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Abstract. Model transformation is a prime technique in modern, model-driven
software design. One of the most challenging issues is to show that the semantics
of the models is not affected by the transformation. So far, there is hardly any
research into this issue, in particular in those cases where the source and target
languages are different.

In this paper, we are using two different state-of-the-art proof techniques (ex-
plicit bisimulation construction versus borrowed contexts) to show bisimilarity
preservation of a given model transformation between two simple (self-defined)
languages, both of which are equipped with a graph transformation-based op-
erational semantics. The contrast between these proof techniques is interesting
because they are based on different model transformation strategies: triple graph
grammars versus in situ transformation. We proceed to compare the proofs and
discuss scalability to a more realistic setting.

1 Background

One of today’s most promising approaches for building complex software systems is
the Object Management Group’s Model Driven Architecture (MDA). The core idea of
MDA is to first model the target system in an abstract, platform-independent way, and
then to refine that model step by step, finally producing platform-specific, executable
code. The refinement steps are to be performed automatically using so-called model
transformations; the knowledge needed for each refinement step is contained in the
respective transformation.

As a consequence, in addition to the source model’s correctness, the correctness of
the model transformations is crucial for MDA; if they contain errors, the target system
might be seriously flawed. But how to ensure the correctness of a model transformation?
In this paper, we take a formal approach: We want to prove that the presented model
transformation is semantics preserving, i.e., we prove that the behaviour of source and
generated target model is equivalent (in a very strict sense, discussed below) for every
source model we potentially start with.

As an example of a realistically sized case for which behavioural preservation is de-
sirable, in [5] we have presented a model transformation from UML Activity Diagrams
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[19] (called AD below) to TAAL [11], a Java-like textual language. The choice of this
case is motivated by two reasons:

– It involves a transformation from an abstract visual language into a more concrete
textual one, and hence it perfectly fits into the MDA philosophy.

– The semantics of both the source and target language (AD and TAAL) have been
formally specified by means of graph transformation systems ([8] and [11], resp.).

The latter means that every AD model and every TAAL program give rise to a transition
system modelling its execution. This in turn allows the application of standard concepts
from concurrency theory in order to compare the executions and to decide whether they
are indeed equivalent or not. Our aim is eventually to show weak bisimilarity between
the transition system of any Activity Diagram and that of the TAAL program resulting
from its transformation. Since weak bisimilarity is one of the most discriminating no-
tions of behavioural equivalence (essentially preserving all properties in any reasonable
temporal logic), we call this full semantic preservation.

Unfortunately, the size and complexity of the above problem are such that we have
decided to first develop proof strategies for the intended result on a much more simpli-
fied version of the languages. In the current paper, we therefore apply the same question
to two toy languages, inspired by AD and TAAL. Especially we model one non-trivial
aspect: the token offer-based semantics of AD. Then, we solve the problem using two
contrasting proof strategies.

The contribution of this paper lies in developing these two general strategies, carrying
out the proofs for our example and afterwards comparing the strategies. Although sim-
ple, our example exhibits general characteristics of complex model-to-model transforma-
tions: different source and target languages, different levels of granularity of operational
steps in the semantics and different labellings of steps. Our two proof strategies represent
general approaches to proving semantics preservation of such model transformations.

The first strategy relies on a triple graph grammar-based definition of the model
transformation (see [12,24]). Based on the resulting (static) triple graphs, we define an
explicit bisimulation relation between the dynamic, run-time state graphs.

The second strategy relies instead on an in-situ definition of the model transforma-
tion and an extension of the operational semantics to the intermediate (hybrid) models.
Using the theory of borrowed contexts (see [4]), we show that each individual model
transformation step preserves the semantics.

The rest of the paper is structured as follows: Section 2 sets up a formal basis for
the paper. Additionally, the source and target language and their respective semantics
are introduced. Sect. 3 defines the model transformation, in both variants (triple graph
grammar-based and in-situ). The actual proofs are worked out in Sections 4 and 5,
respectively. Finally, Sect. 6 discusses and evaluates the results. Detailed proofs and
additional information are contained in the extended version of this paper [10].

