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Abstract. Model transformations support a model-driven design by providing an
automatic translation of abstract models into more concrete ones, and eventually
program code. Crucial to a successful application of model transformations is
their correctness, in the sense that the meaning (semantics) of the models is pre-
served. This is especially important if the models not only describe the structure
but also the intended behaviour of the systems. Reasoning about and showing
correctness is, however, often impossible as the source and target models typi-
cally lack a precise definition of their semantics.

In this paper, we take a first step towards provably correct behavioural model
transformations. In particular, we develop transformations from UML Activities
(which are visual models) to programs in TAAL, which is a textual Java-like
programming language. Both languages come equipped with formal behavioural
semantics, which, moreover, have the same semantic domain. This sets the stage
for showing correctness, which in this case comes down to showing that the be-
haviour of every (well-formed) UML Activity coincides with that of the corre-
sponding TAAL program, in a well-defined sense.

1 Introduction

The concept of model-driven development (MDD) crucially depends on the possibility
of generating lower-level models (and finally code) from abstract models. Originally
meant as a help for structuring complex programs, models today take on a different,
and much more central, role: they not only act as the primary entity for discussions
with customers, but also within the development trajectory, for fixing interfaces with
other systems or analysing the system with respect to requirements. Thus, it is vital to
ensure that the actual system really adheres to the models. The MDD way of ensuring
this is by directly generating the code from the models, possibly through intermediate
steps where abstract models are refined into more concrete ones. However, this process,
called model transformation, is a real solution only by virtue of the correctness of the
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individual transformations, in the sense that they themselves do not change the meaning
(usually called the semantics) of the models in unintended ways. Showing that transfor-
mations are semantics-preserving is the core problem addressed by this paper. In fact,
we concentrate on behavioural semantics, which is concerned with what the system
actually does (in contrast to, for instance, structural semantics, which is concerned with
the system architecture).

The problem is aggravated by the fact that model transformations usually go between
different meta-models. Quite often, the abstract source model is developed using a vi-
sual modelling language (e.g. the UML), whereas the target model is textual (e.g., a
program).

A lot of research has been devoted to finding appropriate languages for describing
model transformations in the first place [1,2], a quest that has recently resulted in the
QVT language proposed by the OMG group (see [3]). In this context, various notions
of “correctness” have already been studied. Correctness can for instance refer to the
syntactical correctness of the generation algorithms (e.g. of transformation rules in a
rule-based setting [4]), it can be termination of the generation [5] or the uniqueness of
the generated model (confluence of rules) [6]. Behaviour preservation, addressed here,
is different from all these — in fact it presupposes that the transformations are already
correct in the above senses — and is particularly challenging. An area where behaviour
preservation has received some interest is refactoring, a specific kind of model trans-
formation improving the structure of models [7,8]. Contrary to our interest here, trans-
formations during refactorings do not operate on different meta-models but stay within
one language.

Showing behaviour preservation of model transformations between different meta-
models first of all requires a formal definition of the behavioural semantics of source
and target model. Moreover, the semantic domains should be the same, to avoid yet
another transformation on semantic domains. Given a formal semantics, a comparison
of the behaviour of source and target model is a matter of selecting an appropriate notion
of equivalence over the semantic domain.

In this paper, we show that this ideal of showing behavioural correctness of model
transformations is indeed attainable. As an example, we define a transformation from
UML Activities to TAAL [9] programs. An overview of the approach is depicted in
Fig. 1. UML Activities are used to model the orderings of actions within, for instance,
business processes (see [10]). They are frequently employed in workflow modelling
and constitute a very high level, visual description of workflows. They are defined as a
subset of UML, which we will denote UMLA in the sequel. On the other hand, TAAL
is a simple (Java-like) object-oriented programming language, featuring class defini-
tions, object instantiation and concurrency. The transformation thus has to bridge the
gap between a visual model on the one side and program code on the other side. We
achieve this by defining the model transformation on the (MOF-compliant) abstract
syntax meta-models of the two languages (MT in Fig. 1). The model transformation
is thus a transformation of one graph into another, and consequently we employ graph
transformation rules for their definition. This gives us a model transformation that is
both formally defined and executable, employing the graph-transformation tool Groove
[11] for rule execution.
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Fig. 1. Overall approach of behaviour-preserving model transformation

