
Enterprise Interoperability with SOA:
a Survey of Service Composition Approaches

Rodrigo Mantovaneli Pessoa1, Eduardo Silva1, Marten van Sinderen1,
Dick A. C. Quartel2, Luís Ferreira Pires1

1 University of Twente, Enschede, The Netherlands
2 Telematica Instituut, Enschede, The Netherlands

{mantovanelir, e.m.g.silva, m.j.vansinderen, l.ferreirapires}@ewi.utwente.nl
{Dick.Quartel}@telin.nl

Abstract

Service-Oriented Architecture (SOA) claims to
facilitate the construction of flexible and loosely
coupled business applications, and therefore is seen as
an enabling factor for enterprise interoperability. The
concept of service, which is central to SOA, is very
convenient to address the matching of needs and
capabilities in enterprise collaborations. In order to
satisfy more demanding needs or to rapidly adapt to
changing needs it is possible to perform service
composition in order to combine the capabilities
provided through several available services. This
paper presents a survey on recent approaches for
service composition. To perform this study a
conceptual framework for service composition is
proposed. This framework allows studying how
different approaches deal with the service composition
life-cycle and provides basic guidelines for their
analysis, evaluation and comparison. The proposed
framework is used to analyse five representative
service composition approaches.

1. Introduction

One promising benefit of Service-Oriented

Architecture (SOA) is to facilitate the construction of
flexible and loosely coupled business applications.
SOA-based businesses applications can span several
networked enterprises, with services that encapsulate
and externalize various corporate applications and data
collections. Service composition is an essential
ingredient of SOA, as it is concerned with aggregating
interoperable services such that the goals of
(enterprises in) a collaboration endeavour can be
satisfied. Many individual service composition

approaches and solutions have been proposed and
developed in recent years. However, more effort has to
be spent on their evaluation and comparison. In this
paper we investigate recent approaches and
technologies to support service composition.

Traditionally, research surveys on service
composition tend to either focus on one particular
emerging technology (such as workflow-based, AI
planning-based, ontology-based, etc) [1, 2, 3, 4] or be
domain-specific [5, 6]. In this paper, we adopt a
different approach to this classification and organize
our study around the concept of service composition
life-cycle. We define the different phases of the service
composition life-cycle, and based on this we create a
comparison framework. The proposed framework
establishes a set of evaluation criteria that provides
basic guidelines for analysis, evaluation and
comparison. We argue that our framework enables a
more comprehensive understanding of existing service
composition approaches, and allows us to recognize
opportunities for combining approaches and
identifying open issues and research challenges.

The remaining of this paper is structured as follows:
Section 2 discusses enterprise interoperability issues
related to service composition. Section 3 describes the
service composition life-cycle. Section 4 introduces
our comparison framework. Section 5 describes five
different service composition approaches. Section 6
compares the studied approaches. Finally, Section 7
presents our conclusions and defines some future
research directions.

2. Enterprise Interoperability and Service
Composition

Enterprise interoperability denotes the ability of
organizational entities (businesses, government,
companies and parts thereof), hereafter called
enterprises, to interoperate in order to achieve certain
business goals [7]. Since enterprises are subject to
constant internal changes and must continuously react
to ongoing or imminent changes in markets and trading
partners, interoperability solutions cannot be static. In
addition, since enterprises increasingly use ICT to
support their business activities, interoperability
solutions cannot be restricted to the organizational
level alone. Therefore, in order to develop practical
solutions for modern enterprises, interoperability
should be addressed both from organizational and
technical points of view, and flexibility (next to other
"ilities") should be a major concern.

The following aspects of interoperability have been
distinguished [8]: (i) businesses; (ii) processes; (iii)
services; and (iv) data interoperability. Businesses and
processes interoperability are considered mainly at the
organizational level, whereas services and data
interoperability require focus on (information)
technology issues. The term service can be used to
denote a business function as well as a function of a
computer-based application. In the context of this
paper, we limit ourselves to the latter denotation,
however, being aware that a comprehensive treatment
of enterprise interoperability would require
consideration of both denotations within a single
framework.

It has now been widely recognized that SOA can
bring significant benefits for enterprise interoperability
[9]. A perceived value of SOA is that the concept of
service, which is central to SOA, allows one to address
the matching of needs and capabilities in enterprise
collaborations at the proper level of abstraction. SOA
is based on the assumption that enterprise systems may
be under the control of different ownership domains.
Therefore, the focus is on services that these systems
can provide (capabilities) or that these systems want to
use (needs), and ownership issues are not visible
except for restrictions imposed on the use of these
services. Services are self-contained units of
functionality, which are described, published and
discovered [10]. These properties form the basis for
fulfilling the desirable flexibility mentioned above:
service providers can make themselves and their
services instantly known. Moreover, user needs can
also be matched to a combination of multiple provider
capabilities, corresponding to multiple services,
through a mechanism where discovered services are
composed with the aim of fully satisfying the user
needs.

This brings us to the focus of this paper, namely
service composition. We perform a survey of different
service composition approaches, analysing them
according to the phases of the service composition life-
cycle.

3. Composite Service Life-cycle

A composite service consists of a composition of

existing services to achieve some functionality that
typically is not provided by a single available service.
The composite service life-cycle provides an integrated
view of the phases and artefacts produced for service
development and execution. The phases cover design-
time and runtime aspects of the composite service life-
cycle and allow services to be created, operated and
maintained. The life-cycle phases may vary according
to the granularity chosen for the description of the
different activities involved in the service composition
process. Figure 1 shows the life-cycle we propose for
the development and execution of composite services.

Requirements
analysis

Design and
specification

RealizationExecution

Addressing
and binding Deployment

PublishingDiscovery

Monitoring

Composite service
life-cycle

Requirements
document

 Artefacts:

 Artefacts:

Process model
specification

 Artefacts:

Configuration
parameters

 Artefacts:

Executable
code

 Artefacts:

Selected service
descriptions

 Artefacts:

Performance
level reports

 Artefacts:

Concrete service
end-points

Service
selection

Process
model

creation

Process
model

validation

Figure 1. Composite service life-cycle

We have aimed at specifying the common phases and
artefacts of a service composition process in a single
and comprehensive model. The circles in Figure 1
represent phases of the composite service life-cycle,
and the round rectangles represent the artefacts
produced in each phase.

Requirements analysis. The first phase of the life-
cycle identifies and prioritizes business and customers
requirements. In this phase the scope is set, resources
are planned, and the business context in which the new
services will operate is determined. Possible needs for
new services are identified based on an analysis of

business and customers requirements. The artefact
produced in the requirements analysis phase is a
software requirements document, which typically
details the system’s functional and non-functional
requirements in a structured form.

