
H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 105 – 120, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Architectural Model for Component Groupware

Cléver R.G. de Farias1,2, Carlos E. Gonçalves2, Marta C. Rosatelli2,
Luís Ferreira Pires3, and Marten van Sinderen3

1 Departamento de Física e Matemática,
Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP/USP),

Av. Bandeirantes, 3900, 14040-901 − Ribeirão Preto (SP), Brazil
farias@ffclrp.usp.br

2 Programa de Mestrado em Informática, Universidade Católica de Santos,
Rua Dr. Carvalho de Mendonça, 144, 11070-906 − Santos (SP), Brazil

{cleverfarias, ceg-elus, rosatelli}@unisantos.edu.br
3 Centre for Telematics and Information Technology, University of Twente,

P.O. Box 217, 7500 AE, Enschede, The Netherlands
{pires, sinderen}@cs.utwente.nl

Abstract. This paper proposes an architectural model to facilitate the design of
component-based groupware systems. This architectural model has been de-
fined based on (1) three pre-defined component types, (2) a refinement strategy
that relies on these component types, (3) the identification of layers of collabo-
ration concerns, and (4) rules for the coupling and distribution of the compo-
nents that implement these concerns. Our architectural model is beneficial for
controlling the complexity of the development process, since it gives concrete
guidance on the concerns to be considered and decomposition disciplines to be
applied in each development step. The paper illustrates the application of this
architectural model with an example of an electronic voting system.

1 Introduction

The technological advances of the last decade have brought many changes into our
society. Computers have become essential working and entertainment tools. Yet, most
of the computer systems are targeted to single users, although most of our working
tasks are likely to involve a group of people. Systems that provide support for groups
of people engaged in a common task are called groupware systems.

The development of groupware systems poses many different challenges. Apart
from the social aspects of groupware, developers are faced with problems typical of
both distributed systems and cooperative work. Problems pertaining to distributed
systems are, amongst others, the need for adequate levels of transparency, reliability,
security, and heterogeneity support. Problems related to cooperative work are mainly
the need for flexibility, integration, and tailorability in groupware systems [5].

The use of component-based technologies contributes to solve these problems [2,
 8, 11, 19, 21, 22]. Component-based development aims at constructing software arte-
facts by assembling prefabricated, configurable and independently evolving building
blocks called components. A component is a binary piece of software, self-contained,
customisable and composable, with well-defined interfaces and dependencies.

106 C.R.G. de Farias et al.

Components are deployed on top of distributed platforms, contributing to solve
many of the distribution-related problems of groupware systems. Components can
also be configured, replaced and combined on-the-fly, which enhances the degree of
flexibility, integration and tailorability provided by a system.

One of the biggest challenges in system development is the definition of the system
architecture. The architecture of a (computing) system can be defined as the structure
(or structures) of the system in terms of software components, the externally visible
parts of those components and the relationships among them [3]. In this way, the
architecture can be seen as the top-level decomposition of a system into major com-
ponents, together with a characterisation of how these components interact [23].

A proper definition of the architecture of a system facilitates not only the system de-
sign as a whole but also the development and reuse of components for a family of similar
systems, the so-called product line development. Thus, our work proposes an architec-
tural model to help groupware developers tackling the design of component-based
groupware systems. Our architectural model defines different types of components that
serve as basis for system and component refinements. Our model also defines different
types of collaboration concerns to help the identification of the different types of com-
ponents and the assignment of functionality to components.

The remainder of this work is structured as follows: section 2 discusses the refine-
ment strategy adopted in this work; section 3 identifies component types to be applied in
the (component-based) development process of groupware systems; section 4 proposes
a set of consecutive layers, one for each specific collaboration aspect of a cooperative
work process; section 5 introduces the concept of collaboration coupling between these
layers and discusses some related distribution aspects; section 6 illustrates the applica-
tion of our architectural model with a case study related to an electronic voting system;
finally, section 7 presents some conclusions.

2 Refinement Strategy

In the design of a groupware system, we use of the concept of functional entity as an
abstraction for an entity in the real world (e.g., a system, a system user or a system
component) capable of executing behavior. A functional entity executes behavior by
itself or in cooperation with other functional entities, which form the environment of
this entity.