This choice of example model transformation has the great advantage that both lan-
guages (UMLA and TAAL) are already equipped with a formal semantics, which,
moreover, is defined on the same basis, viz. (again) through graph transformation. On
the UMLA side, we use a semantics defined with Dynamic Meta Modelling [12]; for
TAAL, the semantics were developed together with the language [9]. These formal se-
mantics (semUMLA and semTAAL in Fig. 1) first add run-time specific structure to
the meta-models (e.g. a program counter representation on the TAAL side) and then
define the behaviour as the possible changes in instances of that enhanced meta-model.
Again, meta-models being graphs leads to a graph-rule based definition of the seman-
tics, and we also use Groove to automatically derive the semantics of both UML Ac-
tivities and TAAL programs. The underlying common semantic domain are transition
systems (T S), in which transitions represent applications of graph rules, in particular
also those corresponding to executions of actions (in the UML Activity) or operations
(in the TAAL program). Our semantics thus generates a transition system out of a meta-
model instance of a UML Activity (TSAct) and TAAL program (TSTAAL). On these
transition systems we can compare the execution behaviour of UML Activity and gen-
erated TAAL program, and can show that the ordering of actions in the Activity coin-
cides with the ordering of corresponding methods (with the same name) in the TAAL
program.

Similar approaches to evaluating the correctness of model transformations have been
presented in e.g. [13], where different variants of Statecharts are transformed into each
other, and a bisimilarity check is carried out (on particular instances). In a sense, our
technique also resembles certification techniques for compilers [14,15], where one par-
ticular instance of compilation is afterwards checked for correctness using a gener-
ated certificate. Nevertheless, our ultimate aim is a general proof of correctness of
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the transformation. Once this task is done, we do not have to check the behaviour of
transformation results any more. This paper presents the first steps in this direction,
giving the model transformation itself, its tool-support, the two semantics and a com-
parison of the behaviour, viz. semantics, on examples.

In Section 2, we start with a short introduction to UML Activities and TAAL, and
we define the graph-based transformations as a set of transformation rules over the
meta-models of the two languages. In Section 3 we then argue that the semantics of
Activity and generated TAAL program coincide with respect to trace equivalence, when
comparing the execution traces of the UML model and the object-oriented program.
Section 4 describes the tool support for transformation and semantics generation.

2 Transformation

This section presents the model transformation from UML Activities to TAAL. We start
by discussing the general idea of the transformation and give a first example.

UML Activities are an expressive tool for expressing the order of execution of so-
called Actions, i.e., atomic behavioural units. The ordering is specified by a directed
graph with different sort of nodes: Actions themselves form nodes, the start and
end of an execution is marked with a special InitialNode and FinalNode, and
MergeNodes and DecisionNodes regulate the flow of control. Figure 2 shows
an example Activity (plus its corresponding TAAL program). The semantics of the
Activity is as follows: The first Action to be executed is A, indicated by the fact that
the InitialNode (the filled circle) points to it. The A Action is followed by a
MergeNode and a DecisionNode; if the guarding condition is true, Actions B
and C will be executed, otherwise D is executed, and the Activity ends (indicated by
the FinalNode).

Due to the Merge- and DecisionNodes, UML Activities allow for an unstruc-
tured flow of control which is hard to translate into a structured programming language
without GOTO statements. Therefore, we restrict our model transformation to well-
formed Activities which have a structured control flow.

Well-formedness is inductively defined (similar approaches to well-formedness can
be found in [16]). For this, we introduced the concept of building blocks. Every building
block has exactly one incoming and one outgoing edge connecting it to the rest of the
Activity.

