Accurate Measurements in Volume Data

Javier Oliván, Marco Bosma and Jaap Smit
University of Twente, Department of Electrical Engineering
PO Box 217, 7500 AE Enschede. The Netherlands

Abstract

An algonithm for very accurate visualization of an iso-surface in a 3D medical dataset has been developed in the past few years. This technique is extended in this paper to several kinds of measurements in which exact geometric information of a selected iso-surface is used to derive volume, length, curvature, connectivity and similay geonetric information from an object of interest. The actual measurement tool described in this paper is fully interactive. The highly atccurate iso-surface volume-rendering algorithm is used to describe the actual measurement that should be performed. For inslance, objects for which volumes should be calculated, or paths from which the length should be calculated can be selected at sub-voxel resolution. Ratios of these quantities can be used to automatically detect anomalies in the human body with a high degree of confidence. The actual measurement tool uses a polygon-based algorithm that can distinguish object connectivity at sub-voxel resolution. in exactly the same manner as the iso-surface algorithm. Segmemation based on iso-surfaces geometrical topology can be done at this point. The combination of the iso-surface volume-rendering algorithm and the polygon-based algorithm makes it possible to achieve both visual interaction with the dataset and highly accurate measurements. We believe that the proposed method contributes to the integration of visual and geometric information and is helpful in clinical diagnosis.

Keywords: measurements, volume. length, medical data, iso-surface

1. INTRODUCTION

In this paper, we are going to present the ongoing research on the development of a software toolkit to visualize and to extract geometrical information from medical data sets obtained from CT or MRI scanners. This software represents a useful and efficient combination of different techniques. Some of these are voxel-based techniques, and polygon based ones. The visualization process will be done by using a ray casting algorithm that will be a voxel-based algorithm. The measurements will be done mainly in the triangle space. An effective interface between the two spaces will be required in order to achieve the maximun benefit from the combination of the techriques.

The acquisition of geometric information from medical data can play a very important role in a wide range of clinical applications. Several approaches can be found in the literature to measure different magnitudes of interest. In most of the cascs, a dedicated algonithm is developed for each different case, even when the magnitude is the same [3.7]. Usually, an algorithm to perform volume calculations of the brain is different than an algorithm to measure the volume of the heart. In our case. our goal is to develop one unique algorithm for each geometric magnitude: an algorithon valid for the same magnitude measured in different regions of the human body. The concept of an iso-surface plays a very important role at this, point.
The complete application is based on the concept of an iso-surface. An iso-surface in a continuous three dimensional field $F(x, y, z)$ is defined as the set of three dimensional points for which the equation $F(x . y, z)=1$ so-value is satisfied (where Isovalue is a certain pre-defined value). In the case of 3 d nedical datasels obtained with CT or MRI scanners, the data consisis of a three-dimensional set of scalar values. This set can be described as a discrete function $\mathrm{D}(\mathrm{i}, \mathrm{j}, \mathrm{k})$, where $\mathrm{i}, \mathrm{j}, \mathrm{k}$ are integer numbers. This discrete data field is the result of convofution of the point spread function of the acquisition device with at object al discrete sampling locations. As pointed by Bosma [1], a re-sampling function $R(x, y, z)$, that might be interpolating or approximating, can be used to compute the values of the discrete data field al arbitrary (x, y, z) locations. Then, this resampling function extends the discrete data field to a continuous data field $\mathrm{C}(x, y, z)$. We will define the iso-surface in the discrete field $D(i, j, k)$ as the iso-surface in this continuous data field $C(x, y, z)$.

In order to perform a measurement, we will extract one iso-surface from the region of interest, and then we will apply our algorithms. For instance, if we want to measure the volume of the hear, we will extract one iso-surface that describes the geometry of the heart, and then, we will compute the volume enclosed by that iso-surface. The iso-surface that describes a brain is different from the one belonging to the heart. In some situations, we will probably need two different algorithms to compute the two iso-surfaces. But once we have the two iso-surfaces, the same algorthm will be used to estimate the volume.

