
Note on a Class of Admission Control Policies
for the Stochastic Knapsack Problem

Adriana F. Gabor1 and Jan-Kees C.W. van Ommeren2

1 EURANDOM and Faculty of Mathematics and Computer Science,
TUE, P.O.Box 513, 5600 MB, Eindhoven, The Netherlands

a.f.gabor@tue.nl
2 Faculty of Electrical Engineering, Mathematics and Computer Science, University

of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
j.c.w.vanommeren@ewi.utwente.nl

Abstract. In this note we discuss a class of exponential penalty func-
tion policies recently proposed by Iyengar and Sigman for controlling a
stochastic knapsack. These policies are based on the optimal solution of
some related deterministic linear programs. By finding explicitly their
optimal solution, we reinterpret the exponential penalty function poli-
cies and show that they belong to the class of threshold policies. This
explains their good practical behavior, facilitates the comparison with
the thinning policy, simplifies considerably their analysis and improves
the bounds previously proposed.

1 Introduction

Recently, Iyengar and Sigman [1] proposed an exponential penalty function pol-
icy for controlling a loss network. A loss network is a network of resources, each
with a known capacity. Requests for using the capacity are divided into classes,
corresponding to arrival rates, service duration, resource requirements, and the
profit they will bring for the network. There is no waiting room, so at every
arrival of a request, it must be decided whether to accept the request or not. An
admitted request occupies the allocated resource for the service duration and
releases all the resources when it leaves the network. The objective is to design
an admission policy that optimizes an appropriate performance measure of the
revenue.

A major part of [1] is dedicated to the stochastic knapsack, which is a loss
network with only one resource. For a review on other policies proposed for
controlling the stochastic knapsack, see [5].

In this note we will focus on the exponential penalty function policy proposed
in [1] for controlling a stochastic knapsack. This policy is based on the solution
to a linear program. By solving this LP explicitly, we will show that for the
stochastic knapsack, this policy reduces to a threshold policy. From the optimal
solution of this LP we will derive an index, called the ”threshold” index, which
will divide the classes of different indices into two groups: one that will always
be rejected, and one that will be accepted if there is enough capacity to accom-
modate them. The requests belonging to the class with the threshold index, are

S.-W. Cheng and C.K. Poon (Eds.): AAIM 2006, LNCS 4041, pp. 207–219, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

208 A.F. Gabor and J.-K.C.W. van Ommeren

accepted only if they satisfy an extra condition, given by the penalty function.
By interpreting the exponential penalty function policy as a threshold policy, we
are then able to improve the bounds on the expected reward rate obtained in [1]
and to compare the exponential policy with the thinning policy proposed in [3].

This note closely follows [1] and is organized as follows. In Section 2 we present
in detail the stochastic knapsack problem. With the exception of the last sec-
tion, we will present the analysis for exponential service times. In Section 3 we
discuss bounds for the expected reward rate achieved by admission policies in
a stochastic knapsack. We start by discussing the upper bound proposed in [1]
on the expected reward rate achieved by a policy and tighten it. Then we fo-
cus on the exponential penalty function policy and show that it is a threshold
policy. This will lead to improved lower bounds for the expected reward rate.
We continue by discussing the bounds in the ”steady-state” regime. In Section 4
we will compare the exponential penalty function policy and the thinning policy
(for the stochastic knapsack). In Section 5 we generalize the results presented in
the previous sections to service times with a general distribution. We conclude
with some remarks on the exponential penalty function policy for the stochas-
tic knapsack and discuss why the results presented in this note are not easily
generalized to loss networks.

2 Admission Control in the Stochastic Knapsack

The stochastic knapsack problem is a special case of a loss network problem
and can be formulated as follows. There is a knapsack (network) of capacity
b ∈ R+. Requests for using the network belong to m independent Poisson arrival
classes. Class i requests have an arrival rate λi and a service duration Si which
is exponentially distributed with rate μi (with the exception of Section 5), i.e.,
Si ∼ exp(μi). The requests in class i need a capacity bi and pay ri per unit time
during their service duration. There is no waiting room in the system, therefore,
each arriving request must either be accepted to the system and assigned a
capacity allocation or rejected. When an accepted request departs after service
completion, it releases all the allocated resources simultaneously. For simplicity,
we will assume that the system is initially empty (all results easily generalize to
the case when the system is not initially empty).

