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Abstract. In many applications, uncertainty and ignorance go hand in hand. 
Therefore, to deliver database support for effective decision making, an 
integrated view of uncertainty and ignorance should be taken. So far, most of 
the efforts attempted to capture uncertainty and ignorance with probability 
theory. In this paper, we discuss the weakness to capture ignorance with 
probability theory, and propose an approach inspired by the Dempster-Shafer 
theory to capture uncertainty and ignorance. Then, we present a rule to combine 
dependent data that are represented in different relations. Such a rule is required 
to perform joins in a consistent way. We illustrate that our rule is able to solve 
the so-called problem of information loss, which was considered as an open 
problem so far. 

1   Introduction 

Today, we distinguish several data models to represent and query data, such as the 
relational data model, object-oriented data models, XML data models, etc. Through 
the years a number of efforts has been devoted to capturing uncertainty in the context 
of relational databases [2,3,6,8,9,12,13,14,16]. Despite these efforts not all issues 
have been satisfactorily solved in the context of relational databases, while modelling 
uncertainty in other types of databases, such as XML databases is still in its childhood 
[1,7,10].  These approaches, except [13], are based on probability theory, and as a 
consequence they inherit the limitations of this theory. Probability theory is very 
suitable to capture uncertainty but not suitable to model ignorance. This has been 
noted and discussed in [2]. To overcome these limitations, Barbara et al. [2] 
introduced the so-called notion of missing probability, which is actually a way to 
model ignorance. However their approach suffers to a number of problems as will be 
illustrated in the next section. 

Since uncertainty and ignorance go hand in hand in many applications, we feel that 
databases should support them in an integrated way.  Suppose we have a document of 
which 80% is clearly visible and 20% of the document is damaged. This document 
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contains an enormous amount of addresses, including addresses that give rise to 
suspicion. From the visible part, we can derive that 70% of the addresses is “normal” 
and 30% of them are  considered as suspicious. So, if we have an arbitrary address A 
that comes from the visible part of the document, we know the distribution among 
normal and suspicious addresses, and therefore we are able to estimate whether A is a 
normal or a suspicious address. However, we will remain in uncertainty of the actual 
status of A, until we have checked in the document the details about A. For the 
damaged part of the document, we do not have any clue about the distribution of 
normal and suspicious addresses, therefore we are ignorant with regard to the 
addresses in this part of the document. If we want to estimate whether an arbitrary 
address B, of which it is unknown to what part of the document it belongs, is normal 
or suspicious, then we need to combine uncertainty and ignorance. Note, that 
estimating whether B is normal or suspicious on the basis of the distribution function 
that pertains only to the visible part will be unreliable. Therefore, to deliver database 
support for effective decision making, an integrated view of uncertainty and 
ignorance should be taken.  

In this paper, we present how uncertainty and ignorance can be modelled in a 
relation, which consists of a set of tuples, and each tuple is a list of attribute values. 
Our approach is inspired by the Dempster-Shafer theory [5,11,15], but differs on main 
points of this theory (see Section 3). Then, we focus on how two relations, in which 
uncertainty and ignorance are captured can be combined in a consistent way to 
support joins in databases. We note that a join is an important operation to answer 
user queries posed on a relational database. The goal of this paper is to present the 
intuitive ideas behind our rule to combine dependent data and to show that we are 
able to solve the so-called problem of information loss (see Section 2), which was 
posed as an open problem in [2]. Therefore we will restrict ourselves in this paper to 
the combination of two relations. For the generalization of the rule to more than two 
relations we refer to a forthcoming paper and for the theoretical foundation of our 
model to capture uncertainty and ignorance in relational databases, we refer to [4]. 

The remainder of this paper is organised as follows.  In Section 2, we discuss our 
problem definition in more detail and discuss why probability theory fails to solve the 
problem. Then, in Section 3, we briefly introduce our approach to model uncertainty 
and ignorance in databases. Then, in Section 4, we define our combination rule to 
combine dependent data represented in two different tables. In Section 5, we illustrate 
the application of our combination rule. Finally, Section 6 concludes the paper. 

2   Problem Definition 

In relational databases, a relation is defined over some attributes. An attribute takes a 
single value from a predefined domain. In our approach, we allow an attribute to take 
a set of values from a predefined domain D, and a function will be associated  
with this set, expressing the degree of uncertainty and ignorance among the elements  
in a set. 

