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Abstract. The dependencies between power law parameters such as in-
degree and PageRank, can be characterized by the so-called angular mea-
sure, a notion used in extreme value theory to describe the dependency
between very large values of coordinates of a random vector. Basing on
an analytical stochastic model, we argue that the angular measure for in-
degree and personalized PageRank is concentrated in two points. This
corresponds to the two main factors for high ranking: large in-degree
and a high rank of one of the ancestors. Furthermore, we can formally
establish the relative importance of these two factors.

Keywords: Power law graphs, PageRank, Regular variation, Multivari-
ate extremes.

1 Introduction

Large self-organizing networks, such as Internet, the World Wide Web, social and
biological networks, often exhibit power laws. In simple words, a random variable
X has a power law distribution with exponent α > 0 if its tail probability P(X >
x) is roughly proportional to x−α, for large enough x. Power law distributions
are heavy-tailed since the tail probability decreases much slower than negative
exponential, and thus one can sometimes observe extremely large values of X .
Statistical analysis of complex networks characterized by power laws has received
a massive attention in recent literature, see e.g. [1,2,3] for excellent surveys.
Nevertheless, we are still far from complete understanding of the structure of
such networks. In particular, the question of measuring dependencies between
network parameters remains an open and complex issue [1].
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A common example of two related power law characteristics is that of in-
degree and PageRank of a Web page [4,5,6]. The (personalized) PageRank is
defined in [7] as follows:

PR(k) = c

IN(k)∑

i=1

1
OUT (ki)

PR(ki) + (1 − c)PREF (k), k = 1, . . . , n, (1)

where PR(k) is the PageRank of page k, n is the number of nodes in the network,
IN(k) in the in-degree of k, the sum is taken over all pages ki that link to page k,
OUT (ki) is the number of outgoing links of page ki, PREF (k) is the preference
of the user for page k, with

∑n
k=1 PREF (k) = n, and c ∈ (0, 1) is a damping

factor. If there is no outgoing link from a page then we say that the page is
dangling and assume that it links to all nodes in the network. The PageRank
in (1) is uniquely defined, and the PageRanks of all pages sum up to n. We note
that in the literature the PageRank and the user preference vectors are often
viewed as probability vectors, normalized to sum up to one.

Clearly, the PageRank is influenced largely by in-degree. However, there is
still no agreement in the literature on the dependence between these two quan-
tities. In particular, the values of the correlation coefficient vary considerably
in different studies [4,8]. This only confirms that the correlation coefficient is
an uninformative dependence measure in heavy-tailed (power law) data [9,1,10].
In fact, the correlation coefficient is a ‘crude summary’ of dependencies that is
most informative for jointly normal random variables. It is a common and simple
technique but it is not subtle enough to distinguish between the dependencies
in large and in small values. This becomes a problem if we want to measure the
dependence between two heavy tailed network parameters, because in that case
we are mainly interested in the dependence between extremely large values.

We propose to solve the problem of evaluating the dependencies between net-
work parameters, using the theory of multivariate extremes. This theory operates
with the notion of tail dependence for a random vector (X, Y ), that is, the de-
pendence between extremely large values of X and Y . Such tail dependence is
characterized by an angular measure on [0, 1] (see Section 4 for a formal defi-
nition). Informally, a concentration of the angular measure around 0 and/or 1
signals independence, while concentration around some other number a ∈ (0, 1)
suggests that a certain fraction of large values of Y comes together with large
values of X .

In [11,12] a first attempt was made to compute the angular measure between
in-degree and PageRank, and completely different dependence structures were
discovered in Wikipedia (independence), preferential attachment networks (com-
plete dependence) and the Web (intermediate case). In this paper the goal is to
compute the angular measure analytically, based on the stochastic model pro-
posed in [13,6,14]. The resulting angular measure is concentrated in points 0 and
a ∈ (1/2, 1), and the mass distribution depends on the network parameters. Such
angular measure is a formalization of the common understanding that there are
two main sources for high ranking: high in-degree and a high rank of one of the
ancestors. Furthermore, the fraction of the measure mass in 0 stands for the
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proportion of highly ranked nodes that have a low in-degree. Thus, we obtain
a description of the dependence structure, that is more informative and relates
better to reality than the correlation coefficient.

