
Characterizing Languages by Normalization

and Termination in String Rewriting�

(Extended Abstract)

Jeroen Ketema1 and Jakob Grue Simonsen2

1 Faculty EEMCS, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

j.ketema@ewi.utwente.nl
2 Department of Computer Science, University of Copenhagen (DIKU)
Njalsgade 126–128, Building 24.5.46, 2300 Copenhagen S, Denmark

simonsen@diku.dk

Abstract. We characterize sets of strings using two central properties
from rewriting: normalization and termination. We recall the well-known
result that any recursively enumerable set of strings can occur as the set
of normalizing strings over a “small” alphabet if the rewriting system
is allowed access to a “larger” alphabet (and extend the result to ter-
mination). We then show that these results do not hold when alphabet
extension is disallowed. Finally, we prove that for every reasonably well-
behaved deterministic time complexity class, there is a set of strings
complete for the class that also occurs as the set of normalizing or ter-
minating strings, without alphabet extension.

1 Motivation

This paper considers the following fundamental question: If R is a string rewrit-
ing system, what must the set of normalizing (alternatively, terminating) strings
of R look like?

Rewriting systems are commonly used to characterize sets of objects, for ex-
ample the sets of strings generated by formal grammars [7], the sets of construc-
tor terms that, when embedded in certain “basic” terms, give rise to reductions to
a normal form [8,1], and so forth. However, all of these approaches either assume
the entire rewriting system to be terminating, or extend the signature that ob-
jects can be built from, for example using a larger alphabet to construct strings.
As an alternative, we would like to see if any insight can be gained by appealing
to notions and methods particular to (string) rewriting: normalization and ter-
mination of arbitrary strings, and investigate the sets of strings that normalize
or terminate. This paper is a first step in this direction; for non-empty alphabets
Σ and Γ with Σ ⊆ Γ , we write NORMR(Γ )(Σ) (resp. TERMINR(Γ )(Σ)) for the
set of strings over Σ that are normalizing (resp. terminating) wrt. the (finite)

� Jakob Grue Simonsen is partially supported by the Sapere Aude grant “Complexity
through Logic and Algebra” (COLA).

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 459–464, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



460 J. Ketema and J.G. Simonsen

rewriting system R(Γ ) whose rules may use symbols from Γ . The main focus of
the paper is to characterize the set of languages L that arise as NORMR(Γ )(Σ)
or TERMINR(Γ )(Σ), in particular in the case Γ = Σ. We loosely call such
languages L characterizable by normalization (resp. termination).

Related Work. McNaughton et al. considered languages accepted by finite,
length-reducing and confluent string rewriting systems using extra non-terminal
symbols [12], and this work was later heavily generalized by Beaudry et al. [4]. In
the setting of [12,4], a language L ⊆ Σ∗ is accepted (a “McNaughton language”
in the terminology of [4]) if there is a Γ � Σ and a finite string rewriting systemR
over Γ , two strings t1, t2 ∈ (Γ \Σ)∗∩IRR(R), and a symbol ◦ ∈ (Γ \Σ)∩IRR(R)
such that for all w ∈ Σ∗ we have w ∈ L iff t1wt2 →∗

R ◦. This construction is very
similar to ours in the case where ◦ is the only string v ∈ IRR(R) such that there
is a w ∈ Σ∗ with t1wt2 →∗

R v. However, there are two crucial differences: [12,4]
allow for other normal forms (however, this is a fairly superficial difference for
decidable languages), and they do not treat the case where alphabet extensions
are not allowed, i.e., where Γ = Σ.

The idea of disallowing alphabet extensions has cropped up occasionally in
the literature, but has apparently not been treated systematically: Minsky has
a short discussion of the problem in his classic book [13, Section 12.7], but oth-
erwise the literature is scant. We believe the reason for this is that the foremost
applications of string rewriting, proof systems for semi-groups and monoids, at-
tach no special importance to normalizing strings: Indeed, there the interesting
property is not reduction →∗ (to normal form or otherwise), but conversion ↔∗

where rules are also allowed to be used “in reverse”, hence, rendering normal
forms much less important.

