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Abstract. We study parallel knock-out schemes for graphs. These
schemes proceed in rounds in each of which each surviving vertex simul-
taneously eliminates one of its surviving neighbours; a graph is reducible
if such a scheme can eliminate every vertex in the graph. We show that,
for a reducible graph G, the minimum number of required rounds is
O(

√
α), where α is the independence number of G. This upper bound is

tight and the result implies the square-root conjecture which was first
posed in MFCS 2004. We also show that for reducible K1,p-free graphs at
most p − 1 rounds are required. It is already known that the problem of
whether a given graph is reducible is NP-complete. For claw-free graphs,
however, we show that this problem can be solved in polynomial time.

Keywords: parallel knock-out schemes, claw-free graphs, computational
complexity.

1 Introduction

In this paper, we continue the study on parallel knock-out schemes for finite
undirected simple graphs introduced in [7] and studied further in [2,3,4]. Such
a scheme proceeds in rounds: in the first round each vertex in the graph selects
exactly one of its neighbours, and then all the selected vertices are eliminated
simultaneously. In subsequent rounds this procedure is repeated in the subgraph
induced by those vertices not yet eliminated. The scheme continues until there
are no vertices left, or until an isolated vertex is obtained (since an isolated
vertex will never be eliminated).

A graph is KO-reducible if there exists a parallel knock-out scheme that elim-
inates the whole graph. The parallel knock-out number of a graph G, denoted by
pko(G), is the minimum number of rounds in a parallel knock-out scheme that
eliminates every vertex of G. If G is not reducible, then pko(G) = ∞.

Knock-out schemes have an obvious relationship with games on graphs, a
topic which has received considerable attention in the last decades ([6]). But
unlike many games on graphs, knock-out schemes can be motivated by practical
settings, e.g., in which objects exchange entities that inactivate the receiving ob-
jects, like viruses that paralyse or block computers, or computational tasks that
disable processors or sensors from other tasks. Especially in the relatively new
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area of sensor networks, knock-out schemes for the underlying graph structures
can model practical situations in which sensors exchange data with neighbouring
sensors that temporarily disables the receiving sensors from their main monitor-
ing tasks. This happens, e.g., in situations where sensors have a low battery and
limited computational power. They share measured and processed data with
other sensors in their close vicinity as well as with more powerful PCs, laptops
or mainframes at larger distances. Consider a setting with a number of sen-
sors that perform simple measurements, for instance on temperature, humidity,
smoke levels, movements, or the like. Data sharing is important for two reasons:
in order to rule out erroneous data (by comparisons with data gathered at a
neighbouring sensor) and in order to preprocess the data before sending it to a
more powerful computer. During the preprocessing stage in a sensor no new data
can be collected by that sensor, so the chosen neighbouring sensors are out of
order for the time being, while the other sensors continue collecting data, sharing
it with other active neighbouring sensors, and so on, until all sensors are out of
order or run out of available neighbouring sensors. Then a new round of data
collection and sharing starts. In the ideal case all sensors have shared their data
with at least one neighbouring sensor and have performed some preprocessing of
their data. In order to keep the time intervals between successive rounds of data
collection as short as possible, the number of stages within one round should be
kept to a minimum. This problem setting can be modelled by parallel knock-out
schemes and the parallel knock-out number comes up naturally.

Our main motivation for studying knock-out schemes, though, is the intimate
relationship between this concept and well-studied structural graph theoretical
concepts like perfect matchings, hamiltonian cycles and 2-factors (they all yield
knock-out schemes of one round). Apart from these structural aspects, we are
interested in complexity aspects. Whereas the classical complexity problems re-
lated to matchings and hamiltonian cycles have been settled many years ago, the
analogous problems related to knock-out schemes have been resolved recently,
and only for general graphs and graphs of bounded tree-width. For many inter-
esting classes, however, these problems on knock-out schemes are still open [3].

