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Abstract. Anecdotally, the distinction between fast “Smash-and-Grab”
cyber-attacks on the one hand and slow attacks or “Advanced Persistent
Threats” on the other hand is well known. In this article, we provide
an explanation for this phenomenon as the outcome of an optimization
from the perspective of the attacker. To this end, we model attacks as an
interaction between an attacker and a defender and infer the two types
of behavior observed based on justifiable assumptions on key variables
such as detection thresholds. On the basis of our analysis, it follows that
bi-modal detection capabilities are optimal.
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1 Introduction

The exponential rise of connectivity thanks to ICT has made many ways of value
creation more efficient. The associated web of connectivity, commonly referred
to as “cyberspace”, has different scaling properties than our physical world [3]
leading to the reduction of typical timescales for interactions, eliminating the
need for middlemen and ensuring far more efficiently operating markets (see for
instance Van Ark, Inklaar, and McGuckin [13]). As an undesired, but natural
side-effect, we have also seen a rise of more “parasitic” forms of value creation
in this cyber space. These are agents that make use of its scaling benefits at
the expense of other agents’ value, e.g. through cyber-attacks. This concerns
cyberspace activity linked to commonly known criminal activities such as acts
of espionage, fraud, scams, vandalism and terrorism.

Although attribution of cyber-attack to threat actors is still a hard problem
[12], it has become apparent that cyber-attacks can be broadly categorized into
two groups. On the one hand, there are “Smash-and-Grab”(S&G) type attacks
where the threat actor for instance employs malware linked to known vulnerabil-
ities. On the other hand, there are the so-called “Advanced Persistent Threat”
(APT) type of attacks, where the threat actor employs the tactic to avoid detec-
tion by the defender for as long as possible while slowly realizing their goals.
Well known examples are Stuxnet, Duqu, Flame and Red October, which in
some cases evaded detection for years [15].
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However, the rationale for the existence of those two groups of fast versus slow
attackers is still poorly understood. This paper describes a model for analyzing
optimal attack strategies for cyber-attackers depending on detection capabilities
of defenders. Attackers having an incentive not to be detected, adopt a type of
behavior aimed at remaining unnoticed by the defender’s detection capabilities,
this means acting slowly. Since acting faster increases the probability of being
detected, attackers cannot at the same time act fast and remain undetected,
and therefore need to make a choice between these two approaches. In some
cases, it is rational to act slow in order to avoid being detected, while in other
cases a quick attack makes sense. However, this intuitive argument alone does
not explain why attackers may want to choose either fast (S&G) or slow (APT)
strategies, since intermediate attack speeds should then also appear. The model
explains the observed bifurcation of attack behavior, distinguishing slow and fast
cyber-attacks, by showing that intermediate attack speeds are associated to a
smaller return on investment for the attacker.

Based on the model, a defense strategy is suggested that implements a sto-
chastic optimization of the parameters under control of the defender. The for-
mulation is kept abstract on purpose, in order to ensure a broad applicability of
the model to organizations that differ in their cyber risk capabilities and man-
agement, while nonetheless giving insight in the relevant metrics to consider in
the first place and the general, organization-independent behavior of attackers
and defenders. In practice, to test the bifurcation hypothesis and optimize the
defense capabilities for a specific organization, more work is required. Detection
parameters should be determined based on the details of the defender’s analyt-
ics, activity level has to be defined and the loss has to be measured for different
activity levels. A relatively simple attacker model like the one presented here,
could help to interpret the measurements and put the right capabilities into
place.

The remainder of this article is structured as follows. Section 2 describes
related work, and Sect. 3 defines the main concepts used throughout the remain-
der of the article. Section 4 introduces a basic defender detection model. Section 5
relates the defender model to attacker behavior and Sects. 6 and 7 provide analy-
sis of the behavior with respect to this model. Section 8 describes the associated
perspective of the defender and Sect. 9 provides conclusions and discussion.