Let T(i,n), i = 1, ..., m, n ≥ 1 denote the arrival epoch of the nth class i
request. Since all admission decisions are made at arrival epochs, a feasible ad-
mission control policy π can be described as a collection of random variables
π = {π(i,n), i = 1, ..., m, n ≥ 1}, with π(i,n) = 0 denoting that request of type i
arriving at the epoch T(i,n) is rejected and π(i,n) = 1 denoting that the request
is accepted.

Let xπ
i (t) be the number of class i requests in the system at time t under

policy π. Define xπ(t) = (x1(t), ..., xm(t)). A request class i can be accepted
only if there is sufficient capacity to accommodate it, that is

m∑

i′=1

bi′xi′ (t) + bi ≤ b.

Note on a Class of Admission Control Policies 209

The system controller is permitted to reject requests even if there is sufficient
capacity.

The instantaneous reward rate Rπ(t) under policy π at time t is given by

Rπ(t) =
m∑

i=1

rix
π
i (t).

The objective of the controller is to choose a policy π that maximizes a cer-
tain function of the reward rate process {Rπ(t), t ≥ 0}. Common performance
measures for finite time horizon problems are either the expected total re-
ward E[

∫ T

0 Rπ(s)ds] or the expected discounted reward E[
∫ T

0 e−βsRπ(s)ds], with
β > 0; for infinite horizon problems, appropriate measures are either the dis-
counted reward E[

∫ ∞
0 e−βsRπ(s)ds], β > 0 or the long-run average reward limit

limT→∞ 1
T E[

∫ T

0 Rπ(s)ds].
In [1] the authors construct feasible policies that perform well both in the

transient period and in steady state. They first establish an upper bound R∗(t)
on the achievable expected reward rate E[Rπ(t)] and then construct a feasible
policy π̄ with expected reward rate E[Rπ(t)] � R∗(t). Thus, the policy π̄ satisfies

E[
∫ T

0
e−βsRπ(s)ds] ≤

∫ T

0
e−βsR∗(s)ds � E[

∫ T

0
e−βsRπ̄(s)ds],

for β > 0, which means that π̄ is approximately optimal for any finite time
horizon, and

lim
T→∞

1
T

E[
∫ T

0
Rπ(s)ds] ≤ lim

T→∞
1
T

∫ T

0
R∗(s)ds � lim

T→∞
1
T

E[
∫ T

0
Rπ̄(s)ds],

that is, π̄ is approximately optimal in steady state as well.
In the next sections we will discuss the admission policy π̄ proposed in [1].

We will prove that it is a threshold policy, i.e., only classes of a certain index
are admitted to the network. This will also lead to improved bounds and an
analytical comparison with the thinning policy proposed by Kelly.

3 Control Policies for the Stochastic Knapsack

3.1 Upper Bound on the Achievable Reward Rate

In this section we discuss the upper bound on the achievable reward at time t
proposed in [1] and show a simple way of calculating it.

Let π denote any feasible control policy for the single resource model. Let xπ
i (t)

denote the number of class i requests at time t. Since (xπ
i (t))i=1,m is feasible,

m∑

i=1

biE[xπ
i (t)] ≤ b.

210 A.F. Gabor and J.-K.C.W. van Ommeren

Clearly, E[xπ
i (t)] ≤ E[qi(t)], where qi(t) is the number of class i requests at

time t in a corresponding M/M/∞ system. Since the system is initially empty,
E[qi(t)] = ρi(1 − e−μit) , where ρi = λi

μi
(see e.g. [6] page 75). Hence,

α = (
E[xπ

1 (t)]
ρ1

, ...,
E[xπ

m(t)]
ρm

)

is feasible for the following linear program:

maximize

m∑

i=1

riρiαi

P (t) s.t.
m∑

i=1

biρiαi ≤ b,

0 ≤ αi ≤ 1 − e−μit.

Let α∗(t) denote an optimal solution of the linear program P(t) and let R∗(t)
denote its optimal value. Clearly,

E[Rπ(t)] =
m∑

i=1

riE[xπ
i (t)] ≤ R∗(t).

In [1] the authors find an upper bound on E[Rπ(t)] by finding an upper bound
on R∗(t). Next we show how the exact value of R∗(t) can be directly calculated.

Note that the problem P(t) is a continuous knapsack problem (see e.g. [4]).
Thus, an optimal solution can be found as follows. Suppose from now on that
the classes are indexed in decreasing order of the profit to capacity ratio, i.e.,

r1

b1
≥ ... ≥ rm

bm
.