2 Definitions

2.1 Graphs and Morphisms

Definition 1 (Graph). A graph is a tuple G = 〈V, E, src, tgt , lab〉, where V is a finite
set of nodes, E a finite set of edges, src, tgt : E → V are source and target functions
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associating nodes with every edge, and lab : E→ Lab is an edge labelling function. We
always assume V ∩ E = ∅.

For a given graph G, we use VG, EG etc. to denote its components. Note that there is
a straightforward (component-wise) definition of union and intersection over graphs,
with the caveat that these operators may be undefined if the source, target or labelling
functions are inconsistent.

In example graphs, we use the convention that self-edges may be displayed through
node labels. That is, every node label in a figure actually represents an edge from that
node to itself, with the given label. We now define morphisms as structure-preserving
maps between graphs.

Definition 2 (Morphism). Given two graphs G, H , a morphism f : G→ H is a pair
of functions (fV : VG→VH , fE : EG→EH) from the nodes and edges of G to those of
H which are consistent with respect to the source and target functions of G and H in
the sense that srcH ◦ fE = fV ◦ srcG, tgtH ◦ fE = fV ◦ tgtG and labH ◦ fE = labG.
If both fV and fE are injective (bijective), we call f injective (bijective).

A bijective morphism is often called an isomorphism: if there exists an isomorphism
from G to H , we call them isomorphic. A frequently used notion of graph structuring
is obtained by typing graphs over a fixed type graph.

Definition 3 (Typing). Given two graphs G, T , the graph G is said to be typable over
T if there exists a typing morphism t : G→ T . A typed graph is a graph G together
with such a typing morphism, say tG. Given two graphs G, H typed over the same type
graph (using typing morphisms tG and tH ), a typed graph morphism f : G→ H is a
morphism that preserves the typing, i.e., such that tG = tH ◦ f .

Besides imposing some structural constraints over graphs, typing also provides an easy
way to restrict to subgraphs:

Definition 4 (Type restriction). Let T, U be graphs such that U ⊆ T , and let G be an
arbitrary graph typed over T via t : G→ T . The restriction of G to U , denoted πU (G),
is defined as the graph H such that

– VH = {v ∈ VG | t(v) ∈ VU}, EH = {e ∈ EG | t(e) ∈ EU},
– srcH = srcG �EH , tgtH = tgtG �EH and labH = labG �EH .

The set of graphs with their morphisms form a category, which we will denote by Graph.

2.2 Graph Languages

In this paper we consider model transformation between two languages. In particular,
we consider graph languages, i.e. sets of graphs; the models are the graphs themselves.
We concentrate on a running example where there are two distinct, very simple graph
languages denoted A and B. Fig. 1 shows type graphs for the languages, denoted T st

A
and T st

B , respectively. They describe the typing of the static parts of our two languages.
We will sometimes also call these the (static) metamodels of the two languages. The
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T st
A T st

B T rt
A T rt

B

Fig. 1. Static (st) and run-time (rt) type graphs for graph languages A and B

Fig. 2. Example graphs of languages A (left) and B (right)

figure also shows the corresponding extended run-time type graphs, which will be dis-
cussed below (Section 2.4).

The type graphs themselves impose only weak structure: not all graphs that can be
typed over theA- and B-type graphs are considered to be part of the languages. Instead,
we impose the following further constraints on the static structure:

LanguageA consists of next-connected S-labelled nodes (statements). There should
be a single S-node with a start-edge to itself, from which all other nodes are reachable
(via paths of next-edges). Furthermore no next-loops are allowed.

Language B consists of bipartite graphs of A- (action) and C-labelled (connector)
nodes. Every C-node has exactly one incoming conn-edge and exactly one outgoing
act-edge; the opposite nodes of those edges must be distinct. Like A-graphs, B-graphs
have exactly one node with a start-self-edge, from which all other nodes are reachable
(via paths of conn- and act-edges).

Small example graphs are shown in Fig. 2. We use Gst
A (Gst

B ) to denote the set of all
well-formed (static) A-graphs (B-graphs).

2.3 Rules and Rule Systems

To specify the semantics of our languages, we have to formally describe changes on
our graphs. This is done by means of graph transformation rules. A rule describes the
change of (parts of) a graph by means of a before and after template (the left-hand and
right-hand hand side of a rule); the interface fixes the part on which left and right hand
side have to agree.