1.1 Our Results

In [3], a number of results, conjectures and questions on upper bounds for knock-
out numbers were presented. For trees, the problem was resolved by showing that
the knock-out number of a tree on n vertices was O(log n) and by exhibiting a
family of trees that met this bound. They also presented a family of bipartite
graphs whose knock-out numbers grow proportionally to the square root of the
number of vertices, and conjectured that for any KO-reducible graph on n ver-
tices the knock-out number is at most 2

√
n. In this paper, in Section 3, we prove

this conjecture.
In [3], a polynomial algorithm was also given that would determine the parallel

knock-out number of any tree. In [4] it was shown that the problem of finding
parallel knock-out numbers is, for general graphs, NP-complete. In this paper, in
Section 4, we present a polynomial algorithm that finds the knock-out number of
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claw-free graphs, that is, graphs that do not contain an induced K1,3; these form
a well-studied class of graphs, see [5] for a survey. We also give a tight bound on
the knock-out number of reducible K1,p-free graphs, generalizing a result of [3]
on claw-free graphs.

2 Preliminaries

Graphs in this paper are denoted by G = (V, E). An edge joining vertices u and v
is denoted by uv. If not stated otherwise a graph is assumed to be undirected
and simple. If a graph G is directed then an arc from a vertex u to a vertex v
is denoted by (u, v). In the null graph, V = E = ∅. For graph terminology not
defined below, we refer to [1].

For a vertex u ∈ V we denote its neighbourhood, that is, the set of adjacent
vertices, by N(u) = {v | uv ∈ E}. The degree of a vertex is the number of edges
incident with it, or, equivalently, the cardinality of its neighbourhood. A subset
U ⊆ V is called an independent set of G if no two vertices in U are adjacent to
each other. The independence number α of a graph G is the number of vertices
in a maximum independent set of G.

A complete bipartite graph K|X|,|Y | is a bipartite graph with the maximum
number of edges between its bipartite classes X and Y . If |X | = 1, then it is a
star and the vertex in X is the centre vertex and the vertices in Y are leaves. If
|X | = 1 and |Y | = 1 we arbitrarily choose one of the star’s two vertices to be the
centre vertex. A graph G that does not contain a K1,p as an induced subgraph
for some p ≥ 1 is said to be K1,p-free. A K1,3-free graph is also called claw-free.

For a graph G, a KO-selection is a function f : V → V with f(v) ∈ N(v) for
all v ∈ V . If f(v) = u, we say that vertex v fires at vertex u, or that vertex u is
knocked out by vertex v. We also say that u is a victim of v. For each u ∈ f(V ),
we denote the set of vertices that fire at u by K(u), i.e., v ∈ K(u) if and only if
f(v) = u. If K(u) = {v}, that is, vertex v is the only vertex that fires at u, then
we call u the unique victim of v. For a subset U ⊆ f(V ) we use the shorthand
notation K(U) =

⋃
u∈U K(u), and we say that such a subset U is knocked out

by a subset W ⊆ V if K(U) ⊆ W , that is, if every vertex in U is knocked out
by a vertex in W .

For a KO-selection f , we define the corresponding KO-successor of G as the
subgraph of G that is induced by the vertices in V \ f(V ); if H is the KO-
successor of G we write G � H . Note that every graph without isolated vertices
has at least one KO-successor. A graph G is called KO-reducible, if there exists
a finite sequence

G � G1 � G2 � · · · � Gr,

where Gr is the null graph. If no such sequence exists, then pko(G) = ∞. Other-
wise, the parallel knock-out number of G, pko(G), is the smallest number r for
which such a sequence exists. A sequence S of KO-selections that transform G
into the null graph is called a KO-reduction scheme. A single step in this se-
quence is called a round of the KO-reduction scheme. We denote the number of
rounds in S by r(S) = r.
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For a KO-reduction scheme S we denote the set of vertices that are victims
of a vertex v by L(v). For a subset W ⊆ V , we use the shorthand notation
L(W ) =

⋃
v∈W L(v).