Let k∗(t) be the index with the following property:

k∗(t)−1∑

i=1

biρi(1 − e−μit) ≤ b and
k∗(t)∑

i=1

biρi(1 − e−μit) > b. (1)

Then, the optimal solution of P(t) is given by:

α∗
i (t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − e−μit, for i < k∗(t) − 1
b−�k∗(t)

i=1 biρi(1−e−μit)

bk∗(t)ρk∗(t)(1−e
−μk∗(t)t)

, for i = k∗(t)

0, for i > k∗(t).

(2)

Hence, we have obtained the following upper bound.

Theorem 1. The reward rate Rπ(t) of any feasible policy π satisfies

E[Rπ(t)] ≤ R∗(t) =
k∗(t)∑

i=1

riρiα
∗
i (t),

where R∗(t) is the optimal value of (P) and α∗
i (t) is given by (2).

Note on a Class of Admission Control Policies 211

3.2 The Exponential Penalty Function Policy

In this section we describe the penalty function policy proposed in [1] and show
that it is a threshold policy. This leads to improved lower bounds for the expected
reward obtained by the penalty function policy and facilitates the comparison
with the thinning policy proposed by Kelly [3].

Next we introduce two linear programs which play an essential role in describ-
ing and analyzing the penalty policy.

Define the ”steady state” version of P (t) as

maximize
m∑

i=1

riρiαi

P s.t.

m∑

i=1

biρiαi ≤ b,

0 ≤ αi ≤ 1.

Since P is a continuous knapsack problem, it’s optimal solution α∗ has the
following structure:

α∗
i =

⎧
⎪⎨

⎪⎩

1, for i < k∗

b−�k∗
i=1 biρi

bk∗ ρk∗ , for i = k∗

0, for i > k∗,

(3)

where k∗ is the index for which
k∗−1∑

i=1

biρi ≤ b and
k∗∑

i=1

biρi > b.

Consider the following perturbation of the program P.

maximize

m∑

i=1

riρiαi

Pε s.t.

m∑

i=1

biρiαi ≤ b

1 + 4ε
,

0 ≤ αi ≤ 1.

The optimal solution αε of Pε is : αε
i = 1, for i ≤ kε, αε

kε ∈ (0, 1) and αε
i = 0, for

i ≥ kε, where kε is the index for which

kε−1∑

i=1

biρi ≤ b

1 + 4ε
and

kε∑

i=1

biρi >
b

1 + 4ε
.

Denote by R∗, respectively R∗
ε , the optimal value of P , respectively Pε. By

comparing the feasibility regions and the optimal solutions of the problems P (t),
P and Pε, we obtain the following relationships among them.

212 A.F. Gabor and J.-K.C.W. van Ommeren

Lemma 1. a) kε ≤ k∗ ≤ k∗(t)
b) R∗

ε ≤ R∗ ≤ R∗(t).

In our analysis, we will also make use of the dual problems D, respectively Dε,
of P , respectively Pε:

minimize ub +
m∑

i=1

vi minimize u
b

1 + 4ε
+

m∑

i=1

vi

D s.t. vi + biρiu ≥ riρi, i = 1, ..., m Dε s.t. vi + biρiu ≥ riρi, i = 1, ..., m

v ≥ 0,u ≥ 0 v ≥ 0,u ≥ 0

The next lemma will prove useful in the analysis of the exponential penalty
policy.

Lemma 2. If (u∗, v∗) is optimal solution for both D and Dε, then rk∗
bk∗ = rkε

bkε
.

Proof. From the complementary slackness conditions follows that the optimal
solutions (u∗, v∗) of D and (uε, vε) of Dε are equal to:

u∗ =
rk∗

bk∗

v∗ =

{
(ri − rk∗

bk∗ bi)ρi, for i = 1, ..., k∗

0, for i ≥ k∗ + 1

and

ukε =
rkε

bkε

vkε =

{
(ri − rkε

bkε
bi)ρi, for i = 1, ..., kε

0, for i ≥ kε + 1.

Hence, for (u∗, v∗) to be optimal for Dε, it is necessary that rk∗
bk∗ = rkε

bkε
.

The penalty function policy π̄ proposed in [1] can be described as follows. The
classes of requests that may be accepted by the penalty function policy are
restricted to the ones with α∗

i �= 0, where α∗ is the optimal solution of P. Hence,
only the classes of index at most k∗ are considered.