2.1 Refinement Principle

There are two main approaches to tackle the refinement of a functional entity in gen-
eral: (1) to refine the interactions between the functional entity and its environment
without changing the granularity of the functional entity itself, i.e., without decom-
posing the functional entity into smaller parts, or (2) to decompose the functional
entity into smaller parts and allocate the functional entity interactions to these parts
without changing these interactions, except for the introduction of new (internal)
interactions between the smaller parts. The first approach is called interaction refine-
ment, while the second one is called entity refinement [16].

 An Architectural Model for Component Groupware 107

Fig. 1 illustrates the difference between the interaction refinement and entity re-
finement in the refinement of a system into system parts. Fig. 1 also shows that these
approaches can be combined in successive refinement steps to produce some design,
in which both the system is decomposed into smaller parts and the interactions are
refined into more detailed interactions.

In the context of this work, we consider that a refinement process is carried out
only according to the entity refinement approach. Consequently, we assume that the
interactions between a functional entity and its environment are preserved as we re-
fine the system into a set of interrelated components. Therefore, unless explicitly
mentioned, we use the term refinement or decomposition to denote entity refinement.

Entity
refinement

System

I1

I3

I2

I2

I3

I1

Interaction
refinement

System

I1.1 I1.2 I2

I3.1 I3.2 I3.3

I2I1.1 I1.2

I3.1 I3.2 I3.3

Interaction
refinement

SP SP

SP SP

SPSP

Combined
refinement

Entity
refinement

Fig. 1. Alternative refinement approaches

2.2 Component Decomposition

We can identify two slightly different approaches regarding the decomposition of a
system into components: the continuous recursion approach [4] and the discrete re-
cursion approach [7].

In the continuous recursion approach, the system is continuously refined into finer-
grained components, until components of a desired granularity level or complexity are
identified. Since in this case no specific component types are defined beforehand, this
approach can only provide general guidelines for reducing the complexity of a component.

In the discrete recursion approach, the system is systematically refined into com-
ponents of different types, which are pre-defined according to, for examples, different
objectives or milestones identified throughout the design trajectory. A component
type defines a number of characteristics common to a number of components. Differ-
ent component types can be made to correspond to different component granularities,
although this is not always necessarily the case. This decomposition approach is ca-
pable of providing both general and more specific refinement guidelines for each
component type.

108 C.R.G. de Farias et al.

Fig. 2 illustrates the difference between the two approaches. Fig. 2a shows the con-
tinuous recursion refinement approach, in which all components defined in the con-
secutive decomposition steps are of the same type (‘grey’ components). Fig. 2b shows
the discrete recursion refinement approach, in which two component types are defined
beforehand (grey and white components). Furthermore, Fig. 2b shows a decomposi-
tion discipline in which only a single component type (either grey or white) is used at
a certain level of granularity.

System

(a) continuous recursion

System

(b) discrete recursion

Fig. 2. Alternative component decomposition approaches

Fig. 2 also shows that these approaches are not fundamentally different (it is all
about successive decomposition), and that discrete recursion could even be seen as a
specialisation of continuous recursion.

3 Component Types

In this work we use the discrete recursion approach for component decomposition,
because this approach allows us to tailor the component types according to different
(sets of) concerns. Thus, we identify three different types of components inspired by
[7]: basic components, groupware components, and application components.

A basic component is the most basic unit of design, implementation, and deploy-
ment. A basic component is not further refined into other components. Additionally,
the behaviour of a basic component is carried out by binary code. Therefore, an in-
stance of a basic component runs on a single machine, which is usually part of a dis-
tributed environment.

A groupware component consists of a set of basic components that cooperate in order
to provide a mostly self-contained set of groupware functions. A groupware component
embodies the behaviour corresponding to an independent collaborative concept or feature
that can be reused to build larger groupware components and systems.

 An Architectural Model for Component Groupware 109

The self-containment of a groupware component does not imply that this compo-
nent is isolated from other components. On the contrary, a groupware component
should be composable, i.e., one should be able to compose different groupware com-
ponents, and these components should be able to interact with each other. However,
such a component should have minimal dependencies in order to maximize its reuse.