There is a wealth of work on length-decreasing string rewriting systems, par-
ticularly confluent such systems, where a language L over alphabet Σ is typically
characterized by v ∈ L iff v →∗ ε where ε is the empty string; the impetus was
Nivat’s fundamental work on languages akin to the Dyck language [14] and de-
veloped by later researchers, see [5]. Contrary to our work, the rewriting systems
considered in the above work are almost invariably terminating (i.e., all strings
terminate) and confluent.

2 Preliminaries

We refer to the classic textbook [6] for basics on string rewriting, to [16] for
general background on rewriting, and to [9,15] for basics of computability. To
fix notation, we repeat a few basic definitions below.

Definition 2.1. An abstract reduction system is a pair (A,→) with A is a
non-empty set of objects and → a binary relation on A, called the reduction
relation. We denote by →+ the transitive closure of → and by →∗ the reflexive,
transitive closure. An object a ∈ A is a (→-)normal form if there do not exist
b ∈ A with a → b. We denote by IRR(→) the set of normal forms of A. An object



Characterizing Languages 461

a ∈ A is normalizing (wrt. →) if there are b ∈ IRR(→) such that a →∗ b; a is
terminating (wrt. →) if there is no infinite sequence a = b1 → b2 → b2 → · · · .

Let Σ = {a1, . . . , an} be a finite set of symbols, called the alphabet; we denote
by Σ+ the set of non-empty finite strings over Σ and by Σ∗ the set of finite
strings over Σ. A string rewrite rule over Σ is a pair (l, r) of strings, invariably
written l → r; throughout the paper, it is assumed that l, r ∈ Σ+. A string
rewriting system (or semi-Thue system), abbreviated SRS, over alphabet Σ is a
set of string rewrite rules over Σ. The reduction relation →R⊆ Σ∗×Σ∗ induced
by a string rewriting system R is defined by v → w if there are x, y ∈ Σ∗ and
l → r ∈ R such that v = xly and w = xry. If R is clear from the context, we
write → instead of →R.

One important difference from ordinary string rewriting: All rules l → r will
have both l �= ε and r �= ε to avoid a host of special cases. Unless explicitly
stated otherwise, R is a finite set of rules throughout the paper. Additionally, Σ
and Γ will denote finite alphabets (usually with Σ ⊆ Γ ) throughout the paper.
If R is an SRS over alphabet Σ, we will usually write R(Σ) to avoid confusion.

The following definition fixes our two main objects of study:

Definition 2.2. Let Σ be an alphabet and R(Γ ) a string rewriting system (over
an alphabet Γ ⊇ Σ). By NORMR(Γ )(Σ) we denote the set of non-empty strings
over Σ that are normalizing wrt. →R. By TERMINR(Γ )(Σ) we denote the set
of non-empty, terminating strings over Σ wrt. →R.

Example 2.3. Let Σ = {0, 1}. We define GOLDEN as the set of non-empty
strings over Σ that do not contain 00 as a substring, and SPRIME as the set
of non-empty strings over Σ that contain no substring of the form 10p1 with p
a prime number. Moreover, we define PALINDROME as the set of non-empty,
even-length palindromes over Σ, and PARITY as the set of non-empty, even-
length strings over Σ containing exactly the same number of 0s and 1s.

The following definition is standard (see e.g. [3,2]):

Definition 2.4. A language L ⊆ Σ+ is factorial if s ∈ L and s = uvw (for
u,w ∈ Σ∗ and v ∈ Σ+) implies that v ∈ L.

Note that GOLDEN and SPRIME are factorial, while PALINDROME and
PARITY are not.

3 Sets of Strings with Alphabet Extension

We start by considering which sets of strings over Σ can be characterized if we
allow the rewrite system to be defined over an extended alphabet Γ ⊇ Σ. For
normalization, the following theorem is well-known in different guises, e.g. as a
statement about Post Normal Systems [9, Ch. 6.5].

Theorem 3.1. Let L ⊆ Σ+. There exists a string rewriting system R(Γ ) (with
Γ ⊇ Σ), resp. R′(Γ ′) (with Γ ′ ⊇ Σ) such that L = NORMR(Γ )(Σ) iff L is recur-
sively enumerable, resp. L = TERMINR′(Γ ′)(Σ) iff L is recursively enumerable
and factorial.



462 J. Ketema and J.G. Simonsen

Factoriality is essential in the case of termination:

Lemma 3.2. If R is a string rewriting system, then TERMINR(Σ) is factorial.

