
Applying Mean-field Approximation to
Continuous Time Markov Chains

Anna Kolesnichenko1, Valerio Senni3, Alireza Pourranjabar2, and
Anne Remke1

1 DACS, University of Twente, The Netherlands
{a.v.kolesnichenko, a.k.i.remke}@utwente.nl

2 LFCS, University of Edinburgh, UK
a.pourranjbar@sms.ed.ac.uk

3 IMT Institute for Advanced Studies, Lucca, Italy
valerio.senni@imtlucca.it

Abstract. The mean-field analysis technique is used to perform anal-
ysis of a system with a large number of components to determine the
emergent deterministic behaviour and how this behaviour modifies when
its parameters are perturbed. The computer science performance mod-
elling and analysis community has found the mean-field method useful for
modelling large-scale computer and communication networks. Applying
mean-field analysis from the computer science perspective requires the
following major steps: (1) describing how the agent populations evolve
by means of a system of differential equations, (2) finding the emergent
deterministic behaviour of the system by solving such differential equa-
tions, and (3) analysing properties of this behaviour. Depending on the
system under analysis, performing these steps may become challenging.
Often, modifications of the general idea are needed. In this tutorial we
consider illustrating examples to discuss how the mean-field method is
used in different application areas. Starting from the application of the
classical technique, moving to cases where additional steps have to be
used, such as systems with local communication. Finally, we illustrate
the application of existing model checking analysis techniques.

1 Introduction

Mean Field Approximation originated in statistical physics [1] and is a tech-
nique developed within the field of probability theory. This technique is useful

This is the authors post-print version of the paper published in

special issue of Lecture Notes in Computer Science Volume 8453. The

final publication is available at www.springerlink.com. Citations to

this paper should be as follows: Kolesnichenko, A.V. and Senni, V. and

Pourranjabar, A. and Remke, A.K.I. Applying Mean-Field Approximation to

Continuous Time Markov Chains. In: Stochastic Model Checking. Rigorous

Dependability Analysis Using Model Checking Techniques for Stochastic

Systems. Lecture Notes in Computer Science 8453. Springer Verlag, pp.

242-280. 2014. ISSN 0302-9743 ISBN 978-3-662-45488-6



to study the behaviour of stochastic processes with a very large state space (e.g.
in the study of systems with a large number of particles), where Monte Carlo
simulations are impractical. In those systems, a first approximation of the be-
haviour is obtained by replacing the effect of the other particles over a given
particle by a single averaged effect and studying this two-body problem [23,31].
Beyond physics, this approximation technique is applied in studies of epidemics
models [24], queueing theory [6,1], and network performance [30,11].

In this tutorial, the stochastic systems we are interested in typically con-
sist of a relatively small number of particle types. The particles of each type
often have a simple behaviour and are replicated many times to form large pop-
ulations. Their interaction may give rise to a complex behaviour and patterns
that can not be found considering the single particle, but emerge by their in-
teraction. Mean-field approximation is used to model and analyse efficiently the
so-called emergent behaviour of such large-scale systems. Classical applications
of this technique generally require two abstractions. The first is that when study-
ing the system, one abstracts away from the particles’ identities, and instead of
capturing the behaviour of each instance, the system’s behaviour is observed at
the level of populations [22]. The second abstraction suggests that the spatial
distribution of the agents across the system locations is ignored, and the parti-
cles are assumed to be uniformly spread across the system space (in chemistry
this idea is embodied in the notion of well-stirred chemical reaction [17,37]). In
this tutorial we illustrate both a classical application (Section 3) and a more
sophisticated modelling where space inhomogeneity has a significant impact on
the system’s emergent behaviour (Section 4).

The core idea of the mean-field method is to approximate the dynamics of a
Markov population process through a system of differential equations [27]. The
result is a reliable approximation when the population size is sufficiently large,
since under specific conditions the behaviour of the system tends to the determin-
istic dynamics captured by the differential equations. In this case, one additional
important property is the decoupling assumption; that is the joint probability
distribution associated with the system can be expressed as the product of the
marginals. This property allows to study the behaviour of individual particles
within the whole system in an efficient way.

A closely related approximation technique is known as moment closure [16].
This technique allows to estimate the first few moments of a stochastic process
by a closed system of equations. Mean-field approximation can be seen as a form
of moment closure where the second moment (variance) and the higher moments
have been set to zero. The first-order approximation is often very coarse and can
potentially lead to misleading results [33]. In practice, however, it can be used
to gain some insights about the average or the global behaviour of the system
at a relatively low cost.

When first-order or mean-field approximation is applied, the resulting model
can be described in terms of a deterministic system, as mentioned previously. In
the literature this is often referred to as deterministic approximation [4,9].

2



Another related technique is called linear noise approximation, which is fre-
quently used to find approximate solutions of the Chemical Master Equation by
giving an estimate of the second moment of this equation [37].

Continuous Time Markov Chains are often used to provide a stochastic
semantics to process algebra used in performance modelling of computer sys-
tems [20]. However, stochastic process algebra models of realistic size can easily
result in very large and intractable state spaces. In that context a technique
called fluid-flow approximation [21] has been used to construct a continuous
state-space representation of the underlying discrete state-space, and ordinary
differential equations are used to describe their dynamics. This technique is
justified by results on mean-field approximation of Continuous Time Markov
Chains [36,22,19]. Indeed, the notion of fluid approximation has been used in
various contexts such as Petri Nets, and relies on the idea that a discrete vari-
able can be approximated using a continuous variable [34].

In our tutorial we focus on CTMC models and their continuous-time ap-
proximation using ordinary differential equations. The goal of this paper is to
provide an example-guided tutorial to the application of fluid approximation,
including fluid model checking [8]. The interested reader can find very complete
and detailed tutorials in [9], treating both Continuous Time Markov Chains and
Discrete Time Markov Chains. A more technical survey of the topic and related
mathematical results can be found in [13].

2 Preliminaries

In this paper we consider systems consisting of large populations of interacting
objects. Such systems are common in biology and chemistry, as well as in telecom-
munications and queueing theory [3,12,22,35]. Due to the problem of state space
explosion, the models of such systems are often unmanageable for the purpose of
analysis and are not suitable for direct application of classic analysis techniques
such as simulation and model checking. In this tutorial we address the modelling
and analysis of such models using mean-field method.

The main idea of the mean-field analysis is to describe the evolution of a pop-
ulation that is composed of many similar objects via a deterministic behaviour.
It states that under certain assumptions on the dynamics of the system and
when the size of the population grows, the ratio of the system’s variance to the
size of the state space tends to zero. Therefore, when the population is large, the
stochastic behaviour of the system can be studied through the unique solution
of a system of Ordinary Differential Equations (ODE) defined by using the limit
dynamics of the whole system.

Since the purpose of this tutorial is to provide the guided examples of the
application of the mean-field method, we will not be discussing the detailed the-
oretical background of the mean-field method (see, e.g. [9]). Instead, we present
the modelling procedure from the practical point of view. We build the model of
the whole population based on the behaviour of the random individual object.

3



2.1 Model definition

Let us start with a random individual object in the large population. We assume
that the size of the population N is constant and do not distinguish between the
classes of the individual objects for the simplicity of the notation. However, this
assumptions can be relaxed, see, e.g., Section 4 of the current tutorial.

The behaviour of such an object can be described by defining the states or
“modes” this object experiences during its lifetime, and the transitions between
these states. Formally, the individual or local model (the model of the random
object in the population) is defined as follows:

Definition 1 (Local model). A local model X describing the behaviour of
one object is constructed as a tuple (S,Q, L) that consists of a finite set of K
local states S = {s1, s2, ..., sK}; the infinitesimal generator matrix Q which may
depend on the overall system state; and the labelling function L : S → 2LAP

that assigns local atomic propositions from a fixed finite set of Local Atomic
Properties (LAP) to each state. �

Self-loops are assumed to be eliminated. The generator matrix Q is a matrix
S × S, whose entries describe the rate at which an individual object changes
states. The Q may potentially depend on the system’s overall state. We discuss
the transitions rates of the individual objects later in this section.

Given the large number N of objects, we build the overall model of the whole
population. Instead of modelling each object individually, which would lead to
the state-space explosion problem, we (i) lump the state space; (ii) normalize
the population, and (iii) check whether the convergence of the behaviour to the
deterministic limit holds and build the overall mean-field model X, using the
local model X . Let us first provide the explanations on the way this model is
built, which will be followed by the definition of the overall (or global) model.

If the identity of each object is preserved, the state space of the model of
the whole population X (N) will potentially consists of KN states, where K is
the number of states of the local model. However, due to the identical and
unsynchronized behaviour of the individual objects the counting abstraction is
applied to find the stochastic process X, whose states capture the distribution
of the individual objects across the states of the local model X . In general, the
transition rates may depend on the state of the overall model, X(t). Therefore,
using the counting abstraction the generator matrix Q(X(t)) is constructed as
in [6]:

Qi,j(X(t)) =


lim∆→0

1
∆Prob(X (t+∆)) = j|X (t) = i,X(t)), if Xi(t) > 0,

0, if Xi(t) = 0,
−
∑
h∈S,j 6=i Qi,h(X(t)), for i = j,

where X (t) is a state of the local model at time t.
The first step for the construction of the mean field model is to normalize

the state vector. The normalized state space is as follows: x(t) = X(t)/N , where

0 ≤ xi(t) ≤ 1; and the related transition rates are Q
(N)
i,j (x(t)) = Qi,j(N · x(t)).

4



  

s1

s2s3

{not infected }

{infected , {infected ,
active } inactive }

k1
*

k 2

k 3

k 4

k 5

Fig. 1: The model describing computer
virus spread.

In this tutorial we only con-
sider models which satisfy a condition
known as density dependence. This
condition requires that there exists a
matrix of rate functions that is con-
stant for all the normalised models
in a sequence of models with increas-
ing sizes. This means that transition
rates scale together with the model
population, so that in the normalized
models they are independent of the
population. Formally, in the limit of
N → ∞, the matrix of rate functions
(generator matrix Qi,j(x(t))) satisfies

Qi,j(x(t)) = Q
(N)
i,j (x(t)) for all N > 1.

The existence and properties of
Qi,j(x(t)) play a crucial role in the applicability of the mean-field theory to the
given sequence of local models and building the overall model. In the context of
the models which satisfy density dependence, the rate functions are required to
be Lipschitz-continuous. Secondly, the model should satisfy convergence of the
initial occupancy vector. The limit theorem which relies on these assumptions
will be covered later. First, let us state the construction of the mean-field model.

Definition 2 (Overall mean-field model). An overall mean-field model X
describes the limit behaviour of N → ∞ identical objects, each modelled by X ,
and is defined as a tuple (X,Q), that consists of an infinite set of states

X = {x = (x1, x2, . . . , xK)|(∀j ∈ {1, . . . ,K}, xj ∈ [0, 1] ∧
K∑
i=1

xi = 1)},

where x is called occupancy vector, and x(t) is the value of the occupancy vector at
time t; xj denotes the fraction of the individual objects that are in state sj of the
local model X . The transition rate matrix Q(x(t)) consists of entries Qs,s′(x(t))
that describe the transition of the system from state s to state s′. �

Example 1. In the following we describe a simple model of the virus spread in the
population of interacting computers of size N . We start with the local model (see
Figure 1). The states of X represent the modes of an individual computer, which
can be not-infected, infected and active or infected and inactive. An infected
computer is active when it is spreading the virus and inactive when it is not. This
results in the finite local state space S = {s1, s2, s3} with |S| = K = 3 states.
They are labelled as infected, not infected, active and inactive, as indicated in
Figure 1.

Given a system of N such computers, we can model the limiting behaviour
of the whole system through the overall mean-field model, which has the same
underlying structure as the individual model (see Figure 1), however, with state

5



space x = {x1, x2, x3}, where x1 denotes the fraction of not-infected computers,
and x2 and x3 denote the fraction of active and inactive infected computers,
respectively. For example, a system without infected computers is in state x =
(1, 0, 0); a system with 50% not infected computers and 40% and 10% of inactive
and active infected computers, respectively, is in state x = (0.5, 0.4, 0.1).