A groupware component also encapsulates distribution aspects. Since a groupware
component consists internally of basic components, and basic components can be
distributed individually across a network, the distribution aspects normally required
by a groupware component are consequently addressed by the composition of (dis-
tributed) basic components. However, basic components can be used to address not
only the physical distribution aspects, but also the distribution of concerns and re-
sponsibilities that form a groupware component.

An application component corresponds to a groupware application, i.e., an inde-
pendent application that can be used separately or integrated into another groupware
system. Any groupware system under development can be considered an example of
an application component. However, groupware components can also be used as
building blocks for larger application components. In most cases, an application com-
ponent consists of a set of interrelated groupware components that cooperate in order
to provide some application-level functionality.

In order to illustrate this component hierarchy, we take a videoconferencing system
as an example. This system can be seen as a composition of individual applications,
such as videoconferencing, chat, and shared whiteboard applications. A videoconfer-
encing application can be decomposed into separate groupware components, which
provide, e.g., audio support, video support, and attendance support. An audio support
component can be decomposed into separate basic components to handle the connec-
tion establishment, coding, decoding, transmission, and so on.

Nevertheless, this classification scheme is flexible and subject to the designer’s
choice and interpretation. For example, in the videoconferencing system above, one
could alternatively assign a separate groupware component to handle each of the
videoconferencing, chat, and shared whiteboard concerns. In this alternative, the sys-
tem is seen as a composition of individual groupware components, instead of a com-
position of application components.

4 Collaboration Concerns

In order to structure groupware systems we have identified layers of collaboration
concerns that have to be handled by these systems. We have also identified rules for
configuring these layers so that a meaningful groupware system can be obtained.

4.1 Collaboration Concern Layers

Suppose a particular groupware component manages the editing of a shared docu-
ment. This component is responsible for maintaining the consistency of the document,
allowing multiple users to change the document simultaneously. Initially, a user may
choose to have a different view of the document. For example, a user may choose an
“outline” view, as opposed to another user who uses a “normal” view at the same

110 C.R.G. de Farias et al.

time. The question is whether this particular choice of the first user should affect the
way in which the second user views the document or the component should allow
different users to have different views of the document simultaneously.

Consider that this particular component is also responsible for keeping the users in-
formed about changes in the document. Another question is whether a user should be
notified of every change in the document or any action of another user, or the compo-
nent should only notify the user when a change affects the part of the document this
specific user is currently working on.

These are typical issues that have to be dealt with by a groupware component. In
order to provide flexibility to deal with these and other issues, we identify a number
of so-called collaboration concern layers, on which different aspects of the function-
ality of a groupware component can be positioned.

We have identified four separate layers: interface, user, collaboration, and re-
source. Each layer uses the functionality provided by the layer below in order to pro-
vide some functionality that is used by the layer above. Fig. 3 depicts the collabora-
tion concern layers identified in this work and their relationships.

User Collaboration Resource Interface

Fig. 3. Collaboration concern layers

The interface layer is concerned with providing a suitable interface between a hu-
man user and the groupware component. Considering a drawing component of a
shared whiteboard application, the interface layer should enable a user to create new
drawings and change or delete existing drawings by means of graphical commands.
The interface layer should also enable the user to visualize the drawing itself through
the interpretation of drawing commands. Therefore, the interface layer handles all the
direct communication with the users via a graphical user interface.

The user layer is concerned with the local support for the activities performed by a
single user. The user layer addresses the local issues with respect to each individual
user that do not affect the collaboration as a whole. For example, suppose that our
drawing component enables a user to make changes to a local copy of a shared draw-
ing, without changing the shared drawing immediately. This allows the user to incor-
porate changes to the shared drawing only when this user is absolutely satisfied with
these changes. Therefore, the user layer maintains a user’s perception of the collabo-
ration. The user layer also supports the interface layer, by relating it with the collabo-
ration layer.

The collaboration layer is concerned with collaboration issues of multiple users.
The logic involved in different collaboration aspects, such as communication, coordi-
nation and cooperation functionalities [6, 9], are mainly tackled at this layer. Consid-
ering our drawing component, the collaboration layer should be able to handle the
drawing contributions of multiple users, relating them as necessary. Therefore, this
layer is responsible for the implementation of the core aspects of the collaboration and
for relating the user layer to the resource layer.

