Classifying Assumptions Made during
Requirements Verification of Embedded Systems

Jelena Marincic*, Angelika Mader, and Roel Wieringa

Department of Computer Science, University of Twente, The Netherlands,
P.O.Box 217, 7500 AE Enschede, The Netherlands
{j.marincic,mader,roelw}@ewi.utwente.nl

Abstract. We are investigating ways to improve the process of mod-
elling of embedded systems for formal verification. In the modelling pro-
cess, we make a mathematical model of the system software and its
environment (the plant), and we prove that the requirement holds for
the model. But we also want to have an argument that increases our
confidence that the model represents the system correctly (with respect
to the requirement). Therefore, we document some of the modelling de-
cisions in form of a list of the system assumptions made while modelling.
Identifying the assumptions and deciding which ones are relevant is a dif-
ficult task and it cannot be formalized. To support this process, we give
a classification of assumptions. We show our approach on an example.

1 Introduction

Models have increasing relevance in embedded system design. Our focus is on
the construction of embedded systems verification models. Our goals are:

(1) We want to develop a modelling method. We share the observation of
[1] that more research is spent on developing new languages and tools than on
providing methods for using the existing ones. A major difficulty here is that
modelling cannot be purely formal. We claim that the non-formal steps do not
follow unpredictable irrationalism, but are part of educated creativity, following
a systematic way of thinking.

(2) Having constructed a verification model we also want its justification - a
correctness argument that makes us convinced that successful verification of the
model reflects the desired behaviour of the embedded system. The correctness
argument includes the assumptions and modelling decisions about the embedded
system we have taken during modelling. Changing the assumptions can invali-
date the model justification. Therefore, we propose to write down a list of the
assumptions made while modelling.

(3) Identifying an assumption and deciding whether it is relevant are informal
activities, difficult to capture by a formal approach. To help the modeller, we
present a classification of assumptions. The classification presented in this paper

* Supported by the Netherlands Organisation for Scientific Research (NWO), project
600 065 120 241420, Modelling Control Aspects of Embedded Systems.

B. Paech and C. Rolland (Eds.): REFSQ 2008, LNCS 5025, pp. 141-{I46] 2008.
© Springer-Verlag Berlin Heidelberg 2008

142 J. Marincic, A. Mader, and R. Wieringa

does not depend on a formal modelling or verification technique. The classifica-
tions of assumptions also help us understand the modelling activity itself. We
believe that checking the assumptions we made against the classes we identifed,
gives more structure to the way of thinking and argumentation.

Terminology and Basic Concepts. An embedded system consists of a con-
troller and a controlled, physical part. By plant we denote the controlled, phys-
ical part, and by environment everything outside the embedded system. The
control software is abbreviated to control.

A model is a formal representation of the system, e.g., a diagram or a timed
automaton. We model both the plant and the control and verify them against
the required behaviour. The verification problem is to prove that a plant P and
a control C' together satisfy certain requirements R, denoted by C A P = R.
This is analogous to [2, [3], but different from other approaches, where only the
control software is modelled.

To conclude that the real system satisfies the required behavior, we need a
model justification - an argument that the model and the formal requirement
represent the system and the required behaviour. Such a justification can be
given by reconstructing the modeling process into a rational process. In this
paper we focus on the role of assumptions in rationalizing the modeling process.

In Sect2 and Sect[3] we will present our classification of assumptions and will
demonstrate it on an example. After briefly discussing related work in Sectdwe
will draw conclusions in Sect[5

2 Classification of Assumptions

We define an assumption as a statement that refers to the plant and environment,
and is taken for granted to be true for the purpose of the model justification. As
control specifiers, we place constraints on the control behaviour, but we cannot
place constraints on the plant; we can only make assumptions on its behaviour.
Assumptions can be stated formally - then they are part of the formal proof, or
non-formally - in that case they are part of the justification argument. The first
two classes below answer the question what the assumptions are describing. The
next two are focusing on the criteria of their changeability. The third group of
the classifications focus on the relevance for the system users.

