
Subsystem Design Guidelines for
Extensible General-Purpose Software

Paul Grefen and Roe1 Wieringa
Computer Science Department

University of Twente, The Netherlands
Phone +31-53-4894283

{grefen,roelw}@cs.utwente.nl

1. ABSTRACT
We discuss subsystem design for extensible
general-purpose information systemswe ex-
tract guidelines from a case study of the redes-
ign and extension of an advanced workflow
management system and place them into the
context of existing software engineering re-
search. Key aspect is the distinction between
essential and physical architectures, related to
software clustering and distribution.

1.1 Keywords
Architecture design, subsystem design, general-purpose
software

2. INTRODUCTION
Guidelines for subsystem design of general-purpose soft-
ware are rare. Structured and object-oriented design meth-
ods mostly ignore the subsystem level [16, lo], and those
authors who do discuss this level, confine themselves to
frequently identified subsystems [l, 5, 111. None of these
authors discuss subsystem design guidelines for general-
purpose systems. The field of patterns and software archi-
tecture mostly focuses on the programming language level
[6, 21. In addition, many of these approaches, especially the
structured and object-oriented ones, discuss ways to repre-
sent architectural designs rather than ways to arrive at good
designs. This syntactic orientation sometimes appears as a
preoccupation with a particular programming language, such
as Ada [121 or C++. Especially in situations where informa-
tion systems are complex, e.g. because of advanced func-
tionality, distribution, or interoperability, subsystem design
guidelines are required to arrive at well-structured systems.

Pemrission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for prolit or commercial advantage and that
copies hear this notice and the full citation on the first page. To copy
otherwise. to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISAW Orlando Florida USA
Copyright ACM 1998 l-581 13-081-3/98/l 1...$5.00

In this position paper, we discuss subsystem-level design
guidelines that were used in the development of the WIDE
prototype commercial workflow management system [3, 4,
71. After summarizing related work in subsystem-level de-
sign in Section 2, we present the major design decisions
made in the WIDE system in Section 3. In Section 4, we
discuss the lessons learned of the project.

3. RELATED WORK
A domain can be defined as a “separate real, hypothetical, or
abstract world inhabited by a distinct set of objects that be-
have according to the rules and policies characteristic of a
domain” [ll]. They recommend defining a subsystem for
each domain of the system and give the following examples
of domains: the user interface domain, the subject domain,
the database domain and the operating system domain. Ad-
ditional examples are the fault tolerance domain, alarm han-
dling, hardware control and the device domain [11. Although
these examples are useful, they do not help clarifying the
concept of domain. The concept of a separate world used in
the definition of the domain concept is at best metaphorical,
and it is hard to see how a set of objects could be anything
but distinct. Eliminating these vague concepts from the defi-
nition, we are left with the concept of a domain as a part of
the world for which there are characteristic rules and poli-
cies. This still leaves considerable freedom in deciding what
is and what is not a domain. Moreover, it is not clear why
the examples given are good domains. Defining a subsystem
for all of these domains may lead to an unnecessarily com-
plex system architecture.

Two subsystem partitioning criteria are [5]: the presence
of aggregate objects may motivate the definition of a sub-
system, and we may also identify subsystems that corre-
spond to a set of external entities, data stores, or control
objects. Examples of subsystems given are real-time control,
real-time coordination, data collection and data analysis
subsystems, and servers. Here too, one may recognize the
idea of domains, but again it is not clear why one should
identify these subsystems and not others. In addition, the
design criteria are stated in terms of the elements of data
flow diagrams, which illustrates the syntactic orientation of
these guidelines.

What is needed in the design or complex systems, is an
understanding of the reasoning behind subsystem design, so
that this reasoning can be applied in different cases with
possibly different results. We also observe that a general-

49

1 WF client

Figure 1 a, b: physical FOR0 architecture
and overall WIDE architecture

purpose system may be used in many different contexts, so
that it is less apparent what the application domain of the
system is. A more general point of view is thus necessary. In
this paper, we make a first step into this direction.