Design and specification. In this phase, the
composite service is designed to fulfil the business and
customers requirements identified in the previous
phase. In this phase the services needed to realize the
requested service composition are selected and a
process model specifying how the services are
coordinated is built and validated. This involves the
following sub-phases:
• Service selection: performs the selection and

ranking of suitable services to fulfil the
composition requirements. The output of the
selection and ranking algorithm is the list of
services that fulfil all functional and quality
requirements of the user, ordered by some criteria.

• Process model creation: relates to the creation of
a service composition. We should be able to
determine what component services are executed
and by whom, at what moment in time, what are
the components dependencies and what are the
expected results. The process model can be
specified in terms of a single party view or a
multi-party view. The first is usually defined as a
service orchestration, while the second is defined
as a service choreography. The resulting artefact is
a specification of how to coordinate the
discovered and selected services to meet the user
needs. This specification can be produced at
design-time or runtime, using manual, semi-
automated or automated composition methods.

• Process model validation: services may have the
same or similar functionality. Therefore, it is
possible that more than one composite service is
generated to fulfil the service requirements. In this
case, the composite services should be evaluated
and ranked on their overall utility. This evaluation
is usually performed based on the composite
service functional and non-functional properties.
The most commonly used evaluation method is by
using utility functions that rank the created
composite services according to weights specified
by the service requester for each non-functional
property. The validation of the composite service
correctness is another aspect of the service
composition. It consists of verifying if the
requested requirements are achieved by the
composite service, if there are no deadlocks, etc.

Realization. This phase focuses on the service
technical implementation details. In this phase the

service identified and designed in the previous phase is
built and tested. The service implementation can be
coded in different computer languages and the source
code can be obtained through actual programming,
wrapping existing legacy applications or by model-to-
code transformations. The materialization of a service
is completed when some executable (code)
specification is produced as artefact.

Deployment. The service deployment phase
addresses the problem of installing, configuring and
managing services and service instances in the service
execution environment.

Publishing. In this phase the service description
information is published. Usually this information is
specified in a service description document. The
published information allows one to advertise the
service, and so that the service can be discovered by
potential consumers. The service description document
describes what the service does, where it can be found,
and how it can be invoked.

Discovery. The discovery phase concerns the
service consumers’ ability to find (either at design-time
or at runtime) the service descriptions published in
service registries in the Publishing phase. Once the
services are published in the registry, users can search
and find the services that meet their requirements.

Service binding. A service may have different
implementations, and each implementation may have
multiple deployments in different service end-points.
The service binding phase focuses on how service
endpoints are discovered and instantiated. The binding
phase may be performed either at design-time or at
runtime, and can be static or dynamic. Static service
bindings are defined at design-time and define a tightly
coupled interaction between service user and service
provider. Dynamic service bindings allow a dynamic
binding of service user and service provider’s service
at runtime, given a selection and discovery mechanism,
usually defined at design-time.

Execution. The execution phase involves the
invocation of all participating services, possibly hosted
in different provider domains. The execution of a
composite service must be consistent with the specified
process model and for this, a coordination mechanism
is required. During composite service execution, this
coordination mechanism is responsible for invoking
the participating services, receiving notifications of
completion from each participating service,
transferring and transforming (when required) the
input/output parameters among the participating
services, and evaluating pre-conditions that must be
satisfied prior to the invocation of a participating
service and post-processing actions that must be

performed after the execution of a participating
service.

Monitoring. In this phase, the service provider
constantly monitors the composite service execution,
evaluating its performance and verifying if the agreed
performance levels are met. The goal of the service
monitoring phase is to rapidly respond to indications of
service degradation or failure, and to ensure that the
service level agreements are fulfilled. To achieve these
objectives, in general, service monitoring requires a set
of QoS metrics to be gathered and interpreted.

4. Comparison Framework

In this section, we present our framework for

analysis and comparison of service composition
approaches. The proposed framework is derived from
our service life-cycle. We specially focus on the
service discovery and composition phases, or Process
model creation, but also include other phases, such as
process model verification and service execution. For
each considered life-cycle phase we developed a set of
evaluation criteria. Based on the framework, one may
evaluate different service composition approaches,
having a common ground to compare them. The
characterization of service composition approaches is
generally based on literature review. Table 1 presents
our framework.

Table 1. Comparison framework

Life-cycle Phase Evaluation Criterion
Service description

Service Discovery
Service matching and selection
Behaviour specification
Information specification
Level of automation
Composition time

Process model creation

Coordination distribution
Process model verification Composition correctness
Execution Service binding

In the following, we present in more detail each of

the considered evaluation criterion of our framework:
Service description: aims at evaluating how a

service is described. Different aspects can be
considered, but we may reduce them to two groups:
functional and non-functional aspects. The service
functional description focus on the functionality
supported by the service, which is usually expressed in
terms of inputs, outputs, preconditions and effects
(IOPEs). The non-functional service description

aspects describe other properties the service such as:
performance, availability, cost, etc.

Service matching and selection: refers to the task
of discovering and selecting services that can be used
in the composition. Services are discovered based on a
set of requirements specified in a service request. The
discovery and matching may be based on different
information, such as service goals, or IOPEs. At the
end of the service discovery process a list of services
are retrieved. This set can be further filtered based on
selection criteria. Different approaches may be taken to
perform service selection. For example, non-functional
properties, such as service cost, may be used to rank
candidate services.

Behaviour specification: deals with the design of
composite service behaviour. Here we focus on
describing the languages and formalisms used by
approaches for modelling the behaviour of a service
composition (combined behaviour of the component
services) and for defining constraints between the
service operations that determine allowed invocation
orders.

Information specification: since services handle
data in the form of input and output parameters, it is
necessary to model the data (types) that a service can
handle, the data flow of the composite service and
possible data transformation between the component
services of a composite service.

Level of automation: given a set of available
services and a user service request description, the
problem of service composition synthesis is concerned
with the creation of a new composite service, thus
producing a specification of how to coordinate the
available services to realize the client request. Such a
specification can be obtained either automatically, i.e.,
using a tool that implements a composition algorithm,
semi-automatically, i.e., in case the user makes choices
during the composition phase aided by an interactive
tool, or manually by the user. Depending on the
intended purpose of a given approach, different (and
specific) requirements may arise and be imposed.

Composition time: refers to the moment at which
the approaches perform the service composition
synthesis. Two distinct moments may exist, namely
design-time and runtime. However, an initial
composition plan can be defined at design-time, which
can be adapted dynamically at runtime.

Coordination distribution: the coordination of a
composite service requires that the service is
completely specified, in terms of both the specification
of how various services are linked, and the internal
process model of the composite Two main kinds of
coordination have been identified in [11]:

• Centralised: centralised coordination is based on a
hub-and-spoke topology, in which one service is
given the role of process mediator/delegator, and
all the interactions pass through such a service.
This mechanism is usually defined as
orchestration.