The transition rates k∗1 , k2, k3, k4, k5 represent the following: the infection
rate k∗1 , the recovery rate for an inactive infected computer k2, the recovery rate
for an active infected computer k5, and the rates with which computers become
active k3 and return to the inactive state k4. Rates k2, k3, k4, and k5 are specified
by the individual computer and computer virus properties and do not depend
on the overall system state. The infection rate k∗1 does depend on the fraction of
computers that is infected and active and the fraction of not-infected computers.
We discuss the generator matrix in the next example.

2.2 Mean-field analysis

We stated X represents the behaviour of each object and X represents the limit-
ing behaviour of N identical objects. The model respects the density dependence
condition. Here we express a reformulation of the Kurtz’s theorem which relates
the behaviour of the sequence of models with increasing sizes to the limit be-
haviour. Assuming that functions in Qi,j(x(t)) are Lipschitz-continuous and for
increasing values of the system size, the initial occupancy vectors converge to
x(0), then when N →∞, the sequence of local models converges almost surely [5]
to the occupancy vector x.

Theorem 1 (Mean-field convergence theorem). The normalized occupancy
vector x(t) at time t <∞ tends to be deterministic in distribution and satisfies
the following differential equations when N tends to infinity:

dx(t)

dt
= x(t) ·Q(x(t)), given x(0). (1)

�

The ODE (1) is called limit ODE. It provides the results for N →∞, which is
not the case for a real-life models. When the number of objects in the population
is finite, but sufficiently large the limit ODE provides an accurate approximation
of the mean of the occupancy vector x(t) over time.

The transient analysis of the overall system behaviour can be performed using
the above system of differential equations (1), i.e., the fraction of the objects in
each state of X at every time t is calculated, starting from some given initial
occupancy vector x(0).

For models considered in practice, however, the assumption of density depen-
dence may be too restrictive [13]. Furthermore, also the assumption of (global)
Lipschitz continuity of transition rates can be unrealistic [7]. Therefore, this
assumptions can be relaxed and a more general version of the mean-field ap-
proximation theorem, having less strict requirements and applied to prefixes of

6



trajectories rather than to full model trajectories, can be obtained. We will not
be focusing on the reformulation of the convergence theorem here, instead we
refer to [9], and provide the following example.

Example 2. In the following we provide an example of applying the mean-field
method to the virus spread model, as in Example 1. We explain how to obtain
the ODEs, describing the behaviour of the system and produce performance
evaluation measures.

As was discussed in the previous example, all transition rates of a single com-
puter model are constant, but k∗1 . This rate depends on how often a not infected
computer gets attacked. In this example we assume that the virus is “smart
enough” to attack not infected computers only. The infection rate then might be
seen as the number of attacks performed by all active infected computers, which
is distributed over all not-infected computes in a chosen group:

k∗1(x(t)) = k1 ·
x3(t)

x1(t)
,

where x(t) = (x1(t), x2(t), x3(t)) represents the fraction of computers in each
state at time t, and k1 is the attack rate of a single active infected computer.

The transition rates are collected to the generator matrix:

Q(X(t)) =

−k∗1(x(t)) k∗1(x(t)) 0
k2 −(k2 + k3) k3
k5 k4 −(k4 + k5)

 (2)

Then Theorem 1 is used to derive the system of ODEs (1), that describes
the mean-field model: ẋ1(t) = −k1x3(t) + k2x2(t) + k5x3(t),

ẋ2(t) = (k1 + k4)x3(t)− (k2 + k3)x2(t),
ẋ3(t) = k3x2(t)− (k4 + k5)x3(t).

(3)

To obtain the distribution of the objects between the states of the model over
time the above ODEs have to be solved.

The convergence theorem does not explicitly cover the asymptotic behaviour
(i.e. limit in time). However, when certain assumptions hold, the mean-field
equations allow to perform various studies including steady state analysis of the
population models as well as model checking [8]. We will not cover the details
here and the interested reader is referred to [3]. We will use mean-field for steady
state analysis in Section 4.

3 Mean-field Analysis of a Botnet

In this section we discuss the applicability of the mean-field method to modelling
peer-to-peer botnet, as in [26] . In Section 3.1 we discuss the characteristics of the
botnet, which are important for modelling. Section 3.2 describes the mean-field
model of the botnet spread. The performance evaluation results are presented in
Section 3.3, together with an example of wider usability of the mean-field model.

7



1.ni 3.cb2.ii

4.iwb

6.ipb

5.awb

7.apb

k∗1
k2

k3

k6

k4

k5

k11

k7

k13

k9

k12

k8

k14

k10

Fig. 2: Possible states of a computer in the network. The shorthand names
are defined as follows: ni=NotInfected, ii=InitialInfection, cb=ConnectedBot,
iwb=InactiveWorkingBot, awb=ActiveWorkingBot, ipb=InactivePropagationBot, and
apb=ActivePropagationBot.

3.1 Description of the System

Let us describe the steps each computer goes through during the botnet spread.
These are similar to the examples in the previous section, however, the current
Botnet model is more detailed (see Figure 2) and comply the realistic botnet
behaviour.

The computer which is in the NotInfected state (S1) enters the InitialInfec-
tion (S2) state with rate k∗1 . Then, it attempts to connect to the other bots in
the botnet; if the connection is successful the computer goes tot he Connected-
Bot state (S3) with rate k2. The initially infected computer recovers and returns
to the state S1 with rate k3. After connecting to the botnet, computer down-
loads a malware and joins the botnet either as InactiveWorkingBot (S4) or as
InactivePropagationBot (S6) with rates k4 and k5, respectively; otherwise, the
computer recovers from the connected state with the rate k6.

Once the bot becomes either an InactiveWorkingBot or an InactivePropaga-
tionBot it never switches between the Working- or Propagation- classes. In order
not to be detected, the bot is inactive most of the time and it only becomes active
for a very short period of time. Transitions from InactivePropagationBot to Ac-
tivePropagationBot (S7) and back occur with rates k9 and k10, respectively. The
transition rates for moving from InactiveWorkingBot to ActiveWorkingBot (S5)
and back are denoted k7 and k8, respectively.

The computer can recover from its infection, e.g., if an anti-malware soft-
ware discovers the virus, or if the computer is physically disconnected from
the network. In these cases, it leaves the InactivePropagationBot or the Active-
PropagationBot state and moves to the NotInfected state with rates k13, k14,
respectively. The same holds for the working bots: the recovery rates from Inac-
tiveWorkingBot and ActiveWorkingBot are k11, k12, respectively.

8



k1 RateOfAttack · ProbInstallInitialInfection

k∗1 Rate depends on k1 and the environment

k2 RateConnectBotToPeers · ProbConnectToPeers

k3 RateConnectBotToPeers · (1− ProbConnectToPeers)

k4 RateSecondaryInjection · ProbSecondaryInjectionSuccess · (1− ProbPropagationBot)

k5 RateSecondaryInjection · ProbSecondaryInjectionSuccess · ProbPropagationBot

k6 RateSecondaryInjection · (1− ProbSecondaryInjectionSuccess)

k7 RateWorkingBotWakens

k8 RateWorkingBotSleeps

k9 RatePropagationBotWakens

k10 RatePropagationBotSleeps

k11 RateInactiveWorkingBotRemoved

k12 RateActiveWorkingBotRemoved

k13 RateInactivePropagationBotRemoved

k14 RateActivePropagationBotRemoved

Table 1: Transition rates for a single computer.

The model we construct considers several computers in a network, each of
them being in one of the above mentioned states S1, .., S7, depicted also in Fig-
ure 2. The rates of transitions between states may depend on several factors, e.g.,
probability of a successful connection between initially infected computer and
another infected computer, while moving from the state InitialInfection to the
ConnectedBot state; or the probability of ConnectedBot to become Working or
Propagation bot, respectively. Table 1 provides the description of the transition
rates for one computer model, while numerical values are given in Table 2. Rates
k2 . . . k14 are constant for each computer, while rate k∗1 to move from the Not-
Infected state (S1) to the InitialInfection state (S2) is not constant. This rate
depends on k1 and on the number of computers in the ActivePropagationBot
state, which are responsible of spreading the malware.

3.2 Mean-field Model

We study the spread of the botnet in a network of N computers by using the
mean-field approximation method for finding the (average) deterministic dy-
namics of the system. The mean-field model captures the number of objects in
a particular state, rather than considering the state of each single object. The
mean-field state vector X = 〈X1, X2, . . . X7〉 counts how many computers are in
states S1, ..., S7. The occupancy measure is found by normalizing X into x.

9



We first construct the rate matrix, which collects the rates with which pos-
sible transitions take place. Transition rates may depend on time as well as on
the state x(t) of the system. The rate matrix R(x(t)) of the model is given as:

R(x(t)) =



0 k∗1 0 0 0 0 0
k3 0 k2 0 0 0 0
k6 0 0 k4 0 k5 0
k11 0 0 0 k7 0 0
k12 0 0 k8 0 0 0
k13 0 0 0 0 0 k9
k14 0 0 0 0 k10 0


(4)

The |S|×|S| infinitesimal generator matrix Q(x(t)) is given as follows: Qs1,s2
is equal to the transition rate Rs1,s2 to move from the state s1 to the state s2
and Qs,s is equal to the negative the sum of all the rates in row s. In a given
example the only rate which depends on a state of the system is the infection rate
k∗1(x(t)), which depends on the number of computers (bots) actively spreading
infection. The total rate of infections produced by all bots that are in the active
propagation state is k1 · x7(t). These infections are spread out randomly over
all not-yet infected computers, whose number is denoted by x1(t). Hence, the
infection rate k∗1 perceived by each individual computer is given by the ratio:

k∗1(x(t)) =
k1 · x7(t)

x1(t)
. (5)

Once we have constructed the infinitesimal generator matrix Q, we can use it
to construct the set of Ordinary Differential Equations whose solution represents
the average dynamics of the system. Therefore, the initial value problem we study
is defined as follows:

d x(t)

dt
= x(t)Q(x(t)), with initial condition x(0). (6)

The system of equations we obtain is:

ẋ1(t) = k3x2(t) + k6x3(t) + k11x4(t)

+k12x5(t) + k13x6(t) + (k14 − k1)x7(t)

ẋ2(t) = −(k2 + k3)x2(t) + k1x7(t)

ẋ3(t) = k2x2(t)− (k4 + k5 + k6)x3(t)

ẋ4(t) = k4x3(t)− (k7 + k11)x4(t) + k8x5(t)

ẋ5(t) = k7x4(t)− (k8 + k12)x5(t)

ẋ6(t) = k5x3(t)− (k9 + k13)x6(t) + k10x7(t)

ẋ7(t) = k9x6(t)− (k10 + k14)x7(t)

(7)

The equations can be solved analytically, however the closed forms are impracti-
cally large. We used Wolfram Mathematica [39] to obtain the analytical solution.

In the considered example the propagation bots are “smart” enough to spread in-
fection via not infected computers only.

10



Experiments
Parameter Baseline Exper 1 Exper 2

ProbInstallInitialInfection 0.1 0.06 0.04

ProbConnectToPeers 1 1 1

ProbSecondaryInjectionSuccess 1 1 1

ProbPropagationBot 0.1 0.1 0.1

RateOfAttack 10.0 10.0 10.0

RateConnectBotToPeers 12.0 12.0 12.0

RateSecondaryInjection 14.0 14.0 14.0

RateWorkingBotWakens 0.001 0.001 0.001

RateWorkingBotSleeps 0.1 0.1 0.1

RatePropagationBotWakens 0.001 0.001 0.001

RatePropagationBotSleeps 0.1 0.1 0.1

RateInactiveWorkingBotRemoved 0.0001 0.0001 0.0001

RateActiveWorkingBotRemoved 0.01 0.01 0.01

RateInactivePropagationBotRemoved 0.0001 0.0001 0.0001

RateActivePropagationBotRemoved 0.01 0.01 0.01

Table 2: Setup for the three experiments. Bold indicates differences w.r.t. baseline.