Another issue that we want to point out is the division of
work between functional, object-oriented decomposition and
distribution design. In [12, 131, a functional decomposition
is made first that is independent of the distribution of the
system, then functions are grouped into sequential processes
(Ada tasks), and finally these processes are aggregated into
concurrent objects that can be allocated to physical re-
sources in a distributed system. By contrast, [l] starts by
identifying concurrent objects in terms of the application
domain and later group these into sequential processes
(threads). These methods are divided on the issue of whether
to use functional decomposition or decomposition based
upon the application domain, and on the issue whether to
partition into sequential processes before or after identifying
objects. We return to this issue after the design choices in
the WIDE system are discussed.

4. DESIGN OF THE WIDE WFMS
The WIDE project aims at complementing standard rela-
tional database functionality with advanced transaction
management and exception handling to support process sup-
port environments like workflow management systems [3].
This aim has been brought into practice by reengineering the
existing FOR0 ‘basic’ workflow management system com-
bined with an indexed file system. Figure la shows the basic
FOR0 system, essentially consisting of a workflow engine,
shielded from the file system by a software library forming
an access layer, and a workflow client. In WIDE, this archi-
tecture is extended with transaction support (TS) and rule
support (RS), and the file system is replaced by a relational
DBMS, as depicted in Figure lb [4]. For reasons of brevity
and clarity, we focus on the design of subsystems of the TS
extension in this paper.

To extend the basic FOR0 system, a classical re-
engineering cycle has been followed, in which an essential
model of the current system has been abstracted, then trans-
formed into an essential model of the desired system, and
finally mapped to and implemented in a physically distrib-
uted environment. Below, we present a rational reconstruc-
tion of the design process.

4.1 The Desired Essential Architecture
The essential architecture abstracts from the distribution of
the software over physical resources (allocations of runtime
processes to workstations or servers) and is motivated ex-
clusively in terms of the desired functionality of the system.
To obtain an overall essential architecture of Figure la, we
ignore the fact that the access layer is a function library
without ‘own’ process and model it as a separate module,
arriving at the architecture in Figure 2a. To transform this
architecture to the desired essential architecture, we make
two steps. Firstly, we observe that workflow transactions are
supported in WIDE by an orthogonal two-layer transaction
model [7], consisting of a global transaction layer and a lo-
cal transaction layer. Consequently, we decompose the
transaction support extension accordingly into two separate
subsystems: global transaction support (GTS) and local
transaction support (LTS), where only LTS requires access
to underlying DBMS transaction facilities. Secondly, we
replace the file system by the DBMS. After these steps, we
arrive at the essential architecture depicted in Figure 2b.

Next, we further decompose the GTS and LTS subsys-
tems. To perform this decomposition, we observe that at
run-time, the WF engine contains a number of active
workflow process instances (workflow cases), the lifespan
of which is coupled to starting and ending workflow proc-
esses.

The GTS subsystem manages global transactions that
have a one-to-one relationship with active workflow in-
stances. Global transactions are dynamically created at
workflow start and disposed of at workflow completion.
Their state is influenced by events in corresponding
workflow instances and stored persistently through the ac-
cess layer. Apart from state administration, logic is required
to compute compensating global transactions in case of
global abort events [7]. Consequently, the GTS subsystem is
decomposed into a dynamic set of global transaction (GT)
modules that interface with the WF engine (event signaling)
and the access layer (persistent storage), and a global trans-
action manager module containing the compensation logic.

The LTS subsystem manages local transactions that have
a many-to-one relationship with active workflow instances
[7]. Local transactions are created dynamically at the start of
certain tasks in a workflow and disposed of at the comple-
tion of these tasks. Their state is influenced by workflow
events in corresponding workflow instances. Because of
their dynamic nature, local transactions are mapped to local
transaction (LT) modules. To relieve the WF engine from
the one-to-many communication between workflow in-
stances and local transactions, a local transaction manager
(LTM) is inserted between engine and LTs to perform a
dispatching function (corresponding to the many-to-one
pattern in [6]). As LTs perform transactional operations on
the underlying DBMS and abstraction is required with re-
spect to specific DBMS platforms, a local transaction inter-
face (LTI) is inserted between LTs and DBMS. For
transactional operations, the LTI acts like the access layer
for data manipulation operations.