• Peer-to-peer: in decentralized coordination, there
are multiple coordination entities, placed at
distributed locations, each executing a composite
service specification (which is a portion of the
original composite service specification). The
coordination entities communicate directly with
each other rather than through a central
coordinator, in order to transfer data and control
when necessary in an asynchronous way. This
mechanism is usually defined as choreography.

Composition correctness: refers to the capability of
checking the correctness and reliability of the
composite service with respect to the service
requirements. Composition correctness requires
verification of the composed service's properties, such
as reachability, liveness or safety.

Service binding: in order to enhance the flexibility
of a composition, services are usually not hard-coded
into the composition model but bound into it at
different times (i.e., runtime and design time). During
execution, a composition engine has to target messages
to specific services, which are defined in the
composition schema. The service selection model deals
with static and dynamic binding, i.e., how a service is
selected and bound statically at design-time or
dynamically at runtime. Alonso et al. [12] describe
four different service binding models:
• Static binding: service endpoint URL is hard-

coded;
• Dynamic binding by reference: service URL is

computed and stored into a variable;
• Dynamic binding by lookup: before each service

invocation a query is sent to a registry to locate a
suitable implementation;

• Dynamic operation selection: no assumptions are
made about the signature of the arbitrary service to
be invoked.

5. Service Composition Approaches

Recently, several techniques and methodologies for

modelling and specifying different aspects of service
composition have been proposed. In this section, we
discuss some representative approaches with respect to
the evaluation criteria defined in our framework, in
order to compare them.

5.1. METEOR-S
The METEOR (Managing End-To-End

OpeRations) project at the Large Scale Distributed
Information Systems (LSDIS) Lab at the University of
Georgia focused on workflow management techniques
for large-scale transactional workflows. Its follow-up
project, which incorporates workflow management for
semantic web services, is called METEOR-S
(METEOR for Semantic web services) [13]. A key
feature in this project is the usage of semantics for the
complete life-cycle of semantic web services. Its
annotation framework is an approach to add semantics
to current industry standards such as WSDL. Finding
an appropriate service for the composition is realized
by a discovery engine that queries an enhanced UDDI
registry.

Service description. The service descriptions are
semantically augmented, which resulted on the
SAWSDL (Semantic Annotations for WSDL)
language. SAWSDL is based on WSDL-S, which was
a joint specification developed by IBM and LSDIS Lab
for adding semantic annotation to WSDL. SAWSDL is
a simple extension of WSDL using the extensibility
elements. It provides a mechanism to annotate the
capabilities and requirements of web services
(described using WSDL) with semantic concepts
defined in an external domain model (e.g., ontology).
Externalizing the domain models allows SAWSDL to
take an agnostic view towards semantic representation
languages. This allows developers to build domain
models in their preferred language or reuse existing
domain models. It has two basic types of annotations:
the model reference and the schema mapping.
Additionally, the METEOR-S framework extends the
SAWSDL annotations with preconditions and effects,
used to describe the conditions that must be met before
an operation can be invoked and the result that the
invocation of the operation will have.

The approach uses QoS ontologies to represent the
semantics of service non-functional properties and has
described generic QoS metrics based on four
dimensions: time, cost, reliability, and fidelity. Each
metric specification consists of a quadruple. QoSq(s,o)
= <name, comparisonOp, val, unit>, where ‘name’ is
the parameter name, ‘comparisonOp’ is a comparison
operator, ‘val’ is a numerical value, and ‘unit’ is the
metric unit. The approach also presents a mathematical
model that formally describes the formulae to compute
QoS metrics among workflow tasks and an algorithm
to automatically compute the overall QoS of a
workflow.

Service matching and selection. METEOR-S has
developed a three-phase algorithm for service selection
that requires the users to enter service requirements as

templates constructed using ontological concepts. In
the first phase, the algorithm matches services
(operations in different WSDL files) based on the
functionality they provide. In the second phase, the
result set from the first phase is ranked based on
semantic similarity between the input and output
concepts of the selected operations and the input and
output concepts of the template, respectively. The
optional third phase involves ranking based on the
semantic similarity between the precondition and effect
concepts of the selected operations and preconditions
and effect concepts of the template. The semantic
matching on the semantic template of the activity is
done against the operations, inputs, outputs,
preconditions and effects of the services available. The
ranking on semantic matching is based on the weights
assigned by the process creator to the individual
semantic parts of the activity, namely operations,
inputs, outputs, preconditions and effects. The
assigned weights are normalized before calculation

Information specification. The information
specification is based on manual specification of the
data semantics. The model reference annotation is used
to specify the association between a WSDL element
and a concept in some semantic model (ontology). The
schema mapping annotations are used by the
METEOR-S framework to deal with further
mismatches in the structure of the inputs and outputs
of the web services, particularly transforming one data
representation into another, such that it can be used in
another web service. Mappings are created between the
web service message element and the ontology concept
with which the message element is semantically
associated. In addition to a mapping from the web
service message element to the ontology concept, also
called the liftingSchemaMapping, an additional
mapping from the ontology concept to the message
element, called the loweringSchemaMapping, is
specified. Once the mappings are defined, two web
services can interoperate by reusing these mappings
and the ontologies now become a vehicle through
which web services resolve their message level
heterogeneity.

Behaviour specification. METEOR-S specifies the
process model describing the behaviour of services by
capturing semantics of the activities in the process
template during the design phase. The activities are not
bound to web service implementations, but defined
using semantic descriptions. Such templates are
independent of the service description and process
definition standards. The process template is a
collection of activities, which can be linked using
control flow constructs. The process templates in
METEOR-S have a BPEL-like syntax. For

representing control flow, the template uses the BPEL
constructs. The template has also some additional
constructs, like invoke activity, criteria, semantic-spec,
discovery-spec, etc. which are prescribed in the BPEL
specification, i.e., they are METEOR-S specific
constructs independent of any process specification
standard that can be used to generate executable
processes.

Level of automation. The development module
provides a GUI-based tool for creating semantic web
services using SAWSDL. The tool provides support
for semi-automatic and manual annotation of existing
web services or source code with concepts from
domain ontologies.

Composition time. METEOR-S offers support for
two types of service composition, namely Static
Composition (services to be composed are decided at
design-time, static binding) and Dynamic Composition
(services to be composed are decided at runtime,
dynamic binding).

Coordination distribution. The coordination of the
composite service is based on a BPEL-like centralised
process engine, or an orchestration.

Composition correctness. The constraint analysis
and optimization sub-modules deal with correctness
and optimization of the process based on quality of
service constraints. There is also support for state
machine based verification of BPEL process.

