
Automated Rare Event Simulation

for Stochastic Petri Nets

Daniël Reijsbergen, Pieter-Tjerk de Boer,
Werner Scheinhardt, and Boudewijn Haverkort

Center for Telematics & Information Technology,
University of Twente, Enschede, The Netherlands

Abstract. We introduce an automated approach for applying rare event
simulation to stochastic Petri net (SPN) models of highly reliable sys-
tems. Rare event simulation can be much faster than standard simulation
because it is able to exploit information about the typical behaviour
of the system. Previously, such information came from heuristics, hu-
man insight, or analysis on the full state space. We present a formal
algorithm that obtains the required information from the high-level SPN-
description, without generating the full state space. Essentially, our algo-
rithm reduces the state space of the model into a (much smaller) graph in
which each node represents a set of states for which the most likely path
to failure has the same form. We empirically demonstrate the efficiency
of the method with two case studies.

1 Introduction

The first step towards the analysis of a highly dependable system is its specifica-
tion as a state transition system. When the behaviour of the system is stochastic,
a common model is the (discrete- or continuous-time) Markov chain. The state
space of the Markov chain can be very large (even infinite), but the chain of-
ten has enough structure to allow for implicit specification using a high-level
description language. Classical examples of such languages are stochastic Petri
nets (SPNs) [1], and stochastic activity networks [24].

Given an SPN, one specifies a measure for the performance of the highly de-
pendable system in terms of its stochastic properties. The measure that we focus
on in this paper is the probability that one reaches a certain uncommon set of
states (the goal set) before reaching a more typical set (the taboo set). This prob-
ability can be interesting by itself, but is particularly interesting as it appears
in expressions for, e.g., the Mean Time To Failure, the time-bounded unreliabil-
ity and the steady-state unavailability. Numerical methods for computing this
probability are well-established, but since they operate mostly on the complete
state space, which is often very large, they can be computationally infeasible (an
issue commonly referred to as the state space explosion problem).

A remedy is then to use stochastic (discrete-event) simulation [16], i.e., repeat-
edly generating random executions of the system model and using the average
behaviour observed in the executions to obtain an estimate of the probability of

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 372–388, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Automated Rare Event Simulation for Stochastic Petri Nets 373

interest. Discrete-event simulation can be carried out on the level of the SPN and
only requires that, overall, the current state in the system is stored instead of
the entire state space. A common problem is that when the goal set is rare (like
failure states in a highly reliable system) one needs an infeasibly large number
of executions to obtain an accurate estimate.

In order to reduce the number of executions needed, several efficient sim-
ulation methods have been proposed in the past few decades. They can be
largely divided into two main categories: importance sampling methods [10],
and RESTART and multilevel splitting [8,27] methods. Both can use knowledge
of the typical paths toward or the distance to the goal set to their advantage. Sev-
eral techniques have been implemented in the past two decades [4,12,21,26,28],
but all of these rely on user input or the adequacy of heuristics in order to
perform well.

In this paper we show that the required information can be obtained in an
automated way from the SPN and the description of the goal and taboo sets.
As such, we present a formal algorithm that achieves this. It uses the structure
of the SPN to divide the implied state space into zones, in each of which the
distance to the goal set can be expressed using the same distance function. In
this way we can find the overall distance function, which can then be used in an
efficient simulation procedure. We demonstrate the potential gain of the method,
both for a simple example (which is also used as a running example throughout
the paper), and a more demanding model of a multicomponent system with
interdependent component types.

The structure of the rest of this paper is as follows: in Section 2, we explain the
position of this paper in the context of the earlier scientific literature. In Section 3
we discuss the exact definition of an SPN that we will use throughout this paper,
and explain the foundations of (rare event) simulation. The core algorithm that
determines the distance function in an automated way is the topic of Section 4.
Section 5 contains a simulation study involving the simple model and a more
realistic model. In Section 6, we discuss a few challenges associated with the new
method and ways to overcome them, before we conclude the paper.

2 Context within the Literature

One way to obtain knowledge about the way the system progresses toward the
goal set is to divide the transitions in the SPN into failure and repair transitions
that respectively take the system towards or away from the goal set. One can
then apply failure biasing [25]. This has been implemented in, among others,
SAVE (see [4]) and in UltraSAN [21], the predecessor to the tool Möbius [6].

One variation of failure biasing that is especially noteworthy in the context
of this paper is distance failure biasing [5]. It is based on a notion of distance
similar to the one we introduce in Section 3. However, the technique presented
in [5] can only be applied to a very narrow class of models (namely models with
independent component types) and the gains compared to failure biasing may
not justify the numerical effort of the minimal cut algorithm that is used (see
also the discussion in [20]).

374 D. Reijsbergen et al.

Another technique is to split the simulation effort into two different stages:
one to obtain information about the typical behaviour to the rare set and one
to use this knowledge in an importance sampling scheme. This idea forms the
basis of the cross-entropy method for importance sampling [23] [11] and Kelling’s
framework for RESTART in SPN [14]. The cross entropy method has recently
been implemented in the PLASMA-platform [12].

For RESTART and splitting, one implicitly divides the state space of the
model in several level sets. Some examples of how to determine these level sets are
to let the user specify them by hand [18,26], or to use a two-step approach similar
to the one underlying the cross-entropy method [14]. The splitting framework
has been implemented in the Stochastic Petri Net Package [26] and the tool
TimeNet [28]. The methods based on this principle are largely heuristic in nature.

