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Abstract

We show how Promela can be supported by the high-performance generic model checker LTSmin.
The success of the Spin model checker has made Promela an important modeling language.
SpinJa was created as a Java implementation of Spin, in an effort to make the model checker
easily extendible and reusable while maintaining some of its efficiency. While these goals were
certainly met, the downside of SpinJa remained its dependability on Java, degrading performance
by a factor 5 and obstructing support for embedded C code in Promela models.
LTSmin aims at language-independence through the definition of the generic Partitioned Next-
State Interface (pins). The toolset has shown that a generic model checker can indeed be com-
petitive in terms of efficiency by supporting several languages from different paradigms and imple-
menting many analysis algorithms that compete with other state-of-the-art model checkers.
We extended SpinJa to emit C code that implements the pins interface. Our new version of SpinJa,
called SpinS (Spin + pins), also improves Promela support, greatly extending the support of
models beyond toy and academic examples. In this paper, we demonstrate the usage of LTSmin’s
analysis algorithms: multi-core model checking of assertion violations, deadlocks and never claims
(full LTL), inspection of error trails, partial order reduction (POR), state compression, symbolic
reachability using (multi-core) decision diagrams and distributed reachability. Our experiments
show that the performance of these methods beats other leading model checkers.

Keywords: model checking, Spin, LTSmin, SpinJa, Promela, multi-core, LTL, state
compression, symbolic, decision diagram, distributed, partial order reduction

1 A New Promela Frontend for LTSmin: SpinS

Historically Promela (process meta language) was created to specify soft-
ware systems for the Spin model checker [7]. By generating optimized C code
from Promela models, Spin has flourished as an efficient model checker
that even supports embedded C code for easy model program translation to
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Promela. However due to the many optimizations Spin is also hard to
extend. Therefore, efforts have been made to support Promela outside of
Spin. For example, nips [19] defines a virtual machine language to compile
Promela to; and SpinJa [9] is basically a reimplementation of Spin in Java.

LTSmin [3,14] is a language-independent model checking tool set. Through
its pins interface, it abstracts away language-specific features with a state
vector format and a next-state function. At the same time it exposes internal
structure in the form of locality information through dependency matrices:

Definition 1.1 pins [2] defines a state vector format S ≡ 〈s0, s1, . . . , sn〉 with
a fixed number of n slots and fixed domains |si|, an initial-state and partitioned
next-state function: initial():S and next-statek(S):S, and a dependency
matrix Dk×n recording read/write dependencies between transitions and slots.

In the past, we have shown that this locality information can yield large
(order of magnitude) performance gains, especially for LTSmin’s distributed
and symbolic algorithms [3]. To additionally enable POR in our enumera-
tive reachability and LTL model checking tools, several other matrices were
added: maybe-coenabled, necessary disabling and necessary enabling set [16],
the latter two are optional for better reductions. Although less dependent on
the dependency matrices, LTSmin’s multi-core backend was shown to be the
leading tool in the area of parallel (LTL) model checking [13,15,12,11].

LTSmin already supported a subset of Promela through a nips con-
nection. To enable more extensive and high-performance Promela support,
we created SpinS; a modified and extended version of SpinJa that generates
C code implementing the pins interface. SpinS is included in the LTSmin dis-
tribution. 3 Promela-specific properties, like assertion violations, (in)valid
end states and never claims are exported as pins state and transition la-
bels (not in Def. 1.1), for support in LTSmin. This enables the full power of
all analysis algorithms in LTSmin as the following sections demonstrate.

Moreover, SpinS extends SpinJa with many new features: a preproces-
sor with support for conditionals (#if, #ifdef, etc), defines with arguments
(#define and inline) and includes (#include), channel operations (empty,
full, etc), user-defined structures (typedef), pre-defined variables (_pid and
_nr_pr), channel polling and random receives (?[] and ??), remote references
(@), and many other Promela constructs. 4 Thereby, we were able to handle
the models used in the following sections for the first time.

Promela is an extensive and evolving language, hence it is not yet sup-
ported in full. The most important, but still lacking, features (the ones that
are actually used in Promela case studies) are: timeout, user-defined struc-
tures/channels in channel buffers and indirect channel references.