4 Reducing the Alphabet to Σ

A fundamental question is what happens when Γ = Σ, i.e., when we restrict the
building blocks of our rewriting systems to the alphabet of the language we wish
to characterize. In general, this is impossible:

Example 4.1. Let Σ = {0, 1} and consider the set PARITY. Clearly, L is re-
cursively enumerable. We claim that there is no R(Σ) such that PARITY =
NORMR(Γ )(Σ). To see this, suppose there is an R and note that 0 /∈ L and
1 /∈ L. Hence, there must be rules 0 → r, 1 → r′ ∈ R; but then there are no
R-normal forms in Σ+, a contradiction. Note that the same argument can be
repeated for any language that contains neither 0 nor 1.

The reader may well ponder what we have gained by the characterization
NORMR(Γ )(Σ) = L when the rewriting system R employs symbols from a
“large” alphabet Γ—surely we generally have NORMR(Γ )(Σ) � NORMR(Γ )(Γ )
and, hence, L � NORMR(Γ )(Γ ). In fact, a stronger result holds: If the set of
normalizing strings over Γ are built solely with symbols from Σ, then we could
have built all rules of R solely with symbols from Σ.

Lemma 4.2. Let L ⊆ Σ+ and let R(Γ ) satisfy L = NORMR(Γ ). Then there
exists R′(Σ) satisfying L = NORMR′(Σ)(Σ).

Lemma 4.2 makes clear that when characterizing a set of strings L by devising
an SRS R having L as exactly its set of normalizing strings, then R can only
use the symbols of Σ. This observation naturally leads to the question “can
all recursively enumerable sets be characterized this way?”—but Example 4.1
has answered this question in the negative. The next natural question is “which
recursively enumerable sets cannot be characterized this way?”

We have no full characterization of the languages that are not characterizable
as NORMR(Σ)(Σ) or TERMINR(Σ)(Σ). However, criteria can be given that rule
out certain languages. In particular, neither PALINDROME, nor PARITY is
characterizable (indeed, PALINDROME must always have infinite symmetric
difference with any characterizable language). GOLDEN is characterizable; the
status of SPRIME is not known to the authors.

5 Complexity of Languages Characterizable in Σ

A näıve—and wrong—conjecture is that NORMR(Σ)(Σ) and TERMINR(Σ)(Σ)
must be very simple. We shall prove that this is not the case by showing that
NORMR(Σ)(Σ) and TERMINR(Σ)(Σ) can be hard and complete for arbitrarily
hard complexity classes.

We start with a few preliminaries on computational complexity (see [10,15]
for examples and further explanation).



Characterizing Languages 463

Definition 5.1. Let F be a class of functions f : Γ+ −→ Γ+. We say that a
set A ⊆ Γ+ is F-hard for a class of subsets C ⊆ P(Γ+) if for every set B in C
there exists f ∈ F such that x ∈ B iff f(x) ∈ A for all x ∈ Γ+. A is complete
for C under F-reduction (usually just abbreviated C-complete) if A ∈ C and A is
F-hard for C.

For a function f and a set G of functions N −→ N, we say that f is globally
bounded by a function in G (written f ≤ G) if there exists a function g ∈ G
such that for all n ∈ N, we have f(n) ≤ g(n). If F is a class of functions of
type Γ+ −→ Γ+, we say that F is time-defined (resp. space-defined) by G if
F is exactly the class of functions of type Γ+ −→ Γ+ that are computed by a
multi-tape deterministic Turing Machine running in time (resp. space) bounded
above by a function in G. If C ⊆ P(Γ+) is a class of languages, we say that C is
time-defined (resp. space-defined) by G if C is the set of languages L such that
L = f−1(1) for some f ∈ F where F is a class of functions of type Γ+ −→ {0, 1}
time-defined (resp. space-defined) by G.

The set G is closed under polynomial slowdown if, for any g ∈ G and any
polynomial P with coefficients from N, we have f ≤ G for f(x) = P (g(x)). If F
(resp. C) are classes of functions (resp. sets) that are time- or space-defined by
G we say that F (resp. C) is closed under polynomial slowdown if G is.

G is O-closed if, for each f ≤ G and each positive integer a, we have a · f ≤ G
(note that if f(n) > 0 for all n, then O-closure implies that (n �→ f(n) + c) ≤ G
for all integers c, i.e., additive constants “don’t matter”). If a class of functions
F or sets C are time- or space-defined by G, then F or C is O-closed if G is.