– An Action itself constitutes a building block (see Fig. 3a).
– A sequence of two building blocks, connected by an ActivityEdge, is a build-

ing block (see Fig. 3b).
– A DecisionNode, followed by two building blocks and a closing MergeNode,

is a building block (see Fig. 3c). Note that one of the outgoing ActivityEdges
of the DecisionNodemust be equipped with a guard (i.e., a ValueSpecifi-
cation).

– A MergeNode followed by a DecisionNode and a building block which is
itself connected to the MergeNode is a building block (see Fig. 3d). Here, the
DecisionNode has an additional outgoing ActivityEdge which is taken if
the guarding condition is false.
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program ActivityExecution
{

new ActivityExecutionClass().main()
}

class ActivityExecutionClass
main() {

A();
while [guard] do

B();
C();

endwhile
D();

}
A() {}
B() {}
C() {}
D() {}

endclass

endprogram

Fig. 2. A well-formed UML Activity and the corresponding TAAL program

– A ForkNode, followed by two building blocks and a closing JoinNode, is a
building block (see Fig. 3e).

– Finally, an InitialNode followed by a building block followed by a
FinalNode forms a well-formed Activity (see Fig. 3f).

Such well-formed Activities are the starting point for our transformation, which follows
the inductive definition of well-formedness:

– Actions are mapped to TAAL operations.
– A sequence of two Actions is mapped to a sequential execution of the corre-

sponding operations.
– A DecisionNode and its MergeNode are mapped to an if-then-else expression.
– A MergeNode followed by a DecisionNode is mapped to a while-do expres-

sion.
– A ForkNode followed by a JoinNode is mapped to a forking of methods (i.e.,

parallel execution of the parts in between the nodes).

The generated code is then embedded into a TAAL program skeleton, i.e., a main()
method which is owned by a class ActivityExecutionClass. This class is in-
stantiated, and the main() method is invoked. In the right of Fig. 2, we see the
TAAL program corresponding to the UML Activity on the left. The MergeNode-
DecisionNode structure of the Activity is translated into a TAAL while loop.

Now that we have given the general idea of our transformation, we want to look into
the details of the transformation’s realization. Before we can do so, we need to provide



From UML Activities to TAAL 99

(a) Action (b) Sequence

(c) Decision–Merge (d) Merge–Decision

(e) Fork (f) InitialNode

Fig. 3. Different building blocks (a–e) and one well-formed Activity (f)

a couple of prerequisites. As we will see below, the transformation is defined on the
abstract syntax level, i.e. the meta-models.

Meta-models. The abstract syntax of the UML is defined by means of a meta-model,
i.e., a set of class diagrams describing the structure of valid diagram instances. Fig-
ure 4a shows the Activity concepts relevant for this paper. The class diagram basi-
cally looks as expected: An Activity consists of a number of ActivityNodes
which are connected by ActivityEdges. Actions are atomic units of behaviour,
and ControlNodes are used to introduce decisions etc. into the modelled flow of
execution.

The abstract syntax of the TAAL language is more complex. A TAAL Program
consists of a number of Types, one of which is the ObjectType (representing the
concept of a class). A Type owns a number of operations, which have a Signature
and a Statement representing the body of the operation. There are a number of
Statements, including a WhileStat, an ExprStat and a BlockStat used as
a container for an arbitrary number of Statements. An operation call is represented
by the OperCallExp expression. Figure 4b shows the most important concepts of the
TAAL language. Note that for the sake of simplicity, we have omitted a huge number
of concepts (including everything related to variables, literals etc.).

Transformation. As we have seen, the abstract syntax of both languages is described
by means of meta-models, i.e., class diagrams. Therefore, a valid instance of a UML
Activity or a TAAL program can be described as an object diagram which is consis-
tent to the according class diagram. Since object diagrams can be treated as (labelled)
graphs, we decided to use graph transformation rules (GTRs, [17]) for the specification
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of our transformation. This approach is a common one for defining model transforma-
tions [18], and has—in particular for our undertaking—a number of advantages: First
of all, GTRs are specified completely formally; this is important for our final goal of
proving that our transformation is behaviour preserving. Second, due to their visual ap-
pearance, GTRs are relatively easy to understand, and third, the semantics of Activities
as well as TAAL programs is specified with GTRs, which will allow us to work with
the same formalism for finally proving the correctness of our transformation. Moreover,
due to the availability of GTR tools, our transformation is executable.