”Construct” an ”augmented network” as follows. Additional to the initial
system, called system 0, consider a fictitious infinite capacity system, called
system 1. The state of the augmented network (formed by system 0 and system 1
together) at time t is s(t) = (x(t), y(t)) ∈ Z2m, where xi(t), i ∈ {1, ..., m} denotes
the number of class i requests in system 0 at time t and yi(t), i ∈ {1, ..., m}
denotes the number of class i requests being served in system 1 at time t. System
0 is initially empty, and system 1 is initialized with y0

i (0−) = (1 − αε
i)ρi, for

i = 1, kε. Note that y0
i (0−) = 0, for i < kε.

Note on a Class of Admission Control Policies 213

For each class i, define the following penalty function Ψi(s):

Ψi(s(t)) = exp(β
bixi(t)

c0
i

) + exp(β
biyi(t)

c1
i

).

An incoming request of type i is accepted in server 0 if it fits into the knapsack
and the following condition holds

∂Ψi(s(t))
∂xi

≤ ∂Ψi(s(t))
∂yi

, (4)

otherwise it is sent to server 1, where it stays its service time and then leaves
the network. The constants c0

i , c
1
i and β are defined as

c0
i = (1 + 4ε)αε

ibiρi and c1
i = (1 + 4ε)(1 − αε

i)biρi, (5)

β ≤ ε min{c0
i

bi
,
c1
i

bi
: c0

i �= 0 and c1
i �= 0} (6)

where αε is the optimal solution of (Pε).

Remark 1. Condition (4) is equivalent with:

xi(t)
c0
i

≤ yi(t)
c1
i

+
1

βbi
log(

c0
i

c1
i

).

Interpretation of the penalty policy. Based on the exact expression of αε,
we are now able to reinterpret the penalty policy π̄ as follows:

ACCEPT all the requests of classes i < kε that fit into the knapsack,
REJECT all the requests of classes i > kε

ACCEPT the requests of class kε if

xkε(t)
αε

kε

≤ ykε(t)
1 − αε

kε

+
(1 + 4ε)ρkε

β
log(

αε
kε

1 − αε
kε

)

The rejected requests are sent to system 1, where they remain for the duration
of their service time.

Remark 2. Since all requests of class i, i < kε, are accepted as long as there is
capacity, we conclude that the exponential penalty policy proposed in [1] is a
threshold policy with the threshhold index kε.

3.3 On a Lower Bound on the Expected Reward Achieved by π̄

In this section we will show how the analysis of the exponential penalty function
policy presented in [1] can be simplified and improved by interpreting the policy
as a threshold policy. We will first summarize the results obtained in [1].

214 A.F. Gabor and J.-K.C.W. van Ommeren

Let ξi(t), respectively ηi(t) be the number of class i requests in system 1 at
time t that were rejected by the penalty function, respectively by the capacity
constraints.

Clearly, for each i ≤ m,

E[xi(t)] = E[qi(t)] + E[y0
i (t)] − E[yi(t)]

≥ E[qi(t)] + E[y0
i (t)] − (E[ξi(t)] + E[ηi(t)]). (7)

Hence, one way to obtain lower bounds for E[xi(t)], is to obtain upperbounds
for E[ξi(t)], respectively E[ηi(t)].

These upper bounds are obtained by comparison with x̃i(t), respectively ỹi(t),
the number of requests of type i present at time t in system 0, respectively system
1, in the network if the capacity was infinite.

Between xi(t), x̃i(t), ξi(t) and ηi(t), the following relationships exist (see [1]
for the proofs):

Lemma 3. a)For each i ≤ m, xi(t)
d
≤ x̃i(t) and ỹi(t)

d
≤ yi(t), where X

d
≤ Y

denotes the fact that, for all u ≥ 0, P (X ≥ u) ≤ P (Y ≥ u).

b)For each i ≤ m, E[e
βbix̃i(t)

b] ≤
(
2e(1− ε

2)β
) c0i

b and E[ỹi(t)] ≤ (1+ς)(1−αε
i)ρi,

where ς =
(

log(2)
β + 1 − ε

2

)
(1 + 4ε) − 1.

c) For each i ≤ m, E[ξi(t)] ≤ E[ỹi(t)].
d) For each i ≤ m, E[ηi(t)] ≤ 2ρie

− ε
2 (β−4)(1 − e−μit).