In order to derive the tail dependencies, we employ the theory of regular
variation, that provides a natural mathematical formalism for analyzing power
laws [10]. By definition, the random variable X is regularly varying with index
α, if P(X > u) = u−αL(u), u > 0, where L(u) is a slowly varying function, that
is, for x > 0, L(ux)/L(u) → 1 as u → ∞, for instance, L(u) may be equal to a
constant or log(u). In Section 2 we describe the model where power law network
parameters are represented by regularly varying random variables. Basing on
this model, the results on tail dependence are derived in Sections 3 and 4, while
some of the proofs are deferred to the Appendix. In Section 5 we discuss the
results and compare our findings to the graph data.

The derived two-point measure is only a first-order approximation of the com-
plex angular measure observed on the data, since the realistic situation is way
more complex than our simplified model. Further modifications of the model are
needed in order to adequately describe the dependencies in real-life networks.

2 Model and Preliminaries

Choose a random node in the graph, let N and R denote its in-degree and
PageRank, respectively, and let Di denote the out-degree of its ith ancestor,
where i = 1, . . . , N . As in [6,13,14] we assume that N and R are random variables
that satisfy

R
d= c

N∑

i=1

1
Di

Ri + (1 − c)T. (2)

Here N , Ri’s, Di’s and T are independent; Ri’s are distributed as R with ER = 1;
a

d= b means that a and b have the same probability distribution, and c ∈ (0, 1) is
the damping factor. The equation above clearly corresponds to the definition of
personalized PageRank (1). We note that compared to our previous work [6,13],
here we account for personalization by setting T to be random. In this paper
we neglect the presence of dangling nodes but they can be easily included in the
model (see e.g. [6]).

For convenience we prefer to work with the following, slightly more general,
representation of (2):

R
d=

N∑

i=1

AiRi + B, (3)

where Ai’s are independent and distributed as some random variable A < 1, and
B > 0 is independent of the Ai’s. Next, we define

F̄1(u) := P(N > u) and F̄2(u) := P(R > u), u > 0,

and assume that F̄1(u) is regularly varying with index α > 1. We also assume
that B in (3) has a lighter tail than N , that is, P(B > u) = o(P(N > u)) as
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u → ∞. As a result, F̄2(u) is also regularly varying. In fact, the next proposition
was proved in [6,13]; a more general case is presented in [14]. For technical
reasons, in [6,13,14] it was assumed that the index α is non-integer.

Proposition 1. Under the assumptions above,

F̄2(u) ∼ KF̄1(u) as u → ∞,

where a ∼ b means that a/b → 1. The value of K depends on the precise as-
sumptions on the Ai’s and B; if EN = d, A = c/d and B = 1− c as in [13], we
have

K =
cα

dα − dcα
. (4)

In the sequel we will only use the specific form (4) in Corollary 1 and Section 5.
We also note that within the same model (3), we could assume that the distribu-
tion of the Ri’s is different from the one of R. In this case, if the tail of the Ri’s
is not heavier than the one of N , Proposition 1 still holds, only K will depend
on the behavior of P(R > u) as u → ∞ (see Lemma 3.7 in [15]).

We need to deal with a minor complication because F̄1 is not strictly de-
creasing, and we will in the sequel need to consider the behavior of its inverse
function for small arguments. Instead of working with the generalized inverse
F̄−1

1 (v) = inf{u > 0 : F̄1(u) ≤ v}, which would make the proofs more in-
volved, we prefer to simply work with some function that is strictly decreasing
and asymptotically equivalent to F̄1(u). Such a function can e.g. be defined as
f1(u) := (1+ e−u)F̄1(u), for which the inverse function is well-defined. Thus, we
arrive at the following:

F̄1(u) := P(N > u) ∼ f1(u), as u → ∞ (5)
F̄2(u) := P(R > u) ∼ f2(u), as u → ∞,

where
f1(u) = u−αL(u), f2(u) = Ku−αL(u) = Kf1(u),

for some slowly varying function L(·).