Definition 5 (Transformation rule). A graph transformation rule is a tuple
r = 〈L, I, R,N〉, consisting of a left hand side (LHS) graph L, an interface graph
I , a right hand side (RHS) graph R, and a set N ⊆ Graph of negative application
conditions (NAC’s), which are such that L ⊆ N for all N ∈ N . The interface I is the
intersection of L and R (I = L ∩R).
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We let Rule denote the set of rules. A rule (without a NAC) is basically a pair of injective
morphisms in Graph: L← I → R. The diagram for a rule with NACs is this basic span
together with injective morphisms from L to the elements of N . For a single NAC N ,
a rule has the following form: N ← L ← I → R. There are other definitions of graph
transformation rules in the literature, the one used here is the one for double-pushout
rewriting (DPO-rewriting).

A transformation rule r = 〈L, I, R,N〉 is applicable to a graph G (called the host
graph) if there exists an injective match m : L→G such that for no N ∈ N there exists a
match n : N→G with m = n �L (i.e., all negative application conditions are satisfied),
and moreover, the dangling edge condition holds: for all e ∈ EG, src(e) ∈ m(VL \VI)
or tgt(e) ∈ m(VL \ VI) implies e ∈ m(EL \ VI). This condition can be understood by
realising that the elements of G that are in m(L), but not in m(I), are scheduled to be
deleted by the rule, whereas the elements in m(I) are preserved (see below). Hence we
can not delete a node without explicitly deleting all adjacent edges.

Given such a match m, the application of r to G is defined by extending m to L∪R,
by choosing distinct “fresh” nodes and edges (outside VG and EG, respectively) as
images for VR \ VL and ER \ EL and adding those to G. This extension results in a
morphism m̄ : (L ∪R)→ C for some extended graph C ⊇ G. Now let H be given by
VH = VC \m(VL \VR), EH = EC \m(EL\ER), together with the obvious restriction
of srcC , tgtC and labC to EH . The graph H is called the target of the rule application;
we write G −r,m−−→ H to denote that m is a valid match on host graph G, giving rise to
target graph H , and G −r→ H to denote that there is a match m such that G −r,m−−→ H .
Note that H is not uniquely defined, due to the freedom in choosing the fresh images
for VR \ VL and ER \ EL; however, it is well-defined up to isomorphism.

Definition 6 (Rule system). A rule system is a partial mapping R : Sym ⇀ Rule.
Here, Sym is a universe of rule names.

2.4 Language Semantics

In the context of the two languages defined in Section 2.2, we can use graph transfor-
mation rules for two separate purposes: to give a grammar that precisely and formally
defines the languages or to specify the operational language semantics. In the latter
case, the transformation rules describe patterns of state changes.

We will demonstrate the second usage here, by giving operational rules forA-graphs
and B-graphs. This means that the graphs will represent run-time states. As we will see,
this will involve auxiliary node and edge types that do not occur in the language type
graphs. Fig. 1 shows extended type graphs T rt

A and T rt
B that include these run-time types.

For A, a T-node (of which there can be at most one) models a thread, through a single
program counter (pc-labelled edge). For B, we use token- and offer-loops which play a
similar role; details will become clear below. Similar to the static part, we use Grt

A (Grt
B)

to denote the set of well-formed (run-time) A-graphs (B-graphs). The semantics of A-
and B-models is defined in Fig. 3. Note that the figure shows the rules in DPO style, i.e.
the middle part gives the interface I , and the sides are L and R, given as L← I → R.
Additionally, NACs might be present.

We let dom(RA) = {initA, movePC} and dom(RB) = {initB, createO, moveT}
be the names in the rule systems for theA- and B-models, the mapping to rules follows
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initA movePC initB

← →
← →

← →

createO moveT

NAC← ← → ← →

Fig. 3. Operational rules for A (initA and movePC) and B (initB, createO and moveT)

Fig. 3. Intuitively, the init-rules perform an initialisation of the run-time system, setting
the program counter to the start statement (in A) or putting a token onto a start action
(in B). Rule movePC simply moves the program counter to the next statement, createO
moves an offer to a C-node and moveT moves the token. The semantics of A- and
B-graphs is completely fixed by these rules, giving rise to a labelled transition system
summarizing all these executions.