 An Architectural Model for Component Groupware 111

The resource layer is concerned with the access to shared collaboration information
(resources), which could be, for example, kept persistently in a database. In our draw-
ing component, the resource layer should be able to store the drawing and drawing
commands, saving and loading them as necessary. The resource layer is only accessi-
ble through the collaboration layer.

4.2 Implementation of Concern Layers

Each collaboration concern layer can be implemented by one or more basic compo-
nents. An interface component implements the interface collaboration layer. Simi-
larly, user, collaboration, and resource components implement the user, the collabora-
tion, and the resource collaboration layers, respectively. Nevertheless, it is not un-
common to someone implement more than one layer using a single component, in
case the functionality provided by these layers is simple enough to be implemented by
a single component.

We distinguish between three different types of functionality interfaces that a com-
ponent can support based on the purpose and visibility (scope) of the interface:
graphical user interfaces, internal interfaces and external interfaces.

A graphical user interface (GUI) supports the interactions between a human user
and an interface component. An internal interface supports the interactions between
the components of a single groupware component. Such an interface has internal
visibility with respect to a groupware component, i.e., a groupware component cannot
interact with another groupware component using internal interfaces. An external
interface supports the interactions between groupware components. Such an interface
has external visibility with respect to groupware components.

Interface components and resource components usually do not have external inter-
faces. Therefore, interactions between groupware components are normally only
achieved via the user and collaboration components.

A groupware component does not need to have all four layers. For example, it is
only meaningful to have a resource layer if some shared information has to be stored
persistently. Similarly, an interface layer is only meaningful if the component inter-
acts with a human user.

Nevertheless, if a groupware component has more than one layer, these layers
should be strictly hierarchically related. For example, the interface layer should not
access the collaboration layer or the resource layer directly, nor should the user layer
access the resource layer directly. Thus, a single groupware component should consist
of at least one and up to four ordered collaboration concern layers.

Fig. 4 illustrates some examples of groupware components that conform to the
rules given above. Each layer is represented by a corresponding basic component. A
groupware component is represented by a dashed rectangle, while a basic component
is represented as a solid rectangle. An interface is represented by a T-bar attached to a
component, while an operation invocation is represented by an arrow leading to an
interface. An external interface is represented by a solid T-bar that crosses the bound-
ary of the groupware component, while an internal interface is represented by a
dashed T-bar inside the groupware component. Graphical interfaces are not explicitly
represented.

112 C.R.G. de Farias et al.

User
Component

Collaboration
Component

Interface
Component

User
Component

Collaboration
Component

Resource
Component

User
Component

Collaboration
Component

Fig. 4. Valid layering distributions

4.3 Related Work

Our collaboration concern layers have been identified based on a number of develop-
ments, such as Patterson’s state levels [15], Herzum and Sims’ distribution tiers [7]
and Wilson’s architectural layers [24]. These developments address similar issues
although with different terminology.

Patterson [15] identifies four state levels in which a synchronous groupware appli-
cation can be structured, namely display, view, model, and file. The display state
contains the information that drives the user display. The view state contains the in-
formation that relates the user display to the underlying information in the application,
which is the model state. The file state consists of a persistent representation of the
application information. Based on Patterson’s state levels, Ter Hofte proposes a four-
level collaborative architecture known as the zipper architecture [22].

Herzum and Sims [7] propose a distribution architecture for business components
that consists of four tiers, namely user, workspace, enterprise, and resource. These
tiers are roughly equivalent to our collaboration concern layers. However, this archi-
tecture emphasizes distribution aspects, instead of the collaboration aspects that we
emphasize in our work.

Table 1. Collaboration concern layers and related approaches

Collaboration
Concern Layers

Patterson’s
State Levels

Herzum and Sims’
Distribution Tiers

Wilson’s
Architectural Layers

Interface Display User View

User View Workspace Application-Model

Collaboration Model Enterprise Domain

Resource File Resource Persistence

 An Architectural Model for Component Groupware 113

Wilson [24] proposes the development of a distributed application according to
four architectural layers, namely view, application-model, domain and persis-
tence. The view layer deals with user interface issues, the application-model layer
deals with application-specific logic, the domain layer deals with domain-specific
logic, and the persistence layer deals with the storage of information in a persis-
tent format.