3 Model and Preliminaries

The outline of this section is as follows. In Section 3.1, we describe the type of
Petri nets we consider throughout the paper. In Section 3.2, we illustrate this
with an example that we use throughout this paper. In Section 3.3, we discuss
the performance property of interest, and we discuss simulation in Section 3.4.

3.1 Discrete-Time Stochastic Petri Nets

We assume that the reader is familiar with the general concept of a Petri net
(if not, see e.g. [19]). We use Multi-Guarded Petri Nets as in [13], although we
extend the net with marking-dependent firing rates for the transitions. We define
a Petri net to be (P, T, Pre, Post,G), where

– P = {1, 2, . . . , |P |} denotes the set of places,
– T = {t1, . . . , t|T |} denotes the set of transitions,
– Pre : P × T → N and Post : P × T → N are the pre- and post - incidence

functions.1

– G denotes the set of guards (more details are given below).

We are interested in the (embedded) discrete-time behaviour of the Petri net;
let Xi(n) be the number of tokens in place i after the n-th time a transition is
fired, n ∈ N. Let X(n) = (X1(n), . . . , X|P |(n))T be the marking (or state) of

the net at time n. Let X = N
|P | be the set of all possible markings; then we let

transition ti have exponential rate λi(x) with x ∈ X . Importantly, although we
allow the rates λi to depend on the marking x we assume that these rates are
functions of ε (see below) and that numbers ri exist such that for all x ∈ X ,
λi(x) = Θ(εri), i.e.,

0 < lim
ε↓0

λi(x)

εri
< ∞

1 We use N = {0, 1, 2, . . .}.

Automated Rare Event Simulation for Stochastic Petri Nets 375

The rate λi(x(n)) determines the relative likelihood of the transition to fire at
step n. The number ε is the so-called rarity parameter, which is typically a small
number that signifies how rare the event of interest is.

When transition t fires, the marking changes as follows: Pre(p, t) tokens are
removed from place p while Post(p′, t) tokens are added to place p′. A transition
cannot fire if this would result in a negative number of tokens in a place, nor can
it fire when one of its guards is not enabled (as discussed below). The guards
can be described in terms of constraints, a concept that we will use often in
Section 4. A constraint c = (α, β, ��) is an element of Z|P | × Z × {≤,≥}, and
we say that marking x satisfies constraint c if αTx �� β. A guard g is then a
4-tuple (p, t, β, ��) that imposes upon a transition t the necessary condition that
it can only fire in x if the number of tokens in place p satisfies the inequality
xp(·) �� β. Let

1i(x) =

{
1 if ∀(p, ti, β, ��) ∈ G : xp(·) �� β,
0 otherwise,

(1)

If 1i(x(n)) = 1, we say that transition ti is enabled at time n. If there are
no guards g ∈ G such that g = (·, t, ·, ·) then the transition t is always en-
abled. Let the total incidence vector ui = (ui1, . . . , ui|P |) of transition ti be
the vector that describes the effect of firing ti on the marking. It is defined by
uij = Post(j, i)− Pre(j, i). Then the probability measure governing the marking
process X(n) is uniquely characterised by

P(x(n) → x(n+ 1)) = P (X(n+ 1) = x(n+ 1) |X(n) = x(n))

=

∑
i∈I λi(x(n))1i(x(n))∑|T |
j=1 λj(x(n))1j(x(n))

,
(2)

where I = {i ∈ N : ti ∈ T, x(n+ 1) = x(n) + ui}.

3.2 Running Example

The running example that we use throughout this paper is a reliability model
equivalent to a two-node M/M/1 tandem queue. It can be seen as a single
component with an infinite number of hot spares; when a component or a spare
breaks down, two repair phases have to be completed consecutively. Component
and spares fail according to a Poisson process with rate λ = Θ(ε2). The times
between first phase repairs are exponentially distributed with rate μ = Θ(ε).
The times between second phase repairs are exponentially distributed with rate
ν = Θ(1). We assume that none of the rates depend on the marking, and that
both queues will be empty most of the time. This system can be modelled using
an SPN as depicted in Figure 1. The typical rare event that we are interested in
is having n or more components awaiting the second phase of repair before all
components have been repaired, starting from the first break-down of the main
component. This rare event can be cast in the more general framework outlined
in Section 3.3.

376 D. Reijsbergen et al.

λ μ ν

1
1

1
1

≥ 1 ≥ 1
place

transition

token

pre-incidence

post-incidence

guard arcs

Fig. 1. Tandem queue, depicted in the form of a stochastic Petri net

3.3 Problem Setting

From now on, we will call elements of the taboo set a-markings and elements of
the goal set b-markings. We then seek to estimate the probability of reaching a
b-marking before reaching an a-marking starting from an initial marking x0. Let

Ga = {g1a, . . . , g|Ga|
a } ⊂ P × (N ∪ 0)× {≤,≥} be the set of a-constraints, and let

1g(x) =

{
1 if g = (p, c, ��) and xp �� c,
0 otherwise.

for all x ∈ X . Let X ⊂ X be a a-based hyperrectangle if ∀g ∈ Ga: ∀x ∈ X :
1g(x) ≡ c(g,X), where c(g,X) ∈ {0, 1}∀g ∈ Ga. Then let the taboo set Xa be
any union of a-based hyperrectangles. The goal set Xb are defined similarly for
Gb. If a marking is both an a- and b-marking, we will consider it to be a b-marking
only. In LTL-notation [3], the event of interest can be written as ¬aU b; in this
paper we will denote the event of interest by Ψx0

= {(ω0, . . . ,ωm) : m ∈ N :
ω0 = x0,ωm ∈ Xb, ωk /∈ Xa ∀k = 0, . . . ,m − 1} in order to emphasise the de-
pendence on the initial state, and denote its probability of interest as P(Ψx0).