By means of the following example, which is similar to an example in [2], we 
introduce our problem definition in more detail. Suppose we want to predict the 
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planting behaviour of farmers. Therefore, we need to model some data about the 
weather and some data about the planting behaviour of farmers in the past. Let us 
assume that for the weather the possible outcome is either wet or dry. Now the KNMI 
(Royal Dutch Meteorological Institute) has collected evidences that it will be a dry 
season with probability 0.6 and another set of evidences is pointing to a wet season 
with a probability of 0.2. Since the probability of a dry and a wet season sum up to 
(0.6 + 0.2 =) 0.8, the remaining 0.2 actually implies ignorance with regard to the 
weather. In [2] , the authors model ignorance by assigning the probability of 0.2 to the 
set {wet, dry}. The semantic of this solution is that we do not make any statement 
how the probability of 0.2 is distributed among the elements of the set {wet, dry}. In 
the left table of Figure 1, the weather data is modelled. Furthermore, we have the 
following statistics for a dry season: 30% of the farmers planted turnips and 70% of 
them planted wheat if they expected a dry season. If farmers expected a wet season, 
they planted turnips. In the right table of Figure 1, we have modelled this data. 

    

source weather  weather plant 

dry 
0.3 [turnips] 
0.7 [wheat] 

 
KN MI 

 
0.6 [dry] 
0.2 [wet] 

0.2 [dry, wet] 
 

 

wet 1.0 [turnips] 

 

Fig. 1. Two base relations to model weather data 

To gain insight in the planting behaviour of a farmer in the next season, the tables 
of Figure 1 need to be joined. To combine the probabilities, we may use the 
conditional rule of Bayes, namely, Pr(weather=“w”, plant=“p”) = Pr( plant=“p” | 
weather=“w”)*Pr(weather =“w”), which results in Figure 2. 

The first tuple in Figure 1 is telling us that the probability that it will be a dry 
season and a farmer will plant turnips is 0.18 and the probability that it will be a dry 
season and a farmer will plant wheat is 0.42. Note, the joined table contains answers 
to questions like: what is the probability that turnips/wheat will be planted next 
season? 

source                             weather    plant 

KNMI (0.6*0.3 =) 0.18  [ dry        turnips] 
(0.6*0.7 =) 0.42  [ dry        wheat] 

KNMI (0.2 *1.0 =)  0.2  [ wet       turnips] 
  

Fig. 2. Result of a join between the base relations depicted in Figure 1 

As can be verified from Figure 2, ignorance (the probability of 0.2 assigned to 
{dry, wet}) has no influence on the join result. So, we have this information in one of 
our tables, but it is not used during the join, hence we have information loss.  
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From the above-mentioned example we observe the following. First of all, 
probability theory is not equipped to handle ignorance. For example, probability 
theory does not provide us the possibility to model the situation that 60% of the 
collected evidences points to a dry season and 20% to a wet season. Intuitively, we 
like to model this as Pr(dry) =0.6 and Pr(wet) = 0.2. However, this is in contradiction 
which one of the fundamental rules in probability theory. A corollary of the basic 
axioms of probability theory is the rule 1)()( =¬+ AA PrPr . Let A  represent the 

event “dry” season, thus 6.0)( =APr . Actually, the probability of the event “wet” 

season is now determined and should be 4.06.01)( =−= Pr wet  which is in 

contradiction with the collected evidences that are pointing to 0.2. Perhaps one might 
think that this problem can be solved by modelling an outcome space as Ω = {(wet), 
(dry), (wet, dry)} and defining a probability function p: Ω → [0,1]. In Appendix 1, we 
show that this does not lead to a solution. 

Second, the approach proposed by Barbara et al. [2] leads to information loss and 
the embedding of their approach in probability theory is dubious, since it is in 
contradiction with the axioms of this theory (see also [4]).  

Third, modelling ignorance by assigning a mass to a whole set of events, instead of 
(equally) distributing the mass among the elements of the set, is an attractive option 
and is pursued in this paper.  

From the observations, we learn that ignorance and uncertainty are strongly 
intertwined. Therefore, for data management purpose, we need a theory in which 
these notions are embedded in an integrated way. In the next section, we propose our 
approach to capture uncertainty and ignorance. 

3   Modelling Uncertainty and Ignorance in Databases 

In this section, we start by introducing some basic notions from Dempster-Shafer 
theory [11] to capture uncertainty and ignorance in a single relation. However, to 
combine data from two different relations we need to extend the theory. We will 
discuss the extension in Section 3.2. 

3.1   Basics of Dempster-Shafer Theory 

We propose to attach a mass function, called basic probability assignment (bpa) to a 
set of attribute values in a relation.  Based on this function, we will define the notion 
of ignorance. 

[Def. 2.1] Let X be a set and }|{ XSSDx ⊆= , then a function ]1,0[: →xDm  is a 

bpa whenever .1 and 0)( =∑=∅
∈ xDS

m(S)m  

The quantity )(Sm expresses a relative confidence in exactly S and not in any 

(proper) subset of S. The total confidence in S, which we call belief, is the sum of the 
probability assignments committed to all subsets of S. The following definition 
describes the relation between a belief function and basic probability assignment. 
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[Def. 2.2] For a given bpa m, a belief function, called Bel, is defined over any xDS ∈  

as ∑
⊆

=
SS

SmSBel
'

)'()( . Note, a bpa induces a belief function and conversely.  