GTRs performs changes on a so-called host graph. They consist of a left-hand and a
right-hand graph; if a subgraph similar to the left-hand graph can be found in the host
graph, it is replaced by the right-hand graph. In our case, the start graph is the object
diagram representing the Activity to be transformed. After a couple of applications of
our GTRs, that object diagram is transformed into an object diagram representing the
target TAAL program.

GTRs can be presented in two ways: by explicitly showing the left-hand and right-
hand graph or by merging them into one graph. In this paper, we have chosen the latter,
one-graph approach. This implies that nodes and edges have to be annotated according
to their function within the rule. There are 4 types of elements:

– Nodes and edges which remain unchanged are depicted with black, solid, thin lines.
– Nodes and edges created by the rule are depicted with green, solid, fat lines.
– Nodes and edges deleted by the rule are depicted with blue, dashed, thin lines.
– Nodes and edges which must not exist in the host graph for the rule to match are

depicted with red, dashed, fat lines.

Having said all that, let us now dive into the details. To specify our transformation,
we had to implement 8 main transformation rules. Table 1 shows these rules and briefly
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Table 1. Transformation rules and their tasks

Rule name Task
Activity Creates TAAL skeleton (Program, class ExecutionClass

etc.)
Action Implementation Creates (empty) TAAL operation definitions for every Action,

adds it to ExecutionClass
Action Invocation Creates TAAL operation call for every Action, “wraps” it in

BlockStat
Sequence Merges two BlockStats into one, according to two sequential

building blocks
Decision Creates TAAL if-then-else structure from according

DecisionNode and MergeNode
While Creates TAAL while-do structure from according MergeNode and

DecisionNode
Fork Creates TAAL fork structure from according ForkNode and

JoinNode
Initial Sets the remaining BlockStat as Statement of main()

method

states their task within the transformation process. In the following, we will first explain
the general idea of our transformation, and we will then by way of example show one
of our transformation rules.

The transformation follows the inductive definition of well-formedness of UML Ac-
tivities. A building block can be translated as soon as its included building blocks have
been transformed. On the Activity side this is achieved by reducing translated structures
to simple, structure-less building blocks. While the UML Activity thus gets simpler
and simpler during the transformation, we at the same time build up the corresponding
structures on the TAAL side which grows. To remember which building block belongs
to which part of the TAAL constructs, we use correspondence nodes: Each correspon-
dence node is connected to a UML Activity building block (depicted on the left side)
and to the corresponding TAAL construct (depicted on the right side). Note that this
approach is inspired by Triple Graph Grammars (TGGs, [19]), which explicitly con-
sist of a left-hand graph, a right-hand graph and a correspondence graph associating
constructs from the left side with their pendants on the right side. Note also that the
concept of building blocks and correspondence nodes are only used within the GTRs;
consequently, they do not appear in the meta-models of the two languages.

We want to illustrate this approach with an example transformation rule. Its task is
to transform a certain Activity structure into a while loop, and it is depicted as Fig. 5.
The rule can be applied if the graph to be transformed contains the structure which can
be seen on the left side of the rule. Note the two ActivityEdges at the top and at
the bottom of the Activity structure: They are the connection to the rest of the Activity
and are therefore not deleted.

The part within the two ActivityEdges is the actual loop: A MergeNode is fol-
lowed by a DecisionNode which has two outgoing ActivityEdges: the bottom
one is the edge mentioned before, the left edge leads to the body of the loop. This body is
in fact a building block – it represents some arbitrary (but well-formed) structure which
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Fig. 5. Rule creating a While loop

has already been transformed. For instance, the building block could have been a single
Action; in this case, it would have been a result of applying the Action Invocation
rule. It may also have been a more complex structure which has been reduced to one
building block by applying a sequence of transformation rules.

