

A. Ambler, S.B.Calo, and G. Kar (Eds.): DSOM 2000, LNCS 1960, pp. 230 - 242, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Using Message Reflection in a Management
Architecture for CORBA

Maarten Wegdam1,3, Dirk-Jaap Plas1, Aart van Halteren2,3, and Bart Nieuwenhuis2,3

1 Lucent Technologies - Bell Labs Twente, Capitool 5, 7521 PL Enschede, The Netherlands
{wegdam,dplas}@lucent.com

2 KPN Research, PO Box 96, 7500 AB Enschede, The Netherlands
{A.T.vanHalteren,L.J.M.Nieuwenhuis}@kpn.com

3 Faculty of Computer Science, University of Twente, Enschede, The Netherlands

Abstract. The availability of object middleware, such as CORBA, is rapidly
being accepted as a means for cost effective and fast development for a wide
range of distributed applications. Distributed applications that are built using
these technologies often comprise many objects and become more and more
complex. The deployment of such large distributed applications requires a
significant improvement of management methods and tools. In this paper, we
present a management architecture for object middleware based systems. We
use message reflection to extend the middleware layer with management
capabilities, i.e. we monitor the application by observing the messages
exchanged between the objects of the distributed application. We argue why
management should be transparent to the application developer and show that
message reflection supports this management transparency. We have compared
different mechanisms to implement message reflection in CORBA, and argue
why portable interceptors are the most suitable. Finally, we describe our
prototype and the lessons we learned.

1. Introduction

In order to keep a deployed system in an operational and usable state, capabilities for
the different areas of management have to be provided. These areas are fault
management, configuration management, accounting management, performance
management, and security management [9]. Object middleware technology does not
offer sufficient management capabilities in any of these areas.

We believe that management should be dealt with in a generic manner, and thus
should not be solved by the application developer. The application developer should
only be concerned with the functional behavior of the software under development,
and not with the management issues. The benefits of solving the management
problem in a generic manner are that it only has to be solved once in stead of again
and again for every new component or application. This reuse of code reduces, among
others, development costs and time-to-market. Ideally, when developing and

Using Message Reflection in a Management Architecture for CORBA 231

deploying a new application the required management functionality is inherently
present.

In this paper, we describe how to add management to an object middleware system
in a transparent manner, effectively extending the distribution transparencies with a
new management transparency. We propose to do this by using message reflection,
i.e. intercepting and reflecting on the messages that are sent between the different
components of an application.

In Section 2, we describe what we mean with management of middleware, the
different roles we distinguish, and what the different roles require from the
management system. Section 3 describes related work in this area. Section 4
compares different mechanisms to implement message reflection in CORBA. Section
5 describes our management architecture, how it uses message reflection, and our
prototype. Section 6 describes the lessons learned and Section 7 finally describes our
conclusions and future work.

2. Management of CORBA

We divide the management of object middleware in two separate but related issues:
• Management of the ORB itself.

Examples are the number of threads that are available, how many threads are
actually used, what network resources are available, queue sizes, the number of
registered objects, used policies and the lifecycle of object adaptors.

• Management of the objects running on top of it.
This is partly object specific and partly generic. We only consider the generic
aspects in this paper. Examples are the availability of an object, i.e. whether an
object is alive or not and able to respond to requests, in what stage of its lifecycle it
is, what the delay on requests is, detection of user- or system exceptions that occur,
the logging of requests, and the uptime.

The requirements for a management architecture for object middleware, like CORBA,
can be derived by considering the parties involved in developing and deploying object
middleware applications. We distinguish four different roles:
• The application or component developer
• The system administrator
• The management tool vendor
• The ORB vendor

Fig. 1 depicts who develops which part of the object middleware and management
system. A different texture indicates a different role. Please note that the
instrumentation is collocated with the managed entities.

The component developer focuses on the business logic of the component, and
should be masked as much as possible from the technology specific details of the
object middleware platform. The main purpose of object middleware is to provide
distribution transparencies [23] such as location and access transparency. From the
application developer’s perspective, management of the application is not part of the
business logic, and should be dealt with by the middleware. Application management
should be transparent to the application developer. We refer to this as management
transparency.