3 Tail Dependence

Let us introduce two functions that are defined on R
2
+, namely the stable tail

dependence function [9],

�(x, y) = lim
t↓0

t−1
P(F̄1(N) ≤ tx or F̄2(R) ≤ ty) (6)

and the function

r(x, y) := lim
t↓0

t−1
P(F̄1(N) ≤ tx, F̄2(R) ≤ ty).
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Provided that the limit in (6) exists, these are closely related. In fact adding
them gives

�(x, y) + r(x, y) = lim
t↓0

t−1(P(F̄1(N) ≤ tx) + P(F̄2(R) ≤ ty)),

which would yield x+y if F̄1 and F̄2 were stricly decreasing, because then F̄1(N)
and F̄2(R) would be uniform random variables on (0, 1). The following lemma
shows that this result holds anyway.

Lemma 1. The functions � and r satisfy �(x, y) + r(x, y) = x + y.

Proof. We use the function f1 to show that limt↓0 t−1(P(F̄1(N) ≤ tx) = x,
as follows (the corresponding result for P(F̄2(R) ≤ ty) is proven analogously).
Since F̄1(u) → 0 and |F̄1(u) − f1(u)| = o(F̄1(u)) as u → ∞, then for any
small ε > 0 we can choose t1 small enough so that for any t ≤ t1 and u > 0
that satisfy F̄1(u) ≤ tx we also have |F̄1(u) − f1(u)| ≤ ε|F̄1(u)|, and hence
|F̄1(u)− f1(u)| ≤ εtx. If we now fix some small ε > 0, the above implies for any
t ≤ t1 that

P(F̄1(N) ≤ tx) = P(f1(N) ≤ (f1(N) − F̄1(N)) + tx)

≤ P(f1(N) ≤ (1 + ε)tx) = P
(
N ≥ f−1

1 ((1 + ε)tx)
)

= F̄1(f−1
1 ((1 + ε)tx)) ∼ f1(f−1

1 ((1 + ε)tx)) = (1 + ε)tx.

So we obtain

lim sup
t→0

t−1
P(F̄1(N) ≤ tx) ≤ (1 + ε)x, and similarly,

lim inf
t→0

t−1
P(F̄1(N) ≤ tx) ≥ (1 − ε)x.

The result now follows by letting ε go to 0.

The main result of this section gives the stable tail dependence function for N
and R:

Theorem 1. The function r(x, y) for N and R is given by

r(x, y) = min{x, y(EA)α/K}. (7)

Consequently, �(x, y) = max{y, x + y(1 − (EA)α/K)}.
In the remainder of the paper we will mainly work with r(x, y) rather than
�(x, y), since its derivation is more appealing.

To prove Theorem 1 we need to use the following lemma.

Lemma 2. As u → ∞, the following asymptotic relation holds for any constant
C > 0,

P(N > u, R > Cu) ∼ min{f1(u), (EA/C)αf1(u)}.
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We refer to the Appendix for the proof of this lemma, but the intuition behind
it is clear. It follows from (3) and the strong law of large numbers that when N
is large, we have R ≈ EA · N . Therefore, when EA > C, the event {R > Cu}
is already ‘implied’ by {N > u}, so the joint probability behaves as P(N >
u). When EA < C, N needs to be larger for R > Cu to hold, and the joint
probability behaves like P(N > uC/EA).

In order to understand Theorem 1 we fix x, y > 0 throughout this section and
rewrite the joint probability in a form that enables application of Lemma 2. The
schematic derivation is as follows, where the superscripts denote three issues to
be resolved:

P(F̄1(N) ≤ tx, F̄2(R) ≤ ty)
1∼ P(f1(N) ≤ tx, f2(R) ≤ ty) = P(N ≥ f−1

1 (tx), R ≥ f−1
2 (ty))

2= P

(
N ≥ f−1

1 (tx), R ≥
(

y

Kx

L(f−1
1 (tx))

L(f−1
2 (ty))

)−1/α

f−1
1 (tx)

)

3,1∼ P

(
N ≥ f−1

1 (tx), R ≥
( y

Kx

)−1/α

f−1
1 (tx)

)
(8)

The statement of Theorem 1 now follows from Lemma 2 since obviously
f1(f−1

1 (tx)) = tx, provided that each of the three steps indicated in (8) is justi-
fied. We resolve these issues as follows:

1. We deduce the asymptotic equivalence of the two probabilities from the
asymptotic equivalence of the functions inside the probabilities. This step is
intuitively clear but not mathematically rigorous. In the proof of Theorem 1
we will make the argument precise, see the Appendix.