To define the notion of ignorance, we first define plausibility. 

[Def. 2.3] The plausibility of any set xDS ∈ is defined as )(1)( SBelSPl ¬−= . 

[Def. 2.4] The degree of ignorance for a set S is defined as )()()( SBelSPlSIg −= .  

Now, we are able to model smoothly the data collected by KNMI in our example 
introduced in Section 2, without being in conflict with the axioms that belief functions 
should satisfy [15]. Note, for two sets 1S and 2S , the following should hold for a 

belief function Bel: )()()() (
21212 1 SSBelSBelSBelSSBel IU −+≥ . 

Recall, in example 1, the KNMI collected evidences to predict whether it will be a 
dry or a wet season, and 60% of the evidences was pointing to a dry season, 20% to a 
wet season, and the remaining 20% of the evidences was neither pointing to a wet nor 
a dry season. This can be modelled as follows: m({dry}) = 0.6, m({wet}) =0.2, and 
m({dry, wet}) = 0.2. The corresponding belief function to m is: Bel({dry}) 
= 0.6, Bel({wet}) =0.2, and Bel({dry, wet}) = m({dry}) + m({wet}) + m({dry,  
wet}) = 1.0.  

The plausibility for a dry season is: 1)dry}{(1)dry}({ −=¬−= BelBelPl )wet}({l  

8.0= , and the ignorance with regard to a dry season is )dry}({)dry}({ = PlIg  

2.06.08.0)dry}({ =−=− Bel . We note that this is in line with our intuition, since 

60% of the evidences are pointing to a dry season and 20% of the evidences leave us 
in ignorance because they are neither supporting a dry nor a wet season. So, an 
optimistic estimation for a dry season is 0.8. A similar reasoning can be hold for the 
prediction of a wet season.     

3.2   Extending the Dempster-Shafer Theory 

As can be seen from Figure 2, the combination of the base relations of Figure 1 leads 
to a relation , in which we like to obtain a bpa defined on a set that in  turn consists to 
two distinct sets  namely  Dweather ={dry, wet} and Dplant ={turnips, wheat}.  Therefore, 
we need to extend the notion of bpa’s to two distinct sets. Furthermore, the data in the 
weather table should be interpreted as that turnips will be planted with a bpa of 0.3, 
given the fact that it will be a dry season. So this means that the bpa defined on plant 
is dependent on the attribute weather. Therefore, we introduce the notion of 
dependent bpa. We start extending the Dempster-Shafer theory by defining a bpa on 
different sets.  

[Def. 2.5] Let X and Y be two distinct sets and }|{ XSSDx ⊆= and |{ QQDy =  

}Y⊆ . A function ]1,0[: →× yx DDm  is a combined bpa on xD and yD  whenever (1) 

∅=∅==  Qor   if ,0),( SQSm and (2) ∑ ∑∈ ∈
=

x y
DS DQ

 m(S,Q) 1  . A combined 

bpa will be denoted as c-bpa in the following. 
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Analogous to definitions 2.2 and 2.3, the belief and plausibility on xD  and yD are 

defined as follows. 

[Def. 2.6] Let m be a c-bpa defined over 2 distinct sets xD and yD , the belief in (S,Q), 

in which yx DQDS ∈∈  and , is defined as ∑ ∑⊆′ ⊆
′′=

SS QQ
QSmQSBel ),(),(

'
. 

The plausibility in the pair (S,Q) is defined as ),(1),( QSBelQSPl ¬¬−= . 

[Def. 2.7] Let m be a c-bpa defined over two distinct sets xD  and yD , and xm a bpa 

defined on xD , then m is called dependent on xm whenever ∑ ⊆∈∃ sDS
iSx :  

∑ =
∈

QSm
yDQ i 1),(  and 0)( >ix Sm . In the following we will denote a dependent 

bpa m on xm as )|(.| Sm xy . 

The intuition behind Def 2.7 is the following. The fact that a set xDS ∈ exists for 

which holds  ∑ ∑⊆ =
∈s QSm

i yS DQ i 1),( means that we are talking about a “world” 

S, in which we distinguish all kinds of events Q, i.e., we reason about events Q given 
the world S or a subset of S. The fact 0)( >ix Sm  implies that we have evidences that 

a world S exists, and therefore it is worthwhile to reason in world S. 
Let us illustrate the notion of dependent bpa by means of our KNMI example, in 

which wet}{dry,weather =D ; and the bpa  0.6  {dry})(weather ==m ,  {wet})(weather =m  

0.2 = and 0.2   wet}){dry,(weather ==m .  