50

Figure 2 a, b, c: Essential architectures of basic
system, desired system, detailed desired system

The result of GTS and LTS decomposition is shown in
Figure 2c. This is the desired essential architecture of the
extended WFMS. The next step is to map this essential ar-
chitecture onto a physical architecture.

4.2 The Desired Physical Architecture
To go from essential to physical architecture, we have to
take software clustering into processes and allocation of
these processes into consideration.

We first observe that each GT and LT instance is related
to one workflow instance, and that communication between
GT/LT instances and workflow instances is frequent. Hence,
it is efficient to place GT/LT instances in the same process.
LTM functionality is relatively simple and communication
between workflow instance and LTM is frequent, so it is
efficient as well place the LTM in the same process as the
WF instance. Functionality of the GTM, on the other hand,
is relatively complex and communication between GTM and
other modules is infrequent, so there is no reason to combine
the GTM with other modules. This means that workflow
engine, LTM and GT/LT modules are clustered into one
process, but that GTM is kept as a separate process. As ac-
cess layer and LTI perform similar and relatively simple
functions, access layer and LTI are clustered. The result is
shown in Figure 3a.

Next, clustering of extended access layer and extended
workflow engine is considered. Observing that the state of
both extended access layer and extended workflow engine
can be partitioned on a per-workflow-instance basis, clus-
tering is possible. Given very frequent communication be-
tween engine and access layer, clustering is desired,
resulting in the physical clustering shown in Figure 3b.

The clusters can be replicated arbitrarily, using a flexible
coupling of workflow engines to GTM servers. To allow for
this flexibility in a transparent way, middleware functional-
ity is required. In WIDE, a CORBA object request broker

Figure 3 a, b:Intermediate physical ar-
chitecture, final physical architecture

[9] has been used. This allows for flexible instantiaton at
runtime with transparent allocation. To allow for flexible
coupling of workflow engine to DBMS server, a cli-
ent/server coupling has been used.

5. DISCUSSION AND CONCLUSION
The WIDE system has a number of characteristics relevant
for the design of its architecture as discussed above:

l It is distributed, as dictated by the inherently distributed
nature of workflow applications, requiring a well-
structured design into distributed physical modules.

l It is a general-purpose system to be parameterized for
specific workflow applications, requiring a high level of
flexible approach to module replication and allocation.

l It is strongly related to highly complex business proc-
esses, requiring an extensible architecture with respect to
support for advanced features like extended transaction
management.

l It has ‘soft’ real-time character related to supporting
business processes, requiring special care must be taken
in the design of the communication structures such that
pelformance is guaranteed.

We now discuss how these characteristics are reflected in
guidelines used in the design process, conjecture that these
guidelines are generally applicable to the design of extensi-
ble, general-purpose, distributed software systems.

We define an essential decomposition of a system as a
decomposition that is motivated entirely by properties of the
external environment of the system and not by the imple-
mentation environment [141. Decomposition criteria for an
essential decomposition may refer to external entities, the
application domain or external functionality, but not to the
distribution architecture of the underlying implementation
platform or properties of the programming language. Like

51

[I], at this level of abstraction, we assume unlimited
concurrency. This agrees with the classical concept of es-
sential model defined in [8], which assumes perfect technol-
ogy as an implementation platform. In the design of the
WIDE system, desired external functionality on the con-
ceptual level has been used as a criterion for decomposing
the system at the essential subsystem level (for example, the
conceptual transaction model). The reason is simple: for
general-purpose systems, there is no specific application
environment in terms of which we can partition the system,
but there is a clear idea about the desired functionality.

The starting point for the software engineer in a systems
engineering project is therefore a functionally decomposed
system and it is good advice to consider decomposing the
software at the subsystem level by the same principle. For an
essential decomposition, other criteria that refer to the exter-
nal environment should also be considered. For example, in
control-intensive systems, one may define subsystems for
particular classes of external devices or for particular classes
of events, that share periodicity properties [13, 5, 161. It is
only when we decompose subsystems into finer-grained
entities that the choice becomes relevant between encapsu-
lating behavior and state into objects or separating processes
from stores. It can be shown that this issue is distinct from
the issue whether or not to use functional or application-
domain-oriented decomposition [151.