Maarten Wegdam et al. 232

A system administrator of a
multi-vendor middleware
environment could be faced
with different, and possibly
incompatible, ways that ORB
and application vendors have
made their software
manageable. This is not
acceptable, because the system
administrator can not be
expected to learn all the
vendor specific features in
order to be able to manage a
middleware-based application.
Therefore, both the ORB and
the components running on top
of it must be manageable in a uniform manner. No matter who the ORB or component
vendor is, the management view should be equal. A second requirement is that the
management should demand a minimal effort from the system administrator, both
when installing the management tools, and at run-time. In addition, a system
administrator may want to create an integrated view covering network management,
application management, and middleware management.

A vendor of management tools wants to provide his management solution as a third
party add-on to ORB implementations of different vendors without adaptation or
negotiation of a special management interface to a specific ORB. This is comparable
to the requirement of a system administrator for uniform management. It requires a
standardized (management) interface to an ORB to add management functionalities.

ORB vendors may not want to get into the business of ORB management tools but
still want to provide a manageable product and allow the customer to choose their
favorite management tool. This also requires a standardized (management) interface
on the ORB.

3. Related Work

The management of networks and network elements has been an active research area
for a relatively long time, resulting in mature products and standards. Examples of
these are the Telecommunications Management Network (TMN)[25], the Common
Management Information Protocol (CMIP)[6] and the Simple Network Management
Protocol (SNMP)[24]. The management of distributed applications recently is getting
more attention from academia and industry, for example within the Distributed
Management Task Force (DMTF)[31]. The management of ORBs and the
components running on top of it are a new area of active research. We mention the
most important papers, standards and projects in both industry and academia.

In the Fachhochschule Wiesbaden (Germany) work was done on management of
distributed systems [15], specifically the monitoring of Orbix based applications with
the so-called ObjectMonitor. They use Orbix proprietary filters to intercept in and

management
system

ORB

object object

in
st

ru
m

en
ta

tio
n

the managed entitiesthe management environment

system administrator

proprietary interface

collocated, standardized API
Fig. 1. The Different Roles

Using Message Reflection in a Management Architecture for CORBA 233

outgoing requests, and have an SNMP interface to ObjectMonitor. Current research
seems to mostly focus on the automation of management tasks.

A paper from the University of Aachen (Germany) describes the usage of non-co-
located proxy servers to intercept in- and outgoing requests [17]. The major benefits
of this approach are that it is ORB independent, and does not require recompiling an
existing server. However this approach is relatively inflexible, it has to be done
manually, and it probably introduces substantial overhead. Other papers, especially
[16], focus more on the use of agents for management of CORBA, without explicit
consideration on how to instrument the ORB and without providing a design.

In [28] three CORBA management tools for Orbix are compared. These are
OrbixManager, CORBA Assistant and Object/Observer. They conclude that these
three tools focus on fault and configuration management, and that manageable units
are commonly CORBA processes. All three tools do instrumentation by using Orbix
filters, which requires adding a few lines of application code to activate them.

The best-known management application for CORBA is probably OrbixManager
[20]. OrbixManager is a combination of instrumentation to the Orbix ORB and a
management service and console. OrbixManager manages the Orbix-based
middleware components of an application. It extends the applications with
management functionality by linking them with a management library. Some other
ORB vendors have also implemented some proprietary management extensions to
their ORBs. For example Inprise’s Visigenic ORB [32] and BEA’s Weblogic
Enterprise ORB [33].

Sun, together with some other companies, made a specification called the Java
Management Extensions (JMX)[13] for management of Java based application using
Java technology. Main features are a push distribution mechanism, usage of
JavaBeans, and remote access through several protocols, including SNMP, RMI and
IIOP. JMX is based on a product of Sun called the Java Dynamic Management Kit
(JDMK)[12]. A claimed benefit of JMX based products, compared to more static
solutions, is that the management intelligence can be easily distributed, and can be
located with the managed entity. This can reduce network traffic and increase
flexibility.