2 Related Work

This paper fits in a tradition of economic modeling of behavior of attackers
and defenders, in order to predict or explain real-world phenomena (e.g. Gor-
don and Loeb [6]). In this paper, we frame the optimization question in terms
of the optimal choices for a defender, under the assumption that the popula-
tion of attackers will also optimize their behavior. This is essentially a minimax
optimization in a two-step game, in which the defender moves first [4]. For illus-
trating the explanation of the bifurcation phenomenon this is sufficient. When
assuming that attackers know that defenders take the bifurcation into account in
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their strategies, more advanced game-theoretic models are of use. We will come
back to this in the discussion.

More specifically, this paper focuses on the time dimension of the behavior of
attackers. In this context, several related questions have been addressed, mostly
focusing on the optimal timing of attacks. The FlipIt game [8,10,14] investigates
timing decisions of attacker and defender moves in order to maximize control
over a shared resource, with minimal cost. The basic game only considers a single
attack type. Pieters and Davarynejad [11] present a model for deriving attack
frequencies from optimal timing decisions of attackers, with different attack vec-
tors and a fixed income for the attacker per unit of time. Axelrod and Iliev [2]
discuss the optimal timing of the use of exploits in cyber conflict, taking into
account that using an exploit now may make it unavailable for later use. In con-
trast to this related work, the present paper focuses on the speed of attacks, in
order to explain the observed separation between fast and slow strategies. As far
as we are aware, this aspect has not been investigated yet.

In our work, key defender parameters are related to detection thresholds.
Similar considerations have been studied by others in game-theoretic settings
involving multiple attacker types [5]. However, in our current work, the attacker
types (fast and slow) are what is explained by the analysis, rather than a starting
point. More generally, we are not aiming at developing attacker personas or
profiles [1], nor on using those in a security analysis [9], but rather on explaining
different styles of attacker behavior that follow from optimization.

3 Definitions

The optimal way to organize defense capabilities for the various assets in an
organization depends on the precise incentives of the cyber-attackers targeting
specific assets via various attack vectors. Before describing the model in more
detail, in this section we discuss various types of assets, attacker motives, and
attack vectors, that may assist defenders in their considerations. The rest of the
paper should be seen as separately applicable to each of the concepts discussed
here.

Cyber-attacks are defined here as an attempt by a threat actor to abuse
Information Assets of some defending party. Information Assets are defined as
the set of information that holds value to the defender, either direct (i.e. abuse
directly reduces value of the defender) or indirect (i.e. where abuse leads to
loss of value for third parties associated to the defender). Indirect losses may of
course materialize in further direct losses through fines and/or claims. Value can
take multiple forms, the most commonly ascribed values are: economic, financial,
well-being, human lives, culture, nature, political, etc. For the purpose of this
article and without prejudice to other forms of value, we have foremost financial
value in mind.

Information Assets may be characterized through the well-known Confiden-
tiality - Integrity - Availability triad. Confidentiality means an Information Asset
may contain information asymmetry that leads to the potential to create value
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and/or to the potential to destroy value. Integrity means an Information Asset
may contain records of reference that if the reference is changed it destroys value
for the defender. Availability means an Information Asset may be (partially) lost
so that, even if it is only temporarily, it destroys value for the defender. Infor-
mation Assets may fall into all three categories or combinations.

Abuse of Information Assets typically arrives in three forms: cyber-espionage,
cyber-fraud and cyber-destruction. Cyber-espionage concerns breaking informa-
tion asymmetry (confidentiality), where usually it has more value to the attacker
if this remains unknown to the defender. Typical motives for the attacker include:
market competition, geo-politics, national-defense and insider trading. Cyber-
fraud concerns breaking the integrity of the Information Assets. Here it depends
on the motive if the attacker is even able to keep the cyber-fraud hidden to the
defender after the attack. Some motives for cyber-fraud include: payments and
transactions fraud, cover-ups of criminal acts, terrorism, war, accreditation and
smuggling. Finally, cyber-destruction means making an Information Asset (tem-
porarily) unavailable. Some motives for cyber-destruction include: hacktivism,
terrorism, war, extortion and competition.