3.4 Efficient Simulation

We will estimate the probability P(Ψx0
) using a series of N simulation runs, for

some constant N ∈ N. In each run, we initialise the marking to be x0. We then
iteratively fire transitions using the probability measure P as defined in (2) until
we reach an a- or b-marking. When we terminate, we can set wi = 1 if the event
Ψx0

occurred on run i (i.e. if we ended in Xb) and to wi = 0 otherwise, and then
obtain the standard Monte Carlo (MC) estimator p̂ for P(Ψx0) as

p̂ P =
1

N

N∑
i=1

wi.

A confidence interval for p̂ can be constructed for large N using the Central
Limit Theorem [16].

Our focus will be the case where P(Ψx0) is small, as this is typically the case
in a highly reliable system setting. In this situation, N needs to be very large
to obtain a reasonable estimate for p̂. To remedy this, we apply importance
sampling.2 Instead of sampling directly from P, we use a different probability

2 We note here that the distance function d could also be used to construct level sets
for RESTART/splitting.

Automated Rare Event Simulation for Stochastic Petri Nets 377

measure Q; after sampling the runs (xi(0),xi(1), . . . ,xi(ni)), i = 1, . . . , N , we
use the importance sampling (IS) estimator

p̂Q =
1

N

N∑
i=1

wi

ni−1∏
j=0

P(xi(j) → xi(j + 1))

Q(xi(j) → xi(j + 1))
. (3)

If a suitable new measure Q is chosen, the number of runs required to obtain a
reasonable estimate can be reduced dramatically. The choice of the new measure
Q is non-trivial, however. Typically, good simulation measures Q increase the
likelihood of Ψx0

occurring, albeit not too strongly. In order to make Ψx0
more

likely, Q must in some way push the marking in the direction of the goal set and
away from the taboo set. The first challenge that arises is then to determine how
far a marking is from the goal set, so that the simulation Q can increase the
likelihood of moving to a marking with lower distance. For this paper, we define
the distance function d(x) as

d(x) = min{r : ∃ω ∈ Ψx s.t. P(ω) = Θ(εr)}, (4)

where we use the fact that, in essence, the event Ψx is simply a set of sequences of
markings. In words, d(x) is the minimal distance or cost in terms of the ε-order
of the path from x to the goal set. If the set over which the minimum is taken
is empty, we let d(x) = ∞. Given d(x), we use the following measure Q:

Q(x(j) → x(j + 1)) =
P(x(j) → x(j + 1))εd(x(j+1))∑

x′ P(x(j) → x′)εd(x′) . (5)

This estimator can be proven to have so-called bounded relative error under
some assumptions (more on this in Section 6.2). The remaining problem is then
to find d(x) for each possible marking x. This will be the topic of Section 4.

4 An Algorithm for Determining the Distance Function

In this section we discuss an automated algorithm for finding the function d as
defined in (4). The algorithm is executed during a pre-processing phase, before
the actual simulation phase starts. Since d is the solution to a shortest path
problem in a weighted graph,3 we could apply Dijkstra’s algorithm to find d
explicitly for each state (i.e. marking) in the state space X . However, since
Dijkstra’s algorithm uses the complete state space, it is not better than standard
numerical algorithms. Hence, our aim will be to partition X into zones such that
for each zone, all the states in this zone have a similar cost function d in a sense
to be detailed below. Formally, let a zone z be a set of constraints {cz1, . . . , cz|z|},
as defined in Section 3.1. Let the zone set Xz be the set of states that satisfy

3 Namely one which corresponds to the underlying Markov chain and with the costs of
the transitions in terms of ε-orders as weights. For another application of Dijkstra’s
algorithm to finding the most likely paths in a Markov chain, see [9].

378 D. Reijsbergen et al.

all constraints in z. The idea is then to find a set of zones Z such that the sets
Xz, z ∈ Z, form a partition of X and that we can find functions dz(x) that give
an easy expression for the distance to Xb of all states x ∈ z.

Particularly, we aim to construct a zone graph; a graph where the nodes
correspond to the zones of Z and in which there is an arc from zones z to z′ if
for each state x ∈ Xz we can reach some state in z′ through repeated firing of a
single transition. We will call such a repeated firing a stutter step, as in, e.g., [2].
Furthermore, we want the shortest path from any state in z to Xb to correspond
to the same path through the zone graph. Finally, we want the cost in terms of
ε-orders of firing the transition of the stutter step to be the same in all states
in the same zone set. If all these conditions hold, then for each zone z we can
find a function dz that is the same affine function for all x ∈ Xz (a function f
is affine if f(x) = αTx + β for some α ∈ R

|P | and β ∈ R). In this section, we
will clarify how this can be done.

