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Abstract: A new computational framework for the numerical simulation of turbu-
lent flows through complex domains and along irregular boundaries is presented.
The geometrical complexity is included by introducing explicit fractal forcing. This
involves the agitation of a spectrum of length-scales and forms an integral part
of the flow modeling. The potential application of such a modeling approach is illus-
trated by the evaluation of the turbulent mixing of a passive scalar field, driven by
this turbulent flow. The surface-area and wrinkling of level-sets of the scalar field are
monitored showing the influence of the forcing localization on the mixing efficiency.
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1 Introduction

Various important multi-scale phenomena in turbulent flows are caused by
the interactions between the flow and geometrically complex objects placed in-
side the flow-domain. The origin of the flow perturbations that arises on many
different scales of motion comes from the geometrically complex boundaries
as occur, e.g., in case of a flow through a porous region (Fig. 1a). In litera-
ture, two approaches are used to capture the influence of these perturbations.
These incorporate either the explicit boundary modeling, precisely describing
its intricate shape, or a rather general macroscopic approximation in terms
of effective boundary conditions. However, these methods either suffer from
a lack of incorporated scales or are computationally not feasible.

We propose a different modeling approach to flows which undergo simul-
taneous perturbation over a broad range of scales by the interaction with
a geometrically complicated object. The emergence of self-similar spectra in
turbulence which do not follow the well known Kolmogorov −5/3 slope [1]
was observed experimentally in flows over tree canopies [2]. This motivated us
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to adopt explicit multi-scale fractal forcing [3] which captures the dominant
geometrical complexities of the flow domain. In fractal forcing, turbulence
is forced over a whole range of length-scales in a way that mimics a power-
law forcing in spectral space (Fig. 1b). This offers the possibility of modeling
the dynamic consequences of complex domain boundaries without the need
to explicitly account for their intricate geometrical shape. The simultaneous
disturbance of the flow over a spectrum of length-scales is approximated by
a broad-band distribution of forcing intensities. This method can also in-
corporate cases in which only part of the domain is occupied by a complex
obstruction, as sketched in Fig. 1c. In fact, by introducing an ‘indicator’ func-
tion to locate the complex object within the flow domain, the forcing can
accommodate such spatial localization. This way the method could be used
for global modeling of complicated geometry flows. However, a proper devel-
opment of this methodology requires extensive examination of the influence
of forcing on the energy dynamics, the spatial structures and the flow charac-
teristics.
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Fig. 1. Modeling of fluid flow through a complex geometry: a) porous metal sponge,
b) multi-scale forcing in spectral space, c) spatial localization of forcing.

The aim of this paper is to present the general framework of multi-scale
forced turbulence simulations. Forcing in computational models of turbulence
has been solely directed toward maintaining a quasi-stationary state. It allows
a study of inertial range dynamics corresponding to the classical Kolmogorov
theory. We extend the application of such explicit forcing to simultaneously
perturb the flow over a wide spectrum of length- and time-scales. Specifi-
cally, we consider the incompressible Navier-Stokes equations with the fractal
forcing working as a stirrer controlled by its strength and size of disturbed
scales. This computational modeling is illustrated with passive scalar mix-
ing in the forced turbulent flow. Special attention is devoted to the mixing
efficiency of a tracer by monitoring the surface area, curvature and wrin-
kling of level-sets of the scalar fields. The changes in mixing efficiency caused
by the broad-band forcing are directly quantified using the level-set method
developed in [4]. The application of broad-band forcing leads to distortion
of the classical Kolmogorov energy spectrum picture reminiscent of a spectral
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short-cut feature observed experimentally [2]. The production of additional
large- and small-scale flow-features by the forcing enhances wrinkling and
surface-area growth which plays an important role in turbulent mixing.

The organization of this paper is as follows. The Navier-Stokes equations
and the passive scalar transport are briefly presented in §2 within our new
framework. The results illustrating the possible application of broad-band
forcing are collected in §3 with concluding remarks in §4.

2 Forced turbulence and passive scalar transport

Turbulence is described by the non-dimensional incompressible Navier-Stokes
equations which govern the evolution of velocity u(x, t) and reduced pressure
p(x, t) subject to an external forcing F(x, t). The evolution obeys:

{
∂tu(x, t) + (u(x, t) · ∇)u(x, t) = −∇p(x, t) + Re−1∇2u(x, t) + F(x, t),
∇ · u(x, t) = 0,

(1)
where Re is the Reynolds number. The equation for the passive scalar T (x, t)
has the form:

∂tT (x, t) + (u(x, t) · ∇)T (x, t) = (ScRe)−1∇2T (x, t). (2)

The non-dimensional molecular diffusivity is denoted by 1/(ScRe) in terms of
the product of the Schmidt (Sc) and Reynolds numbers. Applying the Fourier
transform F and using the incompressibility constraint we obtain the following
system of equations for the Fourier-coefficients of the velocity (û) and scalar
fields (T̂ ) [5]:

{(
∂t + Re−1k2

)
û(k, t) + Ŵ(k, t) = F̂(k, t),

(
∂t + (ScRe)−1k2

)
T̂ (k, t) + Ẑ(k, t) = 0,

(3)

where k = |k| denotes the length of the wavevector k. The nonlinear
term Ŵ(k, t) = F [(u(x, t) · ∇)u(x, t) +∇p(x, t)] and the convective term
Ẑ(k, t) = F [(u(x, t) · ∇)T (x, t)] are computed pseudo-spectrally which in-
volves transforming them back to the physical space to perform the prod-
ucts [6]. Beside the computational advantage of the Fourier expansion in pe-
riodic domains, this representation of the solution directly identifies the dif-
ferent length-scale contributions. This decomposition is helpful in the forcing
definition presented next.

We used a slightly modified fractal forcing compared to the one proposed
in [3]. The interactions of a fluid with a truncated fractal-like object are ap-
proximated through the induced drag force caused by the contact of that
object with the flow. A power-law dependence on wavenumber was derived in
which it is assumed that the drag is proportional to the surface area which
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causes the blockage effect of the fluid. This surface area scales with a coeffi-
cient β, connected to the fractal dimension Df by β = Df − 2 [3]:

F̂(k, t) = kβ f̂ ê(k, t). (4)

The unit vector ê is constructed on the basis of velocity and vorticity Fourier
coefficients:

ê(k, t) = γ

[
û(k, t)
|û(k, t)| + ı

k× û(k, t)
|k||û(k, t)|

]
, (5)

where γ is the normalization parameter to satisfy |e|2 = 1. The strength of
the forcing term is controlled by specifying the desired energy input rate εw

distributed over the set of forced modes KF expressed by:

f̂ = εw/
∑

KF

kβ |û(k, t)|. (6)

To solve (3) we used the four-stage compact-storage Runge-Kutta method
[7]. The spectral discretization was fully dealiased by spectral truncation and
a phase shift scheme. We applied exact integration of the viscous and diffu-
sive terms [6]. To illustrate and quantify the influence of the fractal forcing
on the turbulent dispersion of a passive scalar field we adopted the level-
set integration method proposed in [4]. This method allows to determine,
e.g., the surface-area, curvature and wrinkling of scalar level-sets. To quan-
tify the evolving scalar level-set we may monitor its surface-area or surface-
wrinkling. The latter is obtained by integrating |∇ · n| over the scalar level-
set, with n the unit normal vector on that set. To present the application of
the explicit broad-band forcing method along with the adopted procedure for
the passive scalar evaluation we performed some relatively simple idealized
numerical experiments which will be presented in the next section.

3 Forcing and mixing efficiency

In this section we first show the results of applying broad-band forcing in
turbulence. Then, we turn to turbulent passive scalar mixing discussing briefly
the influence of forcing on mixing time and mixing quality.

We performed numerical simulations at Reynolds number Re = 1067
where the length and time scales are defined by the size of the computational
box L = 1 and the energy input rate εw. The resolution requirements were sat-
isfactorily fulfilled as kmaxη ranges from 2.3 to 3.5 (η - Kolmogorov scale) using
a resolution of 1283 and 1923 grid-cells, which yields after dealiasing 60 and 90
‘active’ wavenumbers, respectively. For the passive scalar with Sc = 0.7 used
in the simulations this gives kmaxηOC = 3.0 . . . 4.5 (ηOC - Obukhov-Corrsin
scale). The fractal dimension used in the simulations was Df = 2.6 yielding
a surface area scaling β = 0.6. The wavenumbers were rescaled by L/(2π).
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As a reference point we used large-scale forcing with εw = 0.15 which keeps
the system energetically in a quasi-stationary state. We refer to this as case
A15 in which the forced modes are KF : k ≤ 1.5. The application of additional
perturbation to the flow in higher wavenumber bands produces more spatial
scales which change the characteristics of the transport. To study this influ-
ence we specified two regions where we applied supplementary fractal forcing
with εw = 0.45. The first region is situated near the largest scales of the flow
(B451 case - KF : 4.5 < k ≤ 8.5) and the second one at some distance from
the largest scales (B452 case - KF : 12.5 < k ≤ 16.5) to enhance even smaller
scales. Finally, we also considered mixing in case εw = 0.6 in the large scales
only (A60 case - KF : k ≤ 1.5).
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Fig. 2. Energy spectrum: a) E(k), b) ε−2/3k5/3E(k) for A60 (solid), B451 (dashed)
and B452 (dash-dotted), A15 (dotted).