Of course combinations of these three forms into a composite attack is also
possible. This means there is an initial attack followed by another type of attack.
One example of this is where intelligence gets stolen to assist in a follow-up
attack. Another example is a DDoS attack to momentarily distract the defender
from another attack. In particular, the most dangerous type of attacks concerns
abuse of the integrity of (security) controls as a pre-cursor for any other type
of attack. Clearly, such a composite attack would classify as a sophisticated
attack given that it requires a wide range of capabilities from the attacker. On
the other hand, “unsophisticated” attackers that employ a more limited set of
(known) techniques to exploit (known) vulnerabilities, may still cause significant
levels of abuse since they can operate more agile thus quickly and on a larger
scale.

We define two layers of defense in the security architecture description. The
first layer concerns the technical/physical boundary between the public and the
private domains of any network. If an internet connection exists, then vulner-
abilities are likely to be identifiable. The second layer concerns the boundary
between the private domain and the Information Asset at risk. All (technical)
protection measures that are in place to prevent any form of abuse of Informa-
tion Assets is part of the second protection layer. With respect to these defense
layers, three channels can be identified for cyber-attacks. The first attack chan-
nel makes use of critical vulnerabilities in the first defense layer to gain access.
The second attack channel works through insiders (knowingly or unknowingly,
effectively circumventing the first protection layer with the knowing or unknow-
ing help of insiders within the firm, granting them instant access across the first
layer of defense. The third attack channel is through third parties, effectively
circumventing the first two protection layers. This is the case for instance with
a DDoS attack or if data gets abused in the “cloud” (which is in effect a third
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party’s computer). Combinations of attack channels is of course again possible
and associated to more sophisticated attackers.

When considering a defense strategy, defenders must know what Information
Assets to protect, which attacker types these Information Assets attract, and
which potential attack channels may be used. Some attacks like cyber-espionage
and cyber-fraud on intangibles are only likely to occur as slow attacks. In con-
trast, cyber-fraud on tangibles as well as cyber-destruction attacks will likely
end in a fast phase. Defenders thus will want to be capable to deal with slow as
well as fast attacks, which must be dealt with by developing bi-modal detection
capabilities: one slower regime with as low granularity as possible against slow
attacks and one fast regime with higher granularity against fast attacks. We will
come back to this in Sect. 8.

4 Modeling Detection and Response

In this section we set up a model for the defender’s detection capability. Attackers
will adapt their behavior in line with their goal(s). We assume that they can
adapt their activity level, i.e., the number of attack-related moves against or in
the defender’s system per unit time. We assume that attackers get closer to their
goal(s) by abusing Information Assets, and define the (average) rate of abuse of
an Information Asset by the attacker as proportional to its activity level. This
means that attackers in absence of defense simply have an incentive to act as
quickly as possible to realize their goal(s).

The defender has the capability to detect and respond to an (attempted)
attack. With the typical detection setup described below there is a certain
monotonically increasing probability per activity level of the attacker that an
attack will be detected. This also means that there is a typical time it takes the
defender to neutralize the attack. Initially, we set the detection capability to be
fixed, later we will consider that it may be varied by the defender.

Detection depends on identifying suspect activity with respect to normal
activity. For this purpose, the defender will continuously sample a given scope
containing a number of continuously changing elements 0 � S ∈ N to test for
suspect behavior.1 For this test, a selection threshold θ0 > 0 is set that is defined
through the expected number of elements S0 that will be considered suspicious
based on detection granularity a0 > 0 without being associated to a specific
attack (false positives):

S0 = Se− θ0
a0 . (1)

This indicates that increasing the threshold θ0 will reduce the number of suspi-
cious elements, while lower detection granularity a0 reflects an improving capac-
ity of the defender to pick out suspect behavior. Lower detection granularity a0

would thus reduce the number of false positives.