Service binding. The current prototype supports
three kinds of service binding: static binding,
deployment-time binding and dynamic binding. In
static binding, a set of services is permanently bound
to the composition. Deployment-time and runtime
binding are achieved by using a proxy-based approach
to bind a set of services that realise the service
composition. In deployment-time binding,
configuration is performed before the process starts
executing. In runtime binding, configuration is
performed after the process starts executing. Both
deployment-time and runtime binding support
reconfiguration. The configuration module has the
ability to change the service bound to the proxies by
simply changing a field in a shared data structure. This
data structure is synchronised and accessed by each
proxy before each service invocation. During
reconfiguration, the process manager locks the data
structure, thus making all proxies wait while the
process is being reconfigured..

5.2. SODIUM

SODIUM (Service-Oriented Development In a
Unified fraMework) was an international project,
involving research, technological and industrial
partners, dedicated to tackling interoperability

challenges that companies face at the data, services and
business levels [14]. The project has developed a
Generic Service Model, containing the common
concepts of heterogeneous services from multiple
points of view. The special characteristics of individual
service technologies (such as Web services, Grid
services or P2P services) are then dealt with as
extensions to the core.

The SODIUM methodology adopts a model-driven
and iterative approach for service composition and
evolves in four phases: the user starts by defining the
details of the complex task at a high abstraction level
(phase 1); the user uses this abstract description to
generate queries used for service discovery (phase 2);
the discovered services are used to populate each of
the abstract process tasks, hence transforming it to a
concrete process description, and both the abstract and
concrete descriptions are stored in the service
composition (phase 3); and the concrete process
description is transformed into executable descriptions
and publishable documents about the composite
service which has been built (phase 4).

Service description. The service is represented in a
UML model, according to an UML profile that can be
used to model semantic aspects of web services.
Activities are stereotyped in order to represent web
service operations. Parameters of this activity element
represent its inputs and outputs. A web service activity
has a set of tagged values. The web service provider is
defined by the tagged value provider. The URL to the
WSDL file is registered in the tagged value wsdl. The
exact service operation to invoke is given by the three
tagged values service, portType and operation. To
represent a p2p service operation, activities are
stereotyped as P2PServiceOperation. The five tagged
values type defined for a peer-to-peer service operation
are PSDL, Operation, Service and Pipe. To represent a
grid service operation, activities are stereotyped as a
GridServiceOperation. The six tagged values type
defined for a grid service operation are gwsdl,
ServiceLocation, Service, Operation, PortType and
ResourceInstance. The service may optionally have
semantic references for the data types used and QoS
offered, which are described depending on what kind
of information we can retrieve about the service.

The approach makes use of OMG’s QoS profile to
represent collections of QoS properties with precise
semantic meaning in the UML service model. Each
QoS property contains a set of QoS dimensions with a
name, its allowed value domain, an ordering function
(whether higher or lower values are considered better)
and its relationship to other QoS properties. The
ordering direction of a property is defined as either
increasing or decreasing, where increasing means that

higher values are preferred. All the QoS properties to
be used elsewhere shall be defined as a QoS property
either within the model itself or as in imported model.
Since SODIUM adopts the OMG profile, it already has
generic capabilities to define QoS ontologies. In this
sense, SODIUM does not suggest any specific QoS
dimensions as part of the language, but is capable of
defining any needed QoS dimension.

Service matching and selection. The Behavioural
Service Discovery Framework (BSDF) presented a
novel approach in service discovery, which enables
modelling queries with behavioural constraints in a
visual manner. It comprises three main components: (i)
a visual query modeller that models behavioural
service queries by means of UML behavioural
diagrams; (ii) a translator that transforms the raw XMI
output of the modeller to a generic XML-based query
language, namely USQL; and (iii) a query engine
capable of processing and executing USQL queries in
various types of target registries, repositories,
networks, etc.

The framework is able to match the query against
various types of service choreography advertisements,
independently of their format and protocols. The basic
idea of the USQL engine lies in the logical grouping of
heterogeneous registries, depending on the domain
their advertised services belong to. Having the
registries organized in this way, the engine sets the
service requestor one step closer to his/her specific
requirements and narrows the range of the returning
results, making them more relevant to the initial
request.

Information specification. Data objects are used to
represent the data content that is created in the
composition and that may be passed along to different
activities. A data object has a specific ObjectType
(optional) and may also represent the input and output
parameters of the whole composition.

If the outputs of one service do not perfectly match
the required input of the next service, there is a need to
introduce intermediate data transformation steps
between the services. This requires manual
adjustments by the developer when specifying
transformation nodes for defining data transformations
as expressions in QVT
(Queries/Views/Transformations). The transformation
node is used for one-to-many, many-to-one and many-
to-many data transformations. In a many-to-one
transformation, the information from many source data
objects is used to produce the content of a single target
data object.

Behaviour specification. The Visual Service
Composition Language (VSCL) is a graphical
composition language for defining service

compositions containing heterogeneous (web, grid,
p2p) services. The main concepts of the languages are
the tasks and the flow of data and control between
tasks. The task-graph node consists of a task part and
an entire sub-graph. Thus, the language has a construct
that can be repeated at arbitrary levels to create a
recursive decomposition structure. A task may be
executed by different kinds of services, namely P2P,
Web or Grid services. A service composition consists
of Nodes and Flows/Edges. The Nodes are TaskNodes
, which represent the invocation of a remote service,
ControlNodes, which represent specific crossings for
control flow, ObjectNodes, which are used for data
transfer between the tasks, EventNodes, which
represent an expression node that passes control
through its outgoing arcs upon the occurrence of a
predetermined event or TransformationNodes, which
are used for defining data transformations. Two
different kinds of Flow are used to specify flow of
control and data between nodes. A Flow indicates a
directed flow of either flow of control (ControlFlow or
EventFlow) or flow of data objects (ObjectFlow). A
Flow has one source node and one target node.

Level of automation. The aim of the SODIUM
approach is semi-automated tool support for service
composition. In order to do so, the approach has
automated large parts of the steps needed in the
process of developing composite services. Many of the
proposed steps for automation are model-driven
transformations that transform between models and
lexical descriptions about the services, both forward
and reverse engineering.

Composition time. Though runtime service
selection is discussed, the primary focus has been
design-time service discovery and composition.

Coordination distribution. The coordination
distribution runs on a central execution engine. This
component deals with the execution of compositions
by invoking services and orchestrating the control and
data flow across the different steps of the composition.

Composition correctness. The analyser is a
component used for validating a composition against a
set of rules. This allows one to check the model for
syntactical errors. A dialog box allows the user to
select which rules to validate, to execute and present
the analysis result. Rules can be defined for each of the
main classes in the model. Some constraints should be
checked during editing, while others should be
checked before the generation of lexical executable
representation of the composition. However, no formal
proof of correctness is given.

Service binding. SODIUM refines the concept of
binding beyond the basic distinction of static and
dynamic binding. Service binding can be defined at the

design, the compilation, the deployment, the beginning
of the execution of a composition, or just before the
actual service invocation takes place.