To make the preceding concrete, consider the running example. The first two
zone sets that we create are Xa and Xb; in particular, Xb consists of the states
in which x2 ≥ n; we assume n ≥ 3. In the state (1, n− 1), t2 needs to fire once
to reach Xb, and the distance of this step is 1 (because t2 needs to ‘win the race’
from t3, which fires ε−1 times faster). In (2, n − 2), we need to fire t2 twice,
giving a total distance of 2. The same holds for all states (x, n − x), x ≥ 1; we
fire t2 x times and the total distance is x. It then makes sense to group all these
states together in a zone set. However, for (n, 0), we need to fire t2 n times,
but the total cost is n − 1 as t2 does not need to compete against t3 in the first
step. Hence, (n, 0) and (n − 1, 1) will not be in the same zone. The complete
set of zones, with their distance functions and shortest paths to the taboo set, is
illustrated in Figure 2.

Algorithm 1. Main loop.

1: initZoneGraph()
2: while S �= ∅ do
3: s = (zo, ti, z

d) := some element from S
4: possibilitySplit(s)
5: if dzo �= unassigned then costSplit(s)
6: update(s); S := S\s
7: end while

In Section 4.1, we will outline
the main algorithm. As in the pre-
vious example, an initial parti-
tioning is always necessary, as we
will discuss in Section 4.2. How-
ever, this initialisation alone is
not sufficient. It may be that it is
not possible for all markings in an
initial zone to reach another zone

by the same stutter step; this is the topic of Section 4.3. Also, there may exist
markings within a single zone for which the shortest path follows a different
sequence of stutter steps; more on that in Section 4.4.

4.1 Main Loop

Let a stutter step s be a triple (zo, ti, z
d), where zo is the source/origin zone,

zd is the destination zone and ti is the transition that is repeatedly fired. The
algorithm works as follows: we keep a list S of stutter steps that could be part
of shortest paths. After initialising the list, we repeatedly take stutter steps s
out of S and check whether for all markings in the origin zone of s it holds that

Automated Rare Event Simulation for Stochastic Petri Nets 379

1) we can indeed reach the destination zone of s using only the given stutter
step, and

2) the new distance function indeed gives shorter distance than what was known
before.

If not, we split up the source zone and (potentially) add new stutter steps to S.
Finally, we discard s, pick a new stutter step, and repeat until S is empty. The
precise way in which this is done is given by Algorithm 1.

z5

...

n−1

n

1

0

x2 ↑

...

...

0 1 n. . . → x1.

d(x) = 0

d
=
0

z31

d(x) = n− x2

z
30

d(x) =
n−

x
2

d(x) = 2n− 1− x1

d(x) = 3n− 3x2 − 2x1

z321

d(x) = 2n− 1− x1

λ = Θ(ε2)

ν = Θ(ε0)

μ = Θ(ε1)

d = n−1
d
(x

)
=

3n−
3x

2
d
(x

)=
2
n

z320

Fig. 2. The final result of a call to the algorithm, excluding lines 2 and 3 of
initZoneGraph()

4.2 Initialisation Phase (initZoneGraph())

During the initialisation phase, the state space is divided into zones such that

a) from all states in the same zone set the same transitions are enabled, and
b) all states in a zone set are either in Xa, all in Xb or all in neither.

Condition a) implies that the cost of firing a transition is always the same in a
zone (because the cost depends on which other transitions can be fired). During
the initialisation we can already assign distance ∞ to the states in Xa and 0 to
the states in Xb. Furthermore, we initialise the stutter step list S during this
phase; its initial elements will be those stutter steps that directly lead into Xb.
The precise way in which all this is done is given in Algorithm 2.

Lines 2 and 3 deal with a technical obstacle; when for a stutter step (zo, ti, z
d)

it holds that zo = zd, line 1 of possibilitySplit()will fail. However, we cannot

380 D. Reijsbergen et al.

exclude these ‘self-loops’ in the zone graph; there exist cases in which the shortest
path moves to the edge of an initial zone without crossing it. To remedy this,
we also create ‘edges’ around the initial zones of line 1.

In line 4 of Algorithm 2, we use the negation ¬c of a constraint c. If c =
(α, β,≤), then its negation is given by ¬c = (α, β + 1,≥), and if c = (α, β,≥)
then ¬c = (α, β − 1,≤). If all elements of α are at least 1, then the resulting
zone sets X{c} and X{¬c} are each other’s complements with respect to X .

Algorithm 2. initZoneGraph()

1: C′ := {c = (p, β, ��) : (p, ·, β, ��) ∈ G ∨ c ∈ Ga ∪Gb}
2: umax := maxi=1,...,|T | maxk=1,...,|P | |uik|
3: C := {c = (p, β, ��) : (p, β + k, ��) ∈ C′, k ∈ Z, |k| ≤ umax}
4: Z := {z ∈ Z : ∀c ∈ C : c ∈ z ∨ ¬c ∈ z,Xz �= ∅} � Z = set of all zones
5: V := {(zo, ti, zd) : ∃x ∈ X : x ∈ Xzo ,x+ ui ∈ Xzd}
6: Za := {z ∈ Z : ∀x ∈ Xz : x ∈ Xa}
7: ∀z ∈ Za : dz := ∞
8: Zb := {z ∈ Z : ∀x ∈ Xz : x ∈ Xb}
9: ∀z ∈ Zb : dz = 0
10: S := {v ∈ V : v = (z, ·, z′), z /∈ Za, z

′ ∈ Zb}

For the running example as displayed in Figure 1, the transition structure
first gives us four initial zones: z0 where only t1 can fire, z1 for t1 and t2, z2
for t1 and t3, and z3 for all three. The zone structure resulting from a call to
initZoneGraph() is displayed in Figure 3(a). In fact, for the running example
the algorithm would also work well if we would not include margins, i.e. omit
lines 2 and 3, resulting in Figure 3(b). For the sake of clarity, we will continue
based on the latter, even though our implementation does include the margins.
We get two additional zones, z4 and z5, to distinguish Xb. S is initialised with
all stutter steps leading into these two zones; the only stutter steps satisfying this
requirement are the two t2-stutter steps going from z3 into z4 and z5.