An in-tree is a directed tree that contains a root u that can be reached from
any other vertex by a directed path. Note that a graph containing only one
vertex is an in-tree. For i = 1, . . . , r, we denote the subset of vertices knocked
out in round i by Ri. Let Gi be the directed graph with vertex set Ri and an arc
from a vertex u to a vertex v if and only if u fires at v in round i. We may also
use Gi to denote the underlying undirected graph; it will always be clear which
from the context). Also, observe that Gi and Gi denote two different graphs. As
each vertex in a round has exactly one edge oriented away from it, we can make
the following observation (which is illustrated in Fig. 1).

Fig. 1. A component of a graph Gi

Observation 1. Let S be a KO-reduction scheme for a graph G. For i =
1, . . . , r, each component of Gi is formed by a directed cycle D on at least two
vertices, such that each vertex on D is the root of some pendant in-tree.

Another observation we will use is the following.

Observation 2. If a graph G contains two distinct vertices of degree 1 that
share the same neighbour, then G is not KO-reducible.

Note that when referring to, for example, Gi, it is implicit that we know with
respect to which KO-reduction scheme this graph is defined (we wish to avoid
the cumbersome notation necessary to make it explicit). Sometimes we will be
considering pairs of schemes and will write, for instance, that G2 has fewer
vertices under S′ than under S. The meaning of this should be clear.

3 Resolving the Square-Root Conjecture

Let S be a KO-reduction scheme for a KO-reducible graph G. It turns out that
the square-root conjecture can be solved by considering schemes that knock out
vertices “as early as possible”. Hence, we define

w(S) =
r(S)∑

i=1

i|Ri|,
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and we say that S is a minimal KO-reduction scheme for G if

w(S) = min{w(S) | S is a KO-reduction scheme for G}.

For a minimal KO-reduction scheme S of a graph G, we can make a number of
further assumptions. We use the following terminology. If Gi has a component
C that consists of two vertices u and v we call C a two-component of Gi. Note
the existence of arcs (u, v) and (v, u) between the vertices u and v of a two-
component C. If Gi has a component C that consists of vertices u, v1, . . . , vp

for some p ≥ 2 with arcs (u, v1), (v1, u), (v2, u), . . . , (vp, u) then we call C a star-
component of Gi with centre vertex u. The vertices v1, . . . , vp are called the leaves
of C, and v1 is called the centre-victim, and the other leaves are called centre-
free. Finally, if Gi has a component that is a directed cycle with an odd number
of vertices then we call such a component an odd cycle-component of Gi.

Lemma 1. If G is KO-reducible, then G admits a minimal KO-reduction scheme
S with the following properties:

(i) Each component C of G1 is either a two-component, a star-component or
an odd cycle-component.

(ii) For 2 ≤ i ≤ r − 1, every component of Gi is either a two-component or a
star-component.

(iii) Every component of Gr is a two-component.
(iv) If C is an odd cycle-component (in G1) then no vertices of R2, . . . , Rr fire

at vertices of C in round 1.
(v) For 1 ≤ i ≤ r−1, there is no edge in G between any two leaves of the same

star-component or of two different star-components in Gi.

Proof. Let G be a KO-reducible graph. Then G admits a KO-reduction scheme
S. Let C be a component in Gi for some 1 ≤ i ≤ r. We start the proof by showing
that if S is minimal, then we can assume that C is either a two-component, a
star-component or an odd cycle-component. By Observation 1, C is formed by
a directed cycle D on vertices u1, . . . , up for some p ≥ 2, such that each ui is the
root of some pendant in-tree Ti.

Suppose p is even and p ≥ 4. We adjust the firing by letting the vertices of VD

fire at each other according to a perfect matching of D. Hence, we may assume
that this case does not occur.

Suppose p ≥ 3 is odd. If D contained a vertex that is knocked out by some
vertex v in its corresponding pendant in-tree, then we can adjust the firing by
letting the vertices of VD ∪{v} fire at each other according to a perfect matching
of this subgraph. Hence, we may assume that C = D is an odd cycle-component.

Suppose that p = 2. Then the underlying undirected graph of C is a tree, and it
is obvious that it can be decomposed into two-components and star-components
(and that we can let these components define the firing).

