
Preface

This volume contains the contributions to the Workshop on Graph Trans-
formation for Concurrency and Verification (GT-VC 2005), held as a sstellite
of CONCUR 2005, on 22 August 2005 in, San Francisco, California, USA.
Here we briefly recall the aim of the workshop, and report on the discussion
session.

Graph transformations are a formalism which can be used to specify—in
a natural and intuitive way—systems with dynamically evolving topologies.
In recent years this led to close and fruitful interactions with other areas
which traditionally use text-based specification languages. These include con-
currency theory as well as system verification and analysis. In both areas a
current tendency of increasing the level of dynamicity and mobility in the sys-
tems which are being studied is quite apparent. For instance in concurrency
theory there is an abundance of process calculi for studying mobility, reaching
from the π-calculus to more recent proposals such as the ambient calculus.
Static analysis—on the other hand—struggles with the verification of highly
dynamic systems such as pointer structures, witnessed for instance the work
on shape analysis.

In our opinion graph rewriting has something to offer to these research
areas: a well-developed algebraic theory of graphs and graph transformation,
as well as a variety of tools. So in order to bring together people working in
this area and in order to further the cooperation with the areas of verification
and concurrency, we organized the first workshop on Graph Transformation
for Concurrency and Verification (GT-VC).

The workshop was co-located with CONCUR in San Francisco and took
place on August 22, 2005. There were 11 submissions (4 full papers and 7
work-in-progress papers), of which 8 were accepted. Apart from the ensuing
presentations, Carolyn Talcott (SRI International) presented some of her work
on “Formal Modeling via Executable Specifications in Rewriting Logic”. The

Electronic Notes in Theoretical Computer Science 154 (2006) 1–5

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.03.028

http://www.elsevier.com/locate/entcs


workshop was closed by a discussion session, reported below, in which the
participants related their respective research areas to each other and placed
their research in a broader context.

We are very glad for having the opportunity of disseminating the results
of the workshop through ENTCS. At this opportunity we would also like to
thank the organiser of the main event, Luca Alfaro, for his tireless support,
and the Program Committee members (and the secondary reviewers) for their
careful work:

• Paolo Baldan, University of Venice
• Ahmed Bouajjani, University of Paris 7
• Hartmut Ehrig, Technical University of Berlin
• Wan Fokkink, Vrije Universiteit Amsterdam
• Dirk Janssens, University of Antwerp
• Ian Mackie, King’s College, London
• Ugo Montanari, University of Pisa
• Mooly Sagiv, Tel-Aviv University
• Vladimiro Sassone, University of Sussex
• Dániel Varró, Budapest University of Technology and Economics
• Nobuko Yoshida, Imperial College, London

Discussion Session

The discussion was held under the motto: “Graph Transformation for Con-
currency and Verification: What Gains?” where the theme of the workshop
was put into a broader context. The participants were asked to position them-
selves with respect to the areas of graph transformation (on the one hand) and
verification and concurrency (on the other hand); moreover, they were asked
to state their longer-term ambitions.

From graph transformation to verification and concurrency or back?

With respect to the first subject: the title and theme of the workshop —
Graph Transformation for Verification and Concurrency — joins two long-
standing fields of research; however, the ”for” in the title can be read either
from left to right — meaning that the primary aim of the research is to bring
results and insights from graph transformation (abbreviated by GT) to bear
on verification or concurrency theory (abbreviated by VC) — or in the reverse
direction. The participants were asked which of these directions they associate
with most.

It turned out that there were adherents of both directions, but also that

Preface / Electronic Notes in Theoretical Computer Science 154 (2006) 1–52



some of those present felt that the distinction did not do justice to their actual
position.

GT → VC.

Those more interested in bringing techniques from graph transformation to
verficiation and concurrency typically start with the observation that graphs
are a very suitable candidate for an abstract model of computation which (due
to the built-in consequence of working up to graph isomorphism) automatically
smoothes over distinctions that complicate the theory otherwise. An example
of this is structural equivalence of process algebraic terms, which is reduced
to isomorphism of graphs in a suitable translation.