Definition 7 (Labelled transition system). An L-labelled transition system (LTS) is a
structure S = 〈Q,−→, ι〉, where Q is a set of states and −→ ⊆ Q × L × Q is a set of
transitions labelled over some set of labels L. Furthermore ι ∈ Q is the start state.

In our case, the states are graphs and the transitions are rule applications. That is, given
a rule system R and a start graph G, we obtain a dom(R)-labelled transition system
by recursively applying all rules to all graphs. We will denote this transition system by
S(G) (leaving the rule system R implicit). For instance, the LTS of an A-graph G is
S(G) = (Grt

A,−→A, G), where−→A is defined by the rules in RA.
Semantic equivalence comes down to equivalence of the LTSs generated by two

different graphs. There are several notions of equivalence over LTSs; see, e.g., [25]. In
this paper, we use weak bisimulation. Weak bisimulation requires two states to mutually
simulate each other, where a simulation may however involve internal (unobservable)
steps. As usual, we use the special transition label τ to denote such internal steps.

For states q, q′ ∈ Q and a label α, we write q =α⇒ q′ if q −τ→∗−α→−τ→∗ q′ and use =ε⇒
to stand for−τ→∗. Furthermore, we define for (visible or invisible) labels α the following
function :̂ τ̂ = ε and α̂ = α if α �= τ .

Definition 8 (Weak bisimilarity). Weak bisimilarity between two labelled transition
systems S1, S2 is a relation ≈ ⊆ Q1 ×Q2 such that whenever q1 ≈ q2

– If q1 −α→ q′1, then q2 =α̂⇒ q′2 such that q′1 ≈ q′2;
– If q2 −α→ q′2, then q1 =α̂⇒ q′1 such that q′1 ≈ q′2.

We call S1 and S2 as a whole weakly bisimilar, denoted S1 ≈ S2, if there exists a weak
bisimilarity relation between S1 and S2 such that ι1 ≈ ι2.
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2.5 Semantics-Preserving Model Transformation

Our objective is to compare the LTSs of graphs of languagesA and B. In Section 3 we
will define a (relational) model transformation MT ⊆ Gst

A × Gst
B translating A-graphs

to B-graphs. We aim at proving this model transformation to be semantics preserving,
in the sense that the LTSs of source and target models are always weakly bisimilar.

However, there is an obvious problem: the LTSs ofA- and B-graphs do not have the
same labels, in fact dom(RA) ∩ dom(RB) = ∅. Nevertheless, there is a clear intuition
which rules correspond to each other: on the one hand the two initialisation rules, and
on the other hand the rules movePC and createO. The reason for taking the latter two
as corresponding is that both rules decide on where control is moving. The rule moveT
has no matching counterpart in theA-language, it can be seen as an internal step of the
B-language, completing a step initiated by createO. These observations give rise to the
following renaming of the labels (i.e., the rule names) to a common set of names.

mapA : initA �→ init, movePC �→ move
mapB : initB �→ init, createO �→ move, moveT �→ τ

We call such a mapping map : dom(R)→ Sym (for a given rule systemR) non-trivial
if it does not map every rule name to τ .

Definition 9 (Preservation of semantics). Given two (graph) languages Gst
A ,Gst

B , a
model transformation MT ⊆ Gst

A ×Gst
B is semantics-preserving if there are non-trivial

mapping functions mapA : dom(RA)→ Sym, mapB : dom(RB)→ Sym such that for
all GA ∈ Gst

A , GB ∈ Gst
B with MT (GA, GB)

mapA(S(GA)) ≈ mapB(S(GB)) .

3 Model Transformation

Our model transformation needs to translateA-models into B-models. We will actually
present two definitions of the transformation, both tailored towards the specific proof
technique used for showing semantics preservation.

3.1 Triple Graph Grammars

Our first transformation uses triple graph grammars (TGGs). TGG rules [24,12] typi-
cally capture transformations between models of different types. Triple graphs can be
separated into three subgraphs, typed over their own type graphs. Two of these sub-
graphs evolve simultaneously while the third keeps correspondences between them.
For our example, we have the two type graphs T rt

A and T rt
B which — for forming a type

graph for TGGs — are conjoined and augmented with one new correspondence G-node
(the glue); see Fig. 4, resulting in a combined type graph T rt

AB.
Normally, for a transformation, the source model is given in the beginning and is then

gradually transformed. TGG rules however build two models simultaneously, matching
each part of the source model to the target one. This allows to keep correspondences
between transformed elements and to prove certain properties of the corresponding
graphs. The TGG rules for the A to B transformation are given in Fig. 5.