2. This step is fairly straightforward. Indeed, v = f1(u) = u−αL(u) implies u =
(v/L(u))−1/α, so f−1

1 (v) = (v/L(f−1
1 (v)))−1/α. Also, since f2(u) = Kf1(u)

we have f−1
2 (v) = f−1

1 (v/K) = (v/KL(f−1
2 (v)))−1/α. Hence,

f−1
2 (ty)

f−1
1 (tx)

=
(

y

Kx

L(f−1
1 (tx))

L(f−1
2 (ty))

)−1/α

. (9)

3. This is a consequence of the following statement (the proof of which can be
found in the Appendix), combined with issue 1.

Lemma 3. For all x, y > 0 we have L(f−1
1 (tx)) ∼ L(f−1

2 (ty)) as t ↓ 0.

Now, in order to prove Theorem 1 we only need to resolve issue 1 twice in the
derivation in (8). The formal proof of this can be found in the Appendix.

4 Angular Measure

In this section we find the angular measure that corresponds to the function
r(x, y) we found, but first we will give some preliminaries. In extreme value
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theory (see [9]), it has been shown that a unique (nonnegative) measure H(·)
exists on the set Ξ = {ω ∈ R

2
+ | ||ω|| = 1}, such that the stable tail dependence

function � can be expressed as

�(x, y) =
∫

Ξ

max(ω1x, ω2y)H(dω). (10)

Here || · || is a norm that may be chosen freely, but for (10) to hold, the measure
has to be normalized in such a way that

∫

Ξ

ω1H(dω) =
∫

Ξ

ω2H(dω) = 1,

so that we have �(x, 0) = x and �(0, y) = y, as should. In this work we choose
the || · ||1 norm, for which ||ω||1 = |ω1|+ |ω2|, since that is easiest to work with.
Then (10) can be rewritten as

�(x, y) =
∫ 1

0

max{wx, (1 − w)y}H(dw),

and the normalization becomes
∫ 1

0

wH(dw) =
∫ 1

0

(1 − w)H(dw) = 1. (11)

Here we let w = ω1, and we identify the measures on Ξ and [0, 1]. By (11) it
follows that the function r(x, y) can be written as

r(x, y) =
∫ 1

0

wxH(dw) +
∫ 1

0

(1 − w)yH(dw) −
∫ 1

0

max{wx, (1 − w)y}H(dw)

=
∫ 1

0

min{wx, (1 − w)y}H(dw). (12)

We will now derive the function r(x, y) in case when the angular measure has
masses in 0 and a only, as we suspect to be the case for in-degree and PageRank.
First of all, the normalization (11) boils down to aH(a) = H(0)+(1−a)H(a) = 1,
which is easily solved to give

H(0) = 2 − 1/a and H(a) = 1/a. (13)

Note that H has total measure 2 (as also follows for the general case by summing
both integrals in (11)), and that H(0) > 0 implies a > 1/2. Combining (12) and
(13), the function r(x, y) can now be written as

r(x, y) = min{x, (1/a − 1)y}.
This is a very similar form as we found earlier in (7), and it is not difficult to
see that the expressions are equal for a = K/(K + (EA)α). Since the angular
measure is uniquely determined by the stable tail dependence function �, see [9],
and hence by the function r, we showed that the angular measure of N and R
is indeed a two-point measure. After using (13) we arrive at



Characterization of Tail Dependence for In-Degree and PageRank 97

Theorem 2. The angular measure with respect to the || · ||1 norm of N and R
is a two-point measure, with masses

H(0) = 1 − (EA)α

K
in 0,

H(a) = 1 +
(EA)α

K
in a =

K

K + (EA)α
.

Corollary 1. If, as in [13], K is given by (4) with EN = d and EA = c/d, then
the angular measure of N and R is a two-point measure, with masses

H(0) = cαd(1−α) in 0,

H(a) = 2 − cαd(1−α) in a =
(
2 − cαd(1−α)

)−1
.