1 A typical example is an analytics capability scanning through a large number of log
files generated periodically by the system, checking them against predefined (mis)use
cases or rules.
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Depending on the activity level a of the attacker,2 some small fraction of the
scope is associated to a specific attack. The number of elements Sa > 0 that are
actually detected as suspect elements depends on the threshold:

Sa = Se− θ0
a . (2)

Thus, the total number of suspicious elements is the sum of the false and true
positives, S0 + Sa. Suppose the defender randomly picks a suspect element,
then the conditional probability that investigation of this element will lead to
detection of the attack is defined as:

PD =
Sa

S0 + Sa
=

1

1 + eθ0(
1
a − 1

a0
)
. (3)

Now suppose the scope is refreshed on regular intervals of duration Tr and let p ∈
N denote the investigative power of the defender, determining how many of such
suspect elements can be investigated in time Tr > 0. Then, in case p � Sa +S0,
the rate (probability per unit time) of detection may be approximated by:

rD =
1 − (1 − PD)p

Tr
. (4)

Fig. 1. Detection rate rD as a function of attacker activity a for Tr = p = 1, θ0/a0 = 15
and for various values of a0, where a0 determines the a-value for which detection has
a crossover from a low to a high rate.

2 The activity level parameterizes in an abstract and general way the number of actions
performed during the attack per unit time. A concrete value depends on the details
of the attack and the system. E.g., it may be the rate of data exfiltration from the
defender’s network.
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Table 1. Model parameters and their meaning.

a0 Detection granularity

θ0 Detection threshold

Tr Time interval between refreshes

p Investigative power

In Fig. 1 some sample graphs are displayed for the detection rate as a function
of the activity, with Tr = 1 and p = 1.

An interpretation guide to the various degrees of freedom of our detection
model is given in Table 1.

The expected time before the attack will be detected is then given by

TD =
1

rD
=

Tr

1 − (1 − PD)p
. (5)

After detection, it will take some additional time TN > 0 before the attack will
actually be neutralized through the response function so that the total expected
maximum duration of an attack is

TA,max = TD + TN . (6)

We can be more concrete by estimating the typical values and ranges for the
parameters in the model based on a realistic situation. A typical refresh time is
of the order of hours to days, so Tr = 1 (day). Based on our experience in the
field, the fraction of false positives may vary between 10−7 −10−3, depending on
the maturity of the defender’s analytics. This implies a range for θ0/a0 of 7 to 16
for a typical and mature defender, respectively. Furthermore, the investigative
power p for a typical and mature defense system will lie between 1 and 1000
respectively. For instance, the number of employees judging suspicious elements
can be a proxy for the investigative power p of the organization at hand.

5 Optimizing Attacker Strategy

Consider the return on investment for a collective of attackers with varying
activity levels. For a given pair of fixed defender-attacker, we assume that the
rate at which the attacker accumulates benefits is equal to the rate at which the
defender accumulates losses3

rabuse = C · a, (7)
3 This assumption takes into account loss occurring within any time interval after

an attack. Not only incidents with a direct financial loss result in value loss for an
organization. Also indirect impact in the form of lost investments and future income,
as well as the consequences of (so far) unnoticed attacks usually lead to value loss
for the defender in the long term.
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Fig. 2. Loss fraction l as a function of a for various values of the parameter a0, and for
C = p = Tr = 1, TN = 0, Lmax = 8, and θ0/a0 = 15. The minimum amin is apparent.
Clearly, lowering a0 results in a decrease of the minimum amin, while at the same time
lowering the loss fraction l(amin).

where C > 0 is some constant that does not depend on the defender’s detection
and response function. The expected total loss cannot exceed a certain limit
given a finite size of the Information Asset being abused. It is therefore bounded
from above by the total exposed value Lmax and is given by

L(a) = min(rabuse · TA,max , Lmax). (8)

Assuming an undetected attacker leaves the system when the maximal value
Lmax is extracted, the maximal attack time is Lmax/C a. Figure 2 displays the
expected fraction of value loss l = L/Lmax for the same parameter values as
used in the graph for the detection rate in Sect. 4.

