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1. ABSTRACT 
We discuss subsystem design for extensible 
general-purpose information systemswe ex- 
tract guidelines from a case study of the redes- 
ign and extension of an advanced workflow 
management system and place them into the 
context of existing software engineering re- 
search. Key aspect is the distinction between 
essential and physical architectures, related to 
software clustering and distribution. 

1.1 Keywords 
Architecture design, subsystem design, general-purpose 
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2. INTRODUCTION 
Guidelines for subsystem design of general-purpose soft- 
ware are rare. Structured and object-oriented design meth- 
ods mostly ignore the subsystem level [16, lo], and those 
authors who do discuss this level, confine themselves to 
frequently identified subsystems [l, 5, 111. None of these 
authors discuss subsystem design guidelines for general- 
purpose systems. The field of patterns and software archi- 
tecture mostly focuses on the programming language level 
[6, 21. In addition, many of these approaches, especially the 
structured and object-oriented ones, discuss ways to repre- 
sent architectural designs rather than ways to arrive at good 
designs. This syntactic orientation sometimes appears as a 
preoccupation with a particular programming language, such 
as Ada [ 121 or C++. Especially in situations where informa- 
tion systems are complex, e.g. because of advanced func- 
tionality, distribution, or interoperability, subsystem design 
guidelines are required to arrive at well-structured systems. 
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In this position paper, we discuss subsystem-level design 
guidelines that were used in the development of the WIDE 
prototype commercial workflow management system [3, 4, 
71. After summarizing related work in subsystem-level de- 
sign in Section 2, we present the major design decisions 
made in the WIDE system in Section 3. In Section 4, we 
discuss the lessons learned of the project. 

3. RELATED WORK 
A domain can be defined as a “separate real, hypothetical, or 
abstract world inhabited by a distinct set of objects that be- 
have according to the rules and policies characteristic of a 
domain” [ll]. They recommend defining a subsystem for 
each domain of the system and give the following examples 
of domains: the user interface domain, the subject domain, 
the database domain and the operating system domain. Ad- 
ditional examples are the fault tolerance domain, alarm han- 
dling, hardware control and the device domain [ 11. Although 
these examples are useful, they do not help clarifying the 
concept of domain. The concept of a separate world used in 
the definition of the domain concept is at best metaphorical, 
and it is hard to see how a set of objects could be anything 
but distinct. Eliminating these vague concepts from the defi- 
nition, we are left with the concept of a domain as a part of 
the world for which there are characteristic rules and poli- 
cies. This still leaves considerable freedom in deciding what 
is and what is not a domain. Moreover, it is not clear why 
the examples given are good domains. Defining a subsystem 
for all of these domains may lead to an unnecessarily com- 
plex system architecture. 

Two subsystem partitioning criteria are [5]: the presence 
of aggregate objects may motivate the definition of a sub- 
system, and we may also identify subsystems that corre- 
spond to a set of external entities, data stores, or control 
objects. Examples of subsystems given are real-time control, 
real-time coordination, data collection and data analysis 
subsystems, and servers. Here too, one may recognize the 
idea of domains, but again it is not clear why one should 
identify these subsystems and not others. In addition, the 
design criteria are stated in terms of the elements of data 
flow diagrams, which illustrates the syntactic orientation of 
these guidelines. 

What is needed in the design or complex systems, is an 
understanding of the reasoning behind subsystem design, so 
that this reasoning can be applied in different cases with 
possibly different results. We also observe that a general- 
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1 WF client 

Figure 1 a, b: physical FOR0 architecture 
and overall WIDE architecture 

purpose system may be used in many different contexts, so 
that it is less apparent what the application domain of the 
system is. A more general point of view is thus necessary. In 
this paper, we make a first step into this direction. 

Another issue that we want to point out is the division of 
work between functional, object-oriented decomposition and 
distribution design. In [12, 131, a functional decomposition 
is made first that is independent of the distribution of the 
system, then functions are grouped into sequential processes 
(Ada tasks), and finally these processes are aggregated into 
concurrent objects that can be allocated to physical re- 
sources in a distributed system. By contrast, [l] starts by 
identifying concurrent objects in terms of the application 
domain and later group these into sequential processes 
(threads). These methods are divided on the issue of whether 
to use functional decomposition or decomposition based 
upon the application domain, and on the issue whether to 
partition into sequential processes before or after identifying 
objects. We return to this issue after the design choices in 
the WIDE system are discussed. 