5.3. MoSCoE

MoSCoE (Modeling Web Service Composition and
Execution) [15] is a project coordinated by Iowa State
University. MoSCoE aims at the creation of a
framework for modelling service composition and
execution. The composition process in MoSCoE is
divided in three-steps: abstraction, composition and
refinement. Abstraction is provided to the framework
users, allowing them to request a service using a high-
level specification. The service providers advertise
their services using common standard service
description languages, namely OWL-S and WSDL
descriptions. Given a service request, the framework’s
composition engine creates a suitable composition,
from the existing services, if possible; otherwise it
starts the refinement phase, guiding the user through a
service request refinement procedure to create a
service composition. The refinement process is
iterative, stopping when a suitable service composition
is found, or when the user decides to end the
composition process. If a service composition is
obtained, it is translated into a concrete BPEL
workflow, which can be executed. The service
composition defines rules for non-functional
properties. At the execution time these rules are
monitored, and in case of some specified event takes
place, the appropriate actions are taken. Furthermore,
while executing the service composition, various data
and control flow transformations are carried out by
referring to the pre-defined ontologies used in the
service descriptions, and to specified inter-ontology
mappings.

Service description. Existing services are
represented in OWL-S and WSDL specifications.
OWL-S is used to semantically describe existing
services, and specifying functional and non-functional
aspects of the services, mainly for discovery. The
MoSCoE project claims that other languages for
service description can be supported. In fact, the
framework translates all the service request and service
descriptions to State Machine representations. This
means that the service composition process is
independent of the service description languages.

Service matching and selection. MoSCoE performs
service discovery based on semantic descriptions. It
assumes that existing services are semantically
described in OWL-S. Services are discovered based on
the specified user request functional aspects, the so
called IOPEs (Inputs, Outputs, Preconditions and
Effects). The service request is specified in a visual

form, using a UML State Machines representation of
the desired service. This information is interpreted to
perform service discovery. The discovered services are
organised in terms of degree of semantic match, which
can be Exact, Plug-in, Subsumption, Intersection or
Disjoint. The degree of match is computed through
semantic reasoning on the requested properties and the
existing services’ semantic descriptions. Services that
have intersection and disjoint matches are not
considered as valid matches.

From the set of valid matches, a selection based on
non-functional properties is performed. Non-functional
properties are also described in an ontology. MoSCoE
defines a quality vector which allows the user to
specify which non-functional properties are of interest.
Based on the quality vector, a quality matrix can be
constructed, where lines represent the quality vector
and columns the candidate services values for the
considered non-functional properties. Furthermore, it
is possible to define weight values for the different
considered non-functional properties, which allows
computing an additive value function, and
consequently selecting the best suited service.

Information specification. MoSCoE allows one to
semantically describe services, in terms of both
functional and non-functional properties. However, the
necessary supporting ontologies may be defined by
different parties. This may cause problems of semantic
interoperability of the services used in a composition.

Behaviour specification. In MoSCoE, service
requests are specified using a UML State Machine
representation. The discovered services are also
translated to a State Machine representation. However,
the MoSCoE service composition is described using a
Transition System representation, more specifically, a
Symbolic Transition System (STS). Therefore,
transformations have to be performed on the service
request and candidate services, to obtain Symbolic
Transition Systems from state machine representations.

Once the candidate services are translated to STS,
they are combined to reach the service goal specified
by the user. This composition is obtained
automatically, consisting on sequential and/or parallel
compositions of STS service representations to meet
the service goal specified by the user. If a composition
is possible, the framework proceeds with the
translation of the resulting STS representation to
executable code, namely BPEL executable code. In
case no composition is possible, the Refinement phase
is triggered.

The Refinement phase consists of performing a new
iteration with the user, asking for a service request
refinement (using the UML State Machine
representation). At the moment a refinement request is

issued, concrete information about the problems/issues
encountered during the service composition creation is
provided. Given this, the user is guided on the
refinement process, being asked to give more detailed
information on concrete problems found on the service
composition. After delivering the more detailed
information, the UML State Machine is interpreted
again, a new service discovery is performed, and a new
set of services is retrieved. The service request and the
set of discovered services are translated to State
Machines and to STSs. Based on the STSs, the
framework performs a new attempt to create a service
composition that matches the refined user service
request. If this is possible, the framework stops the
service composition process, generating the executable
code; otherwise it asks the user for a new refinement.
This cycle may happen indefinitely if no service
composition is constructed, unless the user decides to
stop the process.

Level of automation. The MoSCoE approach to
service composition can be classified as semi-
automatic. The process of composing the existing
services is automatic, but the user is asked for
refinements in case a service composition matching the
user initial service request cannot be found.
Furthermore, the user is expected to specify a UML
State Machine representing the service request. This
process may be extremely complex for non-technical
users.

Composition time. MoSCoE is mainly targeted to
design-time service composition. The runtime service
composition is not emphasized in the framework
documentation.

Coordination topology. MoSCoE creates a service
composition strategy, or orchestration, which defines
the behaviour of a mediator, consisting of a plan that
allows the management of interactions with the
different service composition components.

Composition correctness. MoSCoE uses Symbolic
Transitions System (STS) to represent services and
service compositions. By using this formal
representation, the framework has mechanisms to
formally verify the created service compositions.
MoSCoE checks soundness and completeness of the
composition against the provided set of restrictions on
the service composition. The service composition is
also checked at the moment a new refinement is
issued. This checking is used to provide specific
information concerning the problems found at the
composition time to meet the specified service user
goals.

Addressing and binding. MoSCoE defines static
service bindings at design-time. However, constraints
and rules are also defined for non-functional properties

of the service composition. These properties are
monitored at runtime. If some specified event takes
place, the engine stops the service composition
execution and an alternative service composition is
selected, if available.

5.4. SeCSE

SeCSE (Service-Centric Systems Engineering) [16]
was a European project from the 6th Framework
Programme for Research and Development. The
SeCSE project focused on the creation of new
methods, tools and techniques for requirements
analysis, system integrators and service providers to
support cost-effective development and use of
dependable services and service-centric applications.

The four main research areas of the project were
Service engineering; Service discovery; Service-
centric systems engineering; and Service delivery. To
address these areas, SeCSE has defined a methodology
consisting of the following phases: i) Business
requirements definition and service discovery; ii)
Composition creation; iii) Instrumentation and
monitoring rule definition; iv) Service regression
testing; v) Deployment of service composition; vi)
Service-centric system description; vii) Service-centric
system publication.