4.3 Divide Zones According to Possibility of Firing
(possibilitySplit())

To determine the cost of a stutter step s = (zo, ti, z
d), we need to determine

the number of times y that ti must fire to take a marking in zo to zd. This is
done by findNumberOfTransitions(). The main idea is to find a function y(x)
(written as y for brevity) such that after firing ti y−1 times, the marking is still
in zo, and after firing one more time the marking is in zd. In order to find this
number, we choose any constraint c1 from zo and c2 from zd that exclude each
other, i.e., Xzo ∩ Xzd = ∅, and chooses y to be the smallest number of firings to
enable c2. Since all constraints are non-strict inequalities, y is chosen such that
x+ yui exactly satisfies the constraint. The remaining constraints in zo and zd

then impose restrictions on x that must be satisfied in order for this stutter step
to be carried out.

Automated Rare Event Simulation for Stochastic Petri Nets 381

z0 z11 z10 z12

z21
z32

z30 z31

z20

z4 z5

(c)

z0 z1

z3z2

z4 z5

(a)

z0 z1

z32

z30 z31z2

z4 z5

(b)

(d)

Fig. 3. Figure (a) illustrates the result of a call to initZoneGraph() when lines 2 and 3
are included (we only show the margins around the axes). Figures (b-d) depict the zones
after several iterations of the algorithm, without lines 2 and 3 of initZoneGraph().

Algorithm 3. possibilitySplit().

Require: stutter step s
1: (c1, c2) := some two constraints such that

1) c1 ∈ zo, 2) c2 ∈ zd and 3) X{c1} ∩ X{c2} = ∅
2: y := findNumberOfTransitions(c2,ui)
3: C1 := {c : c = a(x+ (y − 1)ui) �� b ∧ ax �� b ∈ zo\c1}
4: C2 :=

{
c : c = a(x+ yui) �� b ∧ ax �� b ∈ zd\c2

}

5: C := C1 ∪ C2

6: Znew := {z : ∀c ∈ C : c ∈ z ∨ ¬c ∈ z ∧ ∀c ∈ zo : c ∈ z ∧ ∃x ∈ X : x ∈ Xz}
7: zn := z ∈ Znew : ∀c ∈ C : c ∈ z
8: dzn(x) := dzd(x+ yui) + yκi(x) � where κi(x) =

1i(x)ri
∑|T |

j=1 1j(x)rj

382 D. Reijsbergen et al.

Assume that we happen to first consider the μ-stutter step from z3 to z4. After
the initialisation phase, there are two pairs of constraints from z3 and z4 that
exclude each other; the pair x1 ≥ 1 and x1 ≤ 0, and the pair x2 ≤ n − 1 and
x2 ≥ n. If we consider the first pair, we end up with y = x1. The two constraints
that we end up through lines 4 and 5 of Algorithm 3 are x1 + x2 − 1 ≤ n − 1
and x1 + x2 ≥ n. If we would consider the second pair, we would have found
y = n− x2, leading to the same restrictions on x1 + x2.

Given the set C of constraints that must be satisfied for the stutter step s to
be taken, the zone zo may need to be subdivided such that one zone remains in
which the stutter step s is always possible. This is done in line 6 of Algorithm 3;
all zones that consist of combinations of constraints in C or their negations
are considered. If such a zone is non-empty (which is checked using an Integer
Linear Programming-solver, although this can be computationally expensive), it
is added to Znew, the set of new zones. The zone zn is the subzone (i.e. a subset
in terms of constraints) of zo for which s was possible.

Since we obtained the additional constraints x1 + x2 ≤ n and x1 + x2 ≥ n for
the running example, we obtain three new non-empty zones; z30, z31 and z32,
all depicted in Figure 3(c). Of those, z30 has cost dz30(x) = x1 or, equivalently,
dz30(x) = n − x2, depending on which of the two constraint pairs was consid-
ered. The other two zones do not have any cost assigned yet. When the function
update() in Algorithm 1 is called, the stutter steps from z1, z2, z31 and z32 to
z30 are added to S. Furthermore, the stutter step from z3 to z5 is removed, as
z3 no longer exists. It is replaced by the μ-stutter step from z31 to z5.

Algorithm 4. costSplit()

Require: step s
1: cn := dzn(x)− dzd(x) < 0
2: z′ := zn ∪ {cn}
3: z′′ := zn ∪ {¬cn}
4: dz′(x) := dzn(x)
5: dz′′(x) := dzd(x)
6: if ∃x ∈ X : x ∈ Xz′ then
7: if �x ∈ X : x ∈ Xz′′ then
8: Znew := Znew\zn ∪ z′

9: else
10: Znew := Znew\zn ∪ z′ ∪ z′′

11: end if
12: end if

Upon further calls to possibilitySplit(),
the zone z1 is subdivided into three
new zones and z2 into two new zones,
and distance functions are assigned to
all. This is displayed in Figure 3(d).
Furthermore, zones z31 and z32 have
distance assigned to them. In particu-
lar, we mention the distance function
of z32: dz32(x) = 3n − 2x1 − 3x2. In
the next section, z32is split into two
zones, only one of which retains this
distance function.