2. ISO-SURFACE VOLUME RENDERING

A highly efficient implementation of the iso-surface volume-rendering algorthm introduced by Bosma [2] is used in our tool 10 visualize the iso-surfaces in the data set. With the current implementation, up to 7 frames per second can be achieved in the visualization process, in a 256 by 256 by 109 dataser, in a 600 MHz Pentium III, with very high quality images almost free of artifacts. The reconstruction filter used is the tri-linear interpolator. This implementation provides us with a very powerful mechanism 10 visually interact with the data set. Other approaches, such as rendering a mesh, will not give us such a good ratio berween quality and speed in low cost workstations. Figure I shows an example of the iso-surface volume rendering algorithm.

Figure 1. Iso-surfaces rendered with the algorithm introduced by Bosma.

3. THE TRIANGLE MESH

Several methods in order to extract a mangle mesh from a data set already exist in the literature [6]. In our first attempt to perform a vectorication of the iso-surfaces, a fast implementation of the standard marching cubes algorithm [5] has been used. Despite some drawbacks of this algorithm, like the presence of ambiguous configurations [4], we decided to use it because of its simplicity, Another characteristic of this algorithm is that marching cubes makes use of the linear interpolator to compute the veruces of the triangles. This is consistent with our iso-surface render algonthm implementation, that makes use of the linear interpolator to reconstruct the continuous Field. Moreover, it is not difficult to implement and it is fast. In the current implementation, it takes 0.25 seconds to compute marching cubes for a 256 by 256 by 109 eight bit data set, in a 600 MHz Pentium III, so interactive speed is feasible when changing the iso-value. This timing information corresponds to the iso-surface shown in the right picture of Figure 1. A last benefit is that the measurement algorithms are independent of the algorithm used to extract the triangle mesh. This allows us to select between different triangularization algorithms without changing the rest of the application. In the future, different techniques to extract a triangle mesh from the data set will be tested.

4. COMBINING THE TECHNIQUES

As said before, the visualization tool we use is a voxel-based application, and the measurement tool is a triangle-bas application. The data input for the visualization tool is a three dimensional antay, and the data imput for the measurement to is a collection of tiangle meshes. We obtain one triangle mesh for each connected iso-surface. By visual inspection, objed presented in the output image of the iso-surface volume-rendering algorithm are chosen by the human expert. To perform measurements on one object present in this image, the human expert selects one pixel in the image. This pixel is pat of t rendering of one particular iso-surface. Now, the program needs to know the triangle mesh that belongs to the object select in this manner. In order to do so, we render the complete polygon mesh once, without any lighting, and using one color p non-connected polygon mesh. In this process, we will use the same transformation matrices that we used in the visualizati process. This rendering is done in a window of the same size as the window of the voxcl space rendering. so we have a one one correspondence between the pixels of the iwo images.

One of the outputs of this triangle based rendering process is an image that will not be visible for the user. This image can seen as a color map: the possible different colors of the pixels of this image will be the colors we used 10 render the mesh of different objects. So, just by reading the color of the pixel we have selected in the visualization tool outpul image, program knows on which mesh we are going to perform the measuremems.

The other outpul of the triangle-based algonthm is a depth buffer. This depth bulfer can be combined with the depth bulfer the voxel-based algorithm to study the spatial differences between the two different representations of the same iso-surlace