Service description. Faceted Service Specification
[17] is used to perform service description. The
proposed Facet Specification structure includes a
stable element and variable elements. The principal
stable element is that the XML file structure used to
represent a Service Specification and associated Facets
will not change, since these are independent of Facet
types. Instances of any new Facet type can be listed in
a Service Specification provided a type name has been
defined and made public. Any new Facet Specification
language can be used simply by embedding
specifications written in the language within a Facet
Specification file. The variable elements that the
SeCSE runtime architecture needs to accommodate
are: i) new Facet types, as service consumers’
requirements evolve; ii) service specification
languages, since new service specification languages
are emerging and existing ones are still evolving.
However, service consumers wishing to evaluate a
service specification need to be able to establish
whether their tool (if any) is capable of interpreting the
specification. Hence, an indicator of the language used
is needed, but the mechanism used to interpret it needs
to accommodate potentially arbitrary choices of
language and their versions.

Service matching and selection. The service
discovery phase is performed based on a user (or
Service Integrator as used in SeCSE) service request.

A service request is defined using UML Use Case
specifications. Additionally the service request
specifies also functional requirements, using
VOLERE. Use cases and requirements are expressed
in structured natural language, using a SeCSE tool
called UCaRE.

Once the use cases and requirements are specified,
they can be used to construct a service request in
UCaRE, allowing the user to select the information to
be used in the service discovery query. The service
request query is then passed to EDDiE, the SeSCE
service discovery engine. After some manipulation on
the natural language service request query, a two steps
matching is performed: i) XQuery text-searching
functions to discover an initial set of services
descriptions that satisfy global search constraints; ii)
traditional vector-space model information retrieval,
enhanced with WordNet to further refine and assess
the quality of candidate services set. The resulting
matches are then presented to the user.

Information specification. SeCSE uses Faceted
Service Specification to deal with information
specification, and service description.

 Behaviour specification. The process model
specification is based on the activities identified in the
requirements analysis phase. The user identifies the
different required activities, and based on the set of
discovered services he realises how the service
composition can be made. This is done through a
workflow definition. Given this workflow, the user
proceeds with the actual service composition, using the
Composition Designer (CD) tool provided by the
SeSCE project. CD allows manipulating the WSDL
descriptions of the discovered services and creating the
necessary BPEL service description. From the
resulting data, CD can generate a UML model that is
recognized by the SeSCE Architecture-time Service
Discovery (ASD) tool, which allows the publication
and discovery of the composed service.

The CD tool also allows the user to further enrich
the service composition description with binding and
monitoring rules. These rules enable runtime dynamic
adaptation of the service composition in case specific
events take place. The definitions of the rules consist
of Event-Condition-Action (ECA) expressions.

Level of automation. The service composition
process can be considered as semi-automatic. The
definition of the service composition is obtained based
on a workflow specified by the user of the system.
However, the user is supported in this task by the high
level specification of the requirements provided in the
requirements analysis phase. Furthermore, the actual
service composition, or instantiation of the defined
workflow, is performed based on the list of services

discovered automatically from the user’s service
request. The user also specifies binding rules, which
allow a dynamic adaptation of the service composition
according the defined constraints.

Composition time. The composition process
proposed by SeSCE can be considered as hybrid. The
service composition is specified at design-time, as the
dynamic binding rules. However, dynamic adaptations
of the service composition take place at runtime, in
case some pre-defined event takes place, such as the
unavailability of a given service.

Coordination topology. The coordination topology
consists on a centralised topology or orchestration,
where a single party manages the service composition
execution, monitoring and reconfiguration.

Composition correctness. SeCSE focuses mainly
on QoS requirements verification, to perform runtime
adaptation of the service composition. A technique
based on a genetic algorithm is used for this purpose.

Addressing and binding. Binding is defined at
design-time. However, the SeCSE approach also
defines binding rules at design-time, which allow one
to specify ECA rules to be interpreted at runtime and
guide possible dynamic binding changes at runtime, as
some events are observed, leading to reconfiguration
actions on the service composition.

5.5. WSMF

The Web Service Modelling Framework (WSMF)
[18] is a framework for describing the various aspects
related to web services composition. The framework
provides a Web Services Execution Environment
(WSMX), which is a reference implementation of the
Web Services Modelling Ontology (WSMO) and
operates using the Web Services Modelling Language
(WSML).

The WSMF conceptual model incorporates four
core elements that are essential to represent semantic
web services and related issues, namely ontologies,
which provide the common terminology used by other
WSMO elements, services, which are requested,
provided, and agreed upon by requesters and
providers, goals, which provide means to characterize
user requests in terms of functional and non-functional
requirements, and mediators, which deal with
interoperability problems between different WSMO
elements. In addition to these core elements, WSMO
introduces a set of core non-functional properties that
are globally defined and may be used by all its
modelling elements.

Service description. In WSMO, requestors of a
service express their objectives as goals, which are
high level descriptions of concrete tasks. A WSMO
goal description consists of a requested capability and

requested interfaces. The former specifies the objective
to be achieved in terms of a capability from the user
perspective, while the latter specifies the
communication behaviour for automated web service
usage supported and required by the client.
Analogously, a WSMO service description consists of
a capability, which is a functional description of a web
service describing constraints on the input and output
of a service through the notions of preconditions,
assumptions, post-conditions, and effects, and
choreography interfaces that specify how the service
behaves in order to achieve its functionality, i.e., the
interaction behaviour supported by a service.

Service matching and selection. In the context of
WSMF, service discovery is based on matching
abstract request goal descriptions with semantic
annotations of services. Hence, in order to precisely
express user goals with respect to discovery, WSMO
goals carry an additional non-functional property
typeOfMatch, which denotes the matchmaking notion
to be applied. The simplest approach uses an algorithm
that matches keywords from the goal description with
keywords from the service descriptions. For the
lightweight semantic discovery, the capabilities of
goals and candidate services are transformed into a
variant of WSML and expressed as taxon concepts.
Once this transformation has taken place, an
appropriate reasoning engine is used to determine if
there is an overlap in the set of concepts resulting from
the transformation of the goal and service capabilities,
respectively. The QoS-based discovery mechanism can
be used to filter services from a large set of candidates
or to order services that match a goal according to
some specific QoS characteristic.

Information specification. In WSMF, ontologies
are used to define a common agreed terminology, by
providing concepts and relationships between these
concepts. Only WSML is used as WSMX internal data
representation. By reusing standard terminologies,
different elements can be either linked directly or
indirectly via predefined mapping and alignments, in
order to achieve interoperability between services. The
concept of mediation in WSMO has been introduced to
handle heterogeneities that may exist between elements
that should interoperate, by resolving data and
behavioural mismatches. A WSMO mediator connects
the WSMO elements in a loosely coupled manner, and
provides mediation facilities for resolving mismatches
that might arise in the process of connecting different
elements defined by WSMO. More specifically,
WSMO defines four types of mediators: OOMediators,
which mediate heterogeneous ontologies,
GGMediators, which connect Goals, WGMediators,
which link web services to Goals, and WWMediators,

which connect interoperating web services, resolving
their mismatches.