Table 1 shows the correspondence between our collaboration concern layers, Pat-
terson’s state levels, Herzum and Sims distribution tiers, and Wilson’s architectural
layers.

5 Collaboration Coupling

The coupling of collaboration concerns and their logical or physical distribution are
two important aspects to be considered in the design of groupware systems.

5.1 Coupling Levels

So far we have discussed the collaboration concern layers of a groupware component
in the context of a single user. However, the whole purpose of groupware systems is
to support interactions involving multiple users.

In the context of a groupware system, and particularly in the context of a group-
ware component, two or more users may or may not share the same perception of the
ongoing collaboration supported by the system. For example, in the case of the
groupware component that manages the editing of a shared document, if one user
chooses an outline view of the document instead of a normal view, this decision could
possibly affect another user’s view of the document. In case all the component users
share the same perception, the outline view would replace the normal view for all
users. Otherwise, the other users do not share the same perception of the collabora-
tion, and only that particular user would have an outline view of the document.

We can apply the same reasoning to each collaboration concern layer of a group-
ware component. As a consequence, collaboration concern layers can be coupled or
uncoupled. Coupling was introduced as a general mechanism for uniting the interac-
tion contributions of different users, such that users might share the same view or
state of a collaboration [22].

A collaboration concern layer of a groupware component is coupled if all users
have the same perception of the information present in the layer and how this infor-
mation changes. Therefore, a collaboration concern layer across multiple users can be
coupled or uncoupled. An important property of coupling is downwards transitivity,
which means that if a layer is coupled, the layers below, from the interface layer down
to the resource layer, must be coupled as well in order to ensure consistency.

Four levels of coupling can be established based on the collaboration layers de-
fined in this work: interface, user, collaboration, and resource coupling.

The interface coupling level represents the tightest coupling level. All the compo-
nent users have the same perception of the collaboration, starting at the user interface
layer. This level corresponds to the collaboration style known as What You See Is
What I See (WYSIWIS) [20].

114 C.R.G. de Farias et al.

The user coupling level offers more freedom (independence of use) to the compo-
nent user than the interface coupling level. All the component users have the same
perception of the collaboration starting at the user layer, i.e., the information at the
user layer is shared by all users, but their interface layers are kept separate.

The collaboration coupling level goes a step further and offers more freedom than
the user coupling level. All the component users have the same perception of the
collaboration starting at the collaboration layer, i.e., the information at the collabora-
tion layer is shared by all users, but their interface and user layers are kept separate.

The resource coupling level offers the loosest coupling level. All component users
have the same perception of the collaboration only at the resource layer, i.e., the in-
formation at the resource layer is shared by all users, but their interface, user and
collaboration layers are kept separate.

Fig. 5 depicts the collaboration coupling levels defined in this work for two users.
A large rectangle labelled with the layer initial indicates that the layer it represents is
coupled, while a small rectangle also labelled with the layer initial indicates that the
layer it represents is uncoupled.

I

U

C

R

U

I I

C

R

C C

R R

U U

I I

U U

I I

C

R R

C C

U U

I I

(a) (b) (c) (d) (e)

Fig. 5. Collaboration coupling levels

Fig. 5a to Fig. 5d show the interface, user, collaboration and resource coupling lev-
els, respectively. Fig. 5e depicts the absence of coupling at all levels, i.e., in this fig-
ure the two instances of the groupware component operate independently from each
other (offline collaboration).

In a truly flexible groupware system, the users of this system should be able to choose
between the different levels of coupling, changing it at run-time based on the characteris-
tics and requirements of the task at hand. They should also be able to choose a temporary
absence of coupling, i.e., the users may decide to work independently for a while,

 An Architectural Model for Component Groupware 115

resuming their coupling status sometime later. In this case, additional mechanisms to
guarantee the consistency of the collaboration afterwards have to be implemented.

5.2 Distribution Issues

There are basically two ways to achieve collaboration coupling in a given layer: using
a centralised architecture or using a replicated architecture with synchronization
mechanisms.

In a centralized architecture, a single copy of the collaboration state, i.e., all the in-
formation contained in a layer, is maintained and shared by the users of the layer.
Concurrency control mechanisms should be used to avoid inconsistencies if needed.