Substituting the bounds obtained in Lemma 3 in formula (7), one can lower
bound the expected reward achieved by policy π̄:

Theorem 2. For ε < 1
4 ,

E[R̄(t)] ≥ max{
m∑

i=1

riρi(1 − e−μit)(αε
i − 2e−

ε
2 (β−4)) − ς(1 − αε

i)), 0}, (8)

where ς =
(

log(2)
β + 1 − ε

2

)
(1 + 4ε) − 1 and c0

i , c
1
i , β are given by (5) and (6).

We proceed now with the tightening of the bound in Theorem 2.
First, remark that for i > kε, xi(t) = 0, hence these types of requests will

not bring any profit. Therefore, in the remainder of this note, we will omit
from the analysis the classes of index higher then kε. Moreover, the definition
of x̃i(t), together with the fact that kε is the threshold index, implies that for
i < kε, x̃i(t)

d= qi(t). Hence, for these classes E[e
βbix̃i(t)

b] can be obtained exactly,
namely:

E[e
βbix̃i(t)

b] = E[e
βbiqi(t)

b] = eρi(1−e−μit)(e
βbi

b −1) ≤ eρi(ε+1)(1−e−μit) βbi
b , (9)

where for the last inequality we have used the fact that for x ∈ (0, 1), ex ≤ x+x2

and that βbi

b ≤ ε.

Note on a Class of Admission Control Policies 215

Also, for i < kε, ỹi(t)
d= ξi(t)

d= 0.
Consider now E[ηi(t)]. For i ≤ kε,

E[ηi(t)] =
∫ t

0
λiP (

kε∑

i=1

bixi(u) ≥ b − bi)e−μi(t−u)du (10)

≤
∫ t

0
λiP (

kε∑

i=1

bix̃i(u) ≥ b − bi)e−μi(t−u)du (11)

≤ e−β(1− bi
b)

∫ t

0
λiE[e

�kε

i=1
βbi

b x̃i(u)]e−μi(t−u)du (12)

= e−β(1− bi
b)

∫ t

0
λi

kε∏

i=1

E[e
βbi

b x̃i(u)]e−μi(t−u)du, (13)

where in (11) we have used Lemma 3 a), in (12) we have used Markov’s inequality
and in (13) we have used the independency of the x̃i’s.

By substituting in (13) the expression for E[e
βbix̃i(t)

b] obtained in (9) for indices
i < kε and the bound given in Lemma 3 b) for i = kε, we obtain that:

E[ηi(t)] ≤ 2
c0
kε
b e−

ε
2 (β−4)(1 − e−μit). (14)

Finally, by combining (7), the bound in Lemma 3 b) and c) for i = kε (for
i �= kε, ξi(t) = 0), and (14) , we improve the lower bounds on the expected
number of requests of each type in the network at time t and on the expected
reward achieved by policy π̄ as follows.

Theorem 3. a) For i < kε,

E[xi(t)] ≥ ρi(1 − e−μit)max{1 − 2
c0
kε
b e−

ε
2 (β−4), 0}.

For i = kε,

E[xkε(t)] ≥ ρkεmax{(1 − e−μkε t)(αkε − 2
c0
kε
b e−

ε
2 (β−4)) − ς(1 − αε

kε), 0}.

b) For ε < 1
4 , the average return E[R̄(t)] obtained by policy π̄ can be bounded

from below as follows:

E[R̄(t)] ≥
kε−1∑

i=1

riρi(1 − e−μit)max{1 − 2
c0
kε
b e−

ε
2 (β−4), 0}+

+ rkερkε max{(1 − e−μkεt)(αε
kε − 2

c0
kε
b e−

ε
2 (β−4)) − ς(1 − αε

kε), 0}. (15)

Remark 3. From the comparison of the upper bound on the achievable reward
R∗(t) and the lower bound given in Theorem 3, we conclude that if kε is close
to k∗(t), and if β >> 1, the quality of the bounds is very good. However, if ε is

chosen such that ε2

2 ≤ bkε

b , then it can be proven that 1 < 2
c0
kε
b e−

ε
2 (β−4), which

implies that the lower bound given in the previous theorem is 0.

216 A.F. Gabor and J.-K.C.W. van Ommeren

3.4 Bounds of the Exponential Penalty Policy in a Limiting Regime

In this section we will discuss the behaviour of policy π̄ when t → ∞ and the
influence of the choice of ε on the policy in this regime.