Then, the c-bpa m(dry, turnips) = 0.7 and m(dry, wheat) = 0.3 is dependent on 

weatherm  since m(dry, turnips) + m(dry, wheat) =1.0 and 0 {dry})(weather >=m . Note, 

in this case S = {dry}. If we formulate m as 7.0dry) | (turnipsweather|plant =m and 

3.0dry) |(wheat weather|plant =m , then it is clear that it represents the first tuple in the 

right table of Figure 1.  
The class of relational schemes that we consider in the remainder of this paper 

consists of a set of base relations, in which bpa’s are defined on single attributes. 
Furthermore, we assume that there is a non stochastic attribute that serves as key and 
uniquely identifies a tuple in a base relation. All other attributes in the relation, 
including their bpa’s, are dependent on the key. The relations introduced in Figure 1 
are typically the base relations that we consider.  

4   A Combination Rule 

This section is devoted to the combination of a bpa xm defined on a domain xD and a 

dependent bpa, )|(.| Sm xy  defined on two domains xD  and yD . In the following, a 

subset xi DSS ∈⊆ or yj DQ ∈  is called a focal element of a belief function if 

0)|(or    0)( | >> SQmSm jxyix . Consider two belief functions xBel  and xyBel | , with 
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               )( iSxm               )|(| SjQxym

   0                               1.0        0                              1.0 
                                  xm                                   xym |   

Fig. 3. Graphical representation of a bpa and a dependent bpa  

xm

)|(| SQm jxy

1.0

1.0)( iSxm

xym |

0.0
 

Fig. 4. Graphical representation of the combination of a bpa with a conditional bpa 

corresponding bpa’s xm and )|(.| Sm xy . Let piSi ,...,2,1 , =  and qjQ j ,...,2,1, =  be 

the focal elements of xBel and xyBel | , respectively. A graphical representation of both 

belief functions is given in Figure 3, in which the bpa’s of the focal elements are 
depicted as segments of a line segment of length 1.  

In Figure 4, it is shown how the two bpa’s can be orthogonally combined to obtain 
a square. The area of the total square is exactly 1. The area of a rectangle is the c-bpa 
value assigned to the combination of the focal elements SQS ji | and . 

Let us focus on answering the following question: what is the meaning and result 
of the combination of the focal elements iS and SQ j | in Figure 4? The result of the 

combination of these two elements is either the pair ),( ji QS or ,*)( iS , in which * 

represents the whole domain yD . We use the wildcard symbol, since the 

interpretation of the pair ,*)( iS  is that the first element is iS , while the second 

element could be any subset of yD . We distinguish three situations for providing an 

explanation for obtaining either the pair ),( ji QS or ,*)( iS . In the following, the sets 

SQS ji | and are focal elements, and, as said before, xi DSS ∈⊆ and yj DQ ∈ . 

In the first situation, we assume ∅=∩ iSS , then the result of the combination of 

iS  and SQ j |  is the pair ,*)( iS . Since the intersection between S and iS results in an 

empty set, xm does not have any focal elements that supports set S, and therefore no 
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statement can be made about the support for jQ . So, we have support for iS   due to 

xm  and no support for a specific subset of yD  on the basis of iS . Therefore, we 

conclude the pair ,*)( iS  and the contribution to the exact support for this pair on the 

basis of )( ix Sm  and )|(| SQm jxy  is computed by multiplying those values.  In the 

following ⊕ symbolizes the combination operator.  We note that the value of 
,*)(| ixyx Smm ⊕  is equal to the size of the area of the shaded rectangle in Figure 4. 

Let us illustrate this situation by means of our running KNMI example. Suppose 
we want to combine 0.2  {wet})(weather ==m and 7.0dry) | (turnipsweather|plant =m . 

Note, 0.2  {wet})(weather ==m means that we have evidences for a wet season. 

However, 7.0dry) | (turnipsweather|plant =m implies that there is support for planting 

turnips assuming that it will be dry. Since wet is in contradiction with dry, the 
conclusion should be that we have evidences for a wet season and no statement can be 
made about what to plant. Therefore, we conclude that the combination leads to 

14.07.0*2.0){wet},*(| ==⊕ weatherplantweather mm . 

In the second situation, SSi ⊆ , and therefore ∅≠∩ iSS . Then, the result of the 

combination of iS  and SQ j |  is the pair ),( ji QS . In this case, we have support for 

set iS  which is expressed by means of xm  since 0)( >ix Sm . Therefore, we have also 

support for set S, since S contains iS . Consequently, we conclude support for jQ . The 

contribution to the exact support for pair ),( ji QS , i.e., ),(| jixyx QSmm ⊕ , on the 

basis of  )( ix Sm  and )|(| SQm jxy , is again computed by multiplying the values 

)( ix Sm  and )|(| SQm jxy . 