3.3 Results

In this section we discuss the mean-field results in detail and compare them to
the simulation results, the chosen parameters for all these experiments are given
in Table 2. We essentially experimented considering different infection rates,
denoting possible user behaviours, and their impact on the system behaviour.

The simulation of the model was done using the Möbius tool [14] as in [38].
Each experiment covered one week of simulated time; it was replicated 1000
times; the mean values and 95% confidence intervals of the measures of inter-
est are obtained. The initial conditions for each experiment are as follows: 200
computers are located in the place ActivePropagationBots.

We use Wolfram Mathematica [39] to obtain solutions for the set of differ-
ential equations (7) coupled with the transition rates from Table 2. Given an
overall population of N = 107, the fraction of computers in the state NotIn-
fected is initialized as x1(0) = (N − 200)/N , the fraction of computers in the
state ActivePropagationBot is initialized as x7(0) = 200/N , and the fractions of
computers in all other states are initialized as zero.

We first consider Baseline experiment. Figure 3 shows the number of the
propagation bots along time. The number of propagation bots (both active
and inactive) has been taken as measure of interest since they actively infect
“healthy” computers. A logarithmic scale has been chosen for the number of
propagation bots, in order to better visualize the exponential growth. The figure
depicts the mean-field results of the Baseline experiment together with the 95%
confidence intervals of the Möbius simulation. As can be seen, the mean-field
results are very accurate in this case, since they lie mostly within the confidence
intervals, even though the confidence intervals are very narrow.

11



Baseline experiment

Experiment 1

Experiment 2

0 50 100 150

1000

104

105

Time HhoursL

ð
Pr

op
ag

at
io

n
B

ot
s

Fig. 3: Number of propagation bots over time in the Baseline experiment and exper-
iments 1 ad 2 obtained from mean-field approximation together with the confidence
intervals (black bars) obtained from the simulation.

Experiment Simulation Mean-field

Baseline 5 d 3 h 25 min 1 sec

Exp. 1 9 h 51 min 1 sec

Exp. 2 5 h 37 min 1 sec

Table 3: Time spent on simulation and mean-field approximation.

To investigate how a reduced infection spread would influence the growth of
botnets, Experiments 1 and 2 were done in [38]. The “user factor” (ProbInstal-
Infection) is reduced to 60% and 40%, respectively, as compared to the Baseline
experiment to represent a lower probability of, e.g., opening infected files. The
results are, together with those from the Baseline experiment, presented in Fig-
ure 3. For both experiments, the results obtained with the mean-field model are
very accurate and lie well within the confidence intervals most of the time.

One of the advantages of the mean-field method is that the time, needed for
obtaining the means of the model is much smaller than the time, needed for the
simulation, as shown in Table 3. The timings were obtained on a i7 processor with
3 GB RAM and 4 hyper-threading cores. The baseline experiment took 5 days 3
hours and 25 minutes, while the mean-field analysis was completed in one second.
The difference between the simulation time for the different experiments is due to
the dependency of the rates on a number of computers in ActivePropagationBots
state. In the Baseline experiment the number of these computers is large, hence,
the rate of infection becomes very large and more time is needed to simulate
the resulting large number of events. The time spent on the simulation of the
experiments with a lower number of computers involved is reasonably smaller;
however the mean-field approximation is still much faster in all cases.

12



We do not provide all the experiments from [38] and [26] since they lie out
of the scope of interest of this tutorial. Note, however, that the accuracy of the
results and the speed of calculation hold for all the experiments, provided in the
papers, mentioned above.

The speed of the mean-field results calculation allows us to use the mean-
field method to address problems which are not feasible using simulation: (i)
we study the dependence of the botnet spread on two parameters, while the
previous results are only functions of time for a given set of parameter values,
(ii) and we study the behaviour of the botnet in the presence of cost constraints.
The purpose of the following is to show the difference between the simulation
and the mean-field capabilities, and, at the same time, to show the advantages
of the fast analysis.

We calculate the number of propagation bots as a function of k13 and k14
(see Figure 4). As one can see, there is no considerable difference in a relative
increase of one or the other parameter. It is known that inactive computers
are much harder to detect (increasing k13 is more difficult), therefore the above
results might be helpful for the anti-virus software developers to find the better
strategy for botnet removal.

Next, we introduce a cost concept to analyse the economical side of an infec-
tion. Two types of costs are considered: (i) the cost of a computer being infected,
for example, due to the loss of information or productivity, and (ii) the cost of
more frequent checking with anti-virus software. On one hand the number of
infected computers, and hence their cost grows if computers are not frequently
checked. On the other hand, if computers are checked too often the botnet is not
growing, but running the anti-virus software becomes very expensive. We anal-
yse this trade-off in more detail in the following. We calculate the cumulative
cost between t0 and t1 as follows:

C(t0, t1, RR,D1, D2) =
∫ t1
t0

(D1 · IC(t, RR) +D2 ·RR ·AC ) dt (8)

where RR is the change in removal rates k11, ..., k14 with respect to the rates in
the baseline experiment, i.e. k11 = RR·k11,baseline (similarly for k12, k13, k14); D1

is the cost of infection; IC(t, RR) is the number of infected computers for a given
RR, at time t, including active and inactive working and propagation bots; D2 is
the cost of one computer being checked, which probably is much lower than the
cost of infection (D1); AC is the number of the computers in the network. We
calculate the cumulative cost of the system performance for three days. For RR
from the interval [0.001, 10] we calculate the cost as a function of time for given
D1 and D2. Results are depicted in Figure 5. The cost grows exponentially with
time and almost linearly with decreasing RR if the computers are not checked
frequently (for the RR between 0 and 1). However, if anti-malware software is
used too often (RR above 2), the cost grows linearly with RR.

We see that the mean-field method can be easily used for finding the removal
rates which minimize the cost at a given moment of time. It can help network
managers with careful decision-making, based on the situation at hand. Even
though not all parameters might be known in reality, such analysis can help to
obtain a better understanding of the characteristics of botnet spread.

13



Fig. 4: Number of propagation bots for
(k13, k14) ∈ [8 ·10−5; 10−3]× [8 ·10−3; 10−1]
at time T = 3days, all other parameters
are the same as for baseline experiment
(see Table 2).

Fig. 5: Cost of the system performance for
D1 = 0.01, D2 = 4 · 10−5.

In this section the basic mean-field example was described together with the
possible extensive use of the mean-field model. An example of using mean-field
approximation for more sophisticated systems is given in the next sections.

4 Spatial Mean-Field Models

The mean-field analysis was firstly used in the fields of physics (when studying
gas dynamics) and systems biology (studying how concentrations of reactants
behave in a solution). In those domains, the assumption is made that the spa-
tial distribution of particles/molecules across the system is homogeneous and
the interacting entities are spread across the space uniformly. Such systems are
often referred to as spatially homogeneous, in physics, and well-stirred, in chem-
istry. When analysing them, regardless of their spatial structure a single rate
is assigned for each type of particle-to-particle interaction and these interac-
tions respectively have the same probability to take place at different locations.
Therefore, the effect the locations may potentially have on the overall dynamics
is abstracted away.

In this section we focus on the appropriateness of the abstraction with respect
to the spacial aspects in the context of modelling computer and communication
networks. Indeed, depending on the system under study abstracting from the
space might be a suitable simplifying step. For example, in the previous section
the state vector only counted how many computers are in different local states,
regardless of their locations across the geographical space (as a result, the tran-
sition rate functions did not depend on the computers’ locations). Although this
abstraction is reasonable in certain systems, but there exist those whose dynam-
ics and emergent behaviours are significantly dependent on the locations of the
constituent interacting objects. For those systems, the model should take into
account the spatial aspects (the location of the entities, their distance, etc.) or
else, the system’s behaviour may not be captured effectively.

14



In this section, we consider an example of a large-scale peer-to-peer gossip
network [11] where the emergent behaviour of the system significantly depends
on locations of the objects involved. We describe how the mean-field equations
are constructed in a way that the effect the locations have on the system’s
behaviour is also captured.

An additional feature of the example we review in this section is that it
shows a case where the mean-field method is applied to a uncountable space.
In Section 3, the method was applied to a finite-domain CTMC. Nevertheless,
Kurtz’s Theorem [27] has the potential to be applied also to Markov chains
defined over uncountable domains [32]. As we will express, in the model we
consider some of the state variables range over positive real numbers and this
complicates the process of applying the method as the mean-field equations
consists of partial differential equations. Here, we will review how the mean-field
equations are practically constructed and avoid the proof of convergence. The
more interested reader can refer to [11] for that purpose.

4.1 The Age of Gossip

We consider the example in [11], a model proposed for a peer-to-peer opportunis-
tic communication network. Two types of entities are present in this network:
some are mobile agents and can move through different locations, and some oth-
ers are the stationary base stations. The base stations transmit fresh updates
on a piece of data by the wireless medium and these updates are received by
the mobile agents when they are close to one of the base stations. The data the
base stations send is time-stamped. The age of a piece of data an agent holds
is defined to be the time elapsed since it was transmitted by one of the base
stations. Therefore, the age of data just received is zero. The age of an agent
is defined to be the age of the data it holds. In addition to the data exchanges
with the base stations, the mobile agents are capable of radio communication
between themselves. If two such agents are close enough, the one who has the
most recent version transmits its data to the other. This mechanism helps the
agents receive updated data even if they have not directly visited a base station.

The system consists of a number of locations through which the mobile agents
move. We assume that the base stations in each location can establish radio com-
munication only with agents who are in the same location. The data exchange
between two mobile agents can take place either when they both belong to the
same location or when they are in two different locations. The latter captures
the situation when agents are close to the borders of their location and can
potentially exchange data with agents of the other locations.

Formal Model Description. Let L = {1, 2, . . . , C} be the set of locations
and N denote the number of mobile agents. For the ith agent, we define Xi ∈ R+

to denote its age and ci ∈ L to represent its location. Hence, the state vector
is ξ = 〈X1, X2, . . . XN , c1, c2 . . . cN 〉. Now we define the transitions which affect
the system’s state and the rate functions associated with these transitions.

15



1. Mobility. An agent moves from location c to c′ with rate ρc,c′ , c 6= c′. If
there are Nc agents in c, the total rate at which agents from c move to c′ is
Nc × ρc,c′ .

2. Contact with base station. An agent i with age Xi in c∈L may contact a
base station in c and get fresh data. As the result, Xi = 0. For each location c
a parameter µc describes the rate at which an agent in c receive data directly
from base stations in c. If no base stations are in c, then µc = 0.

3. Opportunistic contact within locations. An agent i in a location c op-
portunistically communicates with any of the other N−1 agents with rate
2ηc/(N − 1). The total rate of communications observed between mobile
agents in c is determined by two factors: the number of agents the location
contains and its topological structure. The larger the number of agents is,
the higher the frequency of the communication. However, when two locations
have exactly the same number of agents, the respective rates of the meetings
may not be the same, as the structural properties of one might encourage
agent-to-agent interaction more than the other. Hence, for each c ∈ L, a pa-
rameter ηc is defined, which captures how effectively the location’s structure
encourages the such interactions. If there are Nc agents in location c, the
total rate at which agents communicate between themselves is:(

Nc
2

)
× 2ηc

(N − 1)
=

(Nc)× (Nc − 1)

N − 1
ηc. (9)

4. Opportunistic contact across locations. A mobile agent in a location
c may communicate with a mobile agent from a different location c′. This
interaction happens with rate 2βc,c′/(N−1). For each c and c′, (c 6= c′), βc,c′

is a constant which affects the rate at which the agents in c communicate
with the agents in c′.

The ages of the agents continuously grow unless they communicate with one
of the base stations or receive fresher data from other mobile agents. At any
point of time and for each location, one can derive the age distribution for the
agents in that location. The aim is to construct the network in a way that an
acceptable distribution of ages is maintained across all locations.