Now, note that the building block has an association to a correspondence node, which
has a BlockStat node as its right side. That BlockStat node is the result of the
one or more transformation steps described above (the ones which finally resulted in
the single building block on the correspondence node’s left side).
The rule basically performs three changes on the host graph:

1. It creates the TAAL elements forming a while loop, i.e., the WhileStat, a
wrapping BlockStat and some elements representing the loop’s condition.

2. It sets the BlockStat corresponding to the building block as the body of the
while loop.

3. It deletes the loop structure on the Activity side, replaces it with a single building
block and creates a new correspondence node associating that building block with
the wrapping BlockStat mentioned above.

Similar rules are used to treat simple Actions, sequences of building blocks and the
Decision-Merge structure. In addition, we employ the Action Implementation rule to
create operation definitions on the TAAL side, the Activity rule to create the execu-
tion infrastructure like e.g. class definition, and the Initial rule to fill the main-method.
Together, these rules perform a transformation of a meta-model instance of UML Ac-
tivities into a meta-model instance of TAAL programs, from which we can then derive
the concrete syntax TAAL program.

3 Behaviour Preservation

Recall from the introduction that our final goal is to prove that our transformation is
behaviour preserving. In this section, we explain the notion of semantic equivalence
we have in mind, and we argue on our example that our transformation fulfils this
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requirement. To this end, we first of all need to explain the formal semantics of the two
languages, and most importantly, fix the notion of equivalence used in the comparison
(≈ in Fig. 1). As models of behaviour, we use the standard notion of transition system.

Definition 1. A transition system (Q,→, q0) over some alphabet A consists of a set of
states Q, a transition relation → ⊆ Q × A × Q, and an initial state q0 ∈ Q. The set of
transition systems with alphabet A is denoted TS [A].

Some related notation:

q −a→ q′ ⇐⇒ (q, a, q′) ∈ →
q −a1···an−−−−→ q′ ⇐⇒ ∃q1, . . . , qn+1.q = q1 −a1−→ q2 −a2−→ · · · −an−→ qn+1 = q′

A transition system captures the behaviour of a model (or program) if it comprises
precisely the execution steps that the model specifies (or the program executes). A single
execution step is captured by a transition. A run of the system is captured by a connected
sequence of transitions, or in other words, a path through the transition system. Note
that the individual transitions, or execution steps, are thought of as atomic; this imposes
a limit on the size of the steps that can be captured by a single transition, since on too
coarse a level of granularity, the atomicity assumption is not justified (large execution
steps may overlap, interfere or be aborted). In consequence, as we will see, we end up
with a rather “small-step” semantics.

The mechanism for extracting a transition system from a model is what we call the
behavioural semantics of the model (or, more precisely, of the modelling language).
In the case of UMLA and TAAL, this mechanism uses the same graphs as the model
transformation, and again works by means of graph transformation systems: see [9,12],
respectively. In a first step, the static graphs are enhanced to incorporate run-time spe-
cific aspects (e.g., a token in the case of UMLA and a program counter in the case of
TAAL). A graph transformation system, combined with the start graph that is given by
the abstract syntax graph of the model, gives rise to a transition system in the following
way:

– Each state is a graph;
– Each transition is the application of a transformation rule, where the label of the

transition is given by the name of the applied rule;
– The initial state is given by the start graph;
– Whenever a graph transformation rule is applicable to a state, the corresponding

rule application is a transition and the resulting graph is a state.

Thus, every well-formed UML Activity gives rise to a transition system, as does every
TAAL program. When, then, do two transition systems describe the same behaviour?
This is a question that has received much attention, especially in the context of process
algebra (see [20]). It has become clear that there is no single answer that is satisfactory
in all cases; rather, “sameness” can be captured by one of a range of so-called equiva-
lence relations over transition systems; see, e.g., [21]. The weakest (most liberal) notion
of “sameness” is that of trace equivalence, which is defined as follows.
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Definition 2 (trace equivalence). Assume that the alphabet A is partitioned into a set
of internal and external actions, Ain and Aex. A trace of a transition system T ∈ TS [A]
is a sequence a1 · · · an with ai ∈ Aex for all 1 ≤ i ≤ n, for which there is a path

q0 −w0 a1 w1 a2 ···wn an wn+1−−−−−−−−−−−−−−−−→ q′

such that wi ∈ A∗
in for all 0 ≤ i ≤ n + 1. The traces of T are collected in Traces(T ).