In the last situation, ∅≠∩ iSS  and SSi  ⊄ .  Then, the result of the combination of 

iS  and SQ j |  is the pair ),( ji QS  as well. Assume that T is the non empty set of the 

intersection between S and iS . Since 0)( >ix Sm  and we do not know anything about 

how this value is distributed among the elements or subsets of iS , an option is to 

assign support to and to reason about T. Note, that this can be done for each subset of 

iS that might be of interest. Since T ⊆ S and we have support for T, this implies 

support for S. Consequently, we may conclude support for set jQ , since 

0)|(| >SQm jxy  and we have support for S via T. Again, the bpa value for ),( ji QS  is 

computed as follows: ),()(),( || SQmiSmQSmm jxyxjixyx =⊕ .   

We illustrate the last situation by means of our running example, where 
0.6  {dry})(weather ==m , 0.2  {wet})(weather ==m , and 0.2   wet}){dry,(weather ==m . 

Consider the following two dependent bpa‘s: 7.0dry) | (turnips1
weather|plant =m and  

3.0dry) |(wheat 1
weather|plant =m  and 1.0 wet)|(turnips2

 weather|plant =m , representing the 

first and the second tuple in the right table of Figure 1 respectively.  
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Combining 0.2   wet}){dry,(weather ==m  with 1
weather|plantm  results into: weatherm  

⊕   turnips)(dry,1
 weather|plant m =0.2*0.7=0.14 and   wheat)(dry,1

 weather|plant weather mm ⊕  

=0.2*0.3=0.06. We note that 0.2   wet}){dry,(weather ==m implies support for the set 

{dry, wet}. However we do not know how the mass of 0.2 is distributed among the 

elements of {dry, wet}. Since for 1
weather|plantm , a dry weather is of interest, a possible 

distribution is the computed 1
 weather|plant weather mm ⊕ . In 2

 weather|plant m , a wet weather is 

of interest. Then, the combination of 0.2   wet}){dry,(weather ==m with 2
 weather|plant m  

results in 0.2 turnips)(wet,2
 weather|plant weather =⊕ mm . So, the combination of 

0.2   wet}){dry,(weather ==m may result in different possible distributions depending 

on the set of weather that is of interest for a dependent bpa. This is in line with our 
intuition. 

Let us formulate now our combination rule, in which sum up the rectangles that 
contribute to the bpa of a pair ),( ji QS .  

  

⎪
⎪
⎩

⎪⎪
⎨

⎧

+

≠

=⊕ ∑ ∑
∑

∈
∅=∩ ∅≠∩

∅≠∩

else)|(*)()|()(

* if)|()(

),(
||

|

|

y

i i

i

DQ
SS SS

xyixxyix

j
SS

jxyix

jixyx SmSmSQmSm

QSQmSm

QSmm  (1) 

As discussed in the foregoing, the combination of iS  and SQ j |  results in 

,*)( iS whenever ∅=∩ SSi .  In the case, ∅≠∩ SSi the pair ,*)( iS  can be obtained 

due to a combination of iS and S|* as well. Therefore, the else part of combination 

rule consists of two expressions. 
The following proposition considers a special case of our combination rule. As will 

be illustrated in the next section, it appears that this special case is sufficient to solve 
the open problem posed in [2]. 

[Prop. 1] Let xm be a bpa defined over xD , and fixS  be a fixed set in a dependent  

c-bpa )|(.| fixxy Sm , which  is defined over xD  and yD . Then equation (1) reduces to 

   
⎩
⎨
⎧ ∅≠∩

=⊕
else)(

 if)|()(
),( |

|
ix

fixifixjxyix
jixyx Sm

SSSQmSm
QSmm  (2) 

[Proof.] The intersection of iS and fixS is either empty or not empty. If the intersection 

between iS and fixS  results in a non empty set then our combination rule, i.e., equation 

(1) reduces to 
 

⎩
⎨
⎧ ≠

=⊕
else)|(*)(

* if)|()(
),(

|

|
|

fixxyix

jfixjxyix
jixyx SmSm

QSQmSm
QSmm  

which is equal to )|()(),( || fixjxyixjixyx SQmSmQSmm =⊕ . 
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If the intersection between iS and fixS  results in an empty set, then our 

combination rule, i.e., equation (1) reduces to ∑
∈

=⊕
yDQ

xyixjixyx mSmQSmm )(),( ||  

fixSQ )|(  According to Def 2.7, ∑
∈

=
yDQ

fixxy SQm 1)|(| since )|(.| fixxy Sm is a 

dependent c-bpa. 
Therefore, 

)()|()()|()(),( ||| ix
DQ

fixxyix
DQ

fixxyixjixyx SmSQmSmSQmSmQSmm
yy

===⊕ ∑∑
∈∈

.    

