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Abstract. In this paper we propose a simulation framework that allows
for the analysis of power and performance trade-offs for data centres
that save energy via power management. The models are cooperating
discrete-event and agent-based models, which enable a variety of data
centre configurations, including various infrastructural choices, workload
models, (heterogeneous) servers and power management strategies. The
capabilities of our modelling and simulation approach is shown with an
example of a 200-server cluster. A validation that compares our results,
for a restricted model with a previously published numerical model is
also provided.
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1 Introduction

In 2012-2013, the global power consumption of data centres (DCs) was approx-
imately 40 GW; this number is still increasing [7]. Hence, being able to evaluate
the effect of energy-savings measures is valuable. One such energy-savings mea-
sure is power management (PM), which tries to lower the power state of servers,
while performance is kept intact. Moreover, the so-called cascade effect (to be
discussed later; cf. [8]) on energy consumption in infrastructure, strengthens the
effects of PM strategies.

This paper aims to obtain insight in power usage and system performance
(measured in terms of throughput and response times) in early DC design
phases. It presents high-level models to estimate DC power consumption and
performance. We will present and simulate cooperating models for (a) IT
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equipment, (b) the cascade effect, (c¢) the system workload, and (d) power
management. The value of our models is shown through the analysis and sim-
ulation of an example DC. Our models combine discrete-event models and
agent-based models. Simulating these models sheds light on the above-mentioned
power-performance trade-off. For the construction of our models, the multi-
method simulation tool ANYLOGIC [1] is used. ANYLOGIC supports a mixture of
three common methodologies to build simulation models: (a) system dynamics,
(b) process-centric/discrete-event modelling, and (c) agent-based modelling. In
this paper, we do not use system dynamics. Discrete-event modelling is a suit-
able approach for the analysis of systems that encompass a continuous process,
that can be divided into discrete parts. Each part is characterised by triggering
an event. As [15, p.6] states about discrete-event simulation:

Discrete-event simulation concerns the modeling of a system as it evolves
over time by a representation in which the state variables change instan-
taneously at separate points in time. These points in time are the ones
at which an event occurs, where an event is defined as an instantaneous
occurence that may change the state of the system.

Agent-based modelling allows to model individual behaviour to obtain global
behaviour with so-called communicating agents. It allows to easily specify het-
erogeneous populations. As [15, p.694] states about agent-based simulation:

We define an agent-based simulation to be a DES where entities (agents)
do, in fact, interact with other entities and their environment in a major
way.

This paper contributes by taking the first steps towards accurate insight in both
power and performance by presenting simple queueing models of IT equipment
that are easy to extend and allow heterogeneity. Also, a model for the cascading
effect is taken into account, and workloads can be based on general probability
distributions or on measurement data. Moreover, the insight in power and per-
formance has strong visual support for transient and steady-state analysis. Next
steps that follow from this research involve refining and validation of models
for more realistic case studies based on measurements and knowledge obtained
from cooperation with the project partner Target Holding that allocated their
IT equipment in the Centrum voor Informatie Technologie (CIT) data centre in
Groningen, the Netherlands.

Over the last few years, various authors have proposed models for the anal-
ysis of the power-performance trade-off in data centres. Numerical solutions to
compute power and performance for DCs based on Markov models have been
proposed in [14], [9], [11], fluid analysis has been proposed in [17] and stochastic
Petri nets in [16], [5], [12]. All these numerical approaches allow for the rapid
computation of trade-offs, but are often limited in their modelling capabilities,
thus leaving them useful for only few metrics under limiting assumptions. Sim-
ulation using ANYLOGIC, as we propose here, might be slower, however, it can
handle a wider variety of DCs than numerical analysis and scales well to larger
systems (as we will see).
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The paper is further organised as follows. First, the DC and its context
are described in Section 2. Section 3 continues from this system description by
introducing all models, metrics and visualisation. A case study with a 200-server
example and model validation are presented in Section 4, followed by Section 5
with the conclusions and future work.