4. DESIGN OF THE WIDE WFMS 
The WIDE project aims at complementing standard rela- 
tional database functionality with advanced transaction 
management and exception handling to support process sup- 
port environments like workflow management systems [3]. 
This aim has been brought into practice by reengineering the 
existing FOR0 ‘basic’ workflow management system com- 
bined with an indexed file system. Figure la shows the basic 
FOR0 system, essentially consisting of a workflow engine, 
shielded from the file system by a software library forming 
an access layer, and a workflow client. In WIDE, this archi- 
tecture is extended with transaction support (TS) and rule 
support (RS), and the file system is replaced by a relational 
DBMS, as depicted in Figure lb [4]. For reasons of brevity 
and clarity, we focus on the design of subsystems of the TS 
extension in this paper. 

To extend the basic FOR0 system, a classical re- 
engineering cycle has been followed, in which an essential 
model of the current system has been abstracted, then trans- 
formed into an essential model of the desired system, and 
finally mapped to and implemented in a physically distrib- 
uted environment. Below, we present a rational reconstruc- 
tion of the design process. 

4.1 The Desired Essential Architecture 
The essential architecture abstracts from the distribution of 
the software over physical resources (allocations of runtime 
processes to workstations or servers) and is motivated ex- 
clusively in terms of the desired functionality of the system. 
To obtain an overall essential architecture of Figure la, we 
ignore the fact that the access layer is a function library 
without ‘own’ process and model it as a separate module, 
arriving at the architecture in Figure 2a. To transform this 
architecture to the desired essential architecture, we make 
two steps. Firstly, we observe that workflow transactions are 
supported in WIDE by an orthogonal two-layer transaction 
model [7], consisting of a global transaction layer and a lo- 
cal transaction layer. Consequently, we decompose the 
transaction support extension accordingly into two separate 
subsystems: global transaction support (GTS) and local 
transaction support (LTS), where only LTS requires access 
to underlying DBMS transaction facilities. Secondly, we 
replace the file system by the DBMS. After these steps, we 
arrive at the essential architecture depicted in Figure 2b. 

Next, we further decompose the GTS and LTS subsys- 
tems. To perform this decomposition, we observe that at 
run-time, the WF engine contains a number of active 
workflow process instances (workflow cases), the lifespan 
of which is coupled to starting and ending workflow proc- 
esses. 

The GTS subsystem manages global transactions that 
have a one-to-one relationship with active workflow in- 
stances. Global transactions are dynamically created at 
workflow start and disposed of at workflow completion. 
Their state is influenced by events in corresponding 
workflow instances and stored persistently through the ac- 
cess layer. Apart from state administration, logic is required 
to compute compensating global transactions in case of 
global abort events [7]. Consequently, the GTS subsystem is 
decomposed into a dynamic set of global transaction (GT) 
modules that interface with the WF engine (event signaling) 
and the access layer (persistent storage), and a global trans- 
action manager module containing the compensation logic. 

The LTS subsystem manages local transactions that have 
a many-to-one relationship with active workflow instances 
[7]. Local transactions are created dynamically at the start of 
certain tasks in a workflow and disposed of at the comple- 
tion of these tasks. Their state is influenced by workflow 
events in corresponding workflow instances. Because of 
their dynamic nature, local transactions are mapped to local 
transaction (LT) modules. To relieve the WF engine from 
the one-to-many communication between workflow in- 
stances and local transactions, a local transaction manager 
(LTM) is inserted between engine and LTs to perform a 
dispatching function (corresponding to the many-to-one 
pattern in [6]). As LTs perform transactional operations on 
the underlying DBMS and abstraction is required with re- 
spect to specific DBMS platforms, a local transaction inter- 
face (LTI) is inserted between LTs and DBMS. For 
transactional operations, the LTI acts like the access layer 
for data manipulation operations. 
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Figure 2 a, b, c: Essential architectures of basic 
system, desired system, detailed desired system 

The result of GTS and LTS decomposition is shown in 
Figure 2c. This is the desired essential architecture of the 
extended WFMS. The next step is to map this essential ar- 
chitecture onto a physical architecture. 

4.2 The Desired Physical Architecture 
To go from essential to physical architecture, we have to 
take software clustering into processes and allocation of 
these processes into consideration. 

We first observe that each GT and LT instance is related 
to one workflow instance, and that communication between 
GT/LT instances and workflow instances is frequent. Hence, 
it is efficient to place GT/LT instances in the same process. 
LTM functionality is relatively simple and communication 
between workflow instance and LTM is frequent, so it is 
efficient as well place the LTM in the same process as the 
WF instance. Functionality of the GTM, on the other hand, 
is relatively complex and communication between GTM and 
other modules is infrequent, so there is no reason to combine 
the GTM with other modules. This means that workflow 
engine, LTM and GT/LT modules are clustered into one 
process, but that GTM is kept as a separate process. As ac- 
cess layer and LTI perform similar and relatively simple 
functions, access layer and LTI are clustered. The result is 
shown in Figure 3a. 