5   Illustrative Examples 

In this section, we illustrate how our combination rule can be applied to support a join 
in relational databases. As noted before, a join is an important operator and combines 
data that is stored in different relations. We restrict ourselves to equi-joins due to the 
page limitations. Example 5.1 in this section is literally adopted from [2]. This 
example was posed as an open problem by its authors. We will illustrate how this 
problem can be solved by applying our combination rule. We start by elaborating on 
the value that a join attribute should assume after performing a join. 

A traditional equi-join, is expressed by ARAR .. 21 = , in which A is an attribute that 

appears in both relations 1R  and 2R . In this case, two tuples from the different 

relations are composed to a joined tuple if they have the same value for attribute A.  
Since in our extended relational model an attribute in 1R  as well as in 2R may consist 

of a set of values, the question arises: what value attribute A should assume after a 
join?  

Let 21  and AA be the sets that contain the values for attribute A in relation 1R  

and 2R  respectively. Then, the set 21 AA ∩  contains data that can be found in both 

relations. So, a joined tuple on the basis of A pertains to the set 21 AA ∩ . Therefore, 

we define the value for attribute A after a join as the set 21 AA ∩ . By means of 

examples, we illustrate how our combination rule can be applied in performing joins. 
The following example, adopted from [2], shows the results that we intuitively expect 
from a join in a relational model that is capable to deal with uncertainty and 
ignorance. 

[Example 5.1] Consider the following instances of two relations 1R  and 2R . 
 

    21                                                               RR  
Z A  A B 

z 0.4 [ 1a ]  
1a  0.7 [ 1b ] 

 0.6 [*]   0.3 [ 2b ] 

.
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Each relation consists of two attributes. Attributes Z and A are the keys of  1R  and 2R  

respectively. As argued in [2], intuitively, the join between these relations on attribute 
A should result for pair ),( 11 ba  in probability1 range between 0.28 and 0.7 and for 

pair ),( 21 ba in probability range between 0.12 and 0.3.  How to obtain these values 

was left as an open problem in [2].  

In the next example, we illustrate how we can obtain these desired values by applying 
proposition 1, which is a special case of our combination rule. Then, in Example 5.3 
we discuss a more complicated case. 

[Example 5.2] From the relations of example 5.1, it is clear that we have the 
following bpa defined on attribute A in relation 1R : 4.0})({ 11 =am and 6.0(*)1 =m . 

Recall that * represents the whole domain of an attribute. In relation 2R , we have a c-

bpa defined over the attributes A and B and which is dependent on 1m . This bpa looks 

as follows: 7.0}){|}({ 111|2 =abm  and 3.0}){|}({ 121|2 =abm . From now on we omit 

the brackets for a set, if it is clear that we are dealing with a set. Although it seems 
that the bpa on attribute A in 1R  is treated differently than the bpa on attribute B 

in 2R , this is not the case. Due to space limitations, we informally touch on this issue 

in this paper.  Actually 1m  is dependent on the bpa of key Z via {z}. Since there is no 

uncertainty about z and no other relations contains attribute Z, we can define the bpa 
on A in 1R as an independent bpa 1m . Note that this reasoning does not hold for 

attribute B in 2R , since there is uncertainty about attribute A in 1R .    

The combination of 1m  and )|(.1|2 Sm , in which S is a subset of or equal to the 

domain of attribute A, is sketched in Figure 5. On the horizontal and vertical axis the 
bpa 1m  and the dependent bpa )|(.1|2 Sm  are depicted respectively. We note that here 

the set S is a fixed set that consists of }{ 1a , and therefore Proposition 1 is applied. 

In Figure 5, for the sake of clarity, each rectangle contains the (new) combined pair 
of sets together with its corresponding bpa value. For example, the combination of the 
bpa values of the elements )( 1a  (with value 0.4) and  )|( 11 ab  (with value 0.7) results 

in a bpa of 0.4*0.7 = 0.28 for pair ),( 11 ba  (lower left rectangle in Figure 5). We note 

that the support for pair ),( 11 ba  is in line with our intuition. According to 

7.0)|( 111|2 =abm  there is support for 1b  whenever there is support for 1a . Since 

0)( 11 >am there is indeed support for 1a , and, therefore there is support for 1b . A 

similar reasoning holds for the support of pair ),( 21 ba . 

The combination of the bpa values of (*) and )|( 11 ab  results in a bpa of 0.7*0.6 

=0.42 for pair )(*, 1b  for the following reason. The intersection between {*} and  

}{ 1a  is the set }{ 1a . So, the combination of the elements (*) and )|( 11 ab  is )(*, 1b . 

Note that 6.0(*)1 =m means that there is support for the whole domain of attribute A.  