2 System Description

In [2], important customer demands for DCs are distinguished, that direct choices
on the system architecture, namely: availability, scalability, flexibility, security
and performance. The minimum requirements for a server are location, space,
power supply, network accessibility and healthy environment conditions. The
demands from the customer and server requirements drive the choice of the
most relevant components in a typical DC. Therefore, a data centre consist of
various components, as described in [3], which are typically: Automatic Trans-
fer Switches (ATSs), Uninterruptible Power Supplies (UPSs), Power Distribution
Units (PDUs), servers, chillers, coolers, network equipment and devices for mon-
itoring and control.

Through the network the DC becomes accessible from the outside world. The
workload of a DC is the amount of work that is expected to be done by the DC.
The workload of a DC is an important indication for functionality and efficiency.
An indication of the workload in a DC is the number of jobs per time unit that
arrive via the network, together with the length (distribution) of the jobs. Jobs
sent through the network arrive in a buffer of a load balancer, that schedules
the jobs. We assume that storage and network equipment guarantee negligible
job losses in this buffer.

Energy consumption can be reduced in DCs in several ways [8]. One way is
power management (PM), that aims to switch servers into a lower power state
to reduce power consumption, while performance is kept intact. The challenge
is to minimise the number of idle servers but prevent unacceptable performance
degradation. Sometimes energy consumption reduces at the cost of performance,
resulting in a trade-off. We will illustrate such trade-offs later in the paper.

3 Data Center Models

Section 3.1 presents an overview of all implemented agent-based models based on
Section 2. These agent-based models are built from underlying queueing models,
state-chart models and functions for analysis, which are detailed in Sections
3.2-3.5. Finally, power and performance metrics are presented in Section 3.6.

3.1 Model Overview

All relevant entities are modelled as agents, which enables easy extension towards
heterogeneous entities. An overview of all agents is given in the UML diagram
in Figure 1.
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Fig. 1. All implemented agents in one UML diagram.

The MainMenu agent links to the agents PowerPerformance, Infrastructure
and Configuration with visual representation of the results (light grey). The
other agents, i.e., DataCentre, Cascade, LoadBalancer, EnergySupplier, Traf-
fic, Power Management, Servers and Jobs are the DC models, including a
visual representation (dark grey). In the upcoming subsections, the models inside
these agents are discussed. The models inside the agent-based models are queue-
ing models, state-chart models and functions for analysis.

3.2 IT Equipment Model

Jobs arrive in a queue in a load balancer. The load balancer decides to which
server the jobs should be dispatched depending on the state information.

Figure 2 shows an G|G|1|oojoo queue of the load balancer. Jobs arrive in a
FIFO buffer in the load balancer according to a general arrival process (left-most
queue) and are served (big circle) in one of the M servers after injection of the
job in one of the server queues and waiting for service there.

In order to compute response times, the LoadBalancer agent flags a job with
a time stamp before it enters the load balancer queue. When a job is finished
it compares the time stamp with its current time stamp to compute a response
time sample.

Each Server agent comprises a G|G|1|oo|oo queue with FIFO buffer. The
jobs from the load balancer are injected and arrive at the server queue. At most
one job at a time is served with a generally distributed service time (with mean
value 1/p). If a server has been switched off, then no jobs are routed to it.

The main reason for this modelling approach, instead of directly using an
G|G|M|oo|oo queue, is that any scheduling algorithm based on the state infor-
mation of the server can be implemented in this framework, and it also allows
for heterogeneous servers.

The power state of a server indicates how the server is used and how
much power is consumed for that use. The server state can be described with



262 B.F. Postema and B.R. Haverkort

LoadBalancer

Server 1

Server 2

Server M

—{_+w—

Fig. 2. Load balancer and servers queueing models.
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Fig. 3. State-chart model of server with sleep power states.

a state-chart model that switches between the low power consuming inactive
Asleep state and the high power consuming active states Idle and Processing,
that is controlled by external agents via messages; as depicted in Figure 3. Ini-
tially, the server is idle, i.e., the initial state is Idle. When the server is active,
it can switch between the power state Processing (200 W) and Idle (140 W).
When a server receives a sleep message, it first needs time to suspend the system
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in power state Sleeping (200 W). After a generally distributed time with mean
1/ag, the server is in power state Asleep (14 W). Power state Waking (200 W),
which takes extra time before the server starts processing the first job, i.e., after
a generally distributed time with mean 1/ the server is back on. The cycle
to shut down and boot a server follows the following sequence of power states:
Idle (140 W) — Shutting Down (200 W) — 0ff (0W) — Booting (200 W)—
Processing (200 W). The servers leave the power state Booting after a gener-
ally distributed time with mean 1/t and the power state Shutting Down after
a generally distributed time with mean 1/asq. The power consumption values as
used here are taken from [10].