Denote by L(t) the lower bound in Theorem 3. Clearly, the following relation
holds:

lim
t→∞

L(t)
R∗ = max{1 − 2

c0
kε
b e−

ε
2 (β−4), 0}(1 −

I{kε<k∗}
∑k∗−1

i=kε riρi + rk∗ρk∗αk∗

∑k∗−1
i=1 riρi + rk∗ρk∗αk∗

)

− max{(1 − e−μkε t)(αε
kε − 2

c0
kε
b e−

ε
2 (β−4))

− ς(1 − αε
kε), 0} rkερkε

∑k∗−1
i=1 riρi + rk∗ρk∗αk∗

, (16)

where I{kε<k∗} = 1 if kε < k∗ and 0 otherwise.
Note that the classes that cause the bound in (16) to deviate from 1 are

the ones that are admitted in the knapsack problem P but are not admit-
ted in the perturbed knapsack problem Pε. It is then intuitive that by re-
stricting the number of such classes, the bound improves. This is exactly what
happens by choosing e.g. ε such that ε < max{ε0,

1
4}, with ε0 = max{ε :

D and Dε have the same optimal solution}, as in [1], Corollary 1. From Lemma
1 follows that if ε < ε0, for each k such that kε ≤ k ≤ k∗, rk

bk
= rk∗

bk∗ . If for each
k �= k∗, rk

bk
�= rk∗

bk∗ , then the classes admitted into the knapsack in problem P and
Pε coincide (kε = k∗). The only difference is that in Pε, a lower fraction of class
k∗ is admitted.

4 On the Penalty Function Policy and the Thinning
Policy

The thinning policy was proposed by Kelly in [3]. In [1], the authors compare
experimentally the exponential penalty function policy with the thinning policy
and conclude that the first policy performs better in the transient period and
the second in steady state. In this section we will see that by interpreting both
policies as threshold policies, one can explain to a certain extent their behaviour.

The thinning policy, which we will denote by π̃, is based on α∗, the optimal
solution of the ”steady state program” P. It accepts a request of type i with
probability α∗

i if it fits into the knapsack and if it does not fit, it rejects it.
Based on the exact calculation of α∗, we conclude that the thinning policy can
be described as follows:

ACCEPT a request of type i < k∗ if it fits into the knapsack,
REJECT all requests of types i > k∗ ,
ACCEPT a request of type k∗ with probability αk∗ .

Note on a Class of Admission Control Policies 217

Note that the definitions of the problems P and Pε imply that kε < k∗. Hence,
the exponential penalty policy and the thinning policy treat the classes i < kε

and i > k∗ in the same way. The only difference between the two policies con-
sists in the way they treat the classes kε ≤ i ≤ k∗. The superior behavior of the
exponential penalty policy on the thinning policy in transient period, observed
experimentally in [1], may be due to the fact that by rejecting ”some less prof-
itable” classes, i.e., the classes of index kε < i ≤ k∗, there will be more space in
the knapsack for ”the more profitable” ones.

5 General Service

In this subsection we assume that the service duration Si has a general distrib-
ution with mean 1

μi
, i = 1, ..., m. Let gi denote the density and Gi denote the

cumulative distribution function (CDF) of the service duration i = 1, ..., m.
Since the LP’s P and D only depend on the mean service time, they will

remain the same. The program P (t) changes as follows. For the number of users
qi(t) in service at time t in an M/G/∞ system, it is known that E[qi(t)] =
ρi(1 − Ge

i (t)), where Ge
i (t) is the tail of the equilibrium CDF of the class i

service time distribution (see e.g. [6]). Thus, the only change in P (t) is that the
tail e−μit is replaced by Ge

i (t).
Denote this new LP by P̃ (t), by α̃ his optimal solution and by R̃(t) the

optimal value of P̃ (t). Again, P̃ (t) is a continuous knapsack problem, so the
optimal solution is 0 − 1, but for at most one class. Let k̃(t) be the index of this
class.

Theorem 1 can be easily generalized for the case where the service times have
a genral distribution.

Theorem 4. For general service times, the reward rate Rπ(t) of any feasible
policy π satisfies

E[Rπ(t)] ≤ R̃(t) =
k̃(t)−1∑

i=1

riρi + rk̃(t)ρk̃(t)α̃k̃(t).