Disregarding the trivial case when the loss fraction is equal to 1 for all a
(not sufficiently low a0), it has a non-trivial minimum as a function of attacker
activity at some amin so that

l(a) ≥ l(amin) ∀ a > 0. (9)

The minimum amin can be determined analytically for p = 1, in which case it is
given by

amin =
θ0

1 + X
, (10)

where X is the principal solution of XeX = (Tr +TN )eθ0/a0−1/Tr, also known as
the Lambert-W function. For p �= 1, amin can be proven to exist given continuity
and boundedness of l(a). In this case, amin can be computed numerically.
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For a given type of Information Asset, the loss for the defender will in first
approximation be linearly proportional to the (gross) gains for the attacker G̃(a),
which we define by

G̃(a) = G0 · L(a). (11)

Here, the proportionality factor G0 is usually of the order 10−2 − 10−1. The
existence of a minimum in the loss fraction combined with the fact that defender
loss is proportional to attacker gain, implies that for attackers to optimize gains,
they have an incentive to act either more slowly or more quickly (the derivative
is either positive or negative, depending on which side of the minimum the
attackers find themselves). In fact, given that a singular minimum amin exists
(a0 low enough), it also follows that for every activity level aslow < amin there is
at least one value afast > amin such that

l(aslow) = l(afast). (12)

From this it already follows that attackers (also depending on their exact prop-
erties) will tend to split into two categories: slow and fast attackers. This is a
bifurcation phenomenon and heuristically represents the two main strategies that
attackers may follow with respect to detection by the defender: stealth (not get
detected) or speed (act quicker than defenses). This may be a rational strategic
choice by the attacker related to the details of their objectives and capabilities as
portrayed in Sect. 2. However, even without such rational decision making, this
will be the result of a selection mechanism where successful attackers amplify
strategies that have worked best in the past.

6 Economic Considerations Attacker

For better understanding of attacker behavior, we need to consider the net gains
for the attacker by including the costs and limitations associated to an attack.
For this purpose we observe the two extremes of very slow and very fast attacks.

For very slow attacks, the time required to accumulate gain becomes pro-
hibitively long given that attackers need to invest an increasing amount of time.
During this time they will have a fixed level of expenses (living cost as well as
the cost of invested capital at risk due to uncertain returns). This implies that
costs are proportional to the time required for the attack so we include c0 TA(a)
as a cost term (we assume zero interest returns on the invested capital).

For very fast attacks, it will be increasingly costly for the attacker to arrange
the required infrastructure and capabilities. This effect can be summed up as
the law of diminishing returns. A given increase in activity level will cost an
exponentially increasing amount of investment for the required capabilities

J(a) = J0e
a

θJ . (13)

Here, J0 is a (small) fixed investment cost and θJ is the capability investment
threshold.
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Fig. 3. Net gain function G as a function of a for various values of the operation cost
c0, and for C = p = Tr = G0 = θJ = 1, TN = 0, Lmax = 50, J0 = 10−12, and θ0/a0 = 6.

Combining the gross gain with the time-dependent cost and the up-front
investment for the capabilities, we define the net gain as

G(a) = G0 · L(a) − C0 · TA(a) − J(a). (14)

This net gain function is plotted for some parameter values in Fig. 3.
The net gain has two local maxima, corresponding to a slow and fast optimal

activity level with respect to net gain. Which one of these is the global maximum
depends on the choice of parameter values. In Fig. 3 we see that the highest gain
is obtained by slower attackers. In between these two local maxima there is a
minimum in the gain function, meaning the bifurcation mechanism is still intact.