(14)

5 Examples and Discussion

We compare the above results to the measurements on two different network
structures: Web and Growing Network data sets. For the Web sample we choose
the EU-2005 data set with 862.664 nodes and 19.235.140 links. This set was
collected by The Laboratory for Web Algorithmics (LAW) of the Università
degli studi di Milano [16], and is available at http://law.dsi.unimi.it/. In
this data set in-degree and PageRank exhibit well known power law behavior
with exponent α = 1.1. For the evaluation of the exponent we refer to [12]. In
Figure 1(a) we present log-log plots for in-degree and PageRanks with c = 0.85
and c = 0.5 (the straight lines are fitted). We also simulate a Growing Network
of 10.000 nodes with constant out-degree d = 8. We start with d initial nodes,
and at each step we add a new node that links to already existing nodes. A
new link points to a randomly chosen page with probability q = 0.1, and with
probability (1 − q) it follows the preferential attachment selection rule [17]. We
present log-log plots for this Growing Network set in Figure 1(b).

Following [9, p.328] we define an estimator of the angular measure. We are
interested in the dependencies between two regularly varying characteristics of a
node, namely the in-degree N and the PageRank R. Let (Nj , Rj) be observations
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Fig. 1. Cumulative log-log plots for in-degree and PageRanks
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of (N, R) for the corresponding node j. Then we use the rank transformation of
(N, R), leading to {(rN

j , rR
j ), 1 ≤ j ≤ n}, where rN

j is the descending rank of
Nj in (N1, . . . , Nn) and rR

j is the descending rank of Rj in (R1, . . . , Rn). Next
we apply a coordinate transform (rN

j , rR
j ) −→ (rj , Θj), given by

(rj , Θj) = TRANS

(
1

rN
j

,
1
rR
j

)
,

where we set TRANS(x, y) := (x + y, x/(x + y)) since all results of this paper
are proven for the || · ||1 norm. Alternatively, we could use the polar coordinate
transformation as in [11,12]: TRANS(x, y) :=

(√
x2 + y2, arctan (y/x)

)
. Howe-

ver, in this case we need to transform the angular measure in Theorem 2 to the
corresponding measure w.r.t. the || · ||2 norm using formula (8.38) in [9]. Now
we need to consider k points {Θj : rj ≥ r(k)}, where r(k) is the kth largest
in (r1, . . . , rn), and make a plot for the cumulative distribution function of Θ,
which gives the estimation of the probability measure H(·)/2. The question how
to choose the right k can be solved by employing the Starica plot (see [10,12]).

From (14) we can calculate the predicted angular measure concentrated in
0 and a. For the Web data sample with average in-degree d = 22.2974, taking
c = 0.5 and c = 0.85, we obtain that a0.5 = 0.6031, H(a0.5)/2 = 0.8290, and
a0.85 = 0.7210, H(a0.85)/2 = 0.6934, respectively. Recall that the values of
H(a)/2 estimate the fraction of highly ranked pages whose large PageRank is
explained by large in-degree. Observe that according to the model, this fraction
becomes larger if c decreases.

In Figure 2 (a,b) we plot the theoretical angular measures together with the
empirical ones. The comparison between the graphs shows that there is only a
very rough similarity to be seen, in the sense that the value of H(0)/2 is a reason-
able estimate for the fraction of pages with high PageRank and small in-degree
(corresponding to the ‘turn’ around 0.8). However, the ‘point mass’ at a seems to
be spread out in an almost uniform manner. To understand this, we should real-
ize that the theoretical two-point measure we found is only a formalization of the
idea that each large PageRank value has to be either due to a large in-degree, or
due to a large contributing PageRank. In the data (representing ‘reality’), such a
strict division is not reasonable; for instance there will surely be pages with high
PageRank due to a high in-degree and a high contributing PageRank, or due
to more than one high contributing PageRanks. Thus we see that although our
model roughly captures the idea of different causes for large PageRank values,
it is not subtle enough to properly represent the angular measure as found from
a realistic data set. In particular, the assumption of the branching structure of
the Web in (2) is probably not justified. Future work could try to investigate
how to improve the model in that respect, mainly by studying the dependencies
amongst the Ri in (2), or between the Ri on the one hand and N on the other.