190 M. Hülsbusch et al.

Fig. 4. Type graph T rt
AB for TGG graph rules

Fig. 5. TGG transformation rules

These rules incrementally build combined A and B-graphs. Initially, only the upper
rule in Fig. 5 can be applied; it constructs one S- and one A-node connected via one cor-
respondence G-node. The middle rule creates further S-, A- and C-nodes together with
their correspondences; the lower rule simultaneously generates next-edges between S-
nodes and connections via C-nodes between corresponding A-nodes. Let Grt

AB denote
the set of graphs obtained by applying the three TGG rules on an empty start graph.
To obtain the actual translation, restrict Grt

AB to the type graphs of A and B. Using the
definition of type restriction as given in Section 2, the model transformation MT thus
works as follows: Given anA-graph GA and aB-graph GB , we have MT (GA, GB) ex-
actly if there is some GAB ∈ Grt

AB such that GA = πT st
A(GAB) and GB = πT st

B (GAB).

3.2 In-Situ Transformation

Instead of building two models simultaneously, in-situ transformations destroy the
source model while building the target model. This has the disadvantage of leading
to “mixed” states, with components of both the source and the target model. This ne-
cessitates additional operational rules (see Section 5). On the other hand, in-situ trans-
formations describe a clear evolution process. This is better suited as a basis for proof
strategy 2, which relies on a congruence result for bisimilarity: the basic idea is that re-
placing a part of the model does not affect behavioural equivalence of the entire model.

We will now present the in-situ transformation rules, which are shown in Fig. 6.
The first rule relabels nodes by replacing the label S by the label A1. The second rule
replaces a next-edge by a connection via a C-node. The third rule replaces the program

1 Remember that labels are represented by loops on an unlabelled node.
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Fig. 6. In-situ transformation rules from language A to language B

counter by a token and allows the transformation of run-time models. We have reached
a model in language B as soon as no further rule applications are possible. We define
that MT (GA, GB) iff GA is transformed into GB via the rules in Fig. 6.

3.3 Comparison

In this section we argue that both strategies define the same model transformation. As-
sume that a graph GA is transformed into a graph GB via the TGG transformation of
Section 3.1. This means that GA and GB are constructed simultaneously by the TGG
grammar and arise as projections of a graph GAB . Then we can apply the in-situ rules
of Fig. 6 to GA, obtaining the corresponding items of GB .

The other direction is slightly more complicated. Assume that we are given a graph
GA of languageA. Then, with the TGG rules, we generate a graph GAB which projects
(via πT st

A ) to GA. We can then show, by induction on the length of this generating
sequence and by using the fact that the transformation rules are confluent, that the graph
πT st

B (GAB) obtained in this way coincides with GB , the graph generated by applying
the in-situ transformation rules as long as possible.

4 Proof Strategy 1

In this section, we present our first approach to proving semantic preservation of the
model transformation on all source models (for more details see the extended version
[10]). This proof strategy uses the correspondences generated by the TGG rules, de-
spite the fact that the semantic rules are applied on the individual models, based on the
following two observations.

First observation: Both for A and B-models, the operational rules keep the syntactic,
static structure of a model, except for start-edges: all S-nodes and next-edges, and all
A, C-nodes and conn, act-edges stay the same.

To formulate structural correspondences, we introduce the following notation. For an
S-node vS and an A-node vA, we write corr(vS , vA) if there is a G-node vG and a
left-edge from vG to vS and a right-edge from vG to vA. For an edge e labelled label
going from a node v to v′, we simply write label(v, v′). We also use these as predicates.
The first result shows that correspondences between S and A-nodes are unique. Here,
∃! stands for “there exists exactly one”.

Proposition 10. Let G ∈ Grt
AB , vS an S-node and vA an A-node in G. Then the follow-

ing two properties hold: (A) ∃!v of type A such that corr(vS , v), and (B) ∃!v of type S
such that corr(v, vA).
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A number of further results show that (1) corresponding nodes either both or none have
start-edges, and (2) next-edges between S-nodes will generate connections via C-nodes
between corresponding A-nodes and vice versa.