Two transition systems T1, T2 ∈ TS are trace equivalent, denoted T1 ≈ T2, if
Traces(T1) = Traces(T2).

In our case, the issue of equivalence is more complicated yet: despite the similarity of
the semantic definitions of UMLA and TAAL, we cannot directly apply the existing
theory, since the transition systems under comparison do not have the same alphabets.
The reason for this is simple: as labels we have the rule names of the graph transforma-
tion system, and these are different for both languages. Furthermore, and more subtly,
the granularity of the execution steps is not the same: in UMLA, executing an activity is
based on the movements of tokens, whereas in TAAL it is based on a program counter;
these mechanisms obey different rules, and hence moving a token from one activity to
the next comprises different steps, in a different order, than moving a program counter
from one method invocation to the next.

Our solution to this problem is to identify one rule in the graph transformation system
for UMLA as well as the one for TAAL that we take to represent the “actual” execution
of the action (on the one hand) or method (on the other).1 For this rule, instead of using
the rule name as label in the transition system, we use the name of the action. Thus, the
functions semUMLA and semTAAL in Fig. 1 map each UMLA resp. TAAL abstract
syntax graph to the transition system constructed as per the algorithm above, with the
modified transition labelling. All other rule names are interpreted as internal in the
sense of Def. 2.

The core challenge of our approach is then to prove that for all UMLA graphs G, the
following holds:

semTAAL(MT (G)) ≈ semUMLA(G) . (1)

Our claim is that (1) indeed holds. As an example, Fig. 6 shows the transition systems
derived from the example Activity and the resulting TAAL program of Fig. 2. We start
with the TAAL transition system (2.b), which exactly looks as expected: The loop can
immediately be identified. A closer investigation reveals that the set of traces is also
as expected: First, the A() operation is executed, followed by an arbitrary number of
executions of the sequence B()–C(), and finally the D() method is executed. Note
that all this happens within the execution of the main() operation, i.e., we do not
take that operation into account. The set of traces of the TAAL program can thus be
described by the regular expression A(B C)∗D.

The Activity’s transition system (2.a) looks different, though: It seems to contain two
loops. These loops are due to the traverse-to-completion semantics of UML Activities
[22]. Still, this does not affect the correctness in our chosen criterion: the UMLA tran-
sition system gives us exactly the same set of traces over Actions, namely A(B C)∗D.

1 For UMLA this is a rule called action.start(); for TAAL it is
OperVirtualCallExp.
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(a) UML Activity (b) TAAL

Fig. 6. The transition systems of the example

We have carried out this comparison on a large number of examples, involving differ-
ent structures of the UML Activity, in particular also with more complex nestings of
Decision and Merge nodes. In all of these examples, the resulting transition systems
were trace equivalent. Nevertheless, we see this only as a first step towards showing
behaviour preservation, and our ultimate aim is a general proof of correctness for the
transformation, in the sense of 1.

4 Tool Support

The preceding sections have shown that in our setting, the semantics of UML Activi-
ties and TAAL programs as well as our transformation is specified by means of graph
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transformation rules. Therefore, we rely on a tool which supports the creation and ap-
plication of graph transformation rules. As we have mentioned before, we use the tool
Groove [11] for this purpose.

For the transformation tool, our main requirement is that the transformation can be
specified formally – otherwise, we would not be able to perform a formal proof of
correctness. Since most of us already were experienced Groove users, it was an obvious
choice to also use that tool for defining the transformation itself. This section will detail
our reasons for that choice, and it will point out some particular strengths of Groove.