Finally, we perform experiments on the Growing Network. It was proved in [18]
that the PageRank in such models follows a power law with the same exponent
as the in-degree. However, in our model based on stochastic equation (2) we
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(a) Web data set: c=0.5,
k=100.000
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(b) Web data set: c=0.85,
k=100.000
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(c) Growing Network data
set: c=0.85, k=100.000

Fig. 2. Angular measure and theoretically predicted angular measure

cannot assume anymore that R is distributed as the Ri’s since Ri’s are the ranks
of ‘younger’ nodes, and presumably, the Ri will have lighter tails than R itself.
Assuming that P(Ri > u) = o(P(N > u)) as u → ∞, from Lemma 3.7 in [15] we
obtain that for this simple model the value of K is just K = (c/d)α. Substituting
this into (14) gives us a = 1/2, H(a) = 2, and H(0) = 0, i.e. the measure is
concentrated in one point a = 1/2. In Figure 2 (c) we again plot the empirical
and theoretical measures, which match perfectly. We see that in synthetic graphs
constructed by the preferential attachment rule, large PageRank is always due
to large in-degree, and this can be easily captured by our stochastic model.

In further research, it will be interesting to consider other graph models of the
Web, for instance, a configuration model, where the degree of each node is chosen
independently according to a pre-defined power law distribution [19,20]. The
configuration model is not as centered as the preferential attachment network,
and it is known to be close to the tree structure. Thus, one may expect that
equation (2) provides an accurate description of the dependencies between in-
degree and PageRank in such a model.

Finally, we would like to note that by measuring and comparison of tail depen-
dencies in synthetic graphs and experimental data one can easily reveal whether
a specific graph model adequately reflects the dependence structure observed
in the experiments. From this point of view, the analysis of tail dependencies
contributes towards better modelling and understanding of real-life networks.
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A Proofs

Proof (of Lemma 2). The proof is based on the strong law of large numbers.
Informally, we use the fact that if N is large, then (3) implies R ≈ EA · N .

Assume first that C < EA. Then we write

P(N > u, R > Cu) = P(N > u)P(R > Cu|N > u), (15)

and we further obtain

P(R > Cu|N > u) ≥ P

⎛

⎝
�u�∑

i=1

AiRi + B > Cu

⎞

⎠ ≥ P

⎛

⎝
�u�∑

i=1

AiRi > Cu

⎞

⎠

= P

⎛

⎝C−1u−1

�u�∑

i=1

AiRi > 1

⎞

⎠→ 1 as u → ∞,

where the convergence holds by the strong law of large numbers for any C < EA.
Hence when C < EA the result follows directly from (5) and (15).

Now assume that C > EA. We would like to show that

lim
u→∞

P(N > u, R > Cu)
f1([C/EA]u)

→ 1. (16)

Then the result of the lemma will follow since L(u) ∼ L([C/EA]u) as u → ∞.
For the proof, we choose a sufficiently small δ so that we can break the joint
probability into three terms:

P(N > u, R > Cu) = P(N > [C/EA + δ]u, R > Cu)
+ P([C/EA − δ]u < N ≤ [C/EA + δ]u, R > Cu)
+ P(u < N ≤ [C/EA − δ]u, R > Cu). (17)

Exactly as in case C < EA, using (5), we have

lim
u→∞

P(N > [C/EA + δ]u, R > Cu)
f1([C/EA]u)

= lim
u→∞

P(N > [C/EA + δ]u)
f1([C/EA]u)

= 1 + O(δ).

(18)

Moreover, applying the argument as in the case when C < EA, from the law of
large numbers we obtain that

P(R > Cu|u < N ≤ [C/EA − δ]u) → 0 as u → ∞,

and thus

0 ≤ lim
u→∞

P(u < N ≤ [C/EA − δ]u, R > Cu)
f1([C/EA]u)

≤ lim
u→∞

P(N > u)P(R > Cu|u < N ≤ [C/EA − δ]u)
f1([C/EA]u)

= 0. (19)
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Finally, we get

0 ≤ lim
u→∞

P([C/EA − δ]u < N ≤ [C/EA + δ]u, R > Cu)
P(N > [C/EA]u)

≤ lim
u→∞

P([C/EA − δ]u < N ≤ [C/EA + δ]u)
P(N > [C/EA]u)

= lim
u→∞

f1([C/EA − δ]u) − f1([C/EA + δ]u)
f1([C/EA]u)

= O(δ). (20)

The result (16) now follows from (17)–(20) by letting δ ↓ 0.
In the case C = EA the argument is similar, only we write

P(N > u, R > EAu) = P(N > [C/EA + δ]u, R > Cu)
+ P(u < N ≤ [C/EA + δ]u, R > Cu).

This completes the proof of the lemma.

