we compare our results to other localization techniques: these are the
IWLSM, the range-free MCL scheme ([I3]) and DV-HOP ([18]). We analyze
the results of the localization schemes by looking at the mean error versus the
communication costs.

5.1 General Simulation Set-Up

Except when stated otherwise, we use the same general set-up for all simulations.
The sensor nodes are uniformly placed within a 1z1 units? area and a transmis-
sion range tr of 0.125 units is used. For simplicity, the transmission range is
simulated as a perfect circle and messages are always received correctly.
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The parameters we vary are:

The number of predictions drawn by the sampling function. In general, we
use a number of 50 samples.

The number of nodes placed within the area. In general, we use a number
of 180 nodes. The node density (average number of 1-hop away nodes) is
determined by simulation. The general set-up has a node density of: 13.9.
The number of anchors placed within the area. In general, we use a number
of 20 anchors. The anchor density (average number of 1-hop away anchors) is
determined by simulation. The general set-up has an anchor density of: 1.3.
The speed of the nodes, which we choose randomly from [0, Vmaz]. The
nodes’ speed is given as a ratio of the transmission range. In general, we use
a speed of [0, 1].

The Time-To-Live (TTL) of the messages. This value indicates the number
of times a message is forwarded. We keep the communication costs per al-
gorithm the same with this parameter, so the performance of the different
algorithms are determined by the localization error. DV-Hop isn’t affected by
the TTL and has different communication costs than the other algorithms.
In general, we use a TTL of 4 for every algorithm.

The range measurement errors, which we simulate by a Gaussian distribution
with the real distance as the mean. The standard deviation of the error
is represented as a ratio of the real range. In general, we use a standard
deviation of 0.2 ([7]). This value is based on the picoradio ([8]) that uses
Received Signal Strength Indication (RSSI) for range measurements.

We tested each simulation setup for 50 runs, each consisting of 50 time units.

We adopt a modified ([13]) random waypoint mobility model ([16]) for the nodes.
With this model, a node randomly chooses its destination. After arriving at its
destination, the node chooses a new destination. Furthermore, the speed of the
nodes are changed and randomly chosen from [0, Vmaz] after each time unit
and when the nodes arrive at their destinations. We use this model to maintain

an

average speed. Before localization, we run the modified random waypoint

mobility model for several time units to maintain the distribution created by

thi

s mobility model.

We use the following settings for the other localization schemes:

The extensions proposed in this article (Section 3.4 and Equation [B]) are
used for the range-free SMCL scheme ([13]). We also need another update to
support different values of TTL (Section 4.2, Equation[I0). We use a looping
limit of 10 and a sample size of 50, which should be enough according to [I3].
The IWLSM uses the same weights and range measurement values as our
algorithm.

We use the DV-hop localization scheme as proposed in ([18§]).

5.2 Accuracy

In

this section, we analyze the performance of the various algorithms in case of

the general settings, described in section 5.1. Figure Pl shows the mean error as a
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ratio of the transmission range for all the nodes that received information from
three or more anchors. For both of the SMCL schemes, the localization process
can be divided into the initialization phase and the stable phase ([13]). In the
initialization phase, the positioning error decreases rapidly as new observations
are evaluated. The region of the position distribution becomes smaller until a
stable phase is reached. In the stable phase, the impact of the mobility and
connectivity constraints on the position distribution remain in equilibrium, and
the mean error fluctuates around some mean value. From the first to the last time
unit our SMCL scheme outperforms the other algorithms in terms of the mean
error. All the algorithms have the same communication costs (TTL), except for
DV-hop that has a higher communication cost.

The localization error in the first time unit gives an indication of the mean
error in a static network. The simulations show an improvement of the mean
error in the dynamic case of 36% and in the static case of 27%.

5.3 Sample Size

The predictions and associated weights are a representation of the probability
distribution. When more predictions are made, a better approximation of the
probability distribution is made. While maintaining more samples improves ac-
curacy, it also increases the computational and memory costs for the node. In
this section we try to find a balance between the benefits and losses.

Figure Bl shows that increasing the sample size beyond 20 has a minimal ef-
fect on the positioning error with these specific simulation settings. Choosing
the right sample size mainly depends on the quality and quantity of the received
observations per node. This quality and/or quantity is directly influenced by the
TTL of a message, seed density and precision of the range measurements. So more
samples are needed when the accuracy of the received observations increases.

5.4 Message TTL

The increase of the number of times a message is forwarded is equivalent to an
increase of the average amount of information received by a node. Using this
amount, we distinguished two types of nodes:
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- Good connected nodes, that receive information from three or more anchors.
- Bad connected nodes, that receive information from two or less anchors.

These two types of nodes are not only divided by connectivity to anchors,
but also by localization error. Therefore, the ratio between the number of good
and bad connected nodes mainly determines the overall mean error. This ratio
is affected by the TTL. Figure Bl shows that increasing the TTL, decreases the
overall mean error rapidly. The drawback is that increasing the TTL, increases
the communication costs. Figure [0l shows what affect the TTL has on the av-
erage number of messages sent by a node. After each TTL wave the received
information is combined and forwarded in one message, so this average number
of messages represents the minimum. “Other algorithms” in Figure [l and [d rep-
resent the range-based, range-free and IWLSM localization algorithms, because
the communication costs for these algorithms are equal. The communication
costs of the DV-hop algorithm cannot be changed by the TTL, because it con-
sists of two predefined phases. Figure [6] shows that the communication costs for
the DV-Hop algorithm are more than twice as big as for the other algorithms.

Hence, every time a message is forwarded, the range measurements become
less precise and the connectivity constraints become less tight. This is illustrated
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by Figure[d] which shows a decrease of accuracy of good connected nodes with in-
creasing TTL. Figure @ also shows that this decrease of accuracy with increasing
TTL is minimal.