4.4 Divide Zones According to
Costs (costSplit())

When the algorithm as described so far is executed, it will consecutively consider
zones to which no distance function has yet been assigned yet, split them and
assign costs to them. However, when a zone is considered that already has a
distance function assigned to it, the new path may be the shortest only for a
subset of the zone. We need costSplit() for these situations.

Say that, after running Algorithm 3, one has found a subzone zn of zo

for which the stutter step under consideration can be applied, and for which

Automated Rare Event Simulation for Stochastic Petri Nets 383

dzn is the distance function. If dzo has already been assigned, then the stut-
ter step under consideration is only interesting for those markings x for which
dzn(x) < dzo(x). This constraint is exactly the one constructed in line 1. The
zone zn is then divided into two new zones: z′, for which this constraint holds,
and z′′, for which it does not. If z′ is empty, the stutter step under consideration
has been irrelevant, and the list S should not be updated. If only z′′ is empty,
then z′ fully replaces zn. However, if both z′ and z′′ are non-empty, the two of
them are added to Znew instead of zn.

For the running example, the distance function dz32(x) = 3n− 2x0 − 3x1 had
already been assigned to the zone z32 as depicted in Figure 3(d). Assume that
the next stutter step to be considered is the t3-stutter step from z32 to z11. Since
the distance function in z11 is 2n − 1 − x1, and the cost of firing t3 in z32 is
zero, the new zones z320 and z321 are separated by the line 3x2 ≤ n− x1. In the
next and final iteration z21 is further divided into the zones z210 and z211 by
possibilitySplit().

5 Empirical Results

We present numerical results obtained using the algorithm to find d in Sec-
tion 5.1, while in Section 5.2 we use d to apply simulation.

Case Description. We use two case studies. The first is the running example
from Section 3.2, where the system is failed if x2 > n, n ∈ N. The second is a more
realistic multicomponent system with interdependent component types, taken
from [22]. For the latter we have six component types, with ni components of type
i and (n1, . . . , n6) = (n+2, n+1, n+3, n, n+4, n+2). In the benchmark setting,
n = 3. If k components of type i have failed, the rate at which the next compo-
nent of type i fails is (ni−k)λiε, where (λ1, . . . , λ6) = (2.5, 1, 5, 3, 1, 5). There is a
single repairman who repairs components following a preemptive priority repair
strategy, where components of type i have priority over components of type j if
i < j. The repair rate for type i is always μi, (μ1, . . . , μ6) = (1, 1.5, 1, 2, 1, 1.5).
The system is said to have failed when all components of any type are down.
We estimate the probability that, after the first component failure (drawn ran-
domly), the system fails before all components are repaired.

5.1 Results of the Distance Finding Algorithm

A summary of the results of our algorithm is displayed in Table 1. The number
of initial constraints is the main factor that determines the runtime of the algo-
rithm. For the initial zones, we distinguish between the (a∪b)- and ¬(a∪b)-zones
because only the latter have an impact on the runtime of the rest of the algo-
rithm. A few things to mention: the number of zones may depend on n because
for small n some zones will be empty, which are discarded. Also, the final number
of zones may depend on the way stutter steps are chosen from S in the main loop,
because if a zone is split by a stutter step that later turns out to be insignificant,

384 D. Reijsbergen et al.

Table 1. Results of the numerical analysis for the running example

Running Example Multicomponent System
n 3 10 3 5
initial constraints 5 5 18 18
initial zones 15 18 38880 46656
initial ¬(a ∪ b)-zones 8 11 3071 4095
final ¬(a ∪ b)-zones 14 27 3557 5477
iterations in main loop 57 114 26421 42189
markings in X ∞ ∞ 40320 241920
time to construct (sec) 1.77 1.78 41.38 194.79

these zones are not recombined by our implementation, so both the number of
zones and the number of iterations are implementation-dependent. For the mul-
ticomponent system, for small n the number of zones is almost equal to the size
of the state space. This is a (for this case study unnecessary) consequence of the
margins defined in lines 2 and 3 of initZoneGraph().

5.2 Simulation Results

The simulation results are summarised in Tables 2 and 3. In both tables, we
display the results for three simulation methods: standard Monte Carlo (MC),
importance sampling (IS) using Balanced Failure Biasing (BFB) and IS based
on our distance finding algorithm (Zone-IS). Under BFB, the total probability
of firing a failure transition is set to 1

2 , uniformly distributed over the individual
failure transitions (and similarly for the repairs — for more information, see
[25]). In our implementation, we only consider the ν-transition t3 to be a repair
transition. Next to the simulation results, we display numerical approximations
obtained using the model checking tool PRISM [15].

For the efficiency of the methods we look at the relative error (r. error) of
the estimates, defined as the ratio of the estimator’s standard deviation to the
estimate. A lower value generally means a better estimate; however, if a change of
measure is poorly suited for the system, IS may suffer from underestimation [7].
An example of this are the results for BFB for n = 10 and ε = 0.01 in Table 2. For
the sake of consistency with [22], we used 200 000 000 runs per MC-estimate and
10 000 000 runs per IS-estimate. In all cases Zone-IS outperforms BFB, except
for n = 5 in Table 3. The reason is that BFB needs a clear distinction between
failures and repairs to work well.