Another interface beiween the measure tool and the visualization tool is possible as well. This communication can established through a binary shell. A binary shell is a set of bits. one per cell in the discrete data field. The binary sh provides us with an efficient mechanism to select cells in the voxel space. Usually. the binary shell is used to mark the ce in the voxel space that are crossed by an iso-surface. The usage of a binary shell is one of the main optinizations in a visualization tool. Normally, the binary sbell is catculated through comparing each voxel of the cell with the iso-vatue: if voxels are above or below the iso-value, the associated bit will be 0 ; if there are voxels above and below, the bit will be Although it is possible to compute the binary sheil for a given data set and a given iso-value. we can also compute it fron triangle mesh. For instance, we can be interested in visualizing only one of the multiple disconnected iso-surfaces that we have in one data set for a given iso-value. In this case, the visualization tool needs the portion of the binary shell belonging that particular mesh. This binary shell can be computed just by analyzing the intersection of the triangles of the object interest with the cells. Io our implementation, marching cubes was the algorithm applied to generate the triangles. In il particulat case, every triangle belongs to one and only one voxel cetl. So we can generate a binary volume for the object interest just by setting a bit for the voxel coll of every triangle in the mesh of the object.

This approach can be used to do a segmentation of the data at sub-voxel resolution, based on connection between i surfaces. Actually, when we have several iso-surfaces crossing the same voxcl, we can't segmen the data ir we compule binary shell comparing the voxels with the iso-value. But with the help of the triangle meshes, we can generate one bint shell for each non-connected iso-surface. Combining these binary shells. we can know not only the cells crossed by the is surfaces, but also which cells are crossed by which iso-surfaces.

5. VOLUME COMPUTATION

The volume estimation algorithm is a voxel-based algorithm. The curent algorithm is very simple, and it was designed testing purposes.

We are interested in the value of the volume enclosed by an iso-surface. The method stats with the computation of th binary volumes: the so-called above binary volume, the below binary volume and the iso binary volume. A bit in the abu binary volume is set to one if the eight voxels of the cell are above the iso-value. This means that that cell is complet inside the iso-surface. A bit equals to one in the below binary volume imply that the cight voxels of the cell are below the i value, so the cell is completely outside the iso-surface. The iso-binary volume is the normal binary shell: a bit sea in the binary volume reflects the fact that this cell is partially inside the iso-surface and partially outside. We define the abs volume as the number of bits set in the above binary volume. Io a simidar way, we define the below volume and the voluthe as the number of bits in the below and iso binary volumes.

With this information we obtain a first approximation of the volume. Assuming that the volume of cach cell is une. volume enclosed by the iso-sucface will lie between the number of cells that are completely inside the iso-surface and
plus the number of cells that are patially inside the iso-surface. Therefore, the volume is between the above volume un wolume) and the above volume plus the iso volume fabove volume). This affirmation is error free, and is one of a adranages of the agorithom.
ference between this rwo values is equal to the iso volume, and is usually too big. We can get much better results just ividing the cells that are set in the iso binary volume. With a re-sampling function, we can get a finer grid inside these d we can apply the same algoritho.
urrent implementation, we subdivide cach cell selected in the iso binary volume in $31 * 31 * 31$ cells, so for each cell e iso binary volume, we get 32 by 32 by 32 new voxels. We have chosen this number because it gives a very good tween accuracy and performance for computers with 32 bit registers.
urrent implementation of the volume estimation algonthm, the re-sampling function used to oversample the data was ear intepolation tunction. Higher order incrpolators can be used if they do not introduce overshooting. Overshooting f, when applying the reconsinction filter co compute the value of the contiruous field inside a cell, we can ger values he cell that are above or below all the eight voxels of the cell. If this is the case, we can have eight voxels greater then value, but it is possible that this cell is crossed by the iso-surface. The cubic-spline interpolation function is an z of such kind of re-sampling filters that present overshooting.

I results we bave obtained appiying the algorithm on different medical data sets show that the difference between the m and the maximum value of the volume enclosed by the iso-sufaces are typically between $1-5$ of the mininum But a more exhaustive test has to be done, including a test comparing our results with another approaches. Table? onve volume meastirenents performed with the volunic estimation algorithm.

| Data sel | Iso-value | Min volume | Max volume | Difference | Eror (D) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MR brain | 62 | 944687.12 | 955833.62 | 11146.5 | 1.18 |
| MR bran | 94 | 340603.62 | 348851.46 | 8247.84 | 2.42 |
| MR brain | 125 | 61246.67 | 63156.44 | 1909.77 | 3.12 |
| CT head | 300 | 2648969.50 | 2664086.25 | 15116.75 | 0.57 |
| CT head | 400 | 2313747.75 | 2324807.50 | 11059.75 | 0.48 |
| CThead | 500 | 2164199.50 | 2173077.50 | 8878 | 0.41 |

Table 1. Resulis of the estimation algorilhm.