State Space Representation. The state vector used for capturing the state
of a system depends on the system under study and the modelling goals. In the
peer-to-peer network we consider, the age of the agents is one of their key prop-
erties. Therefore, let the configuration of the system at any time t be captured
by a continuous distribution ξ′′(z, t), z ∈ R+, where ξ′′(j, t) denotes how many
agents have age j at time t. Using this state representation, a partial differen-
tial equations over the dimensions z and t is formed to effectively study how
the age distribution of the agents evolves. However, the modelling suffers from
the fact that the mobility of the agents is abstracted away and the effect their
locations potentially have on the system’s emergent behaviour is not realised.
The dynamics of the system is faithfully captured if the state vector takes into
account both properties of the agents, i.e. their age and their locations.

16



Consider c ∈ L. For the ith agent with age Xi, we define the distribution δXi
,

a Dirac mass at Xi. At a time t, the age distribution of agents in c across R+ is
denoted by distribution MN

c (t)=
∑N
i=1 1{ci=c}δXN

i (t), which is a continuous dis-
tribution denoting the number of agents who have any age z at location c at time
t. The vector of such distributions MN (t)=〈MN

1 (·, t),MN
2 (·, t), . . . ,MN

C (·, t) 〉
is capable of capturing both the locations and ages of the agents, and is used in
the rest of this section for state state representation of the mean-field analysis.

4.2 Mean-Field Limit Behaviour

In order to derive the deterministic limit behaviour, first we focus on the mobility
of the agents across locations and then we consider message propagation.

Mobility of Agents. Let UN (t) = 〈UN1 (t), UN2 (t), . . . , UNC (t) 〉 capture the
number of agents in different locations at time t, assuming that there are N

agents in the system. Thus, the location occupancy measure is defined as: Ū
N

(t) =
UN (t)
N = 〈ŪN

0 (t), Ū
N
1 (t), . . . , Ū

N
C (t)〉 where each UNc (t)c∈L represents the fraction

of the agents which are in location c at time t. Assume that, when N →∞, the

sequence Ū
N
c (0) converges to a unique limit:

lim
N→∞

Ū
N

(0)= lim
N→∞

U(0)

N
=

〈
U1(0)

N
,
U2(0)

N
, . . . ,

UC(0)

N

〉
=
〈
ū0
1, ū

0
2, . . . ū

0
C

〉
= ū0

Since the convergence of initial occupancy measure holds and the system satisfies
density dependence (rate functions in the normalised system is independent of
N), we use Kurtz’s Theorem [28] to prove that, at any time point t>0, if N→∞,

then processŪ
N
(t) converges to a deterministic limit ū(t) = 〈ū1(t), ū2(t), . . . ūC(t)〉,

where ūc(t) is the solution of the following initial value problem:

∀c ∈ L, ∂ ūc(t)

∂t
=

∑
c′ 6=c

ρc′,cūc′

−
∑
c′ 6=c

ρc,c′

 ūc , ūc(0) = ū0
c (10)

The first term on the right hand side indicates the increase of ūc due to the
agents coming from adjacent locations to c, and the second term indicates the
decrease of ūc due to c agents leaving for the adjacent locations.

By the Cauchy-Lipschitz theorem, for any initial condition ū0 = 〈ū0
c〉c∈L,

Equation 10 admits a unique solution [11]. Let ūc(t | ū0) denotes the determin-
istic value of ūc at time t given the initial condition ū0. The stationary location
occupancy measure can be derived using the fixed point method:

∀c∈L, ∂ ūc(t)

∂t
= 0 =⇒ ∀c ∈ L, ũc

∑
c′ 6=c

ρc′,cuc′

=

∑
c′ 6=c

ρc,c′

ũc , ∑
c∈C

ũc = 1.

17



Evolution of Age Distributions. Consider MN , the state vector stated
above. Assume that there are N agents in the network. The system’s occupancy

measure is defined as M̄
N

(t) = MN (t)
N = 〈 M̄1(·, t), M̄2(·, t), . . . , M̄C(·, t) 〉, where

∀c ∈ L, M̄N
c (z, t) denotes the density of agents in c with age z at time t. We also

define FNc (z, t), the cumulative distribution function over M̄N
c (t):

∀c ∈ L, FNc (z, t) = MN
c (t)[0 : t] =

∫ z

0

M̄
N
c (s, t) ds.

∀c ∈ L,∀z, t ∈ R+, FNc (z, t) shows the proportion of N in c with age less than
or equal to z. We assume that when N → ∞, the initial occupancy measures

M̄
N

(0) converge to a unique limit m̄0: limN→∞ M̄
N

(0) = m̄0. This implies that

∀c ∈ L , limN→∞ M̄
N
c (0) = m̄0

c .
The rate functions related to the data propagation satisfy the density de-

pendence condition. Therefore, for any t > 0 and for all c ∈ L, when N → ∞,

M̄
N
c (t) converges to m̄c(t), where m̄c(t) is the solution of the following partial

differential equation [11]. Here, ūc(t) is derived by solving Equation (10) for t.

m̄c(0, t) = µc × ūc(t) (11)

∂m̄c(z, t)

∂t
=−∂m̄c(z, t)

∂z
−µcm̄c(z, t)+

∑
c′ 6=c

ρc′,cm̄c′(z, t)−

∑
c′ 6=c

ρc,c′

m̄c(z, t) (12)

+2ηc [(+1)× (uc(t)− Fc(z, t)) · m̄c(z, t) + (−1)× m̄c(z, t) · Fc(z, t)]
+
∑
c′ 6=c

2βc,c′
[
(+1)× (uc(t)− Fc(z, t)) · m̄c′(z, t) + (−1)× m̄c(z, t) · Fc′(z,t)

]
We propose an intuitive explanation for forming Equation 12 by considering how
much each m̄c(z, t)c∈C changes in an small time interval ∂t (the left hand side).
Consider c ∈ L. During ∂t, agents with age z (accounted for by m̄c(z, t)) grow
older and need to be removed from m̄c(z, t). Additionally, agents with age z−4z
become older and the density m̄c(z−4z, t) need to be added to m̄c(z, t). Hence,
the rate of change of mc(z, t) caused only by aging is (first term on the right
hand side of Eq. 12):

lim
4z→0

| m̄c(z −4z, t)− m̄c(z, t) |
4z

=
∂m̄c(z, t)

∂z
.

The second term reflects the communication of agents, accounted by m̄c(z, t),
with one of the base stations. If, there are m̄c(z, t) agents in c, given that the
rate of communication with base stations in c is µc, then in ∂t, µc× m̄c(z, t)×∂t
communications take place and the agents involved leave m̄c(z, t). Therefore, the
rate of the change is µc × m̄c(z, t).

The third expression shows the increase of m̄c(z, t) as a result of agents with
age z moving from other locations c′ into c. The rate of the increase due to the
flow from any c′ 6= c is ρc,c′m̄c′(z, t). Conversely, the fourth term reflects the

18



movement of agents contained in m̄c(z, t) out of c into the adjacent locations.
The decrease in m̄c(z, t) due to this flow happens at rate

∑
c′ 6=cρc,c′ .

The fifth term has two parts. The first shows the rate of the flow into m̄c(z, t)
due to agents with age z in c communicating with agents of higher age in c. The
total density of agents in c at time t is ūc(t)and of those with age less than z
is Fc(z, t). Therefore, (uc(t)−Fc(z, t)) is the density of agents older than z. In
the normalised system, by Equation 9, the rate of communication between the
fraction with age z and those with higher ages is: 2ηc(uc(t) − Fc(z, t))m̄c(z, t).
The second part, −2ηc(m̄c(z, t))Fc(z, t), reflects the drift out of m̄c(z, t) as a
result of agents with age z in c communicating with agents of lower age in c.

The sixth term is similar to fifth, with the difference that it shows the change
of m̄c(z, t) due to the agents from c communicating with agents from c′ 6= c.

We simplify Equation 12 by integrating over z to obtain:

∀c∈L:
∂ Fc(z, t)

∂t
=−∂ Fc(z, t)

∂z
+

∑
c′ 6=c

ρc′,c Fc′(z, t)

−
∑
c′ 6=c

ρc,c′

Fc(z, t) (13)

+
(
uc(t|d)− Fc(z, t)

)(
2ηcFc(z, t) + µc

)
+
(
uc(t|d)− Fc(z, t)

)∑
c′ 6=c

2βc,c′Fc′(z, t)

∀c ∈ L,∀t ≥ 0 : Fc(0, t) = 0 , ∀c ∈ L,∀z ≥ 0 : Fc(z, 0) = Fc(z)

In this modelling, the set of ODEs (10) are constructed and solved independently,
as the agents’ mobility is not assumed to be dependent on the data propagation.

4.3 Solution of the Equations

Here we consider how Equation 13 is solved, for the case where there is only one
location in the system and at t = 0, every agent has age zero.

The solution is obtained by introducing a change of variables. Let the space
A={(x, y) ∈R×R|x ≥ 0, x+y ≥ 0} and G(x, y) :A→ [0, 1], G(x, y)=F (x, x+y).
In order to find F (z, t) it is enough to derive G(z, t−z). For function G we have:

∂G(x, y)

∂x
=
∂F (z, t)

∂z

∣∣∣∣
(x,x+y)

+
∂F (z, t)

∂t

∣∣∣∣
(x,x+y)

.

Rearranging the terms in Equation (13), we obtain:

∂G(x, y)

∂x
= (1−G(x, y))(2η G(x, y) + µ) G(0, y) = 0 (14)

The assumption that at time t = 0, no gossip exists, implies that ∀t z < t and
y = t− z > 0. For anu y ∈ R+, let us define gy : x 7→ G(x, y). Therefore:

∂gy(x)

∂x
= (1− gy(x))(2ηgy(x) + µ) gy(0) = 0

By Cauchy-Lipschitz Theorem, this equation has a solution. The value obtained
for gy(x) leads to the corresponding F (z, t).

19



0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

age

d
e
n
si
ty

f(
z
,t
)

 

 

µ=1, η=0

µ=0.67, η=0.165

µ=0.5, η=0.25

µ=0.34, η=0.33

µ=0.1, η=0.45

µ=0.01, η=0.49

Fig. 6: the density at age z for different values of η and µ when z ≤ t.

Single Location - Analytical Solution. In this case, Equation 14 can be
analytically solved to obtain the following solution:

F (z, t) =


1− 2η + µ

2η + µe(µ+2η)z
if z ≤ t

1− 2η + µ

2η + 2ηF (z−t,0)+µ
1−F (z−t,0) e

(µ+2η)t
if z > t

(15)

We illustrated the reasoning behind the first case of the solution (when z ≤ t).
The second case (z > t), concerns the situation where in the initial configuration
some agents have age greater than zero. Therefore, at any time t, it is possible to
have agents with ages higher than t. The proportion of the agents who at time t
have age z > t depends on the proportion whose age was at least (z − t) in the
system’s initial configuration. We skip the solution explanation for this case.

The solution allows us to study important aspects of the peer to peer network.
In terms of performance, the network is well designed if with a high probability,
the majority of agents remain within relatively low ranges of age. One way to
satisfy this performance requirement is to deploy a relatively large number of
base stations in each location; the agents frequently communicate with the base
stations and receive fresh copies of the data. We introduce the term infrastruc-
ture dominant here. A location where the associated age distribution is mainly
formed by the agent-to-base-station communication is said to be infrastructure
dominant. In such a location, the agent-to-agent communication has less impact.

A location that does not enjoy strong infrastructure may still exhibit a satis-
factory age distribution. In this case, the frequent and improved agent-to-agent
communication is the main contributing factor in information dissemination. A
location where the opportunistic contact determines the shape of the age distri-
bution is referred to as opportunistic dominant.

Figure 6 shows the results of the analysis of the model when the system
consists of only one location. Different values for the parameters µ, η capture

20



different degrees of dominance of the infrastructure or of the opportunistic con-
tacts. We conclude [11] that when µ ≥ 2η, m(z, t) decreases as the age increases.
The maximum density is at age z = 0 with m(0, t) = µ. Here, the opportunistic
contacts happen at a lower rate than with the base stations. Hence, the latter
type of communication determines the shape of the distribution. The extreme
case is when η = 0; the opportunistic contact does not occur at all. In this case,
improving the age distribution entails improving the rate of communications
with base stations by increasing the number of base stations.