Second observation: Correspondences between nodes in A-models and B-models are
kept during application of semantic rules. Predicate corr as well as Prop. 10 and prop-
erties (1) and (2) can thus also be applied to separateA and B-graphs.

Theorem 11. Let G0
A, G0

B be an A- and a B-graph such that MT (G0
A, G0

B). Then

mapA(S(G0
A)) ≈ mapB(S(G0

B))

For the proof, we need to construct a weak bisimulation relationR (defining≈) between
the states of the first and the second LTS:

R = {(GA, GB) ∈ Grt
A × Grt

B | ∃GAB ∈ Grt
AB

(1) πTst
A\start(GA) = πTst

A\start(GAB) ∧ πTst
B\start(GB) = πTst

B\start(GAB),

(2) ∀ S-nodes vS in GA, A-nodes vA in GB s.t. corr(vS , vA):
start(vS) iff start(vA),

(3) ∀ S-nodes vS in GA, A-nodes vA in GB s.t. corr(vS , vA): ∃vT s.t. pc(vT , vS)
iff (i) token(vA) ∧ ∀vC s.t. conn(vA, vC) : ¬offer(vC) or

(ii) ¬token(vA) ∧ ∃vC , v′A : token(v′A) ∧ offer(vC) ∧
conn(v′A, vc) ∧ act(vC , vA),

(4) ∃vT , vS : pc(vT , vS) ⇐⇒ ¬∃v′S : start(v′S) ∧
∃vA : token(vA) ⇐⇒ ¬∃v′A : start(v′A) ∧
¬∃vA : start(vA) =⇒ ∃!v′A : token(v′A) ∧
∀vC : offer(vC) =⇒ ∃vA : token(vA) ∧ conn(vA, vC) ∧
¬∃vS : start(vS) =⇒ ∃!v′S s.t. ∃vT : pc(vT , v′S) }

It contains all pairs of A and B-graphs which (1) in their static structure (except for
start) still follow the structure generated by the TGG rules, (2) have start-edges only
on corresponding nodes, (3) exhibit run-time properties only on corresponding nodes,
and (4) obey certain well-formedness criteria for run-time elements.

Fig. 7 further illustrates condition (3). We have two possibilites for run-time ele-
ments in matching states: either the pc-edge is on an S-node and the token is on the
corresponding A-node and no further offers exist (left), or the pc-edge is on a node for
which the corresponding A-node has no token yet, but an offer has already been created
and is ready to move the token to the A-node by means of the invisible step moveT

Fig. 7. Illustration of condition (3): Left (i), right (ii)



Showing Full Semantics Preservation in Model Transformation 193

(right). We show that the relation R is a weak bisimulation by proving that the states
of transition systems can mimic each others moves. Due to space limitations we cannot
give the full proof here, which can instead be found in the extended version [10].

5 Proof Strategy 2

5.1 The Borrowed Context Technique

In the following we will describe a different proof strategy, based on the borrowed
context technique [4,21], which refines a labelled transition system (or even unlabelled
reaction rules) in such a way that the resulting bisimilarity is a congruence [14]. Weak
bisimilarity as in Def. 8 is usually not a congruence. By a congruence we mean a re-
lation over graphs that is preserved by contextualization, i.e., by gluing with a given
environment graph over a specified interface. This is a mild generalization of standard
graph rewriting in that we consider “open” graphs, equipped with a suitable interface.

The basic idea behind the borrowed context technique is to describe the possible
interactions with the environment. In addition to existing labels, we add the following
information to a transition: what is the (minimal) context that a graph with interface
needs to evolve? More concretely we have transitions of the form

(J → G) α,(J→F←K),N−→ (K → H)

where the components have the following meaning: (J → G) is the original graph with
interface J (given by an injective morphism from J to G) which evolves into a graph
H with interface K . The label is now composed of three entities: the original label
α = map(r) stemming from the operational rule r (as detailed in Section 2.5) and
furthermore two injective morphisms (J → F ← K) detailing what is borrowed from
the environment. The graph F represents the additional graph structure, whereas J, K
are its inner and the outer interface. Finally we provide a set N of negative borrowed
contexts, describing negative constraints on the environment (see also [21]). We are
using a saturated and weak version of bisimulation (see the extended version [10]).