6. PATH LENGTH COMPUTATION

Mows us to have an estimation of the minimum path length between two points over an iso-surface. The selection of bints can be dowe in the iso-surface volume-rendering tool. Using the triangle mesh, we select wo triangles. The ecognizes whether these iwo triangles betong to the same object, ie., the same iso-surface if this is the case, then it ssible to fird a minimum tengh path over the iso-surface. Once we have selected the two triangles in the mesh to the object we are visuatizing. the program builds a conoected graph using points in the polygon mesk. In a first ation, only vertices of the triangles were used, In this case, the nodes of the graph are the vertices of the triangles, is are the edges of the triangles. The aceuracy obtained with this approach was not satisfactory, so we added extra tse extra points were the center poims of the triangles and the middle points of the edges of the triangles. With this ach, much better results are achieved. Figure 2 shows the wo different graphs for the same friangle mesh, in this plane iso-surface.

Figure 2. Two ditterent graphs extracted from the same trange nesh.

Once the program has created the connected graph, we apply the Dijkstra algorithm [9] to find a sel made out of nodes of the graph that gives us the minimum lengh path over the triangle mosh. The length of the minimum path founded in the polygou mesh will he an approximation of the minimum distance between the wo points over the so-surlace selected in the rosurface volume-rendering tool. ln Figure 3, two different paths are shown in order to menark the differences beiween the paths belonging to different graplis.

Figure 3. Two paths obtained with two different graphs.

There ane several points to discuss about the necuracy of this method. First of atl, we are interested in calculatig the distimes between two points over the sufface of the real objects: the heart of a pationt. the colon, a bone. cte. But we are compuing lengths over a polygon mesth. This algorithm is independen of the method used to extract the polygon mesh, so we will not discuss here how good is the generated iso-surface. A detailed description of different iso-surlace extrachon algorithms ated some topological considerations can be foum in a paper from van Gelder and Wilhehms [8]. Once we have a polygon mech. we want to compute the distance ove that mesh between two points. In a plane. the skortest distance between two points is the lengh of the straight line that joins the two points.

To test the algoithm. we used the following approach. First. we generaced a tiangle mesh of a plane square. We compute the lenght between (wo vertices belonging to this mesh using our algorithm. For this particular case, we know the exact value of the length: because we have a plane, the minimum path between two points of this plane is a staiglo line. so the minimum distance between these two points is the lengh of the line that joins then. We can compare both whes wotculate de arren we make

The two different kinds of graphs were tested. First, we generated a graph from the nesh. Then, we computed the beween the center of the square and poins inscribed in a circumference finding the minimum parh. We also compa reai distance between the two points. Figure 5 is a graph of the etror in the length estimation versus the angle betw, path and the botuon edge of the plane. As we can observe, we have an anisotropy in the error: for some angles, the ruch higher than for other ones. This is due to the fact that, when applying marching cubes to a data set that present curvature, we get a very regular mesh. In this case, we obtain also a very uniform graph (see Figure 4). This uniformit reason for the anisotropy in the error.

Figure 4. Uniformity in the graphs extracted from a plane mesh.

In a real stmation, we usually have non-uniform meshes. So we will take the average enor in the Figure 5 as an estimat the error we have in normal cases. In the case of simple graphs. i.e., graphs made only with vertices of triangles, the a error is 16.3%, white in the graph made taking more poihts from the polygon mesh (the centers of the tiangles at middle edge poins), the average error is 5.9%.

Figure 5. Length error versus angle in two graphs of a uniform triangle mesh.