We also conclude that when µ < 2η, the opportunistic contact rate becomes
large enough to influence the age distribution. Consequently, there emerges a
large mass around a typical age, maintained by the contacts between the mobile
agents. In the extreme case, µ is small and η is large. The mass around age
z = 0 becomes negligible and depending on the frequency of the agent meetings,
the dominant age is centred at some age z > 0. In order to improve the age
distribution in such a network without changing µ, one needs to improve η.

Multiple Locations. We explain the steps in the solution phase when the
network contains multiple locations. Let us assume that the system has reached

its equilibrium; ∀c ∈ L, ∂Fc(z,t)
∂t = 0, uc(t)→ ũc. Using Equation (13), we obtain:

∀c ∈ L, d Fc(z)
dz

= +ũcµc +

ũc2ηc − µc −∑
c′ 6=c

ρc,c′

Fc(z) (16)

+
∑
c′ 6=c

(ρc′,c + ũc2βc,c′)Fc′(z) −
∑
c′ 6=c

2βc,c′Fc(z).Fc′(z) − 2ηc(Fc(z))
2

with the initial condition ∀c ∈ L, Fc(0) = 0. In contrast with the previous case,
this system of ODEs is multi-dimensional and non-linear, and has no simple
analytical solution. Nevertheless, when z → 0 or z is very large, it can be ap-
proximately solved. If z → 0, then Fc(z) → 0 and the factors Fc(z)Fc′(z) and
(Fc(z))

2 become negligible compared to the rest of the expression and can be
ignored to find the following system shown in the matrix form:

F ′ = FA+B (17)

Ac,c= ũc2ηc − µc −
∑
c′ 6=c

ρc,c′ , Ac,c′=ρc,c′+ũc′2βc,c′ , B = (µ0ũ0, . . . , µC ũC)

For c ∈ L and z → 0, mc(z) ≈ µcũc. The derivative of mc(z) is:

d m̄c(z)

dz
= µcũc(ũc2ηc − µc −

∑
c′ 6=c

ρc,c′) +
∑
c′ 6=c

µc′ ũc′(ρc′,c + ũc2βc′,c)

If ∀ c, c′ ∈ L : βc,c′=0, then:

d m̄c(z)

dz
= µcũc(ũc2ηc − µc) +

∑
c′ 6=c

(µc′ − µc)ũc′ρc′,c (18)

21



Equation (18) is used to determine for each c, whether its is an infrastructure
dominant or opportunistic contact dominant. If ∀c, µc = µ (µc is the same in all
locations), c has a dominant infrastructure (respectively, dominant opportunis-
tic contact) if 2ηc < µc (respectively, 2ηc > µc). For the case when the base
stations are installed in non-neighbouring locations, then c with a base station
has a dominant opportunistic contact if 2ηcũc > µc+

∑
c′ 6=c ρc,c′ . In any location

with no base stations, the age distribution will be dominated by the opportunis-
tic contacts. The most general case happens when each location has its own
specific µc and the base stations are distributed arbitrarily across the locations.
In this case, the nature of each location can be decided only after plugging the
parameters into Equation (18) and observing the sign of the derivative at z = 0.

For the case when the modeller is interested in high values of age (z →∞),
a similar technique can be used to simplify the equations [11].

4.4 Model Validation

We reviewed how the model was developed and analysed [11]. Now we focus
on model validation. This task has three steps. First, by using the data on the
executions of the real system (eg. time series) the model’s parameters are found.
Then, a version of the model with concrete values for the parameters is con-
structed. Second, using a classical approach such as the stochastic simulation,
the model is analysed and the observations are compared (qualitatively/quan-
titatively) against the real executions to check whether the model effectively
captures the age distributions. Finally, the mean-field solution is obtained to
check whether this particular method is suitable for the analysis of the model.

Validation Platform. CabSpotting [10] is a project where the San Francisco
taxi company traces the location of its yellow cabs as they operate in the Bay
Area (SFBA). Using GPS, each cab reports its location every minute and the
data is stored in a database. By using the cabs’ movement traces and introducing
some realistic networking assumptions, one can construct a realistic opportunis-
tic peer-to-peer network, similar to the model considered in Section 4.1, where
the cabs and base stations are responsible for propagating data in the network.
The realistic scenario, built in this manner, is used in the model validation.

Assume that SFBA is divided into 16 locations. There are a number of base
stations which frequently transmit fresh copies of a piece of data. Each base sta-
tion has a specific transmission range. The network consists also of a relatively
larger number of taxi cabs. Each cab is equipped with a radio device to com-
municate with base stations or other cabs. Each cab scans its surrounding once
per minute and when another entity is detected (another cab or one of the base
stations), it tries to initiate a data exchange. The radio devices are assumed to
have the range of 200m. A meeting or successful data exchange happens if the
communicating entities remain in 200-meter proximity for at least 10 seconds
(10 sec guarantees a data exchange). The goal of the meetings is to propagate
updated copies of the data throughout the network. The age of a cab is equal to
the time elapsed since the data it holds was sent by one of the base stations.

22



The CabSpotting database stores the cabs’ movement traces. By using these
traces and making the networking assumptions stated above, we can generate
the contact traces. The latter not only captures the occurrence of the meetings,
but also how the age of the cabs change as the result of such meetings. Therefore,
the contact traces record how the cabs’ ages change and can be used to observe
how the age distributions evolve in different locations. In [11], contact traces
were generated for dates between May, the 17th and June, the 15th, 2008 and
for the time period between 8:00am till midnight, each day. They were then used
for validation steps.

Extracting Model Parameters. The following quantities were measured us-
ing the contact traces generated. N(t): total number of cabs in time slot t (time
unit = one minute); Nc(t)c∈{1,2,3,...16}: number of cabs in location c during time
slot t; Nc,ub(t): number of contacts between a mobile agent and a base station
in c during time slot t; Nc,uu(t): number of contacts between any two mobile
agents in c during t; Nc,c′,uu(t)c6=c′ : number of contacts between an agent from
c and another from c′ during t.

Given the contact traces, one can calculate µ̄c(t) =
Nc,ub(t)
Nc(t)

as the rate at

which an agent in c communicates with one of the base stations in that location
during t. If, at t there are Nc(t) agents in c, then on average µ̄c(t) × Nc(t)
meetings are expected in the following time unit. The average µc for an hour
is calculated by averaging µ̄c(t)t∈[0,59]: µc = 1

60

∑t0+59
t=t0

µ̄c(t). This parameter is
used in the model. Let us now focus on how other parameters are calculated.

In the model, for c ∈ L the rate at which an agent in c meets another agent
in c is 2ηc

N−1 . Consequently, the rate at which meetings occur in c is:

(
Nc
2

)
× 2ηc

(N − 1)
=

(Nc)× (Nc − 1)

N − 1
× ηc. (19)

During the time unit t, the traces capture Nc,uu(t) meetings which can be ex-
pressed using Equation 19. We assume that that at t, η̄c(t) affects the rate of

the meetings. Therefore, in time unit t we expect to observe Nc(t)×(Nc(t)−1)
(N(t)−1) η̄c(t)

meetings. Thus:

Nc,uu(t)=
(Nc(t))(Nc(t)−1)

N(t)− 1
η̄c(t)⇒ η̄c(t)=

Nc,uu(t)
Nc(t)
N(t)−1 (Nc(t)− 1)

≈ Nc,uu(t)

uc(t)(Nc(t)−1)
.

The model’s ηc is obtained by averaging η̄c(t) for one hour; ηc = 1
60

∑t0+59
t=t0

η̄c(t).

In the model, the rate at which an agent in c meets an agent in c′ is
2×βc,c′

N−1 .

Therefore, in one time unit, on average
2βc,c′

N−1 NcN
′
c meetings occur between

agents in c and c′. For each time unit t, the traces show Nc,c′,uu(t) meetings

23



having occurred. Therefore:

2β̄c,c′(t)

N(t)− 1
Nc(t)Nc′(t)=Nc,c′,uu(t)⇒ β̄c,c′(t)=

Nc,c′,uu(t)

2N(t)uc(t)N(t)uc′(t)× 1
N(t)−1

⇒

β̄c,c′(t) ≈
Nc,c′,uu(t)

2×N(t)× uc(t)× uc′(t)

For each c and c′, βc,c′ can is obtained by averaging β̄c,c′(t) over an hour.
Finally, in the model, the rate at which agents move from location c to c′

is defined to be ρc,c′ ×Nc. In the traces, one observes Nc,c′,trans(t) movements.

Therefore: ρ̄c,c′(t)Nc(t) = Nc,c′,trans(t) ⇒ ρ̄c,c′(t) =
Nc,c′,trans(t)

Nc(t)
. The same

averaging is applied to ρ̄c,c′(t) to find ρc,c′ .
The parameters obtained from the contact traces were used to build a fully

parametrized model. The model was then simulated and the stochastic behaviour
obtained was compared against the traces. The authors show that the model is
sufficiently detailed to capture the stochastic behaviour of the real system.

The last step of the validation is checking whether the mean-field method is
an appropriate method for the analysis of this model. The authors show that for
the locations which usually have reasonably large populations of agents (having
at least tens of taxi cabs), there exists a close correspondence between the age
distributions obtained from the mean-field analysis and the distributions derived
from the contact traces. For the locations at the edges of the network, where the
population of the cabs were too small, the mean-field solution has more error.
Due to space limitation we skip reviewing the last sections of the validation
process and the interested reader is referred to [11].

5 Model Checking Mean-Field models

In this section we discuss model-checking approach for mean-field models. The
kind of analysis we can perform through model checking is rather different from
the performance studies we illustrated in previous sections. Indeed, we are able
to formally prove temporal properties of the execution of these systems and have
an estimate of the probability of their validity at a certain time point.

There are two possible ways of describing the properties of a large popu-
lation: via studying a random individual within the whole population and via
considering the whole population.

The first approach is known as a fluid model checking [8] and it employs
a bounded fragment of the Continuous Stochastic Logic (CSL) for describing
properties of interest. Later in this section we recall the logic CSL, and explain
how these properties can be checked for an individual object.

While fluid model checking is applicable to the local model only, the second
approach allows us to derive the properties of the overall mean-field model. This
is done using Mean-Field Continuous Stochastic Logic (MF-CSL) [25], which lifts
the properties of the local model to the level of the overall model via expectation
operators. MF-CSL logics relays on the local model properties when constructing

24



the properties of the overall model, and the timed properties can be described
only on the local level (for an individual object).

Note that yet another approach to model-checking mean-field models is pos-
sible, that only makes use of the deterministic limit (occupancy vector) to reason
about the timed properties on the level of the overall model.

In the following we first return our attention to the single agent and its
properties in Sections 5.1-5.5. Then the model-checking procedure for the whole
population is addressed in Section 5.6.

5.1 Single Agent Model

An interesting consequence of the mean-field approximation theorem is the so-
called decoupling of joint probability (for details, please refer to [3,30]), which
allows us to obtain the model of the single object within the overall model, by
using fast simulation [13,15]. The central idea of this process is to abstract the
system to its fluid approximation (to obtain mean-field model of the system)
and to study the evolution of a single agent as executed in parallel with the
approximation of the rest of the system. The advantage is that, rather than
considering/simulating the entire system, it is sufficient to consider the abstract
average behaviour of the system and observe a single agent interacting with it,
by decoupling its evolution from the evolution of the remaining agents. This is a
faithful approximation since the dynamics of a single agent depend on the other
agents only through the overall average system state. This allows us to reason
about the local model within the overall model as of a time-inhomogeneous
continuous time Markov chain (ICTMC).

Due to the time-inhomogeneity of the local model, the existing model check-
ing algorithms for CTMCs can not be reused. Therefore, in [8] the authors de-
velop novel CSL model checking algorithms for ICTMC models. We denote the
single object model coupled with the deterministic limit (the local ICTMC) as
Z(t) for ease of notation. The labelling of the states of ICTMC is done on the
same way as for a time-homogeneous CTMC.