7 Attacker Behavior Analysis

We now revisit the types of cyber-attack we defined earlier (cyber-espionage,
cyber-fraud and cyber-destruction) and will relate these to the analysis made in
the previous section and will see what considerations attackers will have to move
either fast or slow. Here, we define fast attackers as having an activity a > amin,
while slow attackers have an activity a < amin.

In case of cyber-espionage, there is typically a clear incentive that the attack
does not get uncovered after the fact. This means there is a penalty involved
for detection that changes the gain function to have only a single optimum.
This means that there is an incentive to move slowly, consistent to what is for
example being observed with APT’s. (This obviously does not mean that all
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such attacks go undetected.) In case that it doesn’t matter to the attacker if
the defender knows about the attack however, then fast attacks for the purpose
of cyber-espionage are still perfectly rational and this has indeed recently been
observed.

In case of cyber-fraud, it will depend on the details whether slow or fast
attacks are attractive. If the fraud concerns tangibles (for instance money trans-
actions), then it can safely be assumed by the attacker that it will be uncovered
after the abuse has succeeded given the many controls in place on the defender
side. In this case it becomes attractive to move fast as is commonly observed. If
the fraud on the other hand concerns intangibles, e.g. hiding criminal acts, then
the goal is to remain undetected after the fact. Other types of attack may also
benefit from cyber-fraud attacks on intangibles, e.g. through placement of back
doors or covering tracks.

In case of cyber-destruction, it is clear that the abuse will get detected after
the fact, so in principle there is no real incentive to move slowly. Even more
strongly, these attackers have the incentive to move quickly to facilitate a broad
reach before the unavoidable detection will lead the defender to block further
attempts.

Of course, attackers do not need to choose a fixed strategy i.e. activity level.
For all fast attacks, a preparatory attack (for instance to weaken controls of the
defender) is an option. These are the composite attacks referred to in Sect. 3.
The incentive for such preparatory attacks is to remain undetected at least until
the fast attack ensues. This means that the preparatory attack will benefit from
slow movement. Conversely, fast attacks like DDoS attacks have also been used
in composite attacks to serve as distraction for the defender. Such composite
attacks however require a significant level of sophistication that is fortunately
still relatively rare. For less sophisticated attackers, the smash-and-grab tactics
still make perfect sense.

Finally, another consideration that may favor fast attacks as compared to
slow attacks is that fast attacks allow for a larger number of targets in a given
time-span than is possible for slow attacks. This larger sample of defenders means
the fast attacker likely encounters multiple distinct realizations of detection capa-
bilities. This implies that diversification effects will tend to dampen the volatility
in results that fast attackers will experience, thus leading to a more stable (crimi-
nal) return on investment. In terms of natural selection principles acting to favor
one attacker over the other, this helps the persistence of fast attackers.

8 The Defender’s Dilemma

Typical defenders have to make choices on what capability to invest in to obtain
sufficient and optimal security. Given the gain function for attackers described
above, which has two local maxima, the defender’s hypothesis is that the attacker
population is split into slow and fast attackers. With respect to each population,
two optimal defense configurations exist for each population that minimize their
impact. Here we observe the considerations from the perspective of the defender
related to this optimization.
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Consider the capabilities associated to the model introduced in Sects. 4
and 5. There are four degrees of freedom that can be controlled by the defender:
the detection threshold θ0, the detection granularity a0, the power p and the
time to refresh the scope Tr. From the model as well as logic, it follows that
the defender should typically aim to reduce the detection threshold, limit and
refresh time, while increasing the detection power.

Optimizing the value of these parameters will also lower amin as can for
example be seen in Fig. 2, reflecting that it requires ever lower attacker activity
levels to remain undetected sufficiently long to benefit as attacker. Although
this effect may be small on short time-scales, attackers will tend to also adapt
to changing properties in the environment created by the defender (and making
the attacker move slower is of course still a good thing since it will take longer
for the same loss to accumulate).