3 The LTSmin website: http://fmt.cs.utwente.nl/tools/ltsmin
4 See generally: http://spinroot.com/spin/Man/promela.html
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2 Implementing pins with SpinS

A Promela modelM contains channel declarations (C), global variable dec-
larations (V G) and at least one proctype definition (P) containing statements
to be executed and local variable declarations: M ≡ (P1, . . . ,PP , C, V G, v0),
where v0 is the initial valuation of V G. Proctypes are instantiated N times
via an active[N] directive, or dynamically via run statements. Furthermore:

Definition 2.1 [Variables, channels and actions] V is a finite set of (global
and local) variables with finite domains Dom(V ), C is a finite set of chan-
nels, and A an action of the form: ‘V = E’ (assignment), ‘E’ (guard), ‘c?’
and ‘c!’ (channel synchronization), where c ∈ C and E is an expression. Ex-
pressions include boolean/arithmetic operators, but also operations, e.g.: run.
They are parsed to abstract syntax trees (ASTs), but here we simply write
code in single braces with AST variables in italics. An action a has enabling
conditions (en(A): E∗), e.g.: en(‘run(p)’) = 〈‘_nr_pr < 256’〉.

Definition 2.2 [Process Automaton (PA)] A process automaton is a quintu-
ple P ≡ (LP , T P , V P , lP0 , vP0 ), where: LP is a finite set of program locations,
V P is a set local variables, T P ⊆ LP×A∗×LP is a set of transitions, lP0 ∈ LP
is an initial location and vP0 ∈ Dom(V )|V

P | the initial variable valuation.

With a sequence of actions A ∈ A∗ with A ≡ 〈a0, . . .〉, we support atomic
d_steps; A is enabled iff a0 is, hence: en(A) = en(a0). The following subsec-
tions describe our pins implementation of the Promela semantics (see 4).
Automata creation. First, the Promela code is parsed into M. Each
proctype becomes a PA P , actions become transitions, conditions (‘if. . .fi’∈
A) become branches and loops (‘do. . .od’∈ A) become cycles. A never claim
is also parsed as a PA N . Then, SpinS creates an instance automaton IPi by
copying P (and its local variables) for each possible instantiation i.
State vector creation. At this stage, the state vector can be created. In
the Promela semantics model, a global system state comprises of the values
of the local variables and process counters of all proctype instances and the
global variables. A system state can be easily mapped to a pins state vector
S: 〈V,LI1 , V I1 , . . . ,LII , V II 〉 by adding additional program counters pc(Ii) to
accommodate LIi for all I instance automata Ii. The implementation of
initial becomes: 〈v0, lI10 , vI10 , . . . , l

II
0 , v

II
0 〉.

In reality, V is not a flat structure, but may contain user-defined types,
channels buffers and combinations thereof. Our state vector implementation
S reflects this structure and is used to generate a C struct “S” in the final step.
Variables can therefore be referenced symbolically while generating code, e.g.:
print(s, x) =“s.init[0].x”, where s:S is a state vector with name(s) =“s”,
x ∈ V I0 a local variable with name(x) =“x” and name(I0) =“init”. While
print(s, pc(I0)) =“s.init[0].__pc”; “__pc” is a reserved name for pc(I0).
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To adhere to the pins interface, we need to fix I. Therefore, SpinS prompts
the user for a fixed number of maximum process instances MP for each dy-
namically started proctype. To fix |si| all variables are padded to the size of
an integer using compiler directives. The introduced overhead is mitigated by
pins as our performance and memory benchmarks show (Sec. 4). Sec. 3 shows
how MP can be encoded in the model.
Model transition creation. The set T of all transitions in all I’s represents
the asynchronous system as implemented by the Promela model, modulo
channel synchronization. Hence, next, we transform it into a set of synchro-
nizing transitions: T ′ ⊆ 2L × A∗ × 2L. To this end, all channel send actions
are replaced by synchronous pairs for all possible synchronization partners:
T ′:={({l1, l3}, 〈A,B〉, {l2, l4}) | (l1, A, l2) ∈ T I1 ∧ (l3, B, l4) ∈ T I2∧‘c!’∈
A∧‘c?’∈ B ∧ c ∈ C ∧ I1 6= I2}. 5 Non-sync. actions are copied: T ′:=T ′ ∪
{({l1}, A, {l2}) | (l1, A, l2) ∈ T ∧ ∀c ∈ C:‘c?’6∈ A∧‘c!’6∈ A}. If a never claim
exists, the synchronous product of T ′ and the never automaton is also calcu-
lated: T ′ := {(L1∪{l3}, 〈A,B〉, L3∪{l4}) | (L1, A, L2) ∈ T ′∧(l3, B, l4) ∈ T N}.