C1: Assumptions about system components. The requirement we want
to verify determines where we draw the border between the system and its en-
vironment and what system aspects we will describe in the model. After that,
we decompose the system, describe each component and, if necessary, decom-
pose further. When decomposing the system, we simultaneously decompose the
requirement, where each sub-requirement should be satisfied by a system compo-
nent, and all sub-requirements together should imply the original requirement.

We can decompose the system in many different ways. We can make a process
decomposition, a decomposition to the physical components, functional decom-
position etc. The components can be described through assumption-requirement
pairs in the form assum(i) = req(i), where req is the subrequirement we

Classifying Assumptions Made during Requirements Verification 143

found while decomposing the system. For example: "If the wire is not longer
than 12m (assumption), then the signal strength is sufficient for correct trans-
mission (requirement)”.

C2: Assumptions about system aspects. A system aspect is a group of sys-
tem properties, usually related to one knowledge domain. An embedded system
has electrical, mechanical aspect etc. When designing the control and verifying
the system requirement, we might need assumptions coming from these different
knowledge domains. If, e.g., we are designing shut-down system procedure for
an embedded system, we want to know the electrical characteristics like capac-
ity and resistance of the circuit that delays power off, to calculate the time the
procedure has to save the data.

C3, C4: Necessary and Contingent Assumptions. Depending on the con-
text in which we use the system, some of the assumptions we take as true and
do not consider them as changeable.

Natural laws, like for example physics formulas, are considered to be true. If we
have a system with a conveyor belt that transports bottles from the filling place,
we will assume that its users will put the conveyor belt on a horizontal surface.
Some of the plant components can be described with engineering formulas which
we do not doubt. For example, the signal transmission through fiber optic cable
is described with formulas that precisely calculate optical signal properties.

Contingent truths on the other hand may change. There are some facts about
the system for which we are not sure whether they will change or not. In practice,
it often happens that we have the plant and start designing the control software
as if the plant is fixed, whereas in practice components are replaced. For ex-
ample, if we have a conveyor belt that has to move faster, we can replace the
existing motor with a more powerful one. (Then, we would have to change some
parameters in control law implemented by control software.) Another example is
that the plant is fixed, but our knowledge about it is changed. A domain expert
can provide an improved formula describing the system behaviour.

C5: Constraints on the Plant and Embedded System Environment
Some of the assumptions we make pose constraints on the plant and users. We
cannot be sure in advance that they will be fulfilled. The best we can do is to list
them and deliver them together with the system. These assumptions are not part
of the model - they can be seen as a label on the ’delivery box’ of the system.
For example: ”If the weight in the cabin is larger than 20 and less than 150kg,
the lift will go to the floor determined by the button pressed in the cabin.”

3 Example - The Lego Sorter

The Lego sorter is a PLC (Programmable Logic Controller)-controlled plant
made of Lego bricks, DC motors, angle sensors and a colour scanner [4]. Bricks
of two colours are stored in a queue. They enter a belt one after another, and
possibly more than one brick is on the belt. The belt is moved by a motor. Bricks
are transported by the conveyor belt to the scanner and further on to the sorter.