The used power state model is highly abstract and could be refined, e.g.,
based on recent results for CPU-intensive workloads [13].

The currently implemented job scheduling depends on the power state of
servers. Initially, a random idle server is selected. If no idle server is present, an
off server is selected. In case only active servers are available, a random server
is selected. Another variant of a scheduling mechanism is to inject a job in the
server with the shortest queue. In case there are multiple shortest queues, a
random server is chosen; such (and other) variants can all be easily implemented
in our framework.

3.3 Cascade Model

The cascade effect, as elaborated on before, occurs in many DC infrastructure
components that consume power based on server power consumption.

Server 10W
components \
1 Watt saved here
DC-DC \1:8 w

Saves additional

.18 W here AC-DC wQ w

d .31 Wh
an ere . Po_wel: 53w
distribution \
and .04 W here
upPs \1?7 w
and .14 W here

Cooling 274 W
1 Watt saved at the processor saves approximatly and 1.07 W here s:;:;':'lgr/ 2,84 W
2.84 Watt of total power consumption 9

Transformer

and .10 W here

Fig. 4. EnergyLogic’s cascade effect model.

The model for the cascade effect in DCs from [8], as depicted in Figure 4,
is used in the Cascade agent. For each unit of power used by the servers, other
DC infrastructure components, e.g., DC-DC, AC-DC, Power distribution, UPS,
cooling, building switchgear /transformer “waste” power in a linear relation.
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Hence, energy savings at the level of the server has great impact on the overall
energy usage. The Cascade agent computes the power consumption metrics via
simple linear functions.

3.4 Workload

Based on the description from Section 3.2, jobs enter the load balancer in a
G|G|1|oo|oo queue following a generally distributed inter-arrival time. In ANY-
Locic, the most common probability distributions are pre-implemented func-
tions, e.g., exponential, normal, uniform and Erlang. The agent Job is added to
the buffer after an inter-arrival time based on a function call that generates a
random variable for the specified probability distribution. Additionally, in com-
bination with the Traffic agent, custom discrete and continuous probability
distributions can be defined using, e.g., frequency tables or observed samples. In
this paper, we only discuss generally distributed times with time-constant means
and jobs with fixed mean lengths, yet our simulation does allow time-varying
means in order to support realistic time-varying workload with heterogeneous
jobs obtained from measurements in data centres.

3.5 Power Management Strategies

Without application of PM, all servers in the DC are either processing or idle.
PM, however, aims to switch servers into lower power states to reduce power
consumption when the workload is low, while performance is kept intact. The
PowerManagement agent has functions to decide when servers need to be put to
sleep or even switched off, and when servers need to be switched on.

In order to demonstrate the capability of implementing strategies in our
framework, two of the functions are illustrated here. Customers of DCs often
demand a certain performance with a Service Level Agreement (SLA), e.g., the
response time in a DC should never exceed 25ms (Rinres = 0.025 ).

The threshold strategy tries to stay as close to this response time as possible
by putting servers to sleep until it gets too close to the threshold and servers are
again woken. In more detail, the response time gets too close to the threshold
when the latest observed sample exceeds 80 % of Ripres. Servers are put to sleep
when the latest observed sample is lower than 60 % of Ripnres. In future work, we
will investigate more advanced threshold strategies, e.g., including hysteresis.

The aim of the shut-down strategy is to achieve a workload of all active servers
that is equal to a pre-defined percentage, e.g., a server workload of 20 % means
a server spends on average 20 % of the time processing, when jobs are equally
scheduled among all servers. As a consequence, servers are shut down to achieve
that goal. The only exception to this rule is when there are not enough servers
in the DC.