 

                                                           
1 We note that probability is the term that is used by the authors in [2].  
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(b2|a1) 

(b1|a1) 

(a1,b2) 
  0.12 

(a1,b1) 
 
   0.28 

1.0 

(*) 1.0 

(*,b1) 
 
   0.42 

0 

0.7 

(*,b2) 
  0.18 

(a1) 0.4 1m  

)|(.1|2 Sm  

 

Fig. 5. Graphical representation of the combination of 1m and )|(.1|2 Sm  

Z         A   B 
z      0.28 [ 11 , ba ] 

0.12 [ 21 , ba ] 
0.42 [ 1*, b ] 
0.18[ 2*, b ] 

            (a)   

 Bel Pl 
[ 11 , ba ] 0.28 0.7 

[ 21 , ba ] 0.12 0.3 

[ 1*, b ] 0.7 0.7 

[ 2*, b ] 0.3 0.3 

 (b)
 

Fig. 6. (a)  Join result between  R1 and R2  and  (b) Corresponding belief and plausibility values 

However, no statement can be made about the distribution of 0.6 among the subsets of 
the domain of A. Since now the subset }{ 1a is of interest, we consider this set as 

option.  A similar reasoning holds for the support of pair )(*, 2b . 

Consequently, the join between relations R1 and R2 is given in Fig. 6(a) and the 
corresponding belief and plausibility values for the different pairs are given in  
Fig 6(b). 

The belief and plausibility values for attributes A and B are in line with the 
intuition as proposed in [2]. Note, that in this example we have support for the set }{ 1a  

with a bpa value of 0.4 and support for the set }{ 1b  with value 0.7, given that there is 

support for }{ 1a  . Therefore, we have a belief of 0.4*0.7 = 0.28 for the pair ( 11 , ba ). 

However, it might be that the support for }{ 1a  is 1.0, since a bpa value 0.6 is assigned 

to the set {*}, which contains the set { 1a }. Therefore, intuitively, the plausibility that 

pair ( 11 , ba ) may occur is 1.0*0.7 = 0.7. 

[Example 5.3] Consider the snapshots of two relations called ship and description.  

ship description
name type type max-speed

Frigate 0.7 [20-knots]
0.3 [30-knots]

Maria 0.6 [Frigate]
0.3 [Tugboat]

0.1[*] Tugboat 1.0 [15-knots]
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The relation ship describes the type of a ship that an observed ship might be. For 
example, intelligence has been gathered to conclude that Maria may be either a Frigate 
with confidence 0.6 or a Tugboat with confidence 0.3, while some evidences leave us 
in doubt about the type of Maria. Therefore, 0.1 is assigned to all possible types of 
ships. The relation description describes the maximal speed and the confidence in this 
speed under the condition that the type of a ship is known before-hand. So, the bpa 
assigned to the attribute max-speed is dependent on type. Perhaps unnecessarily, we 
note that if we want to answer a question like “What is the maximum speed of 
Maria?”, we have to perform a join between above mentioned relations. 

To compute a join between the relations ship and description on the attribute max-
speed, we have to perform two combinations, namely a combination of the tuple of 
ship with the first tuple of description, and a combination of the tuple of ship with the 
second tuple of description.  

The combination of the tuple (Maria {0.6 [Frigate], 0.3 [Tugboat], 0.1 [*]}) of ship 
with the tuple (Frigate, {0.7 [20-knots], 0.3 [30-knots]}) of description results in the 
left part of Figure 7.  Note, Frigate is a fixed set in the left part of Figure 7, while in 
the right part of Figure 7 Tugboat is a fixed set. On the horizontal axis the bpa of 
attribute type of relation ship is depicted, called shipm , and on the vertical axis the 

dependent bpa Fr-ship | descm  corresponding to the first tuple of relation description is 

depicted. For a similar reasoning as in Example 3.2, the bpa pertaining to relation ship 
is modeled as an independent bpa. The combination of the bpa values of the pairs 
(Tugboat) and (30-knots | Frigate) results in a bpa value 0.3 *0.7 =0.21 for the pair 
(Tugboat,*) (lower middle rectangle in the right part of Figure 7). In this case, we 
have support for Tugboat, but this definitely does not mean support for Frigate, and 
therefore there is no support for a specific set of values of max-speed. For the 
combination of the bpa’s of the remaining sets, a similar reasoning can be followed as 
in Example 3.2. 

The combination of (Maria {0.6 [Frigate], 0.3 [Tugboat], 0.1 [*]}) of relation ship 
with the second tuple (Tugboat, {1.0 [15-knots]}) of relation description results in the 
right part of Figure 7.   