*(uaaup-jdnuisjul Jou) swiy 8y ||e
10|00 B} S9AISSJO JouuedS 8y 8y

*Kousnbayy Buidwes
patisap ay) suoddns 19)j0u0d O1d dYL ‘pY

*AyaeinuelB juarolyns yym ajbue uonejos aAlesqo

leringa

, A. Mader, and R. W

incic

J. Mar

| doud U2 |043u02 ey} yons si pouad Buldwes ay] gy SO pue
‘uomsod [enur Jadou
IM J1E)S pIno| .«W 19 _om ayL: “fouenbayy Bunidwes ‘uBisep am [0.juod oy} spoddns SO ayL gy | MEMPLEY
UM LES PINOYS JSUOS BUL -4 LY pauisep ay) spoddns 19)|0ju0o 91d YL ‘pY n A d9)]03u0)
3 uon Apadoid syiom arempiey sandwo) Ly
(*sepIs 8} JO UO UO JI HOS ||IM pue -uBisop oM jey) !
wmﬁu%m\,“,wuwwwwwur__mN_\ﬂﬁﬂowam“o__B ._mm“__w_wmom%m_w Jo13u00 8y} spoddns wasAs Bunesado ayy Zy ‘Kydwe ele jjag pue Jepog ‘Mels uodn pLY
ayyul mv_o_.‘_n mojieA pue aniq >_:m ale a1ay] 9y ‘uomsod (et Jodoid yyim sue)s oS ay| L LY
‘uosod . d d . JojesadQ
*ananp 8y} ul syouq ayy Ind |im Jojesado uy Gy ur sodoud Yym LE)S PINoYS JBHOS BYL L LY SNaND S L 40uq 8L Ind | Jojelado Uy .Gy
Apadoud SV eIV 2y
SJUIRJISUOD JUSLIUOIIAUD HOM SI0JOLL PUE SIOSUSS UOREI0L BYL -6V "aN9ND BU} Ul I JeU (W X WWGL X WWQG)
1y - < syouq 0s piepue)s aie syoug syaug
pue jue|d gD UONBIYISSBID | -Auedoid som yog ey Bummow sojow ayy sy MR Piouq obST piepuey oua oLy
‘Aidwa ale jjag pue JauoS ‘Wejs uodn pLy
Buios uaym ‘ananp ay} ul 1} jey (Ww/ X Wwg| X wwog) SLY 2Ly
uonoalIp JUsIaYIp Ul BAOW souq 067 piepuels aie syoug gLy . d doud R
0} 9ABY SW.E JBHOS 8y} Jey} *Ol}SIUILLIB}P JOU S| uomyisod [enur sadold yym sue)s JSHOS dYL JL LY
Aem e yons ul jue|d sy} PaIOS 3jo1iq SnolAaid pue Jauuess ‘uomisod wie
Jonssuodal ‘sjduwiexs oy aU) 0} [EALLIE 3OLIq B JO JOpIO YL ‘GLY aAne|al AJUO MOYS SIOSUSS UOIEI0) YL :L 6
| ybiw am ‘suondwnsse -OSIUILLISIBP JOU S! Jjog ~*Aejap ou yum sjeubis jwsuel} pue J1e)108
jueyd Jayjo 10} spjoy swes a8y a3 Uo Ajeaua BUIA| YoLg MaU © pUE Jauuess A1adouid s}10m SIOJOW PUE SIOSUSS UONEJOI BY L ‘6Y
Kejop oioz € U} 1B PAAISSGO %O € JO J9pI0 YL ELY GV eIV 2y
mmmc jeur _M w._:o_mo siow *JO|OS 8U} 0} 1@ Aeep ayy yum
Seysinbulsip 8 mew m& euw SeAoW XoUq snolraid e a10jeq Jauueds ay) |eubis ay) S)WSUEBL) JOUUEDS BYL (LY
me“_m%%_mmwwwm_m Mhum_u_.m M\% syny JO JUOJ} Ul Y011 MBU OU 3q [|IM BIdY] ZZLY “(uaAup-idnusyul Jou) J8uueog
| P uabunuo: pue panesqo awly 8y} ||e JOJOD BY) SOAI8SJO JaUUBDS By Y
noge suonduosap auyj [|e ‘a9 ks nuod
inoq NALOSEP U Il H S| %joUq MaU 8y} 810Joq JauUedS Aq PaAISSGo
Jeuueos e Buiyou, skemie si aidy] L ZLY *OSIUIWIS)SP JOU S| PAMOS %0liq shoiraid
) wxy=A 1ey) 0s SyoLq puE JBUUBDS 8U} O} [BALLIE %DLI] B JO JOPIO 8YL GLY
w0 Sa.%%%mﬂwwm:%ﬂ . mm_::m._e USOM}B(SOUEBJSIP [BWIUIW € S| 8I8Y] ‘ZLY -oNSIUILLIBISP JOU
uusaulbuz S1)jag 8y} U0 Aj211ue oLq Mau e pue
uonouny e si A paads jjag ay L ‘Aadoud syiom asempiey soindwo) Ly [ealueyoaN Jouuesg Hm;“umm..muro v_o_ .M v.ox‘_m.ho m ..%3\
-uomsod we [19}10S B} 0} SEAOW YoLq SNOIAId B 810J8q JoUUBDS
SAEIR) AIUO MOUS SIOSUSS UONEIO) BU 1L 6Y SUj JO JUOH UIHOUG MBU OU 3G ___Bwhwﬁwm.wwmmw
-uomisod sy abueyd “Aejep ou yum SI01Iq MBU BY) 810J8q JauuedS Aq peaIasqo
1.uoM)t 1 01q oY) S[eubls JWsue.} " SI0SUSS UOHEIOI BY] ‘6Y Jauueos je"Bulyiou, skemie si aidyl L ZLY
pue ‘paddojs si }jag oy} j| Sme| [einjeN 1a Aejep ayy jey
Yym [eubis ay) sHiWSUEI) JOUUEDS BY] '8y 08 $30lq U9aM}aq SOUBJSIP [BWIUIW B S 818y ZLY Jeg
‘uonisod sy sabueyo 3ouq ayy fyuenuess *Apedoud Bunpiom si jjog ay) Buirow Jojow ay] /v
. ‘Buinow s13jeg 8y} pue JUBIOIYNS UM a|BUB UONBIOI BAISSGO UBD “Bua “anenp ay) anon
SPU0J8S || 10}3[08 S U0 J| 103U09 1Y) Yons s| pouiad Buldwes ay] gy lonuoy ur syouqg mojjak pue anjq Ajuo ale a1ay] 9y o
suondwnsse suopdwnssy spoadsy suondwinssy syusuodwon