Marvel [2] is a management environment that is comparable with JMX in that it
also is Java-based and allows the uploading of management code to agents, and
allows the usage of different management protocols. In Marvel however one can
define automatically computed views of management information, which is not
possible in JDMK. This can increase the scalability of the management systems.
Marvel also includes functionality to visualize the management information.

Fosså and Sloman describe in [10] a management system that can be used for
configuration management of a CORBA system. The Darwin configuration language
is used to describe the initial configuration. A system administrator can change the
configuration of the distributed system by altering the binding that exists between the
CORBA objects. The objects have to be altered to allow this third-party binding. The
paper focuses on the configuration description, the configuration evolution and the
GUI. The implications on the object specific code is not very clear, including if this
can be done in a CORBA compliant manner

MIMO, MIddleware MOnitor, is an on-line monitoring tools for distributed object-
environments [22]. The distributed environment is separated in different layers, each

Maarten Wegdam et al. 234

layer is monitored, and information from the different layers is mapped to each other.
This approach has not yet been implemented, and the issue of how to instrument the
monitored objects is for further research.

Research done at the University of Lancaster [3] uses reflection in middleware.
They argue that current ORBs have a pre-defined and mostly standardized behavior,
and that reflection can be used to easily construct a customized ORB from more or
less independent components to get the behavior that is desired for a specific domain
or application. An architecture for reflective middleware is described in which the
meta-space of an object is divided in three different meta-models; the compositional
meta-model, the encapsulation meta-model and the environment meta-model. A
description of an initial implementation of this architecture, implemented in Python,
can be found in [8].

4. Message Reflection

One of the major requirements stated in Section 2 is to make the management
transparent to the application developer. This means among others that we cannot
intertwine management functionality with the core functionality of the object. We
propose to exploit the fact that distributed objects interact by exchanging messages.
By intercepting and inspecting messages, we can deduct information relevant for the
management of these objects. This is also known as message reflection.

In this section, we present the mechanisms for implementing message interception
for management of CORBA, and we discuss the relative advantages and
disadvantages of each mechanism.

Sniffing

A very straightforward method for intercepting messages is network sniffing. This is
typically done by intercepting TCP/IP messages. After filtering out non-relevant
messages, the IIOP messages are parsed to determine the GIOP message type and
parameters, effectively de-marshalling the requests. The obvious advantage of this
method is that it is completely non-intrusive and transparent for the client, the server
and the ORB. Disadvantages are that only messages actually passing through the
network segment will be sniffed, excluding messages sent between clients and servers
on the same host. A second problem is that this method is only practical on a network
that uses broadcast technology, such as Ethernet. It would otherwise require a sniffer
for each host. A third limitation of this method is that does not allow message to be
altered.

Instrumented Stubs and Skeletons

In the normal case of static invocations and interfaces all messages will pass through
the stubs and skeletons, which the IDL compiler has generated. Since the stubs and
skeletons are always available in source, they can be instrumented to read or even
change messages that pass through them. The main disadvantage of this method is
that it is very ORB and IDL compiler dependent. Another disadvantage is that

Using Message Reflection in a Management Architecture for CORBA 235

messages for dynamic invocations (Dynamic Invocation Interface in CORBA) and
dynamic interfaces (Dynamic Skeleton Interface in CORBA) are not intercepted,
since dynamic messages do not pass through the stubs or skeletons.

Wrapping

Wrapping is of course a well-known pattern to add functionality to an (existing)
object or class. Wrapping can be used to intercept messages going to and from objects
in a distributed application. The main advantage of this method is that it is usually
transparent to the server object. The problem is that the client has to send requests to
the wrapper object instead of the actual object, which is especially difficult when
object references are passed between clients. This problem requires a lot of
administration and thus introduces a management problem of itself. Also, it
introduces a substantial delay. But in a system with a fixed number of objects on fixed
locations this can be a solution worth considering.