Fr-ship | descm

(Tugboat, *) 
0.09 

(*, 30- 
knots) 
0.03 

(20-knots  
| Frigate) 

(30-knots  
| Frigate) 

1.0 

0.7 

(Frigate, 
30-knots) 

0.18 

(Frigate, 
20-knots) 

0.42 

(Tugboat, *) 
0.21 

(*, 20- 
knots) 
0.07 

Tu-ship| descm

   0   (Frigate)  0.6  (Tugboat) 0.9    (*)  1.0 
                                                                     shipm  

(*, 15- 
knots) 

 
0.1 

 

(15-knots  
| Tugboat) 

   0   (Frigate)  0.6  (Tugboat) 0.9    (*)  1.0 
                                                                     shipm

(Tugboat, 
15-knots) 

 
0.3 

(Frigate, *) 
 
 

0.6 

1.0 

 

Fig. 7. Graphical representation of the combination of the bpa’s corresponding to ship and 
description 
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Name           type      max-speed 

Maria 0.42  [Frigate, 20-knots] 
0.18 [Frigate, 30-knots] 
0.3        [Tugboat, *] 
0.07        [*, 20-knots] 
00.3       [*, 30-knots]  

Maria 0.6          [Frigate,*] 
0.3        [Tugboat, 15-knots] 
0.1         [*, 15-knots] 

  (a) 
    

 Bel Pl 
mship ⊕  mdesc | ship-Fr   

[Frigate, 20-knots] 0.42 0.49 
[ Frigate, 30-knots] 0.18 0.21 

[Tugboat,*]   0.3       0.4 
[*, 20-knots] 0.49 0.49 
[*, 30-knots] 0.21 0.21 

mship ⊕  mdesc | ship-Tu   
[Frigate,*] 0.6 0.7 

[Tugboat, 15-knots] 0.3 0.4 
[*, 15-knots] 0.4 0.4 

       (b) 
 

Fig. 8. (a) Join result between ship and description and (b) Corresponding Bel and Pl values 

The result of the join between the relations ship and description together with the 
corresponding belief and plausibility values is given in Figure 8.   

We note that the belief and plausibility values are in line with our intuition. For 
example, the belief of 0.42 that Maria is a Frigate and has a maximum speed of 20-
knots can be understood by the fact that the bpa for a Frigate recorded in the relation 
ship is 0.6 and the bpa that the maximum speed is 20-knots for a Frigate is 0.7 
(recorded in the relation description). The plausibility value of 0.49 for the same pair 
can be understood by the fact that a bpa of 0.1 is assigned to each possible subset of 
ships in relation ship, implying ignorance. It might be the case that the bpa of 0.1 
belongs to Frigate. Therefore, the plausibility that a ship is a Frigate with a maximum 
speed of 20 knots is (0.6 + 0.1)*0.7 = 0.49. 

6   Conclusion and Further Research 

Many researchers have pointed out that there is a need to handle uncertainty and 
ignorance in database applications. Most of the efforts applied probability theory to 
capture uncertainty and ignorance. As has been argued in Section 2, probability 
theory is suitable to capture uncertainty but not to capture ignorance.  In this paper, 
we have proposed a framework to capture uncertainty and ignorance in an integrated 
way. Although our framework can be tailored to different type of data models, we 
elaborate it for the relational model. We assume that an attribute can assume a set of 
values instead of a single value. And we assign, inspired by the Dempster-Shafer 
theory [5,11,15], a so-called basic probability assignment (bpa) to an attribute.  
However, the properties of the Dempster-Shafer theory appeared insufficient to 
support joins. Therefore, we extended the theory with the notion of a “dependent” 
bpa. Such a bpa provides us the possibility to take dependencies between data into 
account. Based on the notion of dependent bpa, we came up with a combination rule  
to combine a bpa, 1m , with a bpa that is dependent on 1m . As has been shown, the 

application of this combination rule solves the problem of information loss that occurs 
as a consequence of joins. Until now, the problem of information loss was posed as an 
open problem in the literature [2]. Furthermore, in our model we have a clear 
semantics of ignorance.   

A topic for further research is the formalization of the basic operators in the 
context of our model. The study of aggregation operators and nested operators is also 
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a topic for further research. Furthermore, in the context of optimization our extended 
model gives cause for the study of a number of issues, such as the control of the 
complexity behavior of our combination rule, query optimization and so on. 
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Appendix 

Perhaps one might think that the KNMI problem of Section 2 can be solved by 
probability theory by choosing a suitable model for the outcome space. One could 
argue to choose the outcome space as follows Ω = {[wet], [dry], [wet, dry]}. Then we 
can use probability theory to reason about this space. We define now a probability 
function p: Ω → [0,1]. Let say p([dry]) = 0.6, p([wet]) = 0.2, and p([dry, wet]) =0.2. If 
we compute the probability of the union of wet and dry, then p([dry] U [wet]) = 
p([dry]) + p([wet]) = 0.8, which is in contradiction with  p([dry, wet]) =0.2. 
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