Consider next the exponential penalty policy π̄. For finding similar lower bounds
to the one in Theorem 3, in [1] extra assumptions on Gi are introduced. Let gt

i

and Gt
i be the density and the CDF of the remaining service time of a class i

request conditioned on that it has been in service for time t units. Then, the tail

Ḡt
i(s) = 1 − Gt

i(s) =
Ge

i (t + s) − Ge
i (s)

Ge
i (t)

and

gt
i(s) = −dḠt

i(s)
ds

=
ge

i (s) − ge
i (t + s)

Ge
i (t)

.

Assumption 1. The function gt
i(s) is a decreasing function of t for all i =

1, ..., m, i.e., gt
i(0) ≥ limtu→∞ gu

i (0) = ge
i (0) = μi, for all i = 1, ..., m.

218 A.F. Gabor and J.-K.C.W. van Ommeren

Note that, since for classes i < kε one can obtain better bounds by estimating
the number of users of class i accepted in the knapsack with the number of users
in service at time t in an M/G/∞ queue, the assumption above is not necessary
only for the class kε (see also Remark 9). However,unless the class kε is fixed
from before (e.g. equal to k∗), we cannot renounce at the assumption above for
all classes i < kε. Since ε < 1

4 , we can though assume general service times
for the classes i < k 1

4
(the classes accepted into the knapsack when the total

capacity is b
2). Also, since the classes of index i, i > k∗ are never admitted into

the knapsack, we can assume general service time for them as well.
Under Assumption 1 for the classes k 1

4
< i < k∗, Theorem 3 has the following

equivalent.

Theorem 5. For ε < 1
4 , the average return E[R̄(t)] obtained by policy π̄ can be

bounded from below as follows:

E[R̄(t)] ≥
kε−1∑

i=1

riρi max{1 − Ḡe
i (t) − 2

c0
kε
b e−

ε
2 (β−4)(1 − e−μit), 0}+

+ rkερkε max{(1 − Ḡkε(t) + ς)αε
kε − 2

c0
kε
b e−

ε
2 (β−4)(1 − e−μkε)

+ Ḡkε(t) − Ḡe
kε(t) − ς, 0}.

5.1 Concluding Remarks

In this note we have shown, based on the optimal solution of some continuous
knapsack problems, that the exponential penalty function policy proposed in [1]
for controlling loss networks reduces to a threshold policy in the case of the sto-
chastic knapsack. Thus, all requests up to a certain index (the ”threshold” index)
are accepted if there is enough space in the knapsack. Only for accepting the
requests of the class with the threshold index one makes use of the penalty func-
tion. As a consequence, the question whether the exponentiality of the penalty
functions is necessary is reduced to one single class, namely the class with the
”threshold” index. Furthermore, we were able to improve the bounds proposed
in [1] and to compare the exponential penalty policy with the thinning policy
proposed in [3].

In the last section of [1], the authors generalize the penalty approach to control
loss networks and to problems in which the constraints in the LP characterizing
the ”steady state” define a general polytope. Since the optimal solution of this
LP’s is not as structured as the optimal solution of continuous knapsack prob-
lems, the simplified analysis and the improved bounds presented in this note do
not extend to the general case.

References

1. Iyengar, G. and Sigman K. (2004). Exponential penalty function control of loss
networks, The Annals of Applied Probability, 2004, Vol. 14, No. 4, 1698-1740.

2. Halfin, S. and Whitt, W. (1981) Heavy-traffic limits for queues with many exponen-
tial servers.Operations research 29, 567-588.

Note on a Class of Admission Control Policies 219

3. Kelly, F.P. (1991). Loss Networks, Annals of Applied Probability 1, 319-378.
4. Martello, S. and Toth, P. (1990) Knapsack Problems: Algorithms and Computer

Implementations. Wiley, Chichester, West Sussex, England.
5. Ross, K.W. (1995) Multiservice Loss Models for Broadband Telecommunication Net-

works, Springer-Verlag.
6. Wolff, R.W. (1989) Stochastic Modeling and the Theory of Queues. Prentice-Hall,

Englewood Cliffs, NJ.

	Introduction
	Admission Control in the Stochastic Knapsack
	Control Policies for the Stochastic Knapsack
	Upper Bound on the Achievable Reward Rate
	The Exponential Penalty Function Policy
	On a Lower Bound on the Expected Reward Achieved by $\bar{\pi}$
	Bounds of the Exponential Penalty Policy in a Limiting Regime

	On the Penalty Function Policy and the Thinning Policy
	General Service
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