Inheritance and Delegation

At first glance, it might seem like a good idea to use inheritance to add management
intercepting capabilities to an object. One can introduce a new class at the top of the
inheritance tree that all other objects inherit from, or one can do the opposite and
create a subclass of an object to do the intercepting. The first approach is not suitable
for intercepting messages without requiring major changes to the ORB, since the
instrumentation will not be in the invocation path. It can be used to intercept lifecycle
events on an object. The second approach could be a solution, but introduces so-called
inheritance anomalies [1]. It is also quite intrusive to the application object and
requires the usage of an object-oriented implementation language. Delegation has
similar disadvantages as inheritance, especially since it is intrusive to the application
object.

Composition Filters

Composition filters [1] is a modeling concept in which the actual object has explicit
incoming and outgoing filters that can manipulate messages, e.g. to delay or to
dispatch messages. It allows for a very clean separation of concerns, and solves the
problem of inheritance anomalies. Composition filters require support by the
implementation language, or even better support by CORBA (for example as an
extension to IDL). Unfortunately there is only limited support for this for most
implementation languages, and there is certainly no support for it in CORBA/IDL.

CORBA Portable Interceptors

Interceptors were first introduced in CORBA in version 2.2 of the CORBA
specification [7]. This specification defines interceptors, which can intercept requests
at defined points inside the ORB. This interceptor specification is rather ambiguous,
and is about to be superseded by the portable interceptor specification. The portable

Maarten Wegdam et al. 236

interceptor specification [21] defines two kinds of interceptors: request and IOR
interceptors.
Request interceptors are located in the invocation path of all ORB mediated requests,
thus also invocations to co-located objects. They can intercept in- and outgoing
requests on both the client and the server-side, resulting in a total of four interception
points, see Fig. 2.

A request interceptor can affect the outcome of a request by raising a system
exception at any of the interception points, or directing a request to a different
location. The target and parameters of a request can be inspected, but not altered.
Several interceptor instances can be registered for one interception point, in which
case they run in sequence. A request interceptor can inspect and alter the
ServiceContext
information.

IOR interceptors are
purely server side, and
are called when the
ORB is creating an
IOR, or to be more
precise when it is
assembling the list of
components that will be
included in the IOR.
This does not
necessarily mean that
this interceptor is called
for every individual
object reference. For example, the Portable Object Adapter (POA) specifies policies
at POA granularity and therefore this operation might be called once per POA rather
than once per object.

At the time of writing some ORBs, like Orbacus [18], have already implemented
the portable interceptors. Most other ORBs have either the 'old' CORBA 2.2 request
interceptors, or have a similar mechanism, e.g. Orbix' filters [14] or VisiGenic's
interceptors [32].

Interceptors in CORBA are relatively non-intrusive, and can be developed by the
provider of a CORBA management system and simply be ‘plugged in’ into any ORB
that needs to be managed. It can intercept all the requests going into and out of a
CORBA object. The disadvantages are that depending on the programming language
it can requires recompilation and a small code change in the application code to
activate the interceptors.

Operating System Interceptors

A final mechanism we describe is what we call Operating System (OS) interceptors.
These interceptors are positioned between the ORB and OS-level interface to the
network. Instead of intercepting a message within the ORB, the messages are
intercepted after they leave the ORB, but just before they enter the TCP/IP library.
This approach is used in Eternal [19]. The major benefit of this approach is that it is

serverclient

request
reply

1 4 2 3

Fig. 2. Request Interceptors and the Invocation Path

Using Message Reflection in a Management Architecture for CORBA 237

completely transparent to the component programmer and to the ORB
implementation. There are however several disadvantages. A major one is that since
the intercepted messages are IIOP messages, the information at this level is quite
dense and requires reverse processing (i.e. de-marshalling) to obtain request
information. Besides this, the method depends on the usage of dynamically linked
libraries, and is dependent on the OS and network. Last but not least, requests
between co-located objects cannot be intercepted, since they usually bypass the
TCP/IP library.