By Observation 2, we have that Gr cannot contain any star-components.
To complete the proof of (i)–(iii), we must show that odd cycle-components

only occur in G1. To do this we shall first prove a claim which also immediately
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implies (iv): for any odd cycle-component D we may assume that K(D) = D;
that is, vertices in D are only knocked out by each other. Suppose D is an odd
cycle-component on vertices u1, . . . , up in some Gi for i ≥ 1, such that there
exists a vertex v ∈ K(D)\D and v fires at u1. We adjust the firing by replacing
the arc (up, u1) by (up, up−1) and return to a previous case. Hence, we may
assume that this case does not occur.

Now suppose that a graph Gi, i ≥ 2, contains an odd cycle-component D.
First suppose that in round i − 1 all vertices in D fire at vertices in Ri−1 that
either are centre vertices of star-components, or else belong to two-components
or odd cycle-components. Since we just saw that no vertices in Ri+1 ∪ . . . ∪ Rr

fire at D, we can move D to Gi−1 (since all victims of D in Ri−1 are not unique,
it does not matter if the vertices of D fire at each other instead). This way
we obtain a KO-reduction scheme S′ with w(S′) < w(S). This contradicts the
minimality of S. In the remaining case, there exists a vertex u in D that fires
at a leaf w in a star-component in Ri−1. We let u and w fire at each other in
round i − 1, so we are able to move u to Ri−1 as K(D) = D. We let the other
vertices in D fire at each other in round i according to a perfect matching of
D −u. This way we again obtain a KO-reduction scheme S′ with w(S′) < w(S),
contradicting the minimality of S.

To finish the claim we prove (v). Suppose u and v are leaves in Gi for some
1 ≤ i ≤ r − 1, such that u and v are adjacent in G. In case u and v are leaves
of different star-components, we adjust the firing by letting u and v fire at each
other, and, if necessary, changing the centre-victims to be vertices other than u
and v. Suppose u and v are leaves of the same star-component C. Let z be the
centre vertex of C. If C has a third leaf, then we again let u and v fire at each
other and let another leaf be the centre-victim. Otherwise we can form an odd
cycle-component and return to a previous case. ��

We call a minimal KO-reduction scheme S of a graph G that satisfies the prop-
erties (i)-(v) of Lemma 1 a simple KO-reduction scheme of G. We will continue
to find further properties of simple KO-reduction schemes.

Observation 3. Let S be a simple KO-reduction scheme for a graph G. Let u, v
be, respectively, vertices of Ri and Rj, i < j, such that u is the unique victim of
v. Then u is a centre-free leaf of a star-component in Gi.

Proof. By Lemma 1, u cannot be a vertex of an odd cycle-component. If u is in
a two-component, or u is the centre vertex or centre-victim of a star-component,
then there are at least two vertices firing at u. Hence u must be a centre-free
leaf of a star-component. ��

Lemma 2. Let S be a simple KO-reduction scheme for a graph G with r ≥ 2.
Let C be a two-component in Gr. Then in rounds 1, . . . r − 1 all victims of one
of the two vertices of Gr are not unique, and all victims of the other one are
unique.

Proof. For i = 1, . . . , r − 1, let xi be the victim of u in round i, and let yi be the
victim of v in round i.
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Suppose both xr−1 and yr−1 are not unique victims. We show that this means
that it is possible to move u and v to Rr−1. If xr−1 
= yr−1 or xr−1 = yr−1 is the
victim of vertices other than u and v, then let u and v fire at each other in round
r − 1. If xr−1 = yr−1 is fired at by only u and v, then it is a centre-free vertex of
a star-component and we can adjust the firing to let u, v and xr−1 form an odd
cycle-component in Gi−1. Either way we obtain a new KO-reduction scheme S′

with w(S′) < w(S), contradicting the minimality of S. Hence we can assume
that yr−1 is a unique victim.

We show that all victims of u are not unique by contradiction. Let h be the
largest index such that xh is unique. By Observation 3, vertices xh and yr−1 are
centre-free leaf vertices of star-components. Since centre vertices are not unique
victims, we can let u and xh fire at each other in round h, and we can let v and
yr−1 fire at each other in round r − 1. This way we obtain a new KO-reduction
scheme S′ with w(S′) < w(S). This contradicts the minimality of S.