Once we have a set of three-dimensional points describing the minimum length path, we can use this as inpul for an algorithm based on deformable models in order to minimize the real length. In our algorithm, we have a very imp limitation: we have to create a graph based on points belonging to the mosh. We can overcome this limitation in f algontims based on active models or soakes [10], and modeling the snake with forces based on the gradient cominuous field.

Figure 6 (a) is the output image we get with the render algorithm for a data set of a head. The inage in Figure 6 (b) show two paths we obtain between two poinls belonging to the skill. In Figure 6 (b). Ihe rendering was done in the triangles using openGl, to show the differences in the quality of the bwo render techniques: iso-surface volume rendering ankl tri: mesh rendering.

Figure 6. (a) Skull rendered with the visualization tool and (b) two paths over the skult computed over two dillerent graphs.

Although some improvements in the minimam distance estimation algorithm will be implemented in the fubure ve hat algorithm that provides us with a path between two points. Maybe this path is not optimai yet tor distance calculanom, can be used to track automatically certain regions of the dataset. Just as an example, in Figure 7 we show two praths obti with our algorithm in a colon data set. Once we have the connected three-dimensional points, the canera can be local that points and we can render the interior of the colon.

Figure 7. 7 wo paths over the colon suriace.

7. DISCUSSION AND FURTHER RESEARCH

In this paper, we bave descrihed our methods to combine an efficent visuahzation algorithon and several measurement agquisition algoritms. The visualization process is done in the voxel space, whereas the measurements are performed in the trangle space. Whit ths approach, fast mendering in a low cost workstation and geonetrical information extraction can be whered at once

Both the visualizaton and the measuremem process are based on the concept ol an iso-surface. We render iso-surfaces, and we extact intormatom from them. We can apply the same measurement atgorithms for iso-surfaces representing different regrons of the hmman budy
The thre basic pants of the soltwate (iso-surface rewdering, extraction fof triangle meshes and measurements acquisition), are makendent of cach othec. 3 ley communicate lhrough a well-defined interface. Keeping this interface unchanged, we can modify one par of the soft ware without changing the rest of the application.

8. REFERENCES

1. M. Bosmat 20000 . Iso-smitace volume rendering - Speed and accuracy for medical applications, PhD Thesis, University of Tweate. ISBN 90-365-1397-5

2. Prasun Dustida Jubani Mampaia . Tomi Hejnonen , Tapio Kugppala, Milko Van Mcer , Reijo Punnoner, and Erkki
 30 membuthon shthare", Computers in Biology and Medicine, Volume 30. Issue 6, Pages 329. 340
3. C. Nomtani, R. Scatem, and R. Scopigno (1994), "A nodilied look-up table for implicit disambiguation of Narching Cubse". The Visual Computer, 10t6):353-355
4. Lorenco WE. (line HE (1987) "Aarching cubes: a high-resolution 3d surface consmotion algofithm", Computer Graphics. 21it), Pages 163-169
5. P. Cigoni, F. Ganovelli, C. Montani, R. Scopigno (2000) "Reconstmetion of topologically corect and adaptive milinear ion-surfaces" . Computers \& Graphics 24 , Pages 309 -4 18
6. Lamence P. Clake, Roben P. Velthuzen, Mati Clatk, Jorge Gaviria, Larry HalI, Dmitry Gobtgof, Recd Muragh, S. Phophanch. Steven Brem (1998 ; "NR1 measurement of bran tumor response: comparison of visuat metric and uthomatw segmemtaion", Magnetic Resonance lmaging. Vot. 16. No. 3. Pages 271-279.
7. Allen van Gelder, Jane Wilhelms (1994)"]opological considerations in iso-st-urtace gemeration", UCSC-CRL-94-3!
8. Diphsta, E. W. 11959\} "A Note on Two Problems in Connection with Graphs", Numeriche Mathematik, I. Piges 269 271.
9. M. Kass. A. Witkin and D. Terzopoulos (1988) "Snakes: Active contom models". International Journal of Computer Vision, $14+3$, Pages 321-331.