Summary

Although the possibilities for reflection in general within CORBA are limited [27],
there are several ways for extending an ORB if we limit ourselves to message
reflection. We consider CORBA interceptors to be the most suitable mechanism for
this, because they can intercept messages for co-located and remote invocations,
without depending on the network or OS. The new portable interceptors provide for
an intercepting mechanism that can be used for monitoring, but it has only limited
capabilities for control functionality.

5. Architecture

In this section we describe our management architecture. Our management
architecture is based on the Manager-Agent paradigm [11]. We compare how this
paradigm is used in different management systems. We use this as input for our
management architecture. After this we describe and evaluate our management
architecture, and our initial implementation.

Manager-Agent Paradigm

The general usage of the manager-agent paradigm in management systems like SNMP
and CMIP already has proven its applicability for management. This paradigm is used
in two ways.

The first way is to centralize all management functionality with the manager. This
approach is followed by the traditional management systems like SNMP and CMIP,
and by OrbixManager. The centralization of management functionality however
introduces problems with respect to scalability, information overload at the manager
and network delays.

The second way is to distribute the management functionality over the manager
and the agent. JMX, Marvel and the University of Aachen [16] follow this approach.
By distributing the management functionality it is tried to solve the above mentioned
problems.

Maarten Wegdam et al. 238

The Manager-Agent paradigm can be
implemented in several ways. The major
design choices when implementing the
Manager-Agent paradigm are [4]:
1) Which technology is used for
communication?
2) Which part initiates the data transfer?
3) How are the parts bundled?

Based on these choices two commonly
used approaches can be distinguished; the
library based agent and the application based
agent.

In the library based agent approach the
agent and the instrumentation are
implemented as a library that is linked to the
managed entity. The manager is the only part
of the management system that runs outside
the library. OrbixManager uses this approach. In the application-based approach the
agent is a separate entity, and only the instrumentation is co-located with the managed
entity. Both approaches are depicted in Fig. 3.

As explained in [4] the application based approach allows for more of the
management functionalities to be implemented in the agent, and is thus more scalable.
We are therefore using the application-based approach.

The Management Architecture

Based on the requirements mentioned in
Section 2 and the above-mentioned issues,
we have developed a management
architecture as depicted in Fig. 4. In the
following subsections we describe each part
of the architecture.

The Manager. A management console
implements the manager. It provides a
Graphical User Interface to the administrator
for the whole management system. It
provides views for individual managed
entities via the IDL interface the managed
object offers, and views for groups of
management entities.

The Agent. The main responsibility of the agent is to store and enhance management
information. The agent provides an IDL interface for the manager to access this
information. The managed objects push relevant management events though a

Manager

Agent

Instrumentation

Managed Entity

library based
application based

Fig. 3. Library versus Application
Based Approach

Agent and
Data Enhancement

Manager

Managed Entity
CORBA ORBs & Objects

Instrumentation/MO
CORBA Interceptors

IDL

CORBA Event Service

Fig. 4. The Management aArchitecture

Using Message Reflection in a Management Architecture for CORBA 239

CORBA Event Service to the agent. The agent also uses synchronous communication
(IDL) to request specific management information from the managed objects.

The Managed Object / Instrumentation. The managed object provides the agent
with a management view on the managed entities. It is implemented using CORBA
interceptors and standardized CORBA interfaces.

We use interceptors to monitor in and outgoing requests. The agent uses this data
to derive, for example, response times, network failures and client-server
relationships.

The ORB internal interfaces are not specified with the intention to be used for
management. We do however use the existing POA, Object and ORB interfaces
because they do offer some useful management functionalities [26] not available
through interceptors.

The Managed Entity. The managed entities are the CORBA ORB core, and the
CORBA objects. By managing these, we also manage the applications and services
the objects are a part of.

6. Lessons Learned from the Prototype Implementation

We have prototyped our management architecture, and have successfully tested it.

With CORBA interceptors it is possible to develop management functionality
independent of the ORB implementation, and thus use our management system for
every ORB that implements portable interceptors. We can derive configuration,
accounting, performance, and availability information about the application objects.
By combining different information items the information processor is able to
enhance this information, for example to determine how an application is spread over
different hosts.