Behaviour specification. The behaviour
specification is based on Abstract State Machines
(ASM), consisting of states and guarded transitions. A
state is described by the WSMO ontology and the
guarded transitions are used to express changes of
states by means of transition rules. The domain
ontology constitutes the underlying knowledge
representation for the ASM, and transition rules
specified in terms of logic formulas describe how state
changes when a transition is executed. WSML defines
a syntax and semantics for ontology descriptions and
comprises different formalisms, most notably
Description Logics and Logic Programming. The
underlying formalisms are used to give a formal
meaning to ontology descriptions in WSML, resulting
in variants of the language that differ in logical
expressiveness and in the underlying language
paradigms.

Level of automation. The framework aims at an
automated, goal-driven service composition that builds
on pre- and post-conditions associated to service
descriptions.

Composition time. During design-time, the design
and implementation of adapters, creation of ontologies
and service descriptions, rules for lifting/lowering, and
mapping rules between ontologies are carried out. The
runtime phase involves discovery, selection and
execution of the appropriate services to accomplish a
given goal.

Coordination distribution. Information interchange
for consumption and cooperation of services happens
in a peer-to-peer manner, without the need of a central
coordination entity.

Composition correctness. Apparently there is no
explicit support for correctness in this framework.

Service binding. WSMO defines a proxy
infrastructure for dynamic service binding and
invocation. For each invoked service, a proxy has to be
declared. The proxy allows referencing a service
without knowing at design-time which concrete service
is bound to it. This reference may consist of a goal
definition or of a name, pre-conditions, post-
conditions, input ports, output ports as well as error
ports. The binding process happens at runtime and is
based on binding rules defined in the proxy. The
binding can be fixed to exactly one service, be defined
in a registry (e.g., UDDI) or depend on input data
coming from an input port. The last case means that
the requester has full control over which service to
select at runtime, because he can specify the binding
criteria through the input ports. The only condition is

that the data required to execute the composite service
can be provided by the service bound at runtime.

6. Discussion

Table 2 summarizes the profiles of the composition

approaches described in the previous section,
according to multiple evaluation criteria defined within
our comparison framework. By contrasting their
profiles, it may be concluded that each approach focus
on a specific set of phases involved in a composite
service lifecycle, while disregarding others.

Table 2. Comparison of the approaches
 METEOR-S SODIUM MoSCoE SeCSE WSMF

Service
description

Semantically
augmented
with
SAWSDL

UML models
enriched with.
constraints
and OMG’s
QoS profile

Services are
represented
in OWL-S
and WSDL

Services are
represented
in Faceted
service
specification

Capability
described in
terms of pre-
and post-
conditions,
assumptions,
and effects

Service
matching
and
selection

three-phase
matching
algorithm
based on
semantic
similarity

Based on
USQL
queries with
behavioural
constraints

Semantic
reasoning
optimized
with non-
functional
properties

Two-phase
matching
algorithm
based on
text-
searching
functions

Keyword
matching,
lightweight
semantic
matching and
QoS based

Behaviour
specification

Based on
process
templates
with BPEL-
like syntax

A graphical
composition
language is
used to
define data
and control
flow

Based on
UML state
machine
diagram and
Symbolic
Transition
Systems

BPEL-like
service
composition
creation
based on
abstract
workflow
definition

Based on
abstract state
machines,
consisting of
states and
guarded
transitions

Information
specification

Model
reference
annotations
and schema
mapping
annotations

Data objects
used as
internal data
representatio
n format and
data
transformatio
ns expressed
in QVT

Inter-
ontology
mappings

Faceted
service
specification

Ontologies
are used as
internal data
representatio
n format and
mediators are
defined in
case of data
mismatch

Level of
automation

Support for
manual and
semi-
automatic

Semi-
automatic
support

Semi-
automatic
support

Semi-
automatic
support

Automatic

Composition
time

Design-time
and runtime

Design-time Design-time Design-time
with binding
rules for
dynamic
adaptation

Runtime

coordination
distribution

Centralized Centralized Centralized Centralized Peer-2-peer

Composition
correctness

State
machine
based
verification
of BPEL

No support
for formal
proof of
correctness

Symbolic
transitions
system
based

No explicit
support

No explicit
support

Service
binding

Static
binding,
deployment-
time binding
and dynamic
binding

Design-time,
compilation-
time,
deployment-
time and
runtime

Static binding Static and
dynamic
binding

Static and
dynamic
binding

When comparing the described approaches, it is
possible to notice that services can be described in
different ways. They are described according to
different existing standards (e.g. WSDL, SAWSDL,
OWL-S, WSML), and can be characterized by a set of
input and output parameters, QoS parameters,

keywords, pre- and post- conditions, effects, etc.
Nevertheless, it has been done, at varying levels of
abstraction and each of these levels implies a different
description of services, ranging from simple
unstructured keywords to detailed characterizations of
possible state transitions.

The service discovery phase is directly dependent
on the way services are described. Consequently, the
achievable accuracy of a result in the discovery phase
may vary significantly from one approach to another,
since different sorts and amounts of information are
available during the discovery phase and since more or
less structure and semantic are embedded in the service
descriptions, which are used by the matching
algorithms. There is, however, an inherent trade off
between expressiveness of the service descriptions and
computational performance.

The way in which behaviour is specified also varies
across the compared approaches. The behaviour of a
composite service can be described explicitly, using
some language that directly specifies the composition
flow control (allowed order of invocations). This
principle is currently taken by SODIUM and SeCSE
approaches and reflects its primary focus on design-
time service composition. Alternatively, such
behaviour can also be described indirectly, by
specifying the conditions under which the involved
services in a composition can be invoked, its inputs
and outputs parameters and the effects of such
invocations. METEOR-S and MoSCoE allow IOPEs
(inputs, outputs, preconditions and effects) to be
specified at the level of WSDL operations. It allows AI
planning techniques to be used to fully or partially
automate the service composition process. The
planning algorithms can be executed at design-time or
runtime to find a suitable ordering of the operations,
based on the initial conditions and the goal of a
particular client. However, planning algorithms usually
have high computational complexity and require
substantial resources. WSMO specifies the conditions
and effects using abstract state machines, consisting of
states and guarded transitions. A state is described
within an ontology and the guarded transitions are
used to express changes of states by means of
transition rules. However, this implicit behaviour
specification may be neither intuitive nor trivial to
make sure that the expectations implied by the
designed transition rules match the expected operation
message exchange patterns in the context of a service
composition.