5.2 Continuous Stochastic Logic

As a single agent model is described by an ICTMC, a standard CSL logic can
be used to express the properties of such model. In the following we recall the
definition of bounded CSL as in [2]:

Definition 3. CSL Syntax. Let p ∈ [0, 1] be a real number, ./∈{≤, <,>,≥}
a comparison operator, I ⊆ R≥0 a non-empty bounded time interval, and AP a
set of atomic propositions with a ∈ AP . CSL state formulas Φ are defined by:

Φ ::= tt | a | ¬Φ | Φ1 ∧ Φ2 | P./p(φ),

where φ is a path formula defined as:

φ ::= X IΦ | Φ1 U
I Φ2.

25



To define the semantics of CSL formulas we first recall the notion of a path
as it was defined for the CTMCs in [2]; this notion is reused for ICTMCs. An

infinite path σ is a sequence s0
t0→ s1

t1→ s2
t2→ ..., for i ∈ N; si ∈ S and

ti ∈ R>0 such that the probability that starting in state si we reach state si+1

at time tσ[i] =
∑i
j=0 tj is greater than zero. A finite path σ is a sequence

s0
t0→ s1

t1→ ...sl−1
tl−1→ sl such that sl is absorbing, and, similarly, a probability

of going from si to si+1 is greater than zero for all i < l.
For a given path σ, σ[i] = si denotes for i ∈ N the (i+1)st state of path σ. The

time spent in state si is denoted by δ(σ; i). Moreover, with i the smallest index,

and with t ≤
∑i
j=0 tj , let σ@t = σ[i] be the state occupied at time t. For finite

paths σ with length l+ 1, σ[i] and δ(σ; i) are defined in the way described above

for i < l only and δ(σ; l) = ∞ and δ@t = sl for t >
∑l−1
j=0 tj . Path

Z(t)(si, t0) is
the set of all finite and infinite paths of the ICTMC that start in state si and
PathZ(t)(t0) includes all (finite and infinite) paths of the ICTMC. A probability
measure Pr(t0) on paths can be defined as in [2].

Since the local model changes with time, the satisfaction relation for a local
state or path depends on time as well, and it is defined as follows:

Definition 4. Semantics of CSL. Satisfaction of state and path CSL formu-
las for ICTMCs is given as follows:

s, t0 |= tt ∀s ∈ S,
s, t0 |= a iff a ∈ L(s),
s, t0 |= ¬Φ iff s, t0 2 Φ,
s, t0 |= Φ1 ∧ Φ2 iff s, t0 |= Φ1 and s, t0 |= Φ2,
s, t0 |= P./p(φ) iff ProbZ(t)(s, t0, φ) ./ p,
σ, t0 |= X IΦ iff σ[1] is defined, and δ(σ, 0) ∈ I, and

σ[1], (t0 + δ(σ, 0)) |= Φ,
σ, t0 |= Φ1 U

I Φ2 iff ∃t′ ∈ I : (σ@t′ |= Φ2)
∧(∀t′′ ∈ [t0, t

′)(σ@t′′ |= Φ1)),

I ⊆ R≥0 is a non-empty time interval and ProbZ(t)(s, t0, φ) is the probability
measure of all paths σ ∈ PathZ(t)(s, t0) that satisfy φ and starting in state s,
that is ProbZ(t)(s, t0, φ) = Pr{σ ∈ PathZ(t)(s, t0) | σ, t0 |= φ}.

Only bounded time intervals are used in path formulas. This is motivated by
the nature of convergence theorem, which is valid only for finite-time horizons.
The relaxation of this restriction is possible, but we will not discuss it this
tutorial, see [8], and [25] for details.

The CSL operators can be nested according to Definition 3. Model-checking of
the CSL formula is done by building the parse tree and computing the satisfaction
set of the individual operators recursively (in a bottom-up fashion), as described
in [2].

Model-checking CSL formulas for ICTMCs is similar to model-checking these
formulas for CTMCs. All time-independent CSL operators can be checked us-
ing standard methods (see [2]) due to the independence of the results on time.

26



Therefore, model-checking these operators is not included in the following dis-
cussion.

The main challenge is in model-checking time-dependent operators: let us
first recall how these formulas are checked for time-homogeneous models. Given
an arbitrary time-homogeneous CTMC A, the probability formula containing
the interval next operator P./pX [t1,t2]Φ is usually checked by computing the
next-state probability and by comparing it with the threshold p (see [2]). This is
calculated as the probability that the next jump starts within the time interval
[t1; t2] and ends in a state that satisfies Φ.

The probability formula including interval until formula P./pΦ1U
[t1,t2]Φ2 for

an arbitrary time-homogeneous CTMC A is checked by computing the proba-
bility of taking a path satisfying the until formula and by comparing it to the
threshold p [2]. The way to calculate this probability will be presented below.
Let us denote the states satisfying Φ2 as goal states, and the set of such a states
as G = JΦ2K, a set of states satisfying Φ1 as safe states S = JΦ1K, and, similarly,
a set of the unsafe states U = J¬Φ1K for the ease of notation. For model-checking
CSL until formula, we need to consider all possible paths, starting in a safe state
s1 ∈ S at the current time and reaching a goal state s2 ∈ G during the time
interval [t1, t2] by only visiting safe states on the way. We can split such paths
in two parts: the first part models the path from the starting state s to a state
s1 ∈ S and the second part models the path from s1 to a state s2 ∈ G only via
safe states. In the first part of the path, we only proceed along safe states thus
all unsafe states s ∈ U do not need to be considered and can be made absorbing.
As we want to reach a G state via S states in the second part, we can make all
unsafe and goal states absorbing, because we are done as soon as we reach such
a state. We, therefore, need two transformed CTMCs: A[U] and A[U∪G], where
A[U] is used in the first part of the path and A[U ∪G] is used in the second.

In order to calculate the probability for such a path, we accumulate the
multiplied transition probabilities for all triples (s, s1, s2), where s1 ∈ S and is
reached before time t1 and s2 ∈ G and is reached within time t2 − t1.

ProbA(s, Φ1U
[t1,t2]Φ2) =

∑
s1|=Φ1

∑
s2|=Φ2

πA[U]
s,s1 (t1) · πA[U∪G]

s1,s2 (t2 − t1). (20)

Hence, CSL until formulas can be solved as a combination of two reachability

problems, as shown in Equation (20), namely π
A[U]
s,s1 (t1) and π

A[U∪G]
s1,s2 (t2−t1) that

can be computed by performing transient analysis on the transformed CTMCs.

In the following we discuss the model-checking procedures that allow us to
solve the interval path formulas (until and next) for the random agent, i.e.
ICTMC. The procedure for checking these operators for ICTMCs is similar
to that for CTMCs discussed above. However, the probabilities to take a cer-
tain path have to be calculated differently, because the Markov chain is time-
inhomogeneous.

27



5.3 Next State Probability

Since the local mean-field model is a ICTMC the standard model-checking proce-
dure is not applicable, therefore in the following we explain how to calculate the
next state probability of an individual agent. This probability is also changing
with time, therefore not only the next state probability at a given time t0 is of
interest, but also the dependency of such probability measure on time. Another
important difference between checking CSL formulas for CTMC and ICTMC is
in the fact that the set of goal states (states, which satisfy Φ) can change with
time. In the following we address these differences and explain how a bounded
CSL Next formula can be checked for the local mean-field model.

We first describe how to calculate the next state probability for a given time
t0, i.e., the probability to jump from the state s to the state, satisfying Φ, or
goal state, within time interval [t1, t2]. This probability can be found as follows:

ProbZ(t)(s,X [t1,t2]Φ2, t0) =

∫ t0+t2

t0+t1

qs,G(t) · e−Λ(s,t0,t)dt, (21)

where qs,G(t) =
∑
s′∈GQs,s′(t) is the rate of jumping from the current state

s to the goal state s′ at time t; and Λ(s, t0, t) =
∫ t
t0
−Qs,s(τ)dτ is the cumulative

exit rate of state s between t0 and t. The proof is straight forward and can be
found in [8].

The next state probability can now be computed numerically in two ways:
using Equation (21) or by transformation the above formula to the differential
equations and solving them. The differential equations are more convenient and
simplify the calculations, they can be obtained as in [8], and are as follows:{

Ṗ (t) = qs,G(t) · e−L(t),

L̇(t) = −qs,s(t),
(22)

where P (t0 + t1) = 0 and L(t0 + t1) = Λ(t0, t0 + t1). The above ODEs have to
be integrated from time t0 + t1 to time t0 + t2.

As we discussed above, for checking CSL formulas the dependency of the next
state probability on time ProbZ(t)(s,X [t1,t2]Φ2, t0, t) is needed to be accessed. To
find this dependency one has to either calculate integral (21) for all possible t0,
or use the differential equations (22) to define another system of the differen-
tial equations with t0 as a independent variable. The obtained new system of
differential equations is as follows:


Ṗ s(t) = qs,G(t+ t2) · e−L2(t)− qs,G(t+ t1) · e−L1(t)− qs,s(t)P s(t),
L̇1(t) = −qs,s(t) + qs,s(t+ t1),

L̇2(t) = −qs,s(t) + qs,s(t+ t2),

(23)

where L1(t) = Λ(t, t + t1) and L2(t) = Λ(t, t + t2). Initial conditions at time t0
are computed by solving Equation (22).

28



And finally, the set of goal states can be time-dependent G(t), which has
to be taken into account while calculating the next state probability. It is done
by solving the above equation piecewise. All the time points T1, T2, ...Tk when
the goal set is changing are found first, where T0 = t0 + t1 and Tk+1 = t0 + t2.
Equation (23) is solved for each time interval [Ti, Ti+1].

For checking next formula one has to compare next state probability with
the given threshold p ∈ [0, 1], hence, equation ProbZ(t)(s,X [t1,t2]Φ2, t0, t) = p
has to have a finite number of solutions. In general, this doesn’t always hold,
therefore, the restrictions on the rate functions of the mean-field model have to
be introduced in order to insure the finite number of such solutions. In particular,
the rate functions must be piecewise real analytical functions, as described and
proved in [8].

5.4 Until formulas. Reachability Probability

The core idea of CSL model-checking of until formulas as explained in Sec-
tion 5.2 remains unchanged for time-inhomogeneous CTMCs. However, due to
time-inhomogeneity it is not enough to only consider the time duration, but the
exact time at which the system is observed must be taken into account. Hence,
we add time t′ to the notation of a time-inhomogeneous reachability problem

π
Z(t)
s,s1 (t′, T ) to denote that we start in state s at time t′.

A probability for an arbitrary until formula Φ1U
[t1,t2]Φ2 to hold is then again

calculated by computing two reachability problems on the transformed ICTMCs
Z(t)[U] and Z(t)[U ∧G], respectively:

ProbZ(t)(s, Φ1U
[t1,t2]Φ2, t

′) =∑
s1,t′|=Φ1

∑
s2,t1|=Φ2

πZ(t)[U]
s,s1 (t′, t1 − t′) · πZ(t)[U∧G]

s1,s2 (t1, t2 − t1). (24)

Equation (24) is valid for t1 > t′, t2 > t′. If t1 = t′ the first reachability problem
can be omitted.

In the following we explain here how an arbitrary reachability probability

Π ′(t′, t′+T ) can be calculated. This method is applied to both π
Z(t)[U]
s,s1 (t′, t1−t′)

and π
Z(t)[U∧G]
s1,s2 (t1, t2− t1); and the results are combined as in (24). The standard

transient analysis on the modified ICTMS is used in order to calculate the reach-
ability probability Π ′(t′, t′ + T ). In order to find the transient probability the
forward Kolmogorov equation is solved with an identity matrix as initial condi-
tion:

dΠ ′(t′, t′ + T )

d(T )
= Π ′(t′, t′ + T ) ·Q′(t′ + T ), (25)

where Q′(t′ + T ) is the rate matrix of the modified ICTMC.
In order to check a nested CSL formula for ICTMC the dependency of tran-

sient probability on the starting time has to be found. The later is done by
combining the forward and backward Kolmogorov equations:

dΠ ′(t, t+ T )

dt
= −Q′(t)Π ′(t, t+ T ) +Π ′(t, t+ T )Q′(t+ T ). (26)

29



The time-dependent probability matrix Π ′(t, t+ T ) can be obtained by solving
Equation (26) with initial condition Π ′(t′, t′ + T ). Using Kolmogorov equations
for solving reachability problems on the local models Z(t) is efficient due to the
fact that the state space is usually quite small (see [8]).