3.6 Power-Performance Metrics

Quantitative metrics are used to provide insight into power and performance in
DCs.
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Power Consumption. An infrastructure component ¢ has power consumption
P.(t) (in Watt) at time ¢ (in seconds). Power consumption Pierver, (t) of server ¢
depends on the server’s power state. The total power consumption of K servers
Piorvers(t) at time ¢:
K
Pservers (t) = Z Pserveri (t) (1)
i=1
The power consumption of other system components (like infrastructure),
Pother(t) = Z P;(t), where j # server; from all other components is computed
through the cabcade model. The total power consumption then equals the sum
of power consumption by all components, i.e., Piotal(t) = Pother(t) + Pservers(f)-
The mean power consumption up to time ¢ is computed as:

t
ElPura(®) = 1 [ Pasu(a)da, @
3 =0

Note that this integral is not explicitly computed, but that an efficient discreti-
sation takes place. This discretisation takes full advantage of the fact that events
trigger changes in the power consumption, i.e., there is a piecewise linear func-
tion for the power consumption over time. The mean power consumption up to
time ¢, where k events occur at time eg, e, ..., e, within the interval [0,¢] with
a fixed first event eg = 0 and a fixed last event e, = ¢, is computed as:

k

1 €i+1
Bl Progan(t)] = [ Pora(e)ds (3)
tot o — 60; e, tot
k
- i— Po a 7 4
ezreozg —€i—-1 ttl(e) ()

Response Time. This is the delay R; (in ms) from the moment a job ¢ enters
until the moment it leaves the DC. So, each job will report its response time R;.
Given m observations, the mean response time is computed as:

H= 3R, (5)

Power State Utilisation. The power state utilisation p;(t) is the percentage
of servers in a particular power state ¢ at time ¢, with p;(¢) € [0, 1]. The sum of
all power state utilisations at time ¢ is exactly 100 %, i.e., >, p;(t) = 1.

The mean power state utilisation up to time t is computed as:

Elpi(t)] = = / pil)dz. (6)

t

In practice, the integral is not explicitly computed, but an efficient discretisation
takes place, similar as done for the mean power consumption. The mean power
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state utilisation up to time ¢, where k events occur at time eq, eq, ..., e within
the interval [0,t] with a fixed first event e = 0 and a fixed last event ey =t, is
computed as:

k

Blp) = ——> [ s ™)
1 z—kO
RlE— Z(ei —ei—1)pileq) (8)

3.7 Visualisation

The PowerPerformance and Infrastructure agents are implemented to show
visuals and “live” values obtained from the simulation runs.
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Figure 5 shows an intuitive dashboard with results and configuration param-
eters of the DC model. The top line shows a menu bar with (1) links to the
model, visuals and configuration. A cumulative utilisation plot (2) shows “live”
how many servers are in each power state. A stack chart below this plot shows
the mean cumulative utilisation, i.e., how many servers are in each power state.
Furthermore, two time plots (3) show “live” power consumption (left) and live



An AnyLogic Simulation Model for Power and Performance Analysis 267

response time (right) of the simulation. Two histogram plots (4) show the distri-
bution of samples used to compute the means of power consumption (left) and
response time (right). The values of the means are displayed in a small table
including confidence intervals (5); the exact way how these confidence intervals
are computed is not clear (to us) from the documentation, hence, these should be
handled with care. Table (6) shows the exact number of servers in each power
state, the total number of servers in the DC and the total number of jobs in
the queue(s). Configuration options (7) can be used to change the behaviour of
the simulation on the fly: adjusting the server workload, the PM strategies, reset
the averages and disable averages are the main configuration options. Additional
configuration options are available in the Configuration agent, like changing
the arrival, service, and booting time distributions.

4 Results

First, an example of a data centre with a 200-server computational cluster is
elaborated to illustrate the capabilities of the simulation models in Section 4.1.
Next, steps are taken for model validation by comparison of the results obtained
from simulation to results obtained from models that are solved numerically in
Section 4.2.

4.1 Case Study: Computational Cluster

We address a DC that needs to be installed with 200 servers. A Service Level
Agreement (SLA) permits a response time of at most 25s. Jobs are served, and,
require on average 1s service time. Furthermore, we require that at most 33 % of
all servers are processing, which is not unusual [4]. Booting and shutting down of
servers require exactly 100s and going to sleep and waking up need only 10s. The
Power Usage Efficiency (PUE) of the DC is 1.5, i.e., 1 W saved at server level
corresponds to 1.5 W saved in total; this is in line with the cascade effect model
of Section 3.3. Furthermore, all the other IT equipment (that is, the non-servers)
consume 1000 W, in total.