Concerning information specification, there are
several converging ideas focusing on schema
mappings and data transformations to cope with
heterogeneity issues that can exist between the formats

of the data exchanged between services. Similar to
various existing approaches, developers may specify
mappings between each element of an input/output
parameter of a service and concepts from different data
schemes. Ontologies are used as the information model
throughout both WSMO and MoSCoE. Because
WSMO heavily emphasizes mediation, mediators are a
first class component of the WSMO service model. An
example of a WSMO mediator for resolving data
mismatches is the ooMediator, which links two
ontologies, resolving possible mismatch issues
between them. In METEOR-S, the data mediator
module uses the data semantics of the proxies and the
services, to perform XSLT transformations data
mediation between the on-the-wire XML data. With
this approach, the grounding needs to link the inputs
and outputs of the service with the appropriate XSLT
transformations. Therefore, mapping and merging of
schemas becomes a core question and some
(semi)automatic support has to be developed to reduce
the exhaustive work needed for manual creation and
maintenance of these mappings.

Regarding the coordination distribution, more
traditional approaches assume a centralized
coordination, where a central entity coordinates the
invocation of services involved in a composition. In
the other hand, WSMF goes beyond this traditional
form of central coordination, where a peer-to-peer
interaction takes place among equal partners, in terms
of their level of control over other entities.

7. Conclusions

In this paper, we have presented an analytical
framework for analysis and comparison of service
composition approaches. The framework was
developed following the phases of the composite
service life-cycle. Additionally a set of criteria was
identified to evaluate each of the considered life-cycle
phases.

We claim that service composition plays a major
role in enterprise interoperability, and so here we
present some state of the art on service composition
approaches. According to our framework, an ideal
approach would efficiently cover all of the
requirements that we have identified across the key
phases of the composite service life-cycle. However,
for practical reasons, the compared approaches focus
on specific phases of the life-cycle, while neglecting
others. Not surprisingly, the described approaches
widely differ in how they address the above mentioned
requirements.

Based on our study we conclude that none of the
service composition approaches we investigated covers

all the life-cycle phases and is commonly accepted by
the research community. For this reason, we believe
there are opportunities to be exploited by combining
the benefits of the different approaches. However,
there are still some issues that have not been explicitly
addressed in our study. An example is the way
ontologies are used, since ontologies are currently a
major technology for supporting service description
and composition. Different organisations define
ontologies in different ways, which may generate
major problems of interoperability. Some approaches
define manual mappings to deal with the ontologies
interoperability problem; however these mappings or
mediation techniques may be error prone and difficult
to apply in realistic applications.

An issue that apparently is not being widely
addressed is the support to end-users’ service
composition at runtime. This is a major research
challenge and business opportunity, since the idea of
delivering services at runtime on demand to end-users
is a natural opportunity and benefit of service-oriented
systems. However, as it can be observed from our
study, the majority of the approaches mainly focus on
design-time service composition, providing support to
service developers. On this specific topic we foresee
many research challenges as well as many business
opportunities in the upcoming years.

References

[1] F. Lautenbacher, B. Bauer, "A Survey on Workflow
Annotation & Composition Approaches", In Proceedings of
the Workshop on Semantic Business Process and Product
Lifecycle Management (SemBPM), Innsbruck, Austria, June
2007, pp. 12-23.

[2] Seog-Chan Oh, Dongwon Lee and Soundar R. T.
Kumara, “A Comparative Illustration of AI Planning-based
Web Services Composition,” ACM SIGecom Exchanges,
Vol. 5, No. 5, 2005, pp. 1-10.

[3] N. F. Noy, “Semantic integration: a survey of ontology-
based approaches”, ACM SIGMOD Record, Vol. 33, No. 4,
December 2004, pp. 65-70.

[4] M.H. ter Beek, A. Bucchiarone, and S. Gnesi , "Formal
Methods for Service Composition", Annals of Mathematics,
Computing & Teleinformatics, Vol 1, No 5, 2007, pp. 1-10.

[5] D. Griffin, D. Pesch, "A Survey on Web Services in
Telecommunications". IEEE Communications Magazine,
July 2007, Vol. 45, No. 7, pp. 28-35.

[6] J. Brønsted, K. M. Hansen, M. Ingstrup, "A Survey of
Service Composition Mechanisms in Ubiquitous
Computing", In Proceedings of UbiComp 2007 Workshop,
June 2007, Vol. 4717, No. 9, pp. 87-92, Innsbruck, Austria.

[7] IFIP TC5 SIG on Enterprise Interoperability, "TC5 SIG
EI Aims and Scope", January 2008. Soon available at
http://www.ifip.org/.

[8] D. Chen, "Enterprise interoperability framework", In
Proceedings of Enterprise Modelling and Ontologies for
Interoperability, EMOI - Interop 2006, CEUR Vol. 200,
2006.

[9] M.-S. Le et al. (Eds.), "Enterprise interoperability
research roadmap", V4.0, July 2006. Available at
ftp://ftp.cordis.europe.eu/pub/ist/doc/directorate_d/ebusiness/
ei-roadmap-final_eng.pdf.

[10] M.P. Papazoglou, D. Georgakpoulos, "Introduction to
special issue on Service Oriented Computing",
Communications of the ACM, Vol. 46, No. 10, 2003, pp. 24-
28.

[11] R. Hull, M. Benedikt, V. Christophides, and J. Su. “E-
Services: A Look Behind the Curtain”. In Proceedings of the
PODS 2003 Conference, San Diego, CA, USA, 2003.

[12] G. Alonso, F. Casati, H. Kuno, V. Machiraju, “Web
Services. Concepts, Architectures and Applications”, 2004,
Springer-Verlag, Berlin Heidelberg.

[13] K. Verma, K. Gomadam, A. P. Sheth, et al.. "The
METEOR-S Approach for Configuring and Executing
Dynamic Web Processes", Technical Report , 2005.

[14] S. Topouzidou. “SODIUM, Service-Oriented
Development In a Unified framework”, Final report IST-
FP6-004559. http://www.atc.gr/sodium.

[15] J. Pathak, S. Basu, V, Honavar. “Modeling Web
Services by Iterative Reformulation of Functional and Non-
functional Requirements”, In proceedings the 4th
International Conference on Service-Oriented Computing
(ICSOC), Chicago, USA, December 2006, pp. 314-326.

[16] The SeCSE team. “Designing and Deploying Service-
Centric Systems: The SeCSE Way”, In proceedings of
Workshop: Service Oriented Computing: a look at the Inside,
ICSOC 2007, Vienna, Austria, September 2007.

[17] SeCSE Project. “Specification Language Definition”.
SeCSE project deliverable (A1D23), 2007.

[18] D. Roman, et al.. “Web Service Modeling Ontology”,
Applied Ontologies, vol. 1, pp. 77-106, 2005.

	1. Introduction
	2. Enterprise Interoperability and Service Composition
	3. Composite Service Life-cycle
	4. Comparison Framework
	5. Service Composition Approaches
	5.1. METEOR-S
	5.2. SODIUM
	5.3. MoSCoE
	5.4. SeCSE
	5.5. WSMF

	6. Discussion
	References