The goal and unsafe sets in ICTMC can vary with time (e.g., in nested
formulas), which has to be taken into account while calculating reachability
probability. This is done by solving Equation (26) piecewise, i.e., for each time
interval, where the above mentioned sets remain unchanged. At first we find the
so-called discontinuity points, i.e., the time points T0 = t′ ≤ T1 ≤ T2 ≤ · · · ≤
Tk ≤ Tk+1 = T + t′, where at least one of the sets changes. Then we do the
integration separately on each time interval [Ti, Ti+1] for i = 0, ..., k.

The procedure has to be slightly adjusted to ensure that only safe states are
visited before a goal state is reached. We need to modify the ICTMC Z(t) for
each time interval (Ti;Ti+1) as follows:

1. introduce a new goal state s∗, which remains the same for all time intervals;
2. all unsafe and goal states are made absorbing;
3. all transitions leading to goal states are readdressed to the new state s∗.

Given this modified ICTMC Z(t), the transient probability matrix Π ′(Ti, Ti+1)
is found for each time interval using the forward Kolmogorov equation, according
to Equation (25).

Upon “jumps” between time intervals [Ti−1, Ti] and [Ti, Ti+1] it is possible
that a state that was safe in the previous time interval becomes unsafe in the
next. In this case the probability mass in this state is lost, since this path does
not satisfy the reachability problem any-more. In the case that a state remains
safe or a safe state is turned into a goal state the probability mass has to be
carried over to the next time interval. This is described by the matrix ζ(Ti) of
size (|S| + 1) × (|S| + 1) constructed in the following way: for each state s ∈ S
which is safe before and after Ti it follows ζ(Ti)s,s = 1. For each state s ∈ S
which was safe before Ti and becomes goal after Ti we have ζ(Ti)s,s∗ = 1. For
the new goal state s∗ the entry always equals one (ζ(Ti)s∗,s∗ = 1), and all other
elements of ζ(Ti) are 0.

The probability to reach a goal state before time T has passed when starting
in a safe state at time t′ is given then by the matrix Υ (t′, t′ + T ):

Υ (t′, t′ + T ) =Π ′(t′, T1) · ζ(T1) ·Π ′(T1, T2)·
ζ(T2) . . . ζ(Tk) ·Π ′(Tk, t′ + T ).

(27)

The probability to reach the goal state s∗ is unconditioned on the starting
state by adding 1 for all goal states:

π
[U∨G]
s,s∗ (t′, t′ + T ) =Υs,s∗(t

′, t′ + T )+

1{s ∈ Sat(G, t′)}.
(28)

Similarly to the dependency on time of the reachability probability while the
goal and unsafe sets are fixed (see Equation (26)), the time-dependent reachabil-
ity probability for varying goal and unsafe sets can be found by again combining

30



forward and backward Kolmogorov equations using chain rule (see [8] for more
details).

The method for checking state and path CSL formulas for ICTMC was pre-
sented above in this section. The convergence of the results and decidability of
the algorithms are addressed in [8]. This method is applicable for the continuous
time models, as the main interest of this tutorial lies in a continuous time mean-
filed models. For the similar results on the on-the-fly fast model-checking of the
PCTL properties of the individual objects in a discrete time mean-field model
we refer to [29]. As a next step we provide the example, where this method is
applied to a single agent of mean-field model.

5.5 Examples

In this section couple of examples of checking CSL formulas are described. We
reuse the virus spread model, described in the Examples 1 and 2 (see Figure 1).
As descibed in Section 2, the system of the limit ODEs (6) for the population
behaviour is as follows: ẋ1(t) = −k1x3(t) + k2x2(t) + k5x3(t),

ẋ2(t) = (k1 + k4)x3(t)− (k2 + k3)x2(t),
ẋ3(t) = k3x2(t)− (k4 + k5)x3(t).

(29)

The coefficients that are used in the following example are given in Setting 1 in
Table 4.

Let us consider the following formula

Φ = P<0.3(not infected U [0,1] infected)

and a predefined initial occupancy vector x = (0.8, 0.15, 0.05) at time t′ = 0.

The only time-dependent rate of the local model is k∗1(t) = k1 · x3(t)
x1(t)

, where

x1(t) and x3(t) are the solution of the ODEs (29) with x(0) as initial condition.
Therefore the transition rate matrix Q(x(t)) is as follows:

Q(x(t)) =

−k1 · x3(t)
x1(t)

k1 · x3(t)
x1(t)

0

k2 −k2 − k3 k3
k5 k4 −k5 − k4

 .

To find ProbZ(t)(s,not infected U [0,1] infected, t′) only one reachability prob-

lem π
Z(t)[¬not infected∨infected]
s,s1 (0, 1) = π

Z(t)[infected]
s,s1 (0, 1) has to be solved accord-

ing to the algorithm described earlier in Section 5.4. The local model Z(t) is
modified and all infected states are made absorbing. The Kolmogorov equation
is used to calculate the transient probability matrix of the modified model, which
consists of the reachability probabilities:

Π ′(0, 1) =

0.91 0.09 0
0 1 0
0 0 1

 .

31



Parameter Setting 1 Setting 2

Attack k1 0.9 5

Inactive computer recovery k2 0.1 0.02

Inactive computers getting active k3 0.01 0.01

Active computer returns to inactive k4 0.3 0.5

Active computer recovery k5 0.3 0.5

Table 4: Parameter settings.

The probability of the until formula

φ = not infected U [0,1] infected

to hold for each starting state is as follows:

ProbZ(t)(s1, φ, t
′) = π

Z(t)[infected]
s1,s2 (0, 1) + π

Z(t)[infected]
s1,s3 (0, 1) = 0.09;

ProbZ(t)(s2, φ, t
′)) = 0;

ProbZ(t)(s3, φ, t
′)) = 0.

The found above probabilities are compared with 0.3, and as one can see the
formula P<0.3(not infected U [0,1] infected) holds for all states s1, s2, and s3.

As was discussed earlier, the satisfaction on the CSL formula may change
with time. Let us consider the same formula P<0.3(not infected U [0,1] infected)
and initial occupancy vector x = (0.8, 0.15, 0.05). In the following we calculate
the time-dependent probability on the predefined time interval [0, 20].

The calculation of the time-dependent probabilities ProbZ(t)(s,not infected
U [0,1]infected, t′, t) is done as described earlier in this section:

1. the model Z(t) is modified so the infected states are made absorbing;
2. the transient probability Π ′(0, 1) is calculated as described in the example

above;
3. forward and backward Kolmogorov equations are used in order to construct

the ODEs, describing the time-dependent transient probability of the mod-
ified model (see Equation (26)).

4. These ODEs are solved using Π ′(0, 1) as initial condition. The solution of
the ODEs defines the required reachability probabilities.

The time-dependent probability ProbZ(t)(s1,not infected U [0,1] infected, t′, t)
is depicted in Figure 7. Starting at states s2 and s3 this probability equals zero
at all times, since these states do not satisfy not infected. In order to find the
satisfaction set of this formula the following equation ProbZ(t)(s1,not infected
U [0,1] infected, t′, t) = 0.3 is solved and t = 13.42 is found. The satisfaction set
depends on time and includes all three states s1, s2, and s3 for t ∈ [0, 13.42);
and only two states s2 and s3 for t ∈ [13.42, 20].

In the following we discuss a more involved example, which includes a nested
until formula. The parameters of the model used in this example are given in the
column Setting 2 in Table 4, the initial conditions at t = 0 is x = (0.85; 0.1; 0.05).

32



We check the following satisfaction relation:

P>0.9(infected U [0,15](P>0.8 tt U
[0,0.5] infected)).

probability

time

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

Fig. 7: The green solid line shows
ProbZ(t)(s1,not infected U [0,1] infected,
t′, t). The time-dependent probability
ProbZ(t)(s1, tt U [0,0.5] infected, t′, t) is
presented by the blue dotted line.

The formula is split into sub-
formulas and the time-dependent
satisfaction set of the sub-formula
Φ1 = (P>0.8tt U [0,0.5] infected) is
calculated first. Similarly to the
previous example, the probability
ProbZ(t)(s, tt U [0,0.5] infected, t′, t) is
calculated for all states s ∈ So. In
Figure 7 this probability at state s1
is depicted; the probabilities at states
s2 and s3 equal to one, since these
states are already infected. Similarly
to the previous example, the time de-
pendent satisfaction set is found and
equals to Sat(Φ1, t

′, t) = {s2, s3} for
all t ∈ [0, 10.443] and Sat(Φ1, t

′, t) =
{s1, s2, s3} for all t ∈ (10.443, 15].

The next task is calculating the
probability

ProbZ(t)(s, infected U [0,15]Φ1, t
′, t).

The reachability probability for the time-varying satisfaction set of Φ1 is calcu-
lated following the algorithm described above in this section. We first calculate all
discontinuity points T0 = 0, T1 = 10.443 and T2 = 15. An extra state s∗ is added
and an indicator matrix ζ(T1) is constructed: ζ(T1)s∗,s∗ = 1, ζ(T1)s1,s2 = 0 for
all s1 6= s∗,s2 6= s∗. The transient probabilities on time intervals [0, 10.443) and
(10.443, 15] are calculated using the forward Kolmogorov equation:

Π ′(0, 10.443) =


0.53 0 0 0.47

0 1 0 0
0 0 1 0
0 0 0 1

 ,

Π ′(10.443, 15− 10.443) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Equation (27) is used to calculate Υ (0, 15):

Υ (0, 15) =


0 0 0 0.47
0 0 0 0
0 0 0 0
0 0 0 1

 .

33



Equation (28) is used in order to calculate the reachability probability for each

state s ∈ So: πZ(t)[¬infected∨Φ1]
s1,s∗ (0, 15) = 0.47; π

Z(t)[¬infected∨Φ1]
s2,s∗ (0, 15) = 1;

π
Z(t)[¬infected∨Φ1]
s3,s∗ (0, 15) = 1. The probability ProbZ(t)(s, infected U [0,15]Φ1, t

′) is
calculated according to Equation (24), and equals to 0, 1, and 1 for states s1, s2,
and s3 respectively. Therefore only states s2 and s3 satisfying the formula

P>0.9(infected U [0,15](P>0.8 tt U
[0,0.5] infected)).

In this section we have illustrated how the properties of a single agent in
a large communication network (system of interacting objects) can be checked.
Next to the fluid model checking reader might be interested in the techniques
for calculation fluid passage time, as discussed in [18]. In the following model-
checking the overall mean-field model is discussed.

5.6 On Model-Checking Overall Mean-Field Models. MF-CSL.

The properties of interest of the overall mean-field model differ from the prop-
erties which can be described by CSL. Therefore, in order to reason at the level
of the overall model in terms of fractions of objects an extra layer “on top of
CSL” that defines the logic MF-CSL was introduced in [25]. The latter is able to
describe the behaviour of the overall system in terms of the behaviour of random
local objects.

Definition 5. Syntax of MF-CSL. Let p ∈ [0, 1] be a real number, and ./∈
{≤, <,>,≥} a comparison operator. MF-CSL formulas Ψ are defined as follows:

Ψ ::= tt | ¬Ψ | Ψ1 ∧ Ψ2 | E./p(Φ) | ES./p(Φ) | EP./p(φ),

where Φ is a CSL state formula and φ is a CSL path formula.

�

In this definition three expectation operators were introduced: E./p(Φ), ES./p(Φ)
and EP./p(φ), with the following interpretation:

– E./p(Φ) denotes whether the fraction of objects that are in a (local) state
satisfying a general CSL state formula Φ fulfills ./ p;

– ES./p(Φ) denotes whether the fraction of objects that satisfy Φ in steady
state, fulfills ./ p;

– EP./p(φ) denotes whether the probability of a random object to satisfy path-
formula φ fulfills ./ p.