Next, clustering of extended access layer and extended 
workflow engine is considered. Observing that the state of 
both extended access layer and extended workflow engine 
can be partitioned on a per-workflow-instance basis, clus- 
tering is possible. Given very frequent communication be- 
tween engine and access layer, clustering is desired, 
resulting in the physical clustering shown in Figure 3b. 

The clusters can be replicated arbitrarily, using a flexible 
coupling of workflow engines to GTM servers. To allow for 
this flexibility in a transparent way, middleware functional- 
ity is required. In WIDE, a CORBA object request broker 

Figure 3 a, b:Intermediate physical ar- 
chitecture, final physical architecture 

[9] has been used. This allows for flexible instantiaton at 
runtime with transparent allocation. To allow for flexible 
coupling of workflow engine to DBMS server, a cli- 
ent/server coupling has been used. 

5. DISCUSSION AND CONCLUSION 
The WIDE system has a number of characteristics relevant 
for the design of its architecture as discussed above: 

l It is distributed, as dictated by the inherently distributed 
nature of workflow applications, requiring a well- 
structured design into distributed physical modules. 

l It is a general-purpose system to be parameterized for 
specific workflow applications, requiring a high level of 
flexible approach to module replication and allocation. 

l It is strongly related to highly complex business proc- 
esses, requiring an extensible architecture with respect to 
support for advanced features like extended transaction 
management. 

l It has ‘soft’ real-time character related to supporting 
business processes, requiring special care must be taken 
in the design of the communication structures such that 
pelformance is guaranteed. 

We now discuss how these characteristics are reflected in 
guidelines used in the design process, conjecture that these 
guidelines are generally applicable to the design of extensi- 
ble, general-purpose, distributed software systems. 

We define an essential decomposition of a system as a 
decomposition that is motivated entirely by properties of the 
external environment of the system and not by the imple- 
mentation environment [ 141. Decomposition criteria for an 
essential decomposition may refer to external entities, the 
application domain or external functionality, but not to the 
distribution architecture of the underlying implementation 
platform or properties of the programming language. Like 
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[I], at this level of abstraction, we assume unlimited 
concurrency. This agrees with the classical concept of es- 
sential model defined in [8], which assumes perfect technol- 
ogy as an implementation platform. In the design of the 
WIDE system, desired external functionality on the con- 
ceptual level has been used as a criterion for decomposing 
the system at the essential subsystem level (for example, the 
conceptual transaction model). The reason is simple: for 
general-purpose systems, there is no specific application 
environment in terms of which we can partition the system, 
but there is a clear idea about the desired functionality. 

The starting point for the software engineer in a systems 
engineering project is therefore a functionally decomposed 
system and it is good advice to consider decomposing the 
software at the subsystem level by the same principle. For an 
essential decomposition, other criteria that refer to the exter- 
nal environment should also be considered. For example, in 
control-intensive systems, one may define subsystems for 
particular classes of external devices or for particular classes 
of events, that share periodicity properties [13, 5, 161. It is 
only when we decompose subsystems into finer-grained 
entities that the choice becomes relevant between encapsu- 
lating behavior and state into objects or separating processes 
from stores. It can be shown that this issue is distinct from 
the issue whether or not to use functional or application- 
domain-oriented decomposition [ 151. 

Guidelines that merely list example kinds of subsystems, 
such as performance monitoring or alarm handling, should 
be treated with caution. What is needed is the reasoning be- 
hind identifying these examples, not the examples them- 
selves. Using high-level functional concepts is essential in 
subsystem identification in general-purpose systems. In the 
WIDE design process, the observation that the concept of 
transaction is an essential ingredient to the architecture de- 
sign, i.e., the development of a separate transaction support 
subsystem. The observation that transactions are conceptu- 
ally split into two layers has resulted in splitting the essen- 
tial architecture of the TS subsystem into two orthogonal 
modules (GTS and LTS). Basing an architecture on high- 
level functional concepts also contributes to the flexibility 
and extensibility of the system: changing or extending the 
system with modified or new functional concepts will easily 
translate to changes to the essential architecture. 

By distinguishing the desired essential model from the 
desired (and realized) physical system, we create the free- 
dom to map essential subsystem in various ways to physical 
resources, without changing the essential model. In the de- 
sign process outlines above, we have shown how this map- 
ping can be performed in a structured way to achieve 
desired distribution and performance characteristics. The 
essential model as the centerpiece of the design thus im- 
proves the traceability of the resulting software to essential 
subsystems and ultimately to requirements. This will highly 
contribute to extensibility and maintainability of the soft- 
ware. It must be noted, however, that a flexible implemen- 
tation platform (like an object request broker infrastructure) 
for the physical architecture is crucial to the ability to use a 

clear separation between essential and physical architecture 
without sacrificing flexible distribution or performance. 
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