6 Discussion and Conclusions

6.1 Conclusions

We have presented a novel method to automatically construct a change of mea-
sure for speeding up the simulation of rare events in stochastic Petri nets. Our

Automated Rare Event Simulation for Stochastic Petri Nets 385

Table 2. Results of the simulation analysis for the running example

MC BFB Zone-IS PRISM
n ε p̂ r. error p̂ r. error p̂ r. error p̂

3

10−1 1.11·10−4 0.007 1.096·10−4 0.007 1.100·10−4 6.31·10−4 1.100·10−4

10−2 1.50·10−8 0.577 1.007·10−8 0.011 1.010·10−8 2.21·10−4 1.010·10−8

10−3 — — 1.026·10−12 0.011 1.001·10−12 7.16·10−5 1.001·10−12

10−4 — — 1.003·10−16 0.011 1.000·10−16 2.39·10−5 1.000·10−16

5
10−1 1.00·10−8 0.707 1.140·10−8 0.040 1.098·10−8 0.001 1.100·10−8

10−2 — — 9.843·10−17 0.083 1.010·10−16 5.09·10−4 1.010·10−16

10
10−1 — — 1.638·10−18 0.970 1.109·10−18 0.006 1.100·10−18

10−2 — — 3.144·10−42 0.865 1.017·10−36 0.003 1.010·10−36

Table 3. Results of the simulation analysis for the multicomponent system

MC BFB Zone-IS
n ε p̂ r. error p̂ r. error p̂ r. error

3
10−3 7.25·10−7 0.083 7.535·10−7 0.019 7.283·10−7 0.007
10−4 1.0·10−8 0.707 4.815·10−9 0.027 4.861·10−8 0.002

5
10−3 — — 1.155·10−10 0.123 4.368·10−11 0.288
10−4 — — 1.901·10−15 0.288 1.381·10−15 0.351

approach uniquely combines two characteristics: it uses a high-level description
of the model with much flexibility and expressivity (a Petri net) and it works
without generating the entire state-space.

The heart of our method is an algorithm which automatically partitions the
state-space into a collection of zones. Each zone comprises states in which the
same so-called change of measure is needed in the rare-event simulation scheme.
The zones are demarcated by a set of affine inequalities, thus avoiding enumera-
tion of all states. The number of zones in typical models does not need to increase
as the model’s size increases.

We have demonstrated that our algorithm works well in two examples. More
experimentation will be needed to fully understand its possibilities and limita-
tions and to optimise the implementation, and some extensions of the algorithm
may be needed to handle certain classes of models (see below).

6.2 Discussion

In order to mathematically prove that the method always performs well, it re-
mains to deal with three issues. The first is the correctness of the algorithm;
i.e., whether the returned distance function really satisfies the definition in (4).
The second is termination of the algorithm within finite time. The third is the
efficiency of the resulting importance sampling estimator. The first issue can be
dealt with using a suitable invariant statement. For the latter two, we give a
short discussion.

386 D. Reijsbergen et al.

Termination. If the state space is infinite, it is possible that the (current)
algorithm will not terminate. For example, if transition t1 takes the system
closer to the goal states and enables a transition t2 with a very high firing
rate, but firing the t2 disables itself and does not negate the firing of t1, then
a shortest path might alternate between firing t1 and t2. This may result in
the algorithm constructing an infinite number of zones. A possible solution is to
broaden the concept of a stutter step. If a shortest path alternates between a
tuple of transitions, the repeated firing of this tuple could be seen as a stutter
step in itself, and the sum of the incidence vectors of the individual transitions
as the net effect on the marking. Under such a restriction, the space of zones
could well be bounded; this is part of ongoing research.

Importance Sampling Efficiency. The importance sampling measure as de-
fined in (5) is inspired by the change of measure proposed in [17], where also the
notion of bounded relative error comes up. This notion says that as ε approaches
0, the ratio of the standard deviation of the estimator to the standard mean
remains bounded. This is desirable: since the accuracy of a simulation result is
directly linked to this relative error, this means that the time to reach some level
of accuracy never crosses a certain threshold value as ε becomes smaller. This
behaviour is observed in Table 2 of Section 5, so we believe that our method will
have bounded relative error, after a slight refinement.

The authors of [17] show that bounded relative error is guaranteed in their
setting under the assumption that the state space is finite and that no high-
probability cycles exist. Essentially, these assumptions imply that the number
of paths ω with P(ω) = Θ(εd(x)) is finite. If this does not hold, it may be that
P(Ψx) �= Θ(εd(x)). A possible remedy would then be to perform a loop-detection
algorithm on the initial graph returned by Algorithm 2 in order to detect the
high-probability cycles, and remove them. This is also part of ongoing research.