Proof (of Lemma 3). It will be convenient to use the functions

g1(t) := f−1
1 (tx) and g2(t) := f−1

2 (ty) = f−1
1 (ty/K) = g1(ty/Kx),

(21)
which, for fixed x, y > 0, are well-defined for all t > 0, due to the monotonicity
of f1, and hence also f2. Applying the Potter bounds, see Resnick [10, p.32], we
obtain that for all A > 1, δ > 0 one can choose t sufficiently small such that

A−1

[
max

{
g1(t)
g2(t)

,
g2(t)
g1(t)

}]−δ

≤ L(g1(t))
L(g2(t))

≤ A

[
max

{
g1(t)
g2(t)

,
g2(t)
g1(t)

}]δ

which by (9) is the same as

A−1

[
max

{
g1(t)
g2(t)

,
g2(t)
g1(t)

}]−δ

≤ Kx

y

(
g1(t)
g2(t)

)α

≤ A

[
max

{
g1(t)
g2(t)

,
g2(t)
g1(t)

}]δ

.

From the first inequality above we get

lim inf
t↓0

A1/α

[
max

{
g1(t)
g2(t)

,
g2(t)
g1(t)

}]δ/α (
Kx

y

)1/α
g1(t)
g2(t)

≥ 1

for all A > 1, δ > 0. Taking A → 1 and δ ↓ 0 we obtain that

lim inf
t↓0

(
Kx

y

)1/α
g1(t)
g2(t)

≥ 1.

Analogously, we can show that

lim sup
t↓0

(
Kx

y

)1/α
g1(t)
g2(t)

≤ 1.

so that the limit of the left-hand side is 1. This implies the result, again by (9).
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Proof (of Theorem 1). Since F̄i(u) → 0 and |F̄i(u) − fi(u)| = o(F̄i(u)), i = 1, 2,
as u → ∞, then for any small ε > 0 we can choose t1 small enough so that for any
t ≤ t1 and u > 0 that satisfy F̄1(u) ≤ tx we also have |F̄1(u)− f1(u)| ≤ ε|F̄1(u)|,
and hence |F̄1(u) − f1(u)| ≤ εtx. Moreover, we can choose t2 ≤ t1 small enough
such that F̄2(u) ≤ ty implies |F̄2(u) − f2(u)| ≤ εty for all t ≤ t2. Also, for any
small δ > 0 it follows from Lemma 3 that there exists a positive number t3 ≤ t2
such that for all t ≤ t3,

1 − δ ≤ L(f−1
1 ((1 + ε)tx))

L(f−1
2 ((1 + ε)ty))

≤ 1 + δ.

If we now fix some small ε > 0 and δ > 0, the above implies for any t ≤ t3 that

P(F̄1(N) ≤ tx, F̄2(R) ≤ ty)
= P(f1(N) ≤ (f1(N) − F̄1(N)) + tx, f2(R) ≤ (f2(R) − F̄2(R)) + ty)
≤ P(f1(N) ≤ (1 + ε)tx, f2(R) ≤ (1 + ε)ty)

= P
(
N ≥ f−1

1 ((1 + ε)tx), R ≥ f−1
2 ((1 + ε)ty)

)

= P

(
N ≥ f−1

1 ((1 + ε)tx), R≥
(

y

Kx

L(f−1
1 ((1 + ε)tx))

L(f−1
2 ((1 + ε)ty))

)−1/α

f−1
1 ((1 + ε)tx)

)

≤ P

(
N ≥ f−1

1 ((1 + ε)tx), R ≥
( y

Kx
(1 + δ)

)−1/α

f−1
1 ((1 + ε)tx)

)
.

Note that the above closely follows the derivation in (8), with ∼ signs replaced by
inequalities; in particular the 5th line follow immediately from (9) upon replacing
t by (1 + ε)t. Noting that f1(f−1

1 ((1 + ε)tx)) = (1 + ε)tx, we can now apply
Lemma 2 to the above and then let t → 0, to obtain

lim sup
t→0

t−1
P(F̄1(N) ≤ tx, F̄2(R) ≤ ty) ≤ (1 + ε)min{x, (1 + δ)y(EA)α/K}.

Similarly we can obtain

lim inf
t→0

t−1
P(F̄1(N) ≤ tx, F̄2(R) ≤ ty) ≥ (1 − ε)min{x, (1 − δ)y(EA)α/K},

so that the statement of the theorem follows by letting ε and δ go to 0.
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