In a replicated architecture, multiple copies of the collaboration state are main-
tained, one for each user of the layer. In this case, synchronization mechanisms (pro-
tocols) are used to maintain the consistency across the replicated copies of the col-
laboration.

The collaboration state of an uncoupled layer is non-centralised by definition, i.e.,
each user maintain its own copy of the collaboration state. However, the collaboration
state of a given coupled layer can be either centralised or replicated. Thus, different
architectures for each coupling level can be applied in a single groupware system.

The resource layer can only be coupled otherwise we are actually talking about dis-
tinct instances of a collaboration in place of a single one (see example in Fig. 5e).
This implies that the resource coupling level can only be centralised or replicated.
Each layer above can be coupled or uncoupled; in case the layer is coupled, the cou-
pling level can be again centralised or replicated. A fully centralised architecture has
only centralised layers, a fully replicated architecture has only replicated layers, and a
hybrid architecture combines centralised and replicated layers. However, once a cou-
pled layer is implemented using a centralised architecture, all layers below should
also be implemented using a centralised architecture. This is because it makes little
sense to centralise some information in order to assure consistency, and then to repli-
cate some other information upon which the first one depends on.

Although possible in principle, it is very unlikely that interface coupling is
achieved using a centralized architecture because of the complexity involved and
response time requirements. Interface coupling is usually implemented based on
shared window systems (see [1, 10, 20]).

Fig. 6 illustrates three possible combinations of centralised and replicated archi-
tectures to achieve coupling at the collaboration layer for two users. In Fig. 6 a
rectangle represents an instance of a basic component, which is labelled with the
initial of the layer it implements. A large rectangle indicates a component in a cen-
tralized architecture, while two small rectangles connected by a synchronization bar
(a double-edged horizontal arrow) indicate a component in a replicated architecture.
Small rectangles without a synchronization bar indicates that the layer they repre-
sent are uncoupled. Fig. 6a depicts a fully centralised architecture (both the resource
and the collaboration layers are centralised), Fig. 6b depicts a hybrid architecture
(the resource layer is centralised while the coordination layer is replicated), and Fig.
6c depicts a fully replicated architecture (both the resource and the collaboration
layers are replicated).

116 C.R.G. de Farias et al.

(a) (b) (c)

UC UC

IC IC

CC

RC

IC IC

RC

UC UC

IC IC

UC UC

CC CC CC CC

RC RC

Fig. 6. Centralised, hybrid, and replicated architectures

The choice between a centralised architecture and a replicated architecture is
mainly related to implementation issues [22]. A centralised architecture is indicated
whenever a given coupling level either requires some specialised or excessive proc-
essing power that prevents replication or changes from a coupled state to an uncou-
pled state at this level are unlikely. A replicated architecture is indicated whenever
changes from a coupled state to an uncoupled state are desired, thus improving the
flexibility of the component.

A discussion on the benefits and drawbacks of centralised versus replicated archi-
tectures, as well as the mechanisms used to achieve consistency in both architectures,
falls outside the scope of this work. For detailed discussions on these issues we refer
to [1, 10, 14, 17, 18, 22].

6 Design of an Electronic Voting System

In order to exemplify our architectural model we have applied it in the development
an Electronic Voting System (EVS).

The EVS basically enables its users to create polls and/or vote on them. To use the
EVS, any user is required to register first. Registered users can then log in and out of
the system and update their personal profile. Any registered user can open a poll,
defining its subject, voting options and eligible participants. Once a poll is registered,
it will be available for voting to all selected participants. A registered user can visual-
ize a list of all the polls available in the system and cast a single vote to any open poll
in which she participates. Additionally, the results of a closed poll should be available
for consultation by all users.

The design of the EVS system was carried out in a number of design steps accord-
ing to the guidelines provided in [5]. In this work, we used UML 2.0 [12, 13] as our
modelling language. Fig. 7 depicts the high level architectural model of the EVS us-
ing UML component diagram.