Now we again find a contradiction to show that all victims of v are unique.
Let h be the largest index such that yh is not a unique victim. Then we let v fire
at yj in round j−1 for j = h+1, . . . , r−1 (so we move those vertices from Rj to
Rj−1), and v does not fire at yh anymore. Since xr−1 is not a unique victim, we
can then let u and v fire at each other in round r − 1. This way we obtain a new
KO-reduction scheme S′ with w(S′) < w(S). This contradicts the minimality of
S and completes the proof of the lemma. ��

Lemma 3. Let S be a simple KO-reduction scheme for a graph G with r ≥ 2.
For each i ≥ 2, Ri contains a vertex vi whose victims in round 1, . . . , i − 1 are
all unique. Let ur be the (unique) neighbor of vr in Gr. Then

⋃r
i=2 L(vi) ∪ {ur}

is an independent set of cardinality r2−r+2
2 in G.

Proof. Since Rr is non-empty, there exists a two-component C in Gr. Let ur

and vr be the two vertices of C. By Lemma 2, we may assume that all victims
of ur in rounds i = 1, . . . , r − 1 are not unique, and all victims of vr are unique.
Denote the victims of vr in rounds i = 1, . . . , r − 1 by yr

1 , . . . , y
r
r−1, respectively.

By Observation 3, every yr
i is a centre-free leaf vertex of a star-component Cr

i .
For i = 2, . . . , r − 1, let vi be the centre vertex of Cr

i and for h = 1, . . . i − 1,
let yi

h be the victim of vi in round h. We claim that these victims yi
h are all

unique. For i = r, this is already shown. We prove the rest of the statement by
contradiction. Let 2 ≤ i ≤ r − 1. Let h be the largest index such that yi

h is not
a unique victim of vi. We adjust the firing as follows. Since yi

h is not a unique
victim of vi, we do not have to let vi fire at it. Then we let vi fire at yi

j in round
j − 1 for j = h + 1, . . . , i − 1, so we move yi

j to Rj−1 for j = h + 1, . . . , i − 1. In
round i−1 we let vi fire at yr

i , so we move yr
i to Ri−1. Then we do not have to let

vr fire at yr
i . Hence, we can let vr fire at yr

j in round j −1 for j = i+1, . . . , r−1,
so we move yr

j to round j − 1 for j = i + 1, . . . , r − 1. Finally, we let ur and vr

fire at each other in round r − 1. This is possible, because the victim of ur in
round r − 1 is not unique, due to Lemma 2. This way we have obtained a new
KO-reduction scheme S′ with w(S′) < w(S), contradicting the minimality of S.
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We will now prove that

L =
r⋃

i=2

L(vi) =
r⋃

i=2

i−1⋃

h=1

yi
h

is an independent set. We first note that

|L| =

∣
∣
∣
∣
∣

r⋃

i=2

i−1⋃

h=1

yi
h

∣
∣
∣
∣
∣
=

r∑

i=2

i−1∑

h=1

1 =
r2 − r

2
,

since all vertices in L are unique victims.
Because S is simple, by Lemma 1, there is no edge between any two vertices

yi
h and yj

h. Suppose there were an edge yi
hyr

j , where h 
= j. If h < j, then we
move yr

j to Rh, each yr
k for k = j +1, . . . , r − 1 to Rk−1, and finally ur and vr to

Rr−1. We can adjust the firing and obtain a new KO-reduction scheme S′ with
w(S′) < w(S). This contradicts the minimality of S. If h > j, then we move
yi

h to Rj , each yr
k for k = i, . . . , r − 1 to Rk−1, and finally ur and vr to Rr−1.

We adjust the firing and obtain the same contradiction as before. Suppose there
exists an edge between two vertices yi

h and yk
j with h < j and r /∈ {i, j}. We

move yk
j to Rh, each yr

l for � = j, . . . , r − 1 to R�−1, and finally ur and vr to
Rr−1. We adjust the firing and obtain the same contradiction as before.