The formal definition of the MF-CSL semantics is as follows:

Definition 6. Semantics of MF-CSL. The satisfaction relation |= for MF-
CSL formulas and states x = (x1, x2, . . . , xK) at time t0 of the overall mean-field
model is defined by:

34



x |= tt ∀ x ∈ X,
x |= ¬Ψ iff x 6|= Ψ ,
x |= Ψ1 ∧ Ψ2 iff x |= Ψ1 ∧ x |= Ψ2,

x |= E./p(Φ) iff

(
K∑
j=1

xj · Ind(sj ,t0|=Φ)

)
./ p,

x |= ES./p(Φ) iff

(
K∑
j=1

xj · πZ(t)(sj , Sat(Φ, t0))

)
./ p,

x |= EP./p(φ) iff

(
K∑
j=1

xj · ProbZ(t)(sj , φ, t0)

)
./ p,

where Sat(Φ, t0) is a satisfaction set of the CSL formula Φ at t0, πZ(t)(s, Sat(Φ, t0))
is a steady-state probability, ProbZ(t)(s, φ, t0) is defined as in Definition 4; and
Ind(sj ,t0|=Φ) is an indicator function, which shows whether a local state sj ∈ S
satisfies formula Φ for a given overall state x at time t0:

Ind(sj ,t0|=Φ) =

{
1, if sj , t0 |= Φ,
0, if sj , t0 6|= Φ.

�

To check an MF-CSL formula at the global level (overall model), the local
CSL formula has to be checked first, and the results are then used at the global
level. The first step, namely CSL model-checking was explained in the previous
sections, and for the algorithms for MF-CSL model-checking we refer to [25].
In the following we provide the example, which first shows the expressivity of
the MF-CSL logic, and then provides the intuition behind the model-checking
procedure.

Example 3. Let us consider the virus spread example to illustrate the expressive
power of MF-CSL for mean-field models. In order to express the property that
not more than 5% of the computers in the system are infected the following
formula is used:

E≤0,05 infected.

The property ”The percentage of all computers, which happen to have a proba-
bility lower than 10% of going from not infected to active infected state within
3 hours, is greater than 40%“ is expressed as

E>0,4(P<0.1(not infected U [0,3] active)).

If one wants to ensure that the probability of a computer to be infected within
two hours from now is less than 50%, the following property has to hold:

EP<0.5(tt U [0,2] infected).

Note that in the formula above the current state of the individual is not taken
into account. If the percentage of not infected computers which will become

35



infected within next two hours is of interest the formula has to be changed
accordingly:

Ψ = EP<0.5(not infected U [0,2] infected).

If in a long run the system has to have a low probability (less then 2%) for a
random computer to be infected the formula:

ES<0.02 infected,

has to hold.
Let us consider the following MF-CSL formula:

Ψ = EP<0.3(not infected U [0,1] infected).

To check this formula against the occupancy vector x(0) = (0.8, 0.15, 0.05) we
first have to check the CSL formula φ = (not infected U [0,1] infected), then we
have to find the expected probability for the whole formula Ψ to hold according
to the semantics of the MF-CSL, and, finally, compare it with the treashhold
p = 0.3.

The probabilities ProbZ(t)(s,not infected U [0,1] infected, 0) that the under-
lying CSL formula holds for initial condition x(0) = (0.8, 0.15, 0.05) was found
earlier in Section 5.5. It equals to 0.09, 0, and 0 for states s1, s2, and s3, respec-
tively.

According to Definition 6, the weighted sum of the entries of the occupancy
vector x(0) and the respective probabilities in the local model define the expected
probability EP(φ):
K∑
j=1

xj · ProbZ(t)(sj , φ, 0) = 0.8 · 0.09 + 0.15 · 0 + 0.05 · 0 = 0.072 < 0.3.

As one can see, the occupancy vector x(0) = (0.8, 0.15, 0.05) satisfies the MF-
CSL formula EP<0.3(not infected U [0,1] infected).

In this section we provided the insides for both fluid model-checking and MF-
CSL model-checking on the overall model. We showed how these two approaches
are related and what kind of properties can be expressed and checked using both
CSL and MF-CSL logics.

6 Conclusions

This paper illustrates several aspects of applying mean-field approximations for
efficient analysis of large scale stochastic models. The purpose is to provide a
self-contained, example-guided and accessible tutorial for researches that are
interested in the area of mean-field.

The main idea of mean-field is to provide an approximation for a large number
of interacting similar objects. In contrast to existing tutorials [9] this presentation
starts from the single agent model and than abstracts to a large number of these
objects using the mean-field, in addition, the single agent model within the whole
population an inhomogeneous CTMC.

36



This paper features two case study, one on the analysis of Botnets, where
indeed the distribution of objects is assumed to be uniform, and one on the
analysis of gossip to show how the location of objects can be taken into account
using spatial mean-field models.

The performance measures that are traditionally derived from such model
are mainly steady-state and transient state distributions. However, exploiting
the difference between the local object and the overall mean-field model allows
to apply model checking techniques to derive more complex measures of interest.
Section 5 repeats the main idea of fluid model checking, that can be used to check
the single agent model and hints at a new logic, called MF-CSL that can be used
to specify properties on the overall model. Note that we do not focus on all the
details of these techniques, but aim to show how they can be used to analyse
different aspects of the system.

Mean-field approximation cannot be considered as a ready solution to the
state-space explosion problem. Indeed, it is an approximation technique that
must be applied carefully [33] and it provides a satisfactory first approximation
of a system dynamics which requires, then, to be studied in further details to
obtain a more precise analysis, as discussed in Section 1. To support the user in
the correct application of these techniques, there are frameworks that allow for
systematic application of mean-field techniques [9,21,36].

While the use of mean-field models in computer science already started in
1980 [28], still several open problems remain. For example, mean-field results are
only reliable if the population is large enough, however it is still unclear whether
and if so how this can be judged from the model at hand. Another interesting
research topic would be to analyse the mean-field of models that include non-
determinism.

References

1. F. Baccelli, F. I. Karpelevich, M. Y. Kelbert, A. A. Puhalskii, A. N. Rybko, and
Y. M. Suhov. A mean-field limit for a class of queueing networks. Journal of
Statistical Physics, 66:803–825, 1992.

2. C. Baier, B.R. Haverkort, H. Hermanns, and J.P. Katoen. Model-checking algo-
rithms for continuous-time Markov chains. IEEE Trans. Softw. Eng., 29(7):524–
541, 2003.

3. M. Benäım and J.Y. Le Boudec. A class of mean field interaction models for
computer and communication systems. Perform. Eval., 65(11-12):823–838, 2008.

4. M. Benäım and J. W. Weibull. Deterministic approximation of stochastic evolution
in games. Econometrica, 71(3):pp. 873–903, 2003.

5. P. Billingsley. Probability and Measure. Wiley-Interscience, 3 edition, 1995.

6. A. Bobbio, M. Gribaudo, and M. Telek. Analysis of large scale interacting systems
by mean field method. In QEST, pages 215–224, 2008.

7. L. Bortolussi. Hybrid limits of continuous time Markov chains. In QEST, pages
3–12. IEEE Computer Society, 2011.

8. L. Bortolussi and J. Hillston. Fluid model checking. In CONCUR, volume 7454 of
LNCS, pages 333–347. Springer, 2012.

37



9. L. Bortolussi, J. Hillston, D. Latella, and M. Massink. Continuous approximation
of collective systems behaviour: A tutorial. Performance Evaluation, 70(5):317 –
349, 2013.

10. Cabspotting. http://stamen.com/clients/cabspotting.
11. A. Chaintreau, J.Y. Le Boudec, and N. Ristanovic. The age of gossip: spatial mean

field regime. In SIGMETRICS/Performance, pages 109–120. ACM, 2009.
12. F. Ciocchetta and J. Hillston. Bio-pepa: A framework for the modelling and anal-

ysis of biological systems. Theoretical Computer Science, 410(33-34):3065–3084,
2009.

13. R.W.R. Darling and J.R. Norris. Differential equation approximations for Markov
chains. Probability Surveys, 5:37–79, 2008.

14. D.D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J.M. Doyle, W.H.
Sanders, and P. G. Webster. The Mobius framework and its implementation.
IEEE Transactions on Software Engineering, 28(10):956–969, 2002.

15. N. Gast and B. Gaujal. A mean field model of work stealing in large-scale systems.
In SIGMETRICS, pages 13–24. ACM, 2010.

16. C.S. Gillespie. Moment closure approximations for mass-action models. IET Sys-
tems Biology, 3:52–58, 2009.

17. D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem., 81(25):2340–2361, 1977.

18. R. Hayden, A. Stefanek, and J.T. Bradley. Fluid computation of passage time
distributions in large Markov models. Theoretical Computer Science, 413(1):106–
141, 2012.

19. R.A. Hayden and J.T. Bradley. A fluid analysis framework for a markovian process
algebra. Theoretical Computer Science, 411(22-24):2260–2297, 2010.

20. J. Hillston. A compositional approach to performance modelling. Cambridge Uni-
versity Press, 1996.

21. J. Hillston. Fluid flow approximation of pepa models. In QEST, pages 33–43.
IEEE Computer Society, 2005.

22. J. Hillston, M. Tribastone, and S. Gilmore. Stochastic process algebras: From
individuals to populations. The Computer Journal, 2011.

23. L.P. Kadanoff. More is the Same; Phase Transitions and Mean Field Theories.
Journal of Statistical Physics, 137:777–797, December 2009.

24. A. Kleczkowski and B.T. Grenfell. Mean-field-type equations for spread of epi-
demics: the small world model. Physica A: Statistical Mechanics and its Applica-
tions, 274(12):355 – 360, 1999.

25. A. Kolesnichenko, P.T. de Boer, A.K.I. Remke, and B.R. Haverkort. A logic for
model-checking mean-field models. In DSN/PDF, pages 1–12. IEEE Computer
Society, 2013.

26. A. Kolesnichenko, A.K.I. Remke, P.T. de Boer, and B.R. Haverkort. Comparison
of the mean-field approach and simulation in a peer-to-peer botnet case study. In
EPEW, volume 6977 of LNCS, pages 133–147. Springer, 2011.

27. T.G. Kurtz. Solutions of ordinary differential equations as limits of pure jump
Markov processes. Journal of Applied Probability, 7(1):49–58, 1970.

28. T.G. Kurtz. Approximation of population processes, volume 36. Society for Indus-
trial Mathematics, 1981.

29. D. Latella, M. Loreti, and M. Massink. On-the-fly Fast Mean-Field Model-
Checking: Extended Version. Technical report, 2013.

30. J.Y. Le Boudec, D. McDonald, and J. Mundinger. A generic mean field convergence
result for systems of interacting objects. In QEST, pages 3–18. IEEE Computer
Society, 2007.

38



31. W.D. McComb. Renormalization Methods: A Guide For Beginners. OUP Oxford,
2004.

32. M. Mitzenmacher. The power of two choices in randomized load balancing. IEEE
Trans. Parallel Distrib. Syst., 12(10):1094–1104, October 2001.

33. A. Pourranjbar, J. Hillston, and L. Bortolussi. Dont Just Go with the Flow:
Cautionary Tales of Fluid Flow Approximation. In Computer Performance Engi-
neering, volume 7587 of LNCS, pages 156–171. Springer, 2013.

34. M. Silva and L. Recalde. On fluidification of petri nets: from discrete to hybrid
and continuous models. Annual Reviews in Control, 28(2):253 – 266, 2004.

35. M. Tribastone. Relating layered queueing networks and process algebra models.
In WOSP/SIPEW, pages 183–194, 2010.

36. M. Tribastone, S. Gilmore, and J. Hillston. Scalable differential analysis of process
algebra models. IEEE Trans. Software Eng., 38(1):205–219, 2012.

37. N.G. Van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland
Personal Library. Elsevier Science, 2011.

38. E. van Ruitenbeek and W.H. Sanders. Modeling peer-to-peer botnets. In QEST,
pages 307–316. IEEE CS Press, 2008.

39. Wolfram Research, Inc. Mathematica tutorial. http://reference.wolfram.com/

mathematica/tutorial/IntroductionToManipulate.html, 2010.

39