However, the impact for each parameter is not the same for slow or fast
attackers as can be seen in Fig. 4. The impact of lowering the detection granu-
larity a0 is foremost lowering the optimal activity rate for slow attackers, while
there is hardly any impact for fast attackers, thus forcing attackers to act fast.
The same holds true for improving the detection threshold θ0 and power p. In
contrast, lowering the time to refresh the detection scope Tr and time to neu-

Fig. 4. Effects of parameter variation on the loss function. When parameter values are
not explicitly mentioned we have taken the values p = Tr = C = θJ = 1, TN = 0,
A0 = 5, Lmax = 500 and θ0 = 15. The panels in this figure illustrate the effects
discussed in Sect. 8 and represented in Table 2.



Understanding Bifurcation of Slow Versus Fast Cyber-Attackers 31

Table 2. Effects of parameter optimization on fast and slow attacks. In each row
all unmentioned parameters are kept fixed. The term “reduces” indicates that the
defender’s loss L(a) decreases for fast or slow attacks, i.e., high or low values of a,
respectively.

Effect on loss Slow attack Fast attack

Decrease a0 Reduces No

Decrease θ0 Reduces Increases

Decrease Tr Reduces very little Reduces

Decrease TN Reduces very little Reduces

Increase p Depends Reduces slightly

tralize the attack TN are only effective to reduce the impact from fast attacks.
However, given that a decrease of the time to refresh Tr will likely reduce the
detection power p, this may in effect work counterproductively with respect
to countering slow attacks. The abovementioned effects of optimizing the four
parameters on fast and slow attackers are summarized in Table 2.

From this follows a defender’s dilemma when investing in capabilities. As
follows from the analysis in Sect. 7, most defenders will need to defend against
slow and fast attacks alike and will thus have to make tough choices on how
to optimize with respect to both types of attack. The dilemma here is: do we
make sure we detect even very slow attackers at the expense of reacting to fast
attackers, or do we make sure that fast attackers are dealt with quickly and hope
that no attacker arrives that is too slow? The way to deal with this dilemma,
is to have the defense capabilities act in two regimes simultaneously. We refer
to this as bi-modal detection where part of detection resources should be spent
on acting quickly with higher granularity (i.e. lower resolution), while another
part of the resources should be spent on carefully checking all elements derived
with low threshold θ0 and feeding the results back into reducing the detection
granularity a0 further and further (i.e. increasing resolution). By creating a lin-
ear combination of these two regimes in this way, the resulting optimum will
be better for the same number of resources as when only optimizing a single
configuration (i.e. set of parameters).

9 Conclusion and Discussion

This paper describes a model aimed at analysis of the interaction between attack-
ers avoiding detection and defenders attempting to detect and neutralize attacks.
We have seen that there are two natural optima for attackers: moving fast and
moving slow. This coincides with observed properties of real world attackers. As
far as we are aware, this is the first analytical model showing this bifurcation in
time of attacker behavior under minimal and logical assumptions.

In Sect. 8 we recommend creating a bi-modal detection capability. Such a bi-
modal detection would benefit from a quantitative analysis of the performance
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of detection modes against the framework set out in Sects. 4, 5, 6 and 7. This is
left for future research.

In the present paper, we have assumed that attackers will naturally tend
to optimize their behavior for a given defense configuration. In reality however,
the defenders as well as the attackers may choose to adapt their strategies.
For instance, we have not considered the possibility of multiple attacks by the
same attacker. This could also be of interest when to each attack an initial cost
is associated [7]. In our case, this cost depends on the quality of the protec-
tion capability. An example of such a strategy could be attackers attempting to
exhaust the defensive detection capability with many fake fast attacks for the
purpose of hiding the actual slow attack. Defenders could adapt again to such
strategies, and investigating this interaction in a game-theoretic model would be
interesting as well for future research.
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