Table 1 shows an overview of workload (M), service time distribution (u), IT
equipment specifications (mean booting time ap, mean shutting down time g,
mean sleeping time a; and mean waking time a,,j, of servers), number of servers
(n), PUE and power consumption by other IT equipment (Pptherrr). Figure 6
shows the power consumption in each power state, combined with a legend for
time-cumulative utilisation plot for the shut-down strategy.

First assume that the exact workload is known at all times, and the shut-
down strategy (as described in Section 3.5) is applied. Figure 7 shows transient
behaviour in a time-cumulative utilisation plot. The z-axis represents the model
time ¢ (in s) and the y-axis shows the percentage of servers in each of the power
states. The workload without PM is around 33 %. With PM switched on, 50 % of
all servers is shut down, such that 66 % of all active servers are processing jobs.



268

Table 1. DC configuration and

B.F. Postema and B.R. Haverkort

workload. (200 W)
m Servers Sleeping
A exp(33.0) | w |exp(1.0) (14 W)
pt det(100) | asq |det(100)
asi det(10) | i | det(10) m= Servers Idle
n  |200 servers| PUE| 1.5 (140 W)
Potherrr| 1000 W Fig. 6. Legend
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Furthermore, the mean power consumption is &~ 18 kW and the mean response

time is &~ 1s.

In practice, the future workload is not exactly known. If workload prediction
is inaccurate, late response of the PM strategy can dramatically increase the
number of jobs in the system. Such situations have lead to worse performance,
either by dropped jobs or large queues.

The threshold strategy (as described in Section 3.5) is based on response
times rather than on the workload to control the power state of servers. For this
strategy, the mean values are computed and time plots are generated (as can be
seen from Figure 8-10). The mean response time E[R] &~ 23s and mean power
consumption E[Pservers] & 20 kW.
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Figure 8 shows a time-response time plot with again on the z-axis the model
time ¢ and on the y-axis a green line interpolating between the response time
samples. A horizontal red line is drawn to indicate the response time threshold
Rinres = 25s. Moreover, Figure 9 depicts a time-power consumption plot with
model time t on the x-axis and a blue line that interpolates between power
consumption Piervers(t) samples on the y-axis. Furthermore, Figure 10 shows a
time-cumulative utilisation plot. The z-axis represents the model time ¢ (in s)
and the y-axis shows the percentage of servers in each of the power states.

As seen in Figure 8-10, servers wake (for ¢ € [1120,1140]), because the
observed response times are approaching the threshold. Therefore, power con-
sumption increases from ~ 20kW to ~ 25kW and the response time decreases
from ~ 24s to ~ 21s. The next step is to put servers to sleep again (for
t € [1140,1220]), because the perceived response time is fine. As a consequence,
response times increase again from &~ 21s to & 23s, but power consumption
decreases from ~ 25kW to ~ 15kW.

4.2 Model Validation

For a simpler but very similar model, numerical solutions using stochastic Petri
net (SPN) models have been presented in [16], also to compute mean response time
and mean power consumption, again to analyse the power-performance trade-offs
caused by PM (but no response time and power consumption distributions).

Table 2. DC configuration and workload.

A | exp(l.0) | u | exp(1.0)
apt| exp(0.01) |asa n.a.
n |2-10 servers| B |exp(0.005)

In this paper, we compare the power-performance metrics obtained from our
simulation DC models to similar metrics found in the numerical approach, that
was presented in [16]. Therefore, the DC model is configured to exactly the same
rates, power management strategy, number of servers and job scheduling as with
the numerical solution. While this validation covers only a few scenarios, this
comparison does show the feasibility of expressing models with the exact same
data centre scenario that approach the same power and performance values.

Table 2 shows the configuration and workload. The Poissonian arrival rate
A = 1.0 jobs/s, apt = 0.01 servers/s, and u = 1.0 jobs/s. A special PM strategy is
implemented with an exponentially distributed release time with rate 5 = 0.005
servers/s that determines the number of servers shutting down per second when
idle; note that deterministic time-outs are not allowed in stochastic Petri nets,
which explains why the time-out has been chosen like this with the numerical
approach. The number of servers is scaled from 2 to 10. Time spend on shutting
down a server is ignored.