Of the contributions in the workshop, [1,4,7] most clearly represent this
line of research. In each of these papers, graph-like models are used to provide
semantics to process calculi.

VC → GT.

Those more interested in bringing techniques from concurrency and veri-
fication to graph transformation, on the other hand, typically start with the
observation that graphs are a very suitable model for concrete systems. The
fundamental question of how to verify such systems is, however, not really
affected by the choice of using graphs for modelling them. Thus, the theories
and techniques developed originally in the context of verification and concur-
rency are to be transferred to the graph world. Typical examples of such
techniques are model checking, compositionality and performance analysis.

Of the contributions to the workshop, [6,8] most clearly represent this line
of research: the first is carried out in the contet of model checking, whereas
the second is concerned with performance analysis.

GT ∪ VC → SE.

It also turned out that for several of the participants, the application of
their research in software engineering (abbreviated by SE) and programming
is the central driving force, and the techniques brought to bear, whether from
graph transformation or verification or concurrency, are of secondary impor-
tance. For instance looking at the contributions to the workshop, [2,10] pro-
pose graph transformation-based formalisms as models for the specification of
algorithms, and [3] addresses system verification on the level of programs.

Preface / Electronic Notes in Theoretical Computer Science 154 (2006) 1–5 3



Our 10-Year Ambition

The longer-term ambition that we asked for elicited two types of answers from
the participants: application-centric and theory-centric ones.

The main inspiration for the theory-centric position was the desire to find
natural abstractions that will give rise to a deeper understanding of the funda-
mentals of computation. It was thought to be difficult to present the essential
ideas of graph transformation to a non-expert as long as we are still lacking
pieces of the theoretical puzzle. For instance, we know that there are many
variations and distinctions in the current definitions of grphs and graph trans-
formation; how should we give a uniform and understandable exposition to a
software engineer, in a way that will enable him to make use of graph trans-
formation in practical applications, as long as we have not achieved a more
uniform theoretical understanding?

Those harbouring more application-centric ambitions tended to observe
that graphical formalisms are a natural, intuitive and (nowadays) widely ac-
cepted formalism used in software engineering. Here lies a chance for graph
transformation to actually make an impact. The fact that there is no con-
sensus on what is the “best” definition of graphs or of graph transformations
should not keep us from spending effort to show the usefulness of the basic
ideas for practical applications.

Arend Rensink

Reiko Heckel

Barbara König

References

[1] M. Bundgaard and T. Hildebrandt. Bigraphical semantics of higher-order mobile embedded
resources with local names. This volume.

[2] B. Derbel and M. Mosbah. Distributed graph traversals by relabelling systems with
applications. This volume.

[3] M. Dodds and D. Plump. Extending C for checking shape safety. This volume.

[4] F. Gadducci and A. Lluch-Lafuente. Graphical verification of a spatial logic for the π-calculus.
This volume.

[5] R. Heckel, B. König, and A. Rensink, editors. Graph Transformation for Verification and
Concurrency (GT-VC), number 05–34 in CTIT Technical Reports. Centre for Telematics and
Information Technology, University of Twente, 2005.

[6] H. Kastenberg. Towards attributed graphs in GROOVE — work in progress. This volume.

[7] I. Lanese and U. Montanari. Hoare vs Milner: comparing synchronizations in a graphical
framework with mobility. This volume.

Preface / Electronic Notes in Theoretical Computer Science 154 (2006) 1–54



[8] S. Menge and G. Lajios. A framework for stochastic system modelling and analysis — work
in progress. This volume.

[9] C. Talcott. Formal modeling via executable specifications in rewriting logic. In Heckel et al.
[5], page 1.

[10] D. Wroblewski. Semi-local model of computations on graphs to break the local symmetry —
work in progress. This volume.

Preface / Electronic Notes in Theoretical Computer Science 154 (2006) 1–5 5


	References