We now have the following result about the normalizing, resp. terminating,
strings over an alphabet Σ:

Theorem 5.2. Let F be an O-closed class of functions and let C ⊆ P(Σ+) be
a class of languages time-defined by G and closed under polynomial slowdown.
If there exists a C-complete set under F-reduction, then there is an S(Σ), resp.
S′(Σ), such that NORMS(Σ)(Σ), resp. TERMINS′(Σ)(Σ), is C-complete.

Thus, there are complete sets L,L′ for PTIME and EXPTIME under logspace-
reductions such that L = NORMS(Σ)(Σ), resp. L′ = TERMINS′(Σ)(Σ) for
appropriate SRS S(σ), resp. S′(Σ).

6 Conclusion and Future Work

We have considered the problem of characterizing sets of strings as the sets of
normalizing, resp. terminating, strings over a finite string rewriting system. A
number of open questions remain, the most important of which is to give precise
necessary and sufficient conditions for a set of strings to be characterizable in
this way. Other interesting problems include: (a) Which sets can be characterized
by non-overlapping rewriting systems? (b) Which sets can be characterized by
confluent rewriting systems? (c) How large is the class of characterizable sets?
(The exact notion of largeness is debatable, one suggestion is to use a suitable



464 J. Ketema and J.G. Simonsen

form of constructive measure [11]). (d) The authors of [4] identify an extensive
hierarchy of classes of McNaughton languages; can a similar hierarchy be ob-
tained in our case when Γ = Σ? (e) What are the exact closure properties under
standard operations of the class of languages characterized by normalization,
resp. termination?

References

1. Avanzini, M., Moser, G.: Closing the gap between runtime complexity and polytime
computability. In: Proceedings of the 21st International Conference on Rewriting
Techniques and Applications (RTA 2010). Leibniz International Proceedings in
Informatics, vol. 6, pp. 33–48 (2010)

2. Béal, M.-P., Crochemore, M., Mignosi, F., Restivo, A., Sciortino, M.: Computing
forbidden words of regular languages. Fundamenta Informaticae 56(1-2), 121–135
(2003)

3. Béal, M.-P., Mignosi, F., Restivo, A., Sciortino, M.: Forbidden words in symbolic
dynamics. Advances in Applied Mathematics 25, 163–193 (2000)

4. Beaudry, M., Holzer, M., Niemann, G., Otto, F.: McNaughton families of languages.
Theoretical Computer Science 290(3), 1581–1628 (2003)

5. Book, R.: Thue systems as rewriting systems. Journal of Symbolic Computa-
tion 3(1-2), 39–68 (1987)

6. Book, R., Otto, F.: String Rewriting. Texts and Monographs in Computer Science.
Springer (1993)

7. Chomsky, N.: Syntactic Structures. Mouton & Co. (1957)
8. Choppy, C., Kaplan, S., Soria, M.: Complexity analysis of term-rewriting systems.

Theoretical Computer Science 67(2&3), 261–282 (1989)
9. Davis, M.: Computability and Unsolvability. Dover Publications Inc. (1982) (Orig-

inally published in 1958 by McGraw-Hill Book Company)
10. Jones, N.D.: Computability and Complexity from a Programming Perspective. The

MIT Press (1997)
11. Lutz, J.H.: The dimensions of individual strings and sequences. Information and

Computation 187(1), 49–79 (2003)
12. McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal

languages. Journal of the Association for Computing Machinery 35(2), 324–344
(1988)

13. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall Series in
Automatic Computation. Prentice-Hall (1967)

14. Nivat, M.: On some families of languages related to the Dyck language. In: Pro-
ceedings of the 2nd Annual ACM Symposium on Theory of Computing (STOC
1970), pp. 221–225 (1970)

15. Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Thomson Course
Technology (2006)

16. Terese (ed.): Term Rewriting Systems. Cambridge Tracts in Theoretical Computer
Science, vol. 55. Cambridge University Press (2003)


	Characterizing Languages by Normalizationand Termination in String Rewriting
	Motivation
	Preliminaries
	Sets of Strings with Alphabet Extension
	Reducing the Alphabet to 
	Complexity of Languages Characterizable in 
	Conclusion and Future Work
	References