Now suppose ur is adjacent to a vertex yi
h of L. By Lemma 2, all victims of

ur are not unique. Then we can let ur fire at yi
h in round i. Then yi

h is no longer
a unique victim and we find a KO-reduction scheme S′ with w(S′) < w(S) as
before. This final contradiction completes the proof. ��

We are now ready to state our main theorem, which proves (and strengthens)
the square-root conjecture posed in [3].

Theorem 1. Let G be a KO-reducible graph. Then

pko(G) ≤ min

{

−1
2

+

√

2n − 7
4
,

1
2

+

√

2α − 7
4

}

.

Proof. It is straightforward to check that the statement holds for a graph G
with pko(G) = 1. Let S be a simple KO-reduction scheme for a graph G with
r ≥ pko(G) ≥ 2. By Lemma 3, we find an independent set L′ of G that has
cardinality |L′| = 1

2 (r2 − r + 2) ≤ α. Note that R1 contains a centre vertex
of a star-component. This, together with Lemmas 2 and 3, implies that n ≥
|L′|+r−1+1 = 1

2 (r2 −r+2)+r. Solving both inequalities gives us the required
upper bound. ��

We note that the bound mentioned in Theorem 1 is asymptotically tight. In [3],
it has been proven that for all p ≥ 1, pko(Kp,q) = p = Θ(

√
n) = Θ(

√
α) for all

complete bipartite graphs on n = p + q vertices with q = 1
2p(p + 1).
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4 Claw-Free Graphs

It is known that claw-free graphs can be knocked out in at most two rounds [3] if
they are KO-reducible (not all claw-free graphs are, take for example an isolated
vertex or a path on three vertices). We generalize this result for K1,p-free graphs
for any p ≥ 2. This solves a question in [3].

Theorem 2. Let p ≥ 1. If a K1,p-free graph G is KO-reducible then pko(G) ≤
p − 1.

Proof. The case p = 1 is trivial. For p ≥ 2, the statement follows directly from
Lemma 3. ��

This result is the best possible. In [3, Section 4], a tree Y� is defined for each
integer � ≥ 1, and it is shown that pko(Y�) = �. It is also easy to check that Y�

is K1,�+1-free. We omitted the details.
In the rest of this section, we suppose that G = (V, E) is a claw-free graph and

show that pko(G) can be determined in polynomial time. We need the following
lemma.

Lemma 4. Let G be a connected claw-free graph with pko(G) = 2. Then there
is a simple KO-reduction scheme in which only two vertices u and v survive to
the second round.

Proof. By Lemma 1 and claw-freeness, we know there is a simple two-round
KO-reduction scheme for G such that

(i) each component of G1 is a two-component, star-component or odd cycle,
(ii) each component of G2 is a two-component,
(iii) in the first round the vertices of G2 do not fire at vertices that belong to

odd cycles in G1, and
(iv) the leaves of the star-components in G1 are not adjacent.

As the leaves of the star-components are not adjacent, we can, by claw-freeness
and Lemma 1, further suppose that each star-component is a path on three
vertices which we shall call a three-component.

Note that among all schemes that satisfy these properties, S is the one with
the fewest number of components in G2 (as it is minimal). To prove the lemma,
we show that if, for S, G2 contains more than one component, then we can find
a scheme S′ that admits fewer components to G2.

For S, let the vertex sets of the two-components of G2 be {{ui, vi} | i =
1, . . . , q}. By Lemma 2, we can assume that the victim of ui in G1 is not unique,
but that of vi is unique. By Observation 3, vi fires at the centre-free leaf of a
three-component, say yi. Let xi be the victim of ui. Suppose that xi is the centre
vertex of a three-component. Then there is also an edge from ui to one of the
leaves, say w, of the three-component (else, by (iv), xi, ui and the leaves of the
three-component induce a claw). Let z be the other leaf of the three-component.

Suppose that yi = w. Then let S′ be a scheme identical to S except that in
the first round
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• vi fires at yi,
• yi fires at ui,
• ui fires at vi,
• xi and z fire at each other.