The energy spectra averaged over 10 independent realizations of the initial
condition and over a time-interval of 10 eddy-turnover times are presented in
Fig. 2. Time-averaging was started after allowing the flow to develop for 5
eddy-turnover times. The additional energy input in the higher wavenumber
bands causes a nonlocal modulation in the energy spectrum. This leads to
a different dynamics of the flow (Fig. 2a). There is a clear cross-over in the
spectra of the broad-band forced cases. At low wavenumber the spectra coin-
cide with the A15 case while at high wavenumbers the tails overlap the A60
case. Rescaling the energy and length-scales yields Fig. 2b. This gives infor-
mation about the energy distribution over the different scales. Broad-band
forcing is seen not to lead to a significant change in the total energy present
in the flow. Mainly the high-k forcing changes the distribution of energy over
the scales of motion. Specifically, broad-band forcing produces smaller scales
and in this way the dissipation of energy increases. The energy is present in
different scales of motion and by changing the strength and spatial location
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of the forcing, we have the possibility to control its distribution and hence its
transport properties.

We next consider the consequences of the different forcing strategies for
the efficiency with which the passive scalar is stirred. The nature of stirring
comes from the convective turbulent flow properties which drive the scalar
while on the other hand mixing is strongly influenced by molecular diffusion.
These two physical mechanisms work simultaneously and are responsible for
the final result which is commonly called ‘mixing’. To study turbulent mixing
properties we simulated the spreading of a passive tracer at the earlier men-
tioned Schmidt number of 0.7. Initially, we start with a spherical distribution
of tracer of radius 3/16 with the radial distribution as a step function softened
by a Gaussian profile at the edge and internal concentration equal one.

(a) (b) (c)

(a) (b) (c)

Fig. 3. Snapshot of velocity field iso-surfaces (above) and passive scalar concentra-
tion (below) at t = 0.5 for: a) A15, b) B451, c) B452.

The changes in the flow properties in the different cases have conse-
quences for the quality of mixing as we can observe in Fig. 3. Consistent with
the length-scale ranges that are forced we observe more small-scale features
in the velocity fields and correspondingly more localized ‘wrinkling’ of the
level-sets of the passive scalar. To quantify this first impression given by these
snapshots we define the growth parameter of the surface-area A(t) at time t
of the selected level-set as ϑA(t) = A(t)/A(0). Similarly, we may monitor the
growth ϑW of the surface-wrinkling W (t).
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We obtain an enhancement of the mixing for the broad-band cases (B451,
B452) compared to the large scale forcing case at εw = 0.15 (A15). The mixing
is more efficient not only in terms of the quality as indicated by the maxima
of the individual curves in Fig. 4a, but also in terms of the time needed to
reach a similar level of mixing. Comparing the different cases, similar levels
of surface-area are obtained in about half the time for the broad-band forced
cases. So, ‘investing’ extra energy by agitating high-k bands does produce
additional mixing. However, if we compare these results to the energetically
equally costly A60 case with energy inserted only in the low-k band then
the situation is quite different. The growth parameter for the area reaches
its maximum value both sooner and at a higher value. This can be explained
because the ratio of the initial tracer volume and the whole computational
domain is 1 : 36 and the Schmidt number is comparatively small. Convective
spreading of the tracer dominates over the decay caused by molecular diffusion
and, hence, larger scales play a crucial role.
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Fig. 4. Evolution of decaying passive scalar: a) area, b) wrinkling. Growth parameter
ϑA(t) and ϑW (t) at the level-set 0.25 for A60 (solid), B451 (dashed), B452 (dash-
dotted) and A15 (dotted).

In many cases, e.g., in combustion processes not only the surface-area but
other quantities like the small-scale wrinkling are important to keep the chemi-
cal reactions at an optimum level. The wrinkling growth parameter in Fig. 4b
is in general a measure of the average local surface complexity. It exhibits
a maximal value for the broad-band forcing situated near the largest scales.
The higher band forcing needs to compete more directly with the viscous ef-
fects and it was found less effective in producing surface-area, which is more
related to ‘sweeping’ motions over ‘reasonable’ distances. In contrast we ob-
serve here that more localized distortions of the scalar level-sets are less af-
fected by this competition with viscosity. The level-set integration method is
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effective in quantifying these general impressions. This may help to identify
optimal stirring procedures to which future research will be devoted.

4 Conclusions

We presented a methodology for the numerical investigation of turbulent flow
which undergoes simultaneous forcing over a broad range of scales as a result
of interaction with complex domain boundaries. We have shown that with
a relatively simple model we can mimic some basic properties of very complex
flows. The application of fractal forcing causes an enhancement of energy
dissipation in the system producing the so-called spectral short-cut feature
observed experimentally [2].

The passive scalar field driven by the forced flow was examined using
a level-set evaluation approach to quantify basic general characteristics of mix-
ing quality and efficiency. We illustrated it by performing numerical simula-
tions of a tracer decay in turbulence forced at different length-scales. The re-
sults show successful application of the evaluation method in searching an op-
timal state between surface area and its wrinkling needed in many techno-
logical processes. Specifically, it was found that broad-band forcing causes
additional production of smaller scales in the flow and for a small initial size
of a tracer and Schmidt number this effect is directly responsible for the wrin-
kling area enhancement, while the surface area of a tracer is mainly governed
by the large-scales in this case.

The natural extension of the presented method will be the use of passive
scalar forcing and the spatial localization of the broad-band forcing region to
which future attention will be given.
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