Despite the “standard” graph transformation features like creation and deletion of
nodes and edges, Groove supports some more advanced concepts which allowed us to
specify our transformation as desired. First, Groove supports attributed graphs, which
e.g. allowed us to create TAAL operations having the same name as their corresponding
Actions. Additionally, we were able to specify the Action Implementation rule in
such a way that one TAAL operation is created for every name of an Action; for an
Activity that contains two Actions named A, this results in a TAAL program with
one A operation, but two invocations of that operation.

Second, a powerful notion of universal quantification has been implemented in
Groove. In a nutshell, this means that rules can be written which manipulate all oc-
currences of a node in a certain context. While implementing our transformation, this
was of particular importance for the Sequence rule: Recall from Sect. 2 that this rule
merges two BlockStats into one, and part of this is to add all sub statements of
one BlockStat to the resulting BlockStat. Universal quantification allowed us to
implement this behaviour within one rule.

Another reason for choosing Groove was that the transformation rules we defined
basically relate parts of a UML Activity with their corresponding parts on the TAAL
side, in contrast to an operational transformation specification (e.g. in Java). Since re-
lating elements of source and target models will probably be an important part of our
proof, we hope to reuse the transformation rules for this purpose.

Figure 7 shows a screenshot of Groove. On the left side, the names of the transfor-
mation rules can be seen. Note that at the bottom of the rule’s compartment, a couple of
rules are shown whose names start with “Failure”. These rules match if certain struc-
tures exist in a state which would indicate that the transformation has failed. Note also
that these rules have a priority of 0: This makes sure that the failure rules can only
match if none of the transformation rules matches any more (i.e., after the complete
transformation has been carried out).

The big compartment on the right shows the start state representing the Activity as in-
troduced in Fig. 2. Note that Groove allows to hide parts of the displayed graph; we have
hidden the Activity node and its edges to the Activity’s element to reduce the complex-
ity of the graph’s visualisation. Note also the DMMSystem node to the left of the graph:
This node and the associated Invocations are needed for the graph transformation
rules describing the Activity’s semantics. They are deleted by our transformation.

In order to use Groove, we translated the UML Activity under consideration into a
suitable format. For this, we have written an Eclipse [23] plugin which takes a UML
Activity model as input and generates a Groove state graph out of it. The Activity is
given in the XMI format which is then read and processed using the API of the Eclipse
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Fig. 7. Screenshot of the tool Groove

UML2 project. Since the Activity’s model basically is the graph to be processed, the
generation is straight-forward.

On the TAAL side, a similar Eclipse plugin exists: It transforms TAAL programs into
Groove-format abstract syntax graphs and back again. Being able to generate a TAAL
program’s concrete syntax from a graph turned out to be very helpful for the validation
and debugging of our model transformation.

5 Conclusion

In this paper, we have developed a model transformation from UML Activities to
TAAL, defined a notion of correctness of the transformation and argued that—based
on the formal semantics of the two languages—the transformation is indeed correct.
Transformations from UML models to object-oriented programming languages are
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frequently employed in a model-based development, and thus their correctness con-
stitutes an important part of MDD. Our ultimate goal and future work is a formal proof
of correctness.

The contribution of this work does, however, go beyond this specific transformation.
Although the two modelling languages are conceptually very different, a comparison
can be carried out. There are a number of important issues which helped towards this
goal. First of all, it is the existence of meta-models (of the same language) which fa-
cilitated the definition of the transformation. Secondly, indispensable for a correctness
proof is (a) a formal definition of the transformation (here given because of the use of
graph transformation systems) and (b) a formal definition of the semantics of the lan-
guages. Crucial is also the (formal) definition of the employed notion of equivalence;
for this, a common semantic domain of the languages is important. Last but not least,
such a comparison would not have been possible without a tool for executing the model
transformation.

The method proposed in this paper for the comparison of behavioural semantics
is obviously only applicable if the modelling languages in question are indeed be-
havioural. Moreover, it should be possible to express their semantics by means of tran-
sition systems. Fortunately, the transition system formalism is itself quite general, so
we do not expect this to be a limiting factor.
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