 An Architectural Model for Component Groupware 117

Fig. 7. EVS high level architecture

In the first step the EVS service was specified. At this point the EVS was seen as
an application component, called Voting System. In the second step, this component
was decomposed into two groupware components:

• Account Manager, which is responsible for the registration of users, their logging
on and off the system, and provision of user awareness;

• Poll Manager, which is responsible for the control over the creation of polls, as
well as the cast of votes;

In the third step, each groupware component was then refined into a number of
simple components. In this case study we did not consider the interface layer as part
of the groupware component, but considered it as part of the client application.

The Account Manager component was refined into the basic components Account,
UserLog and UserData, which implement the user, collaboration and resource layers
respectively. The identified components are coupled at the collaboration coupling
level, using a fully centralised architecture for the coupled layers. Since the user layer
is uncoupled, a separate instance of the component Account should be created to sup-
port each separate user of this component.

The Poll Manager component was refined into the basic components Voting, Partici-
pantData, PollData, OptionData and VoteData. The component Voting implements the user
and collaboration layers, while the remaining components implement the resource
layer. The identified components are coupled at the resource coupling level, using a
fully centralised architecture for this layer. Since the user/collaboration layer is un-
coupled, a separate instance of the component Voting should be created to support each
separate user of this component.

118 C.R.G. de Farias et al.

The EVS components were implemented as Enterprise Java Beans (EJB) compo-
nents. As an implementation infrastructure, we used the JBOSS 3.2 application server,
the Hypersonic database, and JAAS for authentication. The client was developed
using SWING and a communication library of the JBOSS server.

The components Account and Voting were implemented as two stateless session
beans, while the component UserLog was implemented as a statefull session bean. The
remaining components were implemented entity beans, using bean managed Persis-
tence. Notification across components was implemented using the Java Message Ser-
vice (JMS).

Fig. 8 depicts some screenshots of the voting system user interface. Fig. 8a shows
the system main interface. This interface shows the list of current logged users. Fig.
8b shows the poll registration interface. Fig. 8c shows the poll voting interface. Fig.
8d shows the poll results interface.

Fig. 8. Voting system user interface

7 Conclusion

This paper proposes an architectural model for the development of component-based
groupware systems. According to this model, a groupware system is recursively decom-
posed into a number of interrelated components, such that the service provided by the
groupware system is provided by the composed individual services of these components.

The decomposition process is carried out according to a discrete recursion approach
based on pre-defined component types. We believe that the use of specific component
types facilitates the decomposition process if compared to a decomposition approach

 An Architectural Model for Component Groupware 119

that does not make such distinction. Additionally, the use of pre-defined component
types facilitates the identification and reuse of existing components.

We have discussed the use of collaboration concern layers and collaboration coupling
to structure the different collaboration aspects within the scope of a groupware compo-
nent. We believe that the use of these layers and guidelines facilitates the logical and
physical distribution of these aspects and the assignment of functionality to components
thereafter thus improving reuse and speeding up the development process.

We have illustrated the application of the architectural model proposed in this work
by means of a simple case study describing the development of an electronic voting
system, which is being developed in the scope of the project TIDIA-Ae1.

Acknowledgements

This work has been partially supported by FAPESP under project number
2003/08279-2.

References

1. Ahuja, S.R., Ensor, J.R. and Lucco, S.E.: A comparison of application sharing mecha-
nisms in real-time desktop conferencing systems. In Proceedings of the 1990 ACM Con-
ference on Office Information Systems (COIS’90), pp. 238-248, 1990.

2. Banavar, G., Doddapaneti, S., Miller, K. and Mukherjee, B.: Rapidly Building Synchro-
nous Collaborative Applications by Direct Manipulation. In Proceedings of the 1998 ACM
Conference on Computer Supported Cooperative Work (CSCW’98), pp. 139-148, 1998.

3. Bass, L., Clements, P. and Kazman, R.: Software Architecture in Practice. Addison-
Wesley, 1997.

4. D’Souza, D. F. and Wills, A. C.: Objects, Components and Frameworks with UML: the
Catalysis Approach. Addison Wesley, 1999.

5. de Farias, C. R. G.: Architectural Design of Groupware Systems: a Component-Based Ap-
proach. PhD Thesis, University of Twente, the Netherlands, 2002.