Guidelines that merely list example kinds of subsystems,
such as performance monitoring or alarm handling, should
be treated with caution. What is needed is the reasoning be-
hind identifying these examples, not the examples them-
selves. Using high-level functional concepts is essential in
subsystem identification in general-purpose systems. In the
WIDE design process, the observation that the concept of
transaction is an essential ingredient to the architecture de-
sign, i.e., the development of a separate transaction support
subsystem. The observation that transactions are conceptu-
ally split into two layers has resulted in splitting the essen-
tial architecture of the TS subsystem into two orthogonal
modules (GTS and LTS). Basing an architecture on high-
level functional concepts also contributes to the flexibility
and extensibility of the system: changing or extending the
system with modified or new functional concepts will easily
translate to changes to the essential architecture.

By distinguishing the desired essential model from the
desired (and realized) physical system, we create the free-
dom to map essential subsystem in various ways to physical
resources, without changing the essential model. In the de-
sign process outlines above, we have shown how this map-
ping can be performed in a structured way to achieve
desired distribution and performance characteristics. The
essential model as the centerpiece of the design thus im-
proves the traceability of the resulting software to essential
subsystems and ultimately to requirements. This will highly
contribute to extensibility and maintainability of the soft-
ware. It must be noted, however, that a flexible implemen-
tation platform (like an object request broker infrastructure)
for the physical architecture is crucial to the ability to use a

clear separation between essential and physical architecture
without sacrificing flexible distribution or performance.

6. ACKNOWLEDGEMENTS
All members of the WIDE team are acknowledged for their
parts in the development described in this paper. Specific
thanks go to Gabriel Sanchez, Stefano Ceri, Jochem Vonk,
and Erik Boertjes.

7. REFERENCES
[II

121

]31

t41

[51

[61

[71

181

191

IlO1

1111

r121

r131

iI41

]lSl

[161

M. Awad, J. Kuusela, J.Ziegler, Object-Oriented
Technology for Real-Time Systems: A Practical Ap-
proach Using OMT and Fusion, Prentice-Hall, 1996.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommer-
lad, M. Stal, A System of Patters - Pattern-Oriented
Software Architecture, Wiley, 1996.

F. Casati et al.; WIDE: Workflow Model and Archi-
tecture; CTIT TR 96-19; University of Twente, 1996.

S. Ceri, P. Grefen, G. Sanchez, “WIDE - A Distributed
Architecture for Workflow Management”. Proc. 7’h
Int. Workshop on Research Issues in Data Engineer-
ing, UK, 1997, IEEE.
H. Gomaa, Software Design Methods for Concurrent
and Real-Time Systems, Addison-Wesley, 1993.
E. Gamma, R. Helm, R. Johnson, 5. Vlissides, Design
Patterns-Elements of reusable Object-Oriented Soft-
ware, Addison-Wesley, 1995.

P. Grefen, J. Vonk, E. Boertjes, P. Apers, “Two-Layer
Transaction Management for Workflow Management
Applications”, Proc. 81h Int. Conf on Database and
Expert System Appl., France, Springer, 1997.

S.M. McMenamin, J.F. Palmer, Essential Systems
Analysis, Prentice-Hall, 1984.
The Common Object Request Broker: Architecture and
Specification, V2.0; Object Management Group, 1995.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.
Lorensen, Object-Oriented Modeling and Design,
Prentice-Hall, 199 1.

S. Shlaer, S.J. Mellor, Object Lifecycles: Modeling the
World in States, Prentice-Hall, 1992.

K. Shumate, “Structured analysis and object-oriented
design are compatible”, Ada Letters, 1 l(4), 1991.
K. Shumate, M. Keller, Sofhyare Specification and
Design: A Disciplined Approach for Real-Time Sys-
tems, Wiley, 1992.
R.J. Wieringa, “Postmodern software design with
NYAM: Not Yet Another Method’, Proc. NATO
Worksh. on Requirements Targeting Software and
Systems, to be published, Springer.

R.J. Wieringa, “A survey of structured and object-
oriented software specification methods and tech-
niques”, to be published, ACM Computing Surveys.

Yourdon Inc, The Yourdon Systems Method: Model-
Driven Systems Development, Prentice-Hall, 1993.

52