5.2 Using Borrowed Contexts for Verification of Model Transformation

For in-situ model transformation within the same language, applications of the bor-
rowed context technique are straightforward: show for every transformation rule that
the left-hand and right-hand sides L, R with interface I are bisimilar with respect to the
operational rules. Then the source model must be bisimilar to the target model by the
congruence result. This idea has been exploited in [22] for showing behaviour preser-
vation of refactorings.

However, in order to apply the idea above in our situation it is necessary to have an
operational semantics also for “mixed” (or hybrid) models which incorporate compo-
nents of both the source and the target model. Hence below we introduce such a mixed
operational semantics, which has to satisfy the following conditions: (i) the mixed rules
are not applicable to a pure source or target model; (ii) it is possible to show (borrowed
context) bisimilarity of left-hand and right-hand sides of all transformation rules. Fi-
nally, observe that our final aim is to show bisimilarity of closed graphs, i.e., of graphs
with empty interface. It can be shown that if all left-hand sides are connected, the notion
of bisimilarity induced by borrowed contexts coincides with the standard one.
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MixSem1 MixSem13

NAC← ← → NAC← ← →

Fig. 8. Some rules of the operational semantics of mixed models

Fig. 9. Modified operational rules for the source and target languages

5.3 Rules of the Mixed Semantics

There are sixteen additional rules for the mixed semantics. Seven of them handle the
behaviour of pc-edges at A-nodes, seven the semantics of the token-edge at an S-node
and two of them are mixed counterparts to the initialization rules. Fig. 8 shows two
examples of mixed rules, the rest are provided in [10]. Here we work with a single
function map (see Section 2.5), both rules in Fig. 8 are mapped to move.

Furthermore, we modify some of the operational rules of Fig. 3: first, we equip sev-
eral rules, also of the source semantics (language A) with NACs (without changing
the operational behaviour). Second, we restrict to a minimal interface by deleting and
recreating the connections (see Fig. 9). Due to the layout of the graphs, this does not
modify the semantics. Both modifications are needed to make the proof work and the
latter modification is also very convenient since it allows us to derive fewer labels.

5.4 The In-Situ Transformation Preserves Weak Bisimilarity

Theorem 12. The left-hand sides and right-hand sides of the three in-situ transforma-
tion rules in Fig. 6 are weakly bisimular, with respect to the borrowed contexts tech-
nique, under the rules of the mixed semantics.
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Fig. 10. Example of a label derivation using the borrowed context technique

Since weak bisimilarity is a congruence [10] and borrowed context bisimilarity co-
incides with standard bisimilarity (see Def. 8) on source and target models, this implies
that map(S(GA)) ≈ map(S(GB)) whenever MT (GA, GB).

We give some intuition on the label derivation process by discussing one example,
which needs the handling of weak moves and NACs (see Fig. 10).

In the labelled transition system, the graph consisting only of an S-node makes a
move (with rule MixSem13) with the label shown in the (big) dashed box, i.e., it borrows
a token, a C-node and an A-node. Spelling out the transition labels more concretely we
have α = move, F is the graph in the dashed box on the left (where the grey node
represents both interfaces J, K) and the only NAC in N is given on the right. The
corresponding graph (the A-node) can answer this step with the same label, by making a
step with rule newCreateO plus a weak step (τ ) with rule newMoveT. After this second
step, using an up-to-context proof technique, the same context (see dotted boxes) can
be removed from both graphs, leaving the original pair of graphs already in the relation.

On the other hand, the answer to the newCreateO-step is with rule MixSem13. So
the pair of graphs reached after one step has to be in the bisimulation as well and we
have to check that they can mimic each others moves.

The entire bisimulation relation only contains five pairs, three are the in-situ trans-
formation rules of Fig. 6 and two additional ones are needed. However, it is necessary
to derive a large number of labels to prove that it is a bisimulation.