juabunuod pue AiessasaN
D ‘€D suoneoyisse|n

sjoadse jnoqe suopdwinssy :ZDH uopesyIsse|)

sjusuodwos Jnoge suopdwinssy : 19 uonesyIsse|)

unknown state. The sorter consists of two fork-like arms. Each arm can rotate
a brick to one of the sides of the plant. Each sorter arm is controlled by its own
motor and has its own rotation sensor that senses the angle of the arm. The

brick of another colour in front of it would cause the scanner to enter into an
starting angle is 0, and as the arm rotates it changes to 360 degrees.

The scanner can distinguish a yellow, blue or no brick in front of it. Putting a

144

found

ion criteria we

Fig. 1. List of the assumptions shown according to the classificat

Classifying Assumptions Made during Requirements Verification 145

The requirement is: “Eventually all the bricks from the queue will be moved
by the sorter to the side corresponding to their colour”. We designed the control,
and modelled and verified the system (see [5] and [6]). The assumptions that we
identified are presented in table in Fig[ll Some of the assumptions are part of
the model, but are also listed in the table.

4 Related Work

From the work following the approach of [2] we mention only the most similar to
ours. The problem frames technique [3] defines frame concerns through examples
of issues that have to be addressed and that are not described in the problem
diagrams, e.g., initialization of the software and hardware.

In [7] a technique for software specification is described, starting from the re-
quirement for the plant. Assumptions ("breadcrumbs’) on the plant are collected,
and an argument for each modelling step. No guidelines for finding assumptions
are given.

In [8] a formal conceptual network based on problem-oriented perspective is
developed, where modelling steps are formally described. We, on the other hand,
are looking for ways to systematically perform these steps.