6. Fuks, H., Raposo, A. B., Gerosa, M. A. and Lucena, C. J. P.: Applying the 3C Model to
Groupware Development. In International Journal of Cooperative Information Systems
(IJCIS), 14(2-3), pp. 299-328, 2005.

7. Herzum, P. and Sims, O.: Business component factory: a comprehensive overview of com-
ponent-based development for the enterprise. John Wiley & Sons, 2000.

8. Hummes, J. and Merialdo, B.: Design of Extensible Component-Based Groupware. In
Computer Supported Cooperative Work: The Journal of Collaborative Computing, 9 (1),
pp. 53-74, 2000.

9. Laurillau, Y. and Nigay, L.: Clover Architecture for Groupware. In Proceedings of the
2002 ACM Conference on Computer Supported Cooperative Work (CSCW´02), pp. 236-
246, 2002.

10. Lauwers, J.C., Joseph, T.A., Lantz, K.A. and Romanow, A.L.: Replicated architectures for
shared window systems: a critique. In Proceedings of the 1990 ACM Conference on Office
Information Systems (COIS’90), pp. 249-260, 1990.

1 http://tidia-ae.incubadora.fapesp.br/novo/

120 C.R.G. de Farias et al.

11. Litiu, R. and Prakash, A.: Developing adaptive groupware applications using a mobile
component framework. In Proceedings of the ACM 2000 Conference on Computer Sup-
ported Cooperative Work (CSCW'00), pp. 107-116, 2000.

12. OMG: UML 2.0 Infrastructure Specification. Adopted Specification, Object Management
Group, 2003.

13. OMG: UML 2.0 Superstructure Specification. Revised Final Adopted Specification, Ob-
ject Management Group, 2004.

14. Patterson, J.F., Day, M. and Kucan, J.: Notification servers for synchronous groupware. In
Proceedings of ACM 1996 Conference on Computer Supported Cooperative Work
(CSCW'96), pp. 122-129, 1996.

15. Patterson, J.F.: A taxonomy of architectures for synchronous groupware applications.
SIGOIS Bulletin, 15 (3), pp. 27-29, 1995.

16. Quartel, D., Ferreira Pires, L. and Sinderen, M.: On Architectural Support for Behaviour
Refinement in Distributed Systems Design. In Journal of Integrated Design and Process
Science, 6 (1), pp. 1-30, 2002.

17. Roth, J. and Unger, C.: An extensible classification model for distribution architectures of
synchronous groupware. In Designing Cooperative Systems: the Use of Theories and Mod-
els, Proceedings of the 5th International Conference on the Design of Cooperative Systems
(COOP’00), pp. 113-127, 2000.

18. Schuckmann, C., Kirchner, L., Schümmer, J. and Haake, J.M.: Designing object-oriented
synchronous groupware with COAST, In Proceedings of ACM 1996 Conference on Com-
puter Supported Cooperative Work (CSCW'96), pp. 30-38, 1996.

19. Slagter, R. J.: Dynamic Groupware Services: Modular design of tailorable groupware.
PhD Thesis, University of Twente, the Netherlands, 2004.

20. Stefik, M., Bobrow, D.G., Foster, G., Lanning, S. and Tatar, D.: WYSIWIS revised: early
experiences with multiuser interfaces. ACM Transactions on Office Information Systems,
5(2), pp. 147-167, 1987.

21. Teege, G.: Users as Composers: Parts and Features as a Basis for Tailorability in CSCW
Systems. In Computer Supported Cooperative Work: The Journal of Collaborative Com-
puting, 9 (1), pp. 101-122, 2000.

22. ter Hofte, G. H.: Working Apart Together: Foundations for component groupware. PhD
Thesis, Telematics Institute, the Netherlands, 1998.

23. van Vliet, H.: Software Engineering: Principles and Practice. John Wiley & Sons, USA,
2000.

24. Wilson, C.: Application Architectures with Enterprise JavaBeans. Component Strategies,
2(2), pp. 25-34, 1999.

	Introduction
	Refinement Strategy
	Refinement Principle
	Component Decomposition

	Component Types
	Collaboration Concerns
	Collaboration Concern Layers
	Implementation of Concern Layers
	Related Work

	Collaboration Coupling
	Coupling Levels
	Distribution Issues

	Design of an Electronic Voting System
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