We decorate T ∈ T ′ where T ≡ (L1, A, L2) with action and location guards:
en(T ) = en(A)∪{‘p == lIi’ | lIi ∈ L1∧p = pc(Ii)}. We also add assignment
actions for the location transfer function: act(T ) = A ∪ {‘p = lIi’| lIi ∈
L2 ∧ p = pc(Ii)}. Operations are replaced by simple actions, e.g.: ‘run(p)’
becomes ‘s.p_i.__pc = lIi0 ’ s.t. name(Ii) = “p” and Ii is a nonactive instance
to be determined by additional (prior) actions.

Algorithm 1 C code tem-
plate for next-statei

1 S next_state_[i](S in) {
2 if ([ print(in, en(Ti)) ]) {
3 S out = in; // copy
4 [ print(out, act(Ti)) ]
5 return out;
6 }}

C code generation. Ti ∈ T ′ becomes the
blueprint for our partitioned next-state func-
tion with k = |T ′|. Alg. 1 shows C code for
a next-statei(S) function.The square braces
contain code generation templates. The print
function generates conjunctions of the expres-
sions e ∈ en(Ti) and C statements for actions
a ∈ act(Ti). Again, it is parameterized by the
state vector to be used for variable printing (in:S or out:S). Since Promela
statements are similar to C, an implementation of print is straightforward.
Dependency matrices. For Dk×n we traverse the ASTs en(T ) and act(T )
for all T ∈ T ′; POR dependency matrices require some additional analysis.

For this brief explanation, we considered only rendezvous channels, and ab-
stracted away from atomic states and accepting state labels. Buffered channels
only require some actions handling buffer bookkeeping. Accepting states are
exported by adding LN as pins state labels (not in Def. 1.1). Finally, atomic
states (including loss and transfer of atomicity) are implemented using an in-
ternal (generated) reachability algorithm limited to a specific process instance.

5 Promela’s semantical constraints allow only one channel action per transition: the first.
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3 Using LTSmin on Promela Models

The spins command calls SpinS to generate C code and compiles the result
to a .prom library implementing the pins interface. The user is prompted
to provide a fixed number of maximum instances for each dynamic proc-
type P (MP in the previous section). This information can also be encoded in
the model via a macro definition: #define __instances_[proctype] [num].
In many cases, the number of instantiated processes can be inferred stati-
cally [2, Def.5], but we did not implement this yet.

For this paper, we compiled the following set of models from the Spin dis-
tribution, [17] and a database 6 : BRP, GARP, Needham, I-protocol, Snoopy,
SMCS, Chappe and x509 are protocol models, DBM, Phils, Peterson, pXXX,
Bakery.7, Lynch, Chain and Sort are academic examples, and FGS, Zune, Ele-
vator2.3 and Relay are models of controllers. X509 contains an assertion error
(Done < 6 ) and Zune a never claim expressing ¬2(@S ⇒ 3@E) in LTL. We
used two models of the GARP protocol: GARP16 and GARP2 is not publicly
available [10]. We verified that indeed all these models are correctly explored
by our tools (see Sec. 4). To this end, we had to turn off control flow opti-
mization (-o3) in some cases, due to its limited implementation in SpinS. The
following subsections present different verification strategies on these models
with LTSmin and give some background on the used algorithms.
Model checking Promela-specific properties. The following command
uses the sequential tool to detect assertion violations (--action=assert) :
prom2lts-seq --action=assert --trace=trace.gcf X.509.prm.prom
The first error trace is written to trace.gcf, which contains line numbers in
the original Promela code, and can be pretty printed using the command
ltsmin-printtrace. Similarly, deadlocks can be detected using the -d option.

Never claim violations can be detected with the NDFS algorithm [11]:
prom2lts-mc --strategy=ndfs --trace=lasso.gcf zune.pml.prom
The typical lasso-formed error trail can be best inspected using the command:
ltsmin-tracepp --table lasso.gcf | less -S.
Multi-core model checking. One of the areas in which LTSmin excels
is parallel model checking. For safety properties (deadlocks, invariants and
assertion violations), we can enable parallel exploration in randomized (-prr)
pseudo depth-first (dfs) order in the multi-core tool :
prom2lts-mc --threads=48 --strategy=dfs -prr -d smcs.pml.prom
While our parallel exploration algorithms tend to yield linear speedups for full
verification [13,15], the randomized dfs order can potentially yield super-linear
speedups in presence of counter-examples [12].