The control possibilities are limited by the possibilities of the instrumentation, thus
the ORB interceptors and ORB internal interfaces. As a consequence our
implementation has only limited possibilities for control.

The usage of portable interceptor, and thus the instrumentation, is completely
transparent to the component developer because the Java language mapping allows
portable interceptors to be added to already compiled code.

The management system can be distributed and, although not discussed in this
paper, allows a hierarchical structure. This enhances scalability. The hierarchical
structure also provides a way for management of domains of managed entities. We
currently use the CORBA Event Service for asynchronous communication due to the
lack of a suitable implementation of the CORBA Notification Service. The
Notification Service however has a better filter and subscription mechanism, which
also will reduce network traffic.

We use a generic event format defined in XML for exchanging management
information. This flexible design enables easy integration with existing, e.g. SNMP or
CMIP based, or new management systems.

Maarten Wegdam et al. 240

The usage of request level interceptors introduces a significant overhead.
Preliminary testing revealed that with JacORB [30] the typical delay overhead is 300
ms per request. This can be minimized by disabling interceptors that produce
irrelevant management information.

7. Conclusions

We have described how message reflection can be used to manage object middleware
based applications. We have compared different message reflection mechanisms in
CORBA, and have selected CORBA interceptors as most suitable. CORBA
interceptors can monitor object interactions in a non-intrusive manner, are ORB
independent and are transparent to the object developer. We have an initial
implementation of a management architecture for the management of CORBA based
applications. Besides interceptors, our implementation also uses standardized ORB
interfaces for instrumentation.

Based on our experiences we have identified a number of issues for further study.
One of the major issues is which resources we should manage and which not. We will
evaluate our current choice in different projects that use CORBA, and with
experiences gained from these projects we will adjust our current choices.

We did not address the issue of policy based management in this paper. We do
believe however that this is the way to go, and are working on using this within our
management architecture.

Our architecture assumes one logically centralized manager that controls all the
distributed components. For cross-organizational applications this will not be the
case, several managers will exist, each independently managing their own domain.
This will have consequences for our management architecture.

We believe that the management architecture should allow for application or
environment specific management to be integrated with the more generic
management functionality it now provides. This could be implemented by facilitating
application specific extensions to be plugged into the management system.

We are currently working on extending our management architecture to allow for
pluggable management functionalities, possibly using concepts or parts from Marvel
or JMX.

Similar mechanisms as we currently use, and the same management architecture is
suitable for management of the new generation component models like EJB, COM+
and CORBA Component Model (CCM) [5]. We plan to migrate our current
implementation as soon as CCM ORBs become available.

References

1. Mehmet Aksit, Lodewijk Bergmans and Ken Wakita: An Object-Oriented Model for
Extensible Concurrent Systems: The Composition-Filters Approach, IEEE Transactions on
Parallel & Distributed Systems, 1993.

2. Nikolaos Anerousis: Scalable management services using Java and the World Wide Web,
Ninth Annual IFIP/IEEE International Workshop on Distributed Systems: Operations &
Management (DSOM '98), 1998.

Using Message Reflection in a Management Architecture for CORBA 241

3. G.S. Blair, G. Coulson, P. Robin, and M. Papathomas: An Architecture for Next
Generation Middleware, IFIP International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware'98), Lake District, UK.

4. Hajo Brunne: Principle Design Patterns for Manageable Object Request Brokers,
Submission to the OMG CORBA Management Workshop “Vendor/System Integrator
Views” Session Monday, 22 September 1997.

5. Cobb, E. et all:CORBA Components – Volume I, ed. E. Cobb, Joint revised Submission,
OMG TC Document orbos/99-07-01, August 1999.

6. ISO: ISO 9596: Common Management Information Protocol. 1991. Geneva.
7. OMG: The Common Object Request Broker: Architecture and Specification, formal/98-

07-01 (http://www.omg.org).
8. Fabio Costa, Gordon Blair and Geoff Coulson: Experiments with Reflective Middleware,

ECOOP Workshop on Reflective Object-Oriented Programming and Systems (ROOPS
'98), Brussels.