270 B.F. Postema and B.R. Haverkort

Utilisation

2 3 4 5 6 7 8 9 10

Number of servers

Fig.13. Cumulative utilisation plot
when scaling the number of servers for
numerical analysis.

simulation —*—  numerical —®—

1100

g
_

£ 1000 e
o /
§ 00 "y
8

800
i A
g 700 S
5 600 A
g s
c
§ ¢

300
2 3 4 5 6 7 8 9 10

Number of servers

Fig. 15. Mean power consumption for
various number of servers for simula-
tion and numerical analysis.

Utilisation

2 3 4 5 6 7 8 9 10

Number of servers

Fig. 14. Servers-cumulative utilisation
plot when scaling the number of servers
for simulation.

simulation —*—  numerical —®—

Mean response time (in s)

o = N W s U N

2 3 4 5 6 7 8 9 10
Number of servers

Fig.16. Mean response time for var-
ious number of servers for simulation
and numerical analysis.

Figure 13 and Figure 14 show cumulative power state utilisation plots for the
servers with the PM strategy, for respectively the SPN-based numerical analysis
and our simulation. The z-axis represents the number of servers n and the y-axis
shows the percentage of servers in each of the power states (from top to bottom:
red = off, orange = idle, green = booting and blue = processing). The plots
confirm each other as the plots approach similar shape, but different values; the
plots are not completely the same, which is partly the case due to the fact that
we run a stochastic simulation, which, in essence, is a statistical experiment.
Another reason for the observed difference lies in the implementation of the
job scheduling: the SPN-based models use only one general buffer, whereas our
simulation models use a separate buffer per server.

Figure 15 shows the mean power consumption for various servers in a DC.
The x-axis represents the number of servers n and the y-axis shows mean power
consumption (in W). The curves for simulation and numerical analysis have
similar shape, but with different values, which range, respectively, from 353 W
and 342 W for 2 servers to 982 W and 939 W for 10 servers.

Figure 16 shows the mean response times for various servers in a DC with the
PM strategy. The shape of both curves are again very similar, but with different
values, which are for simulation and numerical analysis respectively from 5.2s
and 1.84s for 2 servers to 2.19s and 1.25s for 10 servers.
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Another reason, for the different values in the curves, is that numerical anal-
ysis has no load balancer, but an implicit way for scheduling jobs. First, jobs are
scheduled to a random idle server with both numerical analysis and simulation.
Otherwise, the jobs are scheduled to a random off server. If all servers are boot-
ing or processing, numerical analysis keeps the jobs in the buffer and simulation
inject the job in a random server.

5 Conclusions and Future Work

The contribution of this paper is the presentation of a new ANYLOGIC-based tool
with an intuitive dashboard, effective for obtaining quick insights in transient
and steady-state behaviour of heterogeneous DC with any possible workload
and PM strategies. Furthermore, the ANYLOGIC environment enables to easily
extend, refine and adapt DC models to many other scenarios.

Insight is obtained in the power and performance in DCs with varying num-
ber of servers, PM strategies and workloads. Relevant metrics are derived from
the qualitative DC demands, including power consumption, response time and
power state utilisation. These metrics are estimated by gathering samples from
a mixture of discrete-event and agent-based models for IT equipment, PM and
workload, implemented in ANYLoOGIC. Furthermore, a cascade model enables
the computation of total power consumption. Our approach is illustrated with
a 200-server case study.

A well known open-source toolkit CLOUDSIM [6] allows to simulate cloud
computing scenarios and allows to specify (textually) DC models with virtual
machines, applications, users, scheduling and provisioning. This tool obtains util-
isation, response times, execution times and energy consumption metrics from
simulation runs. It is future work to to investigate the capabilities of CLOUDSIM
in comparison to our ANYLOGIC-based simulation models.

Foreseen future extensions to the presented models are, among others, (i) the
analyses of other PM strategies, e.g., based on number of jobs in the system and
on hysteresis based strategies; (ii) energy-efficiency measures based on dynamic
voltage and frequency scaling; (iii) power consumption of scaling workload; (iv)
large-scale DC setting with heterogeneous servers, and a mixture of job sizes and
inter-arrival times; (v) virtualisation; and (vi) thermal-aware DCs. Other future
work includes the validation of the models with actual measurements from a DC.
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