Thus S′ has one fewer two-component in G2 than S.
Suppose that yi = z. Then let S′ be a scheme identical to S except that in

the first round

• vi and yi fire at each other,
• ui fires at xi,
• xi fires at w,
• w fires at ui.

Thus S′ has one fewer two-component in G2 than S.
Suppose yi /∈ {w, z}. Then let S′ be a scheme identical to S except that in

the first round

• vi and yi fire at each other,
• ui and w fire at each other, and
• xi and z fire at each other.

Thus S′ has one fewer two-component in G2 than S. Hence, we have proven that
xi is not the centre-vertex of a three-component.

Suppose that xi is the leaf of a three-component. If yi also belongs to this three-
component, then, since xi 
= yi, we have that ui, vi and the three-component of
their victims lie on a 5-cycle in G. Then let S′ be a scheme identical to S except
that in the first round these five vertices fire according to an orientation of this
5-cycle. Thus S′ has one fewer two-component in G2 than S.

If xi is the leaf of a three-component that does not contain yi, then ui, vi

and the components containing their first round victims lie on a path of length
8 in G so can be matched. So let S′ be a scheme identical to S except that in
the first round these eight vertices fire according to this matching. Thus S′ has
one fewer two-component in G2 than S.

Thus xi is not the leaf of a three-component, and, by (iii), xi belongs to a
two-component.

Thus ui and vi combined with the components of G1 containing their victims
lie on a path of length 7 in G. We call such a path a seven-component. Let us
motivate this choice of name by showing that the seven-components are vertex-
disjoint.

The vertices vi, 1 ≤ i ≤ r, fire at distinct three-components in the first round
(as their victims are unique and one of the leaves of each three-component is
the centre-victim). We must also show that the victims xi of the vertices ui,
1 ≤ i ≤ r, belong to distinct two-components. Suppose that xi and xj , i 
= j, are
distinct but belong to the same two-component in G1. Then let S′ be a scheme
identical to S except that in the first round
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• vi and yi fire at each other,
• vj and yj fire at each other,
• ui and xi fire at each other, and
• uj and xj fire at each other.

Again S′ has fewer two-components in G2 than S. Now suppose that xi = xj .
If either ui or uj is adjacent to the other vertex in xi’s two-component, then we
have the previous case. Otherwise, there is an edge uiuj (else there is a claw).
So let S′ be a scheme identical to S except that in the first round

• vi and yi fire at each other,
• vj and yj fire at each other, and
• ui and uj fire at each other.

Again S′ has fewer two-components in G2 than S.
We have shown that the seven-components are vertex-disjoint. Note that all

the three-components in G1 contain a victim of a vertex in G2 and so must be
a subgraph of a seven-component. Thus we can represent S as a collection of
vertex-disjoint seven-components, two-components and odd cycles that span G.
We denote such a representation G∗. Note that the number of two-components
in G2 is equal to the number of seven-components in G∗. Thus to prove the
lemma we show that if for S there is more than one seven-component in G∗,
then we can find another scheme with fewer seven-components.

Let A = a1 · · ·a7 and B = b1 · · · b7 be a pair of seven-components in G∗. First
we consider the case where, in G, A and B are joined by an edge aibj for some i, j.
We shall show that this implies that the vertices of A and B admit a perfect
matching; thus we can replace two seven-components by seven two-components.

If i and j are both odd, then we match ai with bj and the remaining vertices
and edges of A and B form paths of even length, so can clearly be matched.
If i is even and j is odd, then, if either ai−1 or ai+1 is adjacent to bj, we have
the previous case. Otherwise, by claw-freeness, there is an edge ai−1ai+1 and we
include both this and aibj in the matching, and, again, what remains of A and B
are paths of even length. Finally suppose that i and j are both even. If there are
any other edges from a vertex in {ai−1, ai, ai+1} to a vertex in {bj−1, bj , bj+1},
then we have an earlier case. Otherwise, claw-freeness implies edges ai−1ai+1
and bj−1bj+1, and we include these and aibj in the matching to again leave only
even length paths.