9. ISO: ISO 10040: Information Technology - Open Systems Interconnection - System
Management overview, 1992.

10. Halldor Fosså and Morris Sloman: Interactive Configuration Management for Distributed
Object Systems, IEEE Proceedings First International Enterprise Distributed Object
Computing Workshop (EDOC '97), Australia, 1997.

11. ISO: ISO 7498-4: Information processing systems - Open Systems Interconnection - Basic
Reference Model - Part 4: Management framework, 1989.

12. Sun, Java Dynamic Management Kit, http://www.sun.com/software/java-dynamic/.
13. Java Management Extensions, http://java.sun.com/jmx.
14. IONA's Orbix ORB, http://www.orbix.com.
15. Reinhold Kroeger, Markus Debusmann, Christoph Weyer, Erik Brossler, Paul Davern,

Aiden McDonald: Automated CORBA-based Application Management, DAIS 99, 1999,
Helsinki, Finland.

16. Steffen Lipperts, Anthony Sang-Bum Park: Managing CORBA with Agents, Interworking
98, 1998, Otawa, Canada.

17. Steffen Lipperts, Dirk Thißen, CORBA Wrappers for A-posteriori Management: An
Approach to Integrating Management with Existing Heterogeneous Systems, DAIS ‘99,
1999, Helsinki, Finland.

18. ORBacus ORB, Object Oriented Concepts, http://www.ooc.com
19. Priya Narasimhan, Louise E. Moser, P.M. Melliar-Smith: Using Interceptors to Enhance

CORBA, IEEE Computer 32[7], p. 62-68, 1999.
20. IONA, OrbixManager, part of OrbixOTM (http://www.iona.com/products/

orbixenter/orbixotm/index.html).
21. OMG: Portable Interceptors revised submission, orbos/99-12-02.
22. Günther Rackl: Multi-Layer Monitoring in Distributed Object-Environments, second

International Working Conference on Distributed Applications and Interoperable Systems
(DAIS'99), Helsinki, June 1999.

23. ISO/IEC 10746-3: Open Distributed Processing – Reference Model (RM ODP), Part 3,
Architecture, 1995.

24. IETF: RFC 1157 – A Simple Network Management Protocol. 1990.
25. TeleManagement forum, http://www.tmforum.org/.
26. Maarten Wegdam, Dirk-Jaap Plas, Aart van Halteren, Bart Nieuwenhuis: ORB

instrumentation for the Management of CORBA, International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA 2000), June 26-29 2000,
Las Vegas, USA.

27. Maarten Wegdam, Aart van Halteren: Experiences with CORBA interceptors, position
paper for the Workshop on Reflective Middleware, co-located with Middleware 2000,
April 2000, New York, USA.

ftp://ftp.omg.org/pub/docs/formal/98-07-01.pdf)
http://www.sun.com/software/java-dynamic/
http://java.sun.com/jmx
http://www.orbix.com/
http://www.tmforum.org/

Maarten Wegdam et al. 242

28. Bernd Widmer, Wolfgang Lugmayr: A comparison of three CORBA Management Tools,
Technical Report, Technical University of Vienna, TUV-1841-99-07.

29. Yasuhiko Yokote: The Apertos Reflective Operating System: The Concept and Its
Implementation, OOPSLA'92 Proceedings, October 1992.

30. JacORB is an open source Java ORB developed at the Freie Universität Berlin,
http://www.inf.fu-berlin.de/~brose/jacorb/.

31. Distributed Management Task Force, http://www.dmtf.org.
32. Inprise's Visigenic ORB: Visibroker, http://www.visigenic.com/visibroker/.
33. BEA's Weblogic Enterprise, http://edocs.bea.com/wle/index.html.

http://www.inf.fu-berlin.de/~brose/jacorb/
http://www.dmtf.org/
http://www.visigenic.com/visibroker/
http://edocs.bea.com/wle/index.html

	1. Introduction
	2. Management of CORBA
	3. Related Work
	4. Message Reflection
	5. Architecture
	6. Lessons Learned from the Prototype Implementation
	7. Conclusions
	References