In the area of requirements engineering, the goal-oriented methods have a sig-
nificant place. Our classification of assumption could be useful in the phases of
requirements analysis of the KAOS method [9]. In the Tropos methodology [10],
when defining the circumstances under which a given dependency among two
actors arises, a modeller has to learn about the system, so our assumption clas-
sification might be useful there, too.

The problem of modelling method is addressed in [I] by agendas, a list of
modelling steps. The transition from informal to formal is performed in one of
the first steps of the requirements elicitation, while we formalize only the last
steps when the complete knowledge about the system is available.

In [T1] a General Property-oriented Specification Method is introduced, where
assumptions are collected in the cells of a table made while decomposing the
system. This framework is restricted to the use of labelled transition systems.

5 Discussion and Conclusion

Formal methods are applied in a non-formal world and we cannot give an al-
gorithm how to collect the assumptions. Instead, we found different classes of
assumptions that are made in the modelling process and different ways of iden-
tifying the assumptions.

Making assumptions explicit is not so much a matter of using the appropriate
languages or tools. In the first place it requires a discipline of thought, and being
aware what we do during modelling activity can help here by saying at which
point of the modelling process we have to look for assumptions, and which form
these can have. Different categories of assumptions mean that we have different
views to the system, even if we chose one decomposition. If we restrict ourselves

146 J. Marincic, A. Mader, and R. Wieringa

into one single view or decomposition, we might omit an important assumption.
Therefore, classification of assumptions is useful as a checklist to go through
when describing the system; this is a hypothesis that needs further proving. An
experiment in which a group of modellers will be presented with assumptions
classification and one not, is needed to make this statement an empirical claim.
This is the part of our further work.

We plan to look closer into subclasses of embedded control systems for which
we can make specialized, more concrete modelling guidelines. We will focus on
the communication of control engineers and verification experts while doing for-
mal verification, to identify the boundaries of these two knowledge domains, and
to make more clear what one expert has to know about other expert’s area.

References

[1] Heisel, M., Souquieres, J.: A method for requirements elicitation and formal spec-
ification. In: Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER
1999. LNCS, vol. 1728, pp. 309-325. Springer, Heidelberg (1999)

[2] Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodol. 6(1), 1-30 (1997)

[3] Jackson, M.: Problem Frames: Analysing and Structuring Software Development
Problems. Addison-Wesley, Reading (2000)

[4] MOCA project - ongoing work, http://moca.ewi.utwente.nl/WORK.html/

[5] Marincic, J., Wupper, H., Mader, A., Wieringa, R.: Obtaining formal mod-
els through non-monotonic refinement. Technical report TR-CTIT-07-33, CTIT,
Univ. of Twente, The Netherlands (2007)

[6] Marincic, J., Mader, A., Wieringa, R.: Capturing assumptions while designing
a verification model for embedded systems. Technical report TR-CTIT-07-03,
CTIT, Univ. of Twente, The Netherlands (2007)

[7] Seater, R., Jackson, D., Gheyi, R.: Requirement progression in problem frames:
deriving specifications from requirements. Requir. Eng. 12(2), 77-102 (2007)

[8] Hall, J.G., Rapanotti, L., Jackson, M.: Problem oriented software engineering: A
design-theoretic framework for software engineering. sefm 0, 15-24 (2007)

[9] Dardenne, A., Fickas, S., van Lamsweerde, A.: Goal-directed concept acquisition
in requirements elicitation. In: Procs of IWSSD 1991, pp. 14-21. IEEE Computer
Society Press, Los Alamitos (1991)

[10] Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-oriented requirements analysis
and reasoning in the tropos methodology. Engineering Applications of Artifcial
Intelligence 18/2 (2005)

[11] Choppy, C., Reggio, G.: Towards a formally grounded software development
method. Technical Report DISI-TR-03-35, Universita di Genova, Italy (2003)

http://moca.ewi.utwente.nl/WORK.html/

	Introduction
	Classification of Assumptions
	Example - The Lego Sorter
	Related Work
	Discussion and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