6 Discussion and Evaluation

Providing proof techniques for showing that full semantics preservation of a set of
model transformation rules, for arbitrary source models, is a very difficult problem,
on which there has been little work so far. The difficulty of the problem stems from
three aspects: first, we need to show bisimilarity in transition systems based on graphs,
a topic that has only recently started to receive attention; second, we do not only have to
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prove bisimilarity for a given pair of start graphs, but for an infinite set of pairs of source
and corresponding target models; and third, we want to address this on the level of a
reusable proof technique, and not just a single proof for a given model transformation.

We feel that so far little progress has been made in tackling the inherent underlying
difficulty. Hence it is our strong feeling that it is first necessary to consider case studies
of modest size to clearly outline and evaluate possible solutions.

The case study that was chosen for this paper might seem small, but it already incor-
porates several non-trivial aspects: a heterogeneous setup (different source and target
languages), negative application conditions and the need for weak bisimilarity, since
one step in the source model has to be matched by two steps in the target model.

Our two proof strategies reflect two major possibilities: either to work out a direct
proof manually – which could be verified with a theorem prover – or to use a semi-
automatic method based on bisimulation proof theory.

Direct approach. The direct bisimulation proof based on triple graph grammars uses lit-
tle additional theory and can be carried out by resorting to standard proof methodology.
Because of that it is more flexible than the borrowed context technique and can deal
with the rules of the operational semantics without modification.

Borrowed contexts. Here we extended the borrowed context technique to work with
weak bisimilarity, which is a novel contribution. The technique seems to be easier to
mechanize than the direct proof: the label derivation process can be done fully automat-
ically and, at least in the case where a finite bisimulation up-to context exists, there are
possibilities to find it via an algorithm as suggested in [9]. We also have some initial
ideas for automatically generating the mixed semantics (by applying the transformation
rules to the left-hand sides of the operational rules).

Summary. We were able to make both proofs work with a reasonable effort, but further
work is necessary in order to make the approach scale. We conclude that additional
techniques, in particular mechanisation, will be needed to address realistic languages
such as the ones in [5]. However, we do see a lot of unused potential in exploiting
bisimulation theory and congruence results as was done in the second proof strategy.
In the future it will also be interesting to study refactoring cases, rather than transfor-
mations between distinct modelling languages: they promise to be easier, because they
involve only a single operational semantics. Furthermore we have to consider whether
weak bisimilarity is the appropriate behavioural equivalence in all instances.

Related work. The work closest to ours in its objective of showing semantic preser-
vation for a transformation between models of different types is [6]. They present a
mechanised proof of semantics preservation (wrt. some version of bisimilarity — the
paper does not contain an explicit definition) for a transformation of automata to PLC-
code, based on TGG rules. This proof faced some problems since it was not trivial to
present graph transformation within Isabelle/HOL.

Although there is extensive work on the verification of model transformations, to
our knowledge there are only few attempts to show that transformations will always
transform source models into behaviourally equivalent target models. For instance, [1]
discusses several proof techniques (bisimulation, model-checking), but does not really
explain how they could be exploited to prove full semantics preservation.
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As opposed to general model transformation, there has been more work on showing
correctness of refactorings. The methods presented in [26,20,17,7] address behaviour
preservation in model refactoring, but are in general limited to checking a certain num-
ber of models. The employment of a congruence result is also proposed in [3] which
uses the process algebra CSP as a semantic domain. The techniques used in [15,23]
mainly treat state-based models, using set theory and predicate logic to show equiv-
alences. In [2] it is shown how to exploit confluence results for graph transformation
systems in order to show correctness of refactorings. A number of approaches also focus
on preserving specific aspects instead of the full semantics (see [16]).

Instead of generally proving correctness of a transformation, a number of ap-
proaches, also in the area of compiler validation, carry out run-time checks of equiva-
lence between a given source and generated target model [17,18,13].
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16. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Software Eng. 30(2),
126–139 (2004)

17. Narayanan, A., Karsai, G.: Towards verifying model transformations. In: GT-VMT 2006.
ENTCS, vol. 211, pp. 185–194 (2006)

18. Necula, G.: Translation validation for an optimizing compiler. In: PLDI 2000. SIGPlan No-
tices, vol. 35, pp. 83–95. ACM, New York (2000)

19. Object Management Group: OMG Unified Modeling Language (OMG UML) – Superstruc-
ture, Version 2.2 (2009), http://www.omg.org/docs/formal/09-02-02.pdf
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