References

1. Ajmone Marsan, M., Balbo, G., Donatelli, S., Franceschinis, G., Conte, G.: Mod-
elling with generalized stochastic Petri nets. John Wiley & Sons, Inc. (1994)

2. Baier, C., D’Argenio, P., Groesser, M.: Partial order reduction for probabilistic
branching time. Electronic Notes in Theoretical Computer Science (2006)

3. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
4. Blum, A.M., Goyal, A., Heidelberger, P., Lavenberg, S.S., Nakayama, M.K.,

Shahabuddin, P.: Modeling and analysis of system dependability using the sys-
tem availability estimator. In: Twenty-Fourth International Symposium on Fault-
Tolerant Computing, pp. 137–141. IEEE (1994)

5. Carrasco, J.A.: Failure distance based simulation of repairable fault-tolerant
systems. In: Proceedings of the 5th International Conference on Modeling Tech-
niques and Tools for Computer Performance Evaluation, pp. 351–365 (1992)

6. Clark, G., Courtney, T., Daly, D., Deavours, D., Derisavi, S., Doyle, J.M., Sanders,
W.H., Webster, P.: The Möbius modeling tool. In: Proceedings of the 9th Interna-
tional Workshop on Petri Nets and Performance Models. IEEE (2001)

Automated Rare Event Simulation for Stochastic Petri Nets 387

7. Devetsikiotis, M., Townsend, J.K.: An algorithmic approach to the optimization
of importance sampling parameters in digital communication system simulation.
IEEE Transactions on Communications 41(10), 1464–1473 (1993)

8. Glasserman, P., Heidelberger, P., Shahabuddin, P., Zajic, T.: Multilevel splitting
for estimating rare event probabilities. Operations Research 47(4), 585–600 (1999)

9. Han, T., Katoen, J.-P.: Counterexamples in probabilistic model checking. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 72–86. Springer,
Heidelberg (2007)

10. Heidelberger, P.: Fast simulation of rare events in queueing and reliability models.
In: Donatiello, L., Nelson, R. (eds.) SIGMETRICS 1993 and Performance 1993.
LNCS, vol. 729, pp. 165–202. Springer, Heidelberg (1993)

11. Jegourel, C., Legay, A., Sedwards, S.: Cross-entropy optimisation of importance
sampling parameters for statistical model checking. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327–342. Springer, Heidelberg (2012)

12. Jegourel, C., Legay, A., Sedwards, S.: A platform for high performance statisti-
cal model checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012)

13. Júlvez, J.: Basic qualitative properties of Petri nets with multi-guarded transitions.
In: American Control Conference, ACC 2009. IEEE (2009)

14. Kelling, C.: A framework for rare event simulation of stochastic Petri nets us-
ing “RESTART”. In: Proceedings of the 28th Winter Simulation Conference, pp.
317–324. IEEE Computer Society (1996)

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)

16. Law, A., Kelton, W.: Simulation modeling and analysis. McGraw-Hill, New York
(1991)

17. L’Ecuyer, P., Tuffin, B.: Approximating zero-variance importance sampling in a
reliability setting. Annals of Operations Research 189(1), 277–297 (2011)

18. Miretskiy, D., Scheinhardt, W., Mandjes, M.: On efficiency of multilevel splitting.
Communications in Statistics – Simulation and Computation 41(6), 890–904 (2012)

19. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

20. Nicola, V., Shahabuddin, P., Nakayama, M.: Techniques for fast simulation of mod-
els of highly dependable systems. IEEE Transactions on Reliability 50(3), 246–264
(2001)

21. Obal, W., Sanders, W.: An environment for importance sampling based on stochas-
tic activity networks. In: Proceedings of the 13th Symposium on Reliable Dis-
tributed Systems, pp. 64–73. IEEE (1994)

22. Ridder, A.: Importance sampling simulations of Markovian reliability systems using
cross-entropy. Annals of Operations Research 134(1), 119–136 (2005)

23. Rubinstein, R., Kroese, D.: The cross-entropy method: a unified approach to com-
binatorial optimization, Monte-Carlo simulation and machine learning. Springer
(2004)

24. Sanders, W.H., Meyer, J.F.: Stochastic activity networks: Formal definitions and
concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) FMPA 2000. LNCS,
vol. 2090, pp. 315–343. Springer, Heidelberg (2001)

25. Shahabuddin, P.: Importance sampling for the simulation of highly reliable Marko-
vian systems. Management Science 40(3), 333–352 (1994)

388 D. Reijsbergen et al.

26. Tuffin, B., Trivedi, K.S.: Implementation of importance splitting techniques in
stochastic Petri net package. In: Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U.
(eds.) TOOLS 2000. LNCS, vol. 1786, pp. 216–229. Springer, Heidelberg (2000)

27. Villén-Altamirano, M., Villén-Altamirano, J.: RESTART: A method for accelerat-
ing rare event simulations. In: Queueing, Performance and Control in ATM, pp.
71–76. Elsevier Science Publishers (1991)

28. Zimmermann, A., Freiheit, J., German, R., Hommel, G.: Petri net modelling and
performability evaluation with TimeNET 3.0. In: Haverkort, B.R., Bohnenkamp,
H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 188–202. Springer,
Heidelberg (2000)

	Automated Rare Event Simulationfor Stochastic Petri Nets
	1Introduction
	2Context within the Literature
	3Model and Preliminaries
	3.1Discrete-Time Stochastic Petri Nets
	3.2Running Example
	3.3Problem Setting
	3.4Efficient Simulation

	4An Algorithm for Determining the Distance Function
	4.1Main Loop
	4.2Initialisation Phase (initZoneGraph())
	4.3Divide Zones According to Possibility of Firing (possibilitySplit())
	4.4Divide Zones According to Costs (costSplit())

	5Empirical Results
	5.1Results of the Distance Finding Algorithm
	5.2Simulation Results

	6Discussion and Conclusions
	6.1Conclusions
	6.2Discussion

	References