For parallel LTL model checking, we can use our latest and best multi-core

6 The Promela database: http://www.albertolluch.com/research/promelamodels
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NDFS algorithm CNDFS [6]. While this algorithm is heuristic in nature, we
found that on a large set (over 400) of examples it scales rather well, i.e.,
speedups of 10 to 48 on a 48-core machine. It outperforms our earlier best al-
gorithm [12]. The following command line uses this algorithm (randomization
is enabled automatically in this setting):
prom2lts-mc --threads=48 --strategy=cndfs zune.pml.prom
Since CNDFS is on-the-fly, we may also obtain super-linear speedups in pres-
ence of bugs [12, Sec. 4].
Memory-efficient model checking. By default, LTSmin uses the option
--state=tree to store states in binary tree form in a single hash table contain-
ing tuples of 32-bit references (for details refer to [15]). The tree compression
can yield optimal compressed state sizes of 2 references (8 byte), while main-
taining the excellent performance and scalability of uncompressed hash table
storage [13] (--state=table). Recently, we added some optimizations to the
tree. By splitting the table in two, one for root nodes and one for internal
nodes, we can accommodate more than 232 states (-s32), while maintaining
the optimal compression ratio of 8 byte per state! By default, the root table is
4 times larger than the internal node table (--ratio=2) allowing a maximum
of 234 states to be stored using 11

4
· 8B·234=160GB. Higher ratios allow us to

store more states, e.g.: -s35 --ratio=3 (notice how the internal node table
remains 235/23 = 232 in size, thus supporting the 32-bit internal references,
hence the 8 byte optimal compressed sizes).

Typically, input models are asynchronous systems exhibiting high locality,
i.e., all transitions read/write only few variables in the state vector. The
resulting combinatorial space of state vectors often yields the near-optimal
tree compression of almost 8 bytes per state. But some models might yield
worse compression, then LTSmin gives the error node table full. In such
cases, we need to lower the ratio, e.g., --ratio=1 (ratio = 21 = 2), increasing
compressed sizes to 12 byte per state.

To further improve compression, we combined the tree tables with compact
hashing. Compact hash tables only store the key modulo the hashed location.
The latter can be reconstructed using three additional accounting bits [18].
By replacing the root of the tree table with our lockless Cleary table [18],
the compressed sizes approach 4 byte per state. For example, the options
--state=cleary-tree -s34 --ratio=2 allow us to store 234 states in only
(1
4
· 8B+4B) · 234=96GB provided that the model exhibits compression ratios

close to 11
4
of the optimum. Over half of 350 diverse models [17] exhibit

this [15, median in Fig. 7]. All our compression techniques are compatible
with both the algorithms for LTL and safety properties.

Orthogonally, partial order reduction (POR) can further reduce state spaces
(--por). Our POR method uses a language-independent notion of dependency
relations expressed in terms of transition guards and exported via pins matri-
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ces [16]. POR is fully compatible with our (multi-core) algorithms for safety
properties (--strategy=[bfs,dfs,sbfs]; pseudo bfs/dfs and strict bfs order
described in [4]). LTL model checking however requires: (1) the use of a cy-
cle proviso --proviso=[closedset,color,stack] (refer to [16, Sec. 4.6.4-6]),
(2) the sequential tool (prom2lts-seq) as we have not yet found a way to com-
bine the cycle proviso with our parallel LTL algorithms, and (3) a crossproduct
calculated by LTSmin (option --ltl=[formula]) so that actions relevant to
the invisibility proviso can be recorded [16, Sec. 4.6.3].
Symbolic model checking. The tool prom2lts-sym implements symbolic
model checking, learning the symbolic transition relation on-the-fly [2]. This
approach also works well on models with high locality. As such models have a
sparse pins dependency matrix, our reordering algorithms (-rga) can optimize
them further for BDDs. Using a chaining heuristic [3], we can explore > 1020

states in a second: prom2lts-sym -rga --order=chain peterson5.prom
LTSmin also implements exploration in parallel [5] and with saturation (see
documentation of --saturation). Additionally the symbolic tool can verify
properties expressed in µ-calculus (see --mu) and CTL (see --ctl).
Distributed model checking. The tool prom2lts-dist supports distributed
exploration and storage of the state space [3]. State spaces are stored distribut-
edly and can be reduced modulo bisimulation using ltsmin-reduce-dist.