So we can assume that no pair of seven-components in S are joined by an edge
in G. Now let us assume that S is such that we can find seven-components A
and B such that the length of the shortest path in G between them is mini-
mum (that is, there is no pair of seven-components in any other simple scheme
separated by a shorter path).

Suppose a shortest path from A to B meets A at ai and the next vertex along
is w. In G∗, w must belong to either a two-component or an odd cycle.

First suppose w is in a two-component C whose other vertex is z. We describe
how to use the vertices of A and C to find a seven-component A′ and two-
component C′ such that w is in A′; thus A′ is closer to B than A contradicting
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our choice of A and B. By symmetry, there are four cases according to which
vertex of A neighbours w. Suppose a1 is adjacent to w. Then replace A and C
with A′ = zwa1 · · ·a5 and C′ = a6a7. If a2 is adjacent to w, then claw-freeness
implies one of the edges a1a3, a1w or a3w is present. Let C′ be, respectively,
a6a7, a6a7 or a1a2, and in each case we find a path of length 7 on the remaining
vertices to be A′. If a3 is adjacent to w, then let A′ = zwa3 · · · a7 and C′ = a1a2.
If a4 is adjacent to w, then one of a3a5, a3w or a5w is present. Let C′ be,
respectively, a1a2, a1a2 or a6a7, and in each case we find a path of length 7 on
the remaining vertices to be A′.

Finally suppose that w belongs to an odd cycle. If ai, i odd, is joined to w,
then there is a perfect matching on the vertices of A and the cycle and we have
a scheme with fewer seven-components. Suppose ai, i even, is adjacent to w. If
either ai−1 or ai+1 is joined to w, then we have the previous case. Otherwise,
there must be an edge ai−1ai−1, and if we match both this pair of vertices and ai

and w, then the remaining vertices of A and the cycle induce even-length paths
and a perfect matching can again be found. ��
Theorem 3. Computing the parallel knock-out number of a claw-free graph can
be done in polynomial time.

Proof. By Theorem 2, it is sufficient to present methods for checking whether or
not pko(G) is equal to 1 or 2, since if it is neither it must be ∞. Deciding whether
a graph can be knocked-out in a single round can be solved in polynomial time
([3]). So we need only show how to check whether G can be knocked out in two
rounds.

Suppose that pko(G) = 2. By Lemma 4, we can assume that there is a two-
round simple KO-reduction scheme for G in which only two vertices, say u and v,
survive to the second round, and, by the proof of the lemma, there is exactly
one three-component in G1.

Let w be the first round victim of v. Then G − {u, v, w} has a spanning sub-
graph comprising two-components and odd cycles (that is, G1 −w) and can thus
be knocked out in one round. Therefore the following is a necessary condition
for pko(G) = 2: there are three vertices u, v and w in V such that

• there are edges uv and vw,
• u and w have neighbours other than v and each other, and
• pko(G − {u, v, w}) = 1

It is easy to see that this condition is also sufficient. Therefore to decide whether
or not pko(G) = 2, we look for a set of three vertices that satisfies this condition.
This can be done in polynomial time. ��

As noted before any graph with pko(G) = 1 has a spanning subgraph con-
sisting of a number of mutually disjoint matchings edges and disjoint cycles. For
claw-free graphs we have found the following characterization, which directly
follows from the proof of Lemma 4.

Corollary 1. Let G be a connected claw-free graph with pko(G) = 2. Then G
has a spanning subgraph consisting of a number of vertex-disjoint matching edges,
odd cycles and one path on seven vertices.
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5 Conclusions

We solved the square-root conjecture of [3] by giving a tight upper bound on
the parallel knock-out number of a KO-reducible graph G. We also showed that
the parallel knock-out number of a KO-reducible K1,p-free graph is at most
p − 1, and that this bound is tight. For claw-free graphs we showed that their
parallel knock-out number can be computed in polynomial time. The question
of whether the parallel knock-out number for K1,p-free graphs with p ≥ 4 can
also be computed in polynomial time remains open.
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