The bad connected nodes have a dramatically high mean error compared
to the good connected nodes. So including the position estimates of the bad
connected nodes is questionable. When these position estimates are not included,
the chosen TTL for a mobile wireless sensor network mainly depends on the
desired localization coverage. Figure [0 shows the increase of good connected
nodes when the TTL increases.

Therefor, in this paper we use the good connected nodes for the determination
of the mean error.

5.5 Anchor Density

Increasing the number of anchors in the network increases the average number of
observations per node. The localization accuracy depends on this number. The
drawback is that deploying more anchors increases the network and deployment
costs. Figure[ shows the effect of anchor density on the mean error. The number
of 10, 20 and 30 anchors represent the following anchor densities: 0.65, 1.3 and
1.9. Our algorithm performs in terms of mean error 31% better with low anchor
density and 33% with high anchor density than the best other algorithm.

5.6 Node Density

Figure [@ shows the effect of the node density on the localization accuracy. The
number of 100, 150, 200, 250 and 300 nodes represent the following node densi-
ties: 7.4, 10.6, 13.9, 17.0 and 20.1.

We only need the hop-distance to several anchors for the range-free SMCL
scheme to work. That is why this algorithm only requires a low node density to
run properly ([I3]). Increasing the node density slowly increases the number of
observations per node, so the mean error of the range-free SMCL scheme remains
practically stable while the node density is changed. We know that range-based
algorithms, especially the performance of sum-dist, are affected by the node
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density ([3]). Increasing the node density leads to straighter paths between the
nodes and anchors, so that the shortest path becomes a better approximation of
the real distance. When the real distances are better approximated, the range-
based algorithms perform better.

Figure[@shows an improvement of the mean error of 25% with low node density
and 25% with high node density than the best other algorithm compared with
our algorithm.

5.7 Node Speed

The frequency of the localization announcements influences the traveled dis-
tances of the nodes per time unit. Therefore, if localization announcements are
more frequent, the speed of the node per time unit decreases. Updating the
position estimate more frequently improves localization accuracy at the cost of
communication.

Increasing the speed, increases the size of the prediction surface, which is
constructed by the speed and connectivity constraints. This size affects the lo-
calization error, because it limits the position distribution.

In this simulation set-up, we only compare our algorithm with its range-free
counterpart because the node speed is only used by the SMCL schemes. Figure[IQ
shows that our algorithm performs in terms of mean error 36% better with a low
speed and 497 with a high speed than the range-free MCL scheme.

5.8 Range Measurement Error

The precision of the range measurements has a significant influence on the ac-
curacy of the range-based localization schemes.

Figure[IIlshows that our algorithm performs 40% better with a low range mea-
surement error and 41% with a high range measurement error than the IWLSM.
Even with a range measurement error of 0.4 our algorithm has a 12% lower mean
error than the best range-free algorithm.
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6 Analysis

In this section, we analyze our algorithm and compare it with other known
algorithms. Our algorithm is interested in the filtering condition (Equation [7).
We made an approximation of the optimal solution by using several suboptimal
solutions (Equation [II]) as the optimal solution cannot be evaluated directly.
In our case, we use the range measurements to characterize these suboptimal
solutions. We use the same range measurements in the final position estimation.
This construction has several benefits:

- Bad range measurements filtered by the connectivity and/or speed con-
straints do not have any influence on the position distribution.

- Every range measurement gives an indication of the real position of the node,
so that all measurements are evaluated in the final position estimation.

- The performance of our algorithm is less dependent on the range measure-
ment errors (Figure [IT]).

The range-free MCL scheme([13]) uses a prior sampling function. This means
that this MCL scheme makes predictions based upon its previous predictions and
filters bad predictions with the connectivity constraints. This iterative two-step
construction is needed because the posterior distribution cannot be evaluated
directly. Our range-based algorithm uses a non-iterative MCL scheme and eval-
uates as much information as possible in the sampling function. This has several
benefits over its range-free counterpart:

- Every previous prediction has a more equal chance to make a prediction.

- The computational costs are more constant and less situation dependent.

- Our algorithm is less dependent on the speed of the node (Figure [I0).

- Using the range measurements, our algorithm decreases localization error by
12% to 49% (Figure [II)).

Many of the known range-based and range-free localization algorithms use
an Iterative Weighted Least Square Method to estimate positions. The IWLSM
starts from an initial estimation and improves the position until the improvement
is smaller than a certain value. The position estimate is the global or local mini-
mum of the summed weighted squared error, using the range measurements and
associated weights. In most situations, especially when the range error increases,
there are more local minima. Dependent on the starting position the IWLSM
chooses one of these local minima. Our approach uses the fact that these local
minima are located near the range measurements. OQur algorithm tries to make
predictions near these local minima to evaluate the entire surface, while not
picking one of these local minima.

As an example, consider the case when the positions of the anchors are
collinear and the range measurements contain no error. In the perfect case, the
IWLSM chooses one of the local minima, while our algorithm chooses the mean
of the two local minima. If we also evaluate the previous position distribution,
the mobility and connectivity constraints the collinearity problem [I] is often
solved.
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In this paper, the communication costs for the different algorithms are equal,
except for the DV-hop algorithm that uses much more communication (Figureld]).

7

Conclusions

In this paper, we proposed a non-iterative MCL scheme that uses all informa-
tion to improve localization accuracy and robustness. This information consists
of range measurements, connectivity constraints, and mobility information. Sim-
ulations show that our algorithm decreases the localization error by 127% to 49%
in static and dynamic networks under a wide range of conditions, even when

the

node and network resources are limited. Future work aims at testing our

algorithm in other mobility models and real life settings.
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