4 Performance, Scalability, Memory and Correctness

To compare the performance of Promela model checkers, we benchmarked
Spin 6.2.1 [8] and LTSmin 2.03 [14] on a 48-core machine (a four-way AMD
OpteronTM 6168). Each time we include one beem model [17] to allow com-
parison with DiVinE 2.5.2 [1]. We show here a representative selection. 7

Performance and scalability. For high performance in Spin, we com-
piled models with parallel BFS [8]: -DNOBOUNDCHECK -DSAFETY -DNOREDUCE
-DBFS_PAR -DBFS_MAXPROCS=48. By default, this enables a lossy hash com-
paction (hc) state storage, hence we also compiled using -DNOHC. DiVinE is
configured as described in [13]. In LTSmin, we used a hash table, a tree table
and a cleary-tree (all non-lossy). All experiments use a fixed table size of 228.
To accommodate a master thread, Spin and DiVinE are limited to 47 threads.

Fig. 1 shows the obtained speedups. While speedups in LTSmin are good,
we also observe in Table 1 that the sequential runtimes are on par with those
in Spin. The 48-core runtimes show that LTSmin’s multi-core algorithms are
a good addition for Promela model checking. Furthermore, we can see that
(Cleary-)tree compression introduces little or no overhead.

7 For complete results see http://fmt.cs.utwente.nl/tools/ltsmin/pdmc-2012
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Fig. 1. Speedups of GARP1, Bakery.7 and Peterson4 in Spin, DiVinE and LTSmin
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Fig. 2: Peterson4 (23p),
Elevator2.3 [8] (Speedup)

Fig. 2 shows speedups of two models
obtained with DiVinE’s owcty algorithm,
Spin’s piggyback (PB) algorithm [8] (with
hash compaction) and LTSmin’s CNDFS [6]
algorithm (with hash table). CNDFS shows
the best speedups and is sequentially faster
than the PB algorithm (by 60%), which comes
second in terms of speedup. Three other as-
pects are of interest when comparing the three
algorithms: CNDFS/OWCTY are exact LTL
algorithms while the PB may miss counter-
examples [8], CNDFS is on-the-fly while the
PB explores the whole state space before reporting a counter-example [8] and
owcty typically explores a large portion of it [6, Sec. 4.2], and CNDFS is
found to return even shorter counter-examples than a parallel BFS-based al-
gorithm [6, Sec. 4.3]! On the other hand, the BFS-based algorithms owcty
and PB can be distributed on a cluster, as DiVinE demonstrates [1].
Memory usage. We measured the memory usage of DiVinE, LTSmin with
and without tree compression and of Spin with and without collapse com-
pression (col) and hash compaction. Table 2 shows the memory usage of all
these combinations. The first thing we noticed, is that the memory usage is
almost independent of the number of threads, showing that the model checkers
add little overhead for parallel operation. Spin’s memory usage is measured

Table 1
Runtimes (sec) in Spin (hc/nohc), DiVinE and LTSmin (table, tree and cleary-tree)

States
Spin-hc Spin-nohc DiVinE LTSmin-table LTSmin-tree LTSmin-cleary

1 47 1 47 1 47 1 48 1 48 1 48

GARP1 1.6e8 458.0 43.4 820.0 295.0 n/a n/a 187.9 5.3 175.8 4.6 196.9 5.1

Bakery.7 2.7e7 66.0 6.3 169.0 38.4 32.2 9.0 52.0 1.8 60.0 1.7 69.4 2.0

Peterson4 9.5e6 23.1 2.6 56.9 18.3 n/a n/a 29.6 1.2 22.3 0.8 26.9 0.9

8



van der Berg, Laarman

Table 2
Memory usage (MB) in Spin, DiVinE and LTSmin is almost independent of number of threads

Spin-hc Spin-nohc col DiVinE LTSmin-table LTSmin-tree LTSmin-cleary

1 47 1 47 1 1 47 1 48 1 48 1 48

GARP1 1.5e4 1.6e4 1.4e5 1.4e5 4.9e4 n/a n/a 8.7e3 8.8e3 1.1e3 1.3e3 9.0e2 1.1e3

Bakery.7 1.3e4 1.5e4 9.0e4 6.0e4 6.4e3 4.8e3 4.9e3 2.8e3 2.9e3 4.0e2 4.2e2 2.5e2 2.8e2

Peterson4 5.7e3 6.2e3 4.4e4 2.5e4 5.5e3 n/a n/a 1.3e3 1.3e3 1.5e2 1.6e2 1.0e2 1.0e2

Table 3
POR performance in LTSmin and Spin

No POR LTSmin POR Spin POR

Model States Transitions States Transitions States Transitions

GARP1 48,363,145 247,135,869 1,742,585 3,669,890 8,718,209 22,412,803

i-protocol2 14,309,427 48,024,048 2,308,898 4,585,530 3,436,166 7,778,563

BRP 3,280,269 7,058,556 3,280,269 7,058,556 1,906,691 2,733,018

Sort 659,683 3,454,988 123,583 170,134 182 182

Snoopy 81,013 273,781 9,251 11,639 13,380 18,550

X.509 9,028 35,999 5,569 12,787 6,094 12,336

SMCS 5,066 19,470 1,425 2,784 1,244 2,134

Chappe 1,203 3,017 363 466 1,203 3,018

by reducing the hash table size to exactly fit the state count, hence over-
estimated by at most 50%. We can however conclude that tree compression
provides great reduction compared to full-state storage in a hash table making
lossy hash compaction redundant. And the cleary-tree improves upon this by
almost a factor of two. In [15], we compared compression methods in detail.

We see in Table 3 that LTSmin’s POR is competitive to Spin’s. However,
especially for the Sort model, Spin yields better reductions. We attribute this
to the fact it uses the extra xs and xr annotations in the model.
Symbolic results. Using our symbolic tools, we exhaustively explored the
GARP2 model [10]. This model was never before fully explored with Spin
except with lossy compression techniques. With regrouping and chaining, we
could explore the model within 3 minutes using only 250MB of memory for
3.3 · 1011 states. For the Phils model with 30 dining philosophers, we obtain
7.8 · 1020 states in 0.18 sec and 39MB. It takes about one minute to explore
the 8.3 · 108 states of Peterson5 using only 36MB. However, for many other
models with fewer locality, runtimes and memory usage can increase steeply
because many small operations need to be executed on large BDDs.
Correctness. To ensure correctness of our implementation of the Promela
semantics, we verified that state, transition and deadlock counts are exactly
equal to those reported by Spin for all models discussed in this paper. Also we
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checked that LTSmin reports the same (LTL) counter-examples. We also found
and excluded some models that yield different state counts in LTSmin, these
were however only related to the corner-case semantics concerning loss of atom-
icity and jumps from and to atomic statements. Notable examples include a
model for a steam generator controller, and the PLC and GIOP protocols.6

5 Conclusions

We presented SpinS: a new frontend for the LTSmin toolset that handles
Promela models. We demonstrated how the many capabilities of LTSmin
can be exploited and with experiments we showed great enhancements for
model checking of Promela models: through C code generation its perfor-
mance is on par with Spin’s, scalability of reachability is better than Spin’s
latest parallel BFS algorithm, tree compression reduces memory usage with
a factor 5 compared to collapse compression and maintains performance,
POR can compete with Spin’s POR, exact scalable parallel LTL is available
for Promela for the first time, and we were able to fully verify a model
symbolically that could never before be handled by Spin [10].

But SpinS opens more perspectives for better model checking. By choos-
ing the C language as a target, we can easily add support for Promela’s
embedded C code (a lack of example models has prevented us from doing so
thus far). Furthermore, by reimplementing Promela’s semantics in Java 8 ,
we can more easily loosen the semantic’s dependencies on implementation de-
tails. For example, we think SpinS can easily support more flexible process
creation methods as proposed by Holzmann. 9 For the current version, how-
ever, we aimed to implement Promela’s semantics as close as possible to
Spin’s; the state and transition counts for all the models discussed in this
paper are equal to Spin’s.
Acknowledgements. Special thanks goes to Elwin Pater for implementing
many of LTSmin’s features, including but not limited to: POR, LTL, CTL
and µ-calculus crossproducts, trace pretty printing, reordering, and the Di-
VinE frontend. Elwin also worked on a direct connection between Spin and
LTSmin, which he gave up only because support for the pins matrices re-
quired a reimplementation of Spin anyway. We also thank Michael Weber.
His ideas and efforts laid the basis for the current state of LTSmin. We thank
Stefan Blom for his work on our distributed and symbolic backends. Finally,
Jaco van de Pol contributed to the µCRL/mCRL2 frontends, and made sub-
stantial contributions to the symbolic backends together with Jeroen Ketema.
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8 Recall that SpinS is based on SpinJa but generates C code instead of Java code.
9 Spin model checking projects: http://spinroot.com/spin/projects.html
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