
1

RESULTS OF THE CEO PROJECT
WWW MANAGEMENT

HARRIE HAZEWINKEL

ERIC VAN HENGSTUM

AIKO PRAS

CTIT Technical Report Series
No. 96-18

ISSN 1381-3625

This document is the result of a proof of concept study that was carried out by
ESYS Ltd. and the CTIT of the University of Twente (UT) as part of a programme
called the ‘Centre for Earth Observation’ (CEO), which is coordinated by the
Joint Research Centre (JRC) of the EC.

November 1996

2

3

Abstract

This report contains the result of a ‘proof of concept’ study that was performed by the CTIT of
the University of Twente, together with ESYS Limited (Guildford, UK) for the Institute of
Remote Sensing Applications of the Joint Research Centre (JRC) of the EC (Ispra, Italy). The
study is part of the ‘Centre of Earth Observation’ (CEO) programme.

The subject of the study was the design and implementation of tools that allow status and
utilisation monitoring of networks and distributed information servers. In the specific case of
the CEO programme, these information servers are accessible via the WWW and contain large
amounts of earth observation data (e.g. satellite pictures).

The work division within the project was that ESYS investigated the management applications,
which had to run on top of HP-Openview, and the CTIT designed and implemented the
management agents. These agents had to include the following Management Information Bases
(MIBs):
• A HTTP-MIB, with detailed information concerning the WWW document transfer protocol.
• A Retrieval Service (RS) MIB, with high level information concerning the WWW document

transfer service.
• An Information Store (IS) MIB, with information concerning the WWW server and the doc-

uments provided by that server.
The specifications of these MIBs were presented to the IETF and provided a good starting point
for subsequent standardization activities. The agents were implemented as sub-agents of the
EMANATE extensible agent package and are currently being tested in a number of field trials.

Acknowledgements

This document could not have been written without the help of Mark Gamble, Carl W.
Kalbfleisch, Rui Meneses, Jürgen Schönwälder and the other members of the HTTP mailinglist.

4

5

Part 1: Introduction to the World Wide Web

1 Introduction 10

2 WWW technology 11
2.1 Clients 11
2.2 Servers 11
2.3 Documents 11
2.4 The Network 12
2.5 Uniform Resource Locators 12
2.6 Virtual servers 12

3 WWW servers 13
3.1 File system 13
3.2 CGI 14
3.3 Logfiles 14

Part 2: Network management technology

4 Protocol selection 18
4.1 SNMP 18
4.2 SNMPv2 20
4.3 CMIP 20
4.4 TMN 21
4.5 Network Management Forum 22
4.6 IEEE 22
4.7 Selection criteria 23
4.8 Conclusions 23

5 Evaluation of Network Management Products 24
5.1 Requirements 24
5.2 Software Products 24
5.2.1 The CMU-SNMP package 24
5.2.2 The ISODE package 25
5.2.3 The SCOTTY software 25
5.2.4 The Tricklet software 26
5.2.5 The SNMP Development kit 26
5.2.6 The UT-SNMP package 26
5.2.7 The WILMA toolkit 26
5.2.8 Summary of PD products 27
5.3 Conclusions 28

6

Part 3: Definition of the WWW MIBs

6 Introduction to the WWW MIBs 30
6.1 User Requirements 30

7 WWW MIB design. 31
7.1 Application structure 31
7.2 Retrieval Service 31
7.3 Management Information Bases 32

8 HyperText Transfer Protocol MIB 33
8.1 System group 33
8.2 Statistics group. 33
8.3 TimeOuts group. 34

9 Retrieval Service MIB 35
9.1 Statistics group. 35
9.2 Quality of Service group 36

10 Information Store MIB 37
10.1 General Group 37
10.2 Access group 38
10.3 Error Group 39
10.4 Document Group 39

Part 4: Implementation of the management agent

11 Introduction to the WWW agent 42
11.1 User requirements 42

12 Implementation environment 43
12.1 Sub Agent Development Kit. 44
12.2 The method routines. 45
12.2.1 GET processing. 45
12.2.1.1 GET method for scalar variables. 46
12.2.1.2 GET method for tabular variables. 47
12.2.2 SET processing 49

13 Sub-agent design 52
13.1 Management instrumentation 52
13.2 The time/space problem. 53
13.3 Functional decomposition. 54

14 Sub-agent details 55
14.1 Tail_file function 55
14.2 Scan_*_line function 55
14.3 MIB computation 55
14.3.1 HyperText Transfer Protocol MIB computation 56
14.3.2 Retrieval Service MIB computation 58
14.3.3 Information Store MIB computation 59

7

Part 5: Conclusions and Recommendations

15 Conclusions and recommendations 64
15.1 MIB definition 64
15.2 Agent implementation 64

16 References 67

Appendix A: HyperText Transfer Protocol MIB definition 69

Appendix B: Retrieval Service MIB definition 95

Appendix C: Information Store MIB definition 109

8

9

Part I

Introduction to the World Wide Web

10

1 Introduction

Due to the rising demand for information by Internet users, information retrieval applications
on the Internet are becoming increasingly popular and important. The explosive growth of
Internet users and the increased availability of multi-media information pushes the evolution of
information retrieval applications, like for instance the World-Wide Web (WWW), to great
heights.

This rapid evolution, the large amount of (multi media) data and the diverse nature of the
Internet user requirements gives rise to a quite complicated network management problem. To
manage the heterogeneous environment, adequate network management instrumentation is
required. Unfortunately the existing management instrumentation, which is based on the Simple
Network Management Protocol (SNMP), does not yet include the support for managing the
aforementioned information retrieval applications.

The Centre of Earth Observations (CEO) is a programme of the European Commission (EC) to
promote the use of earth observations data and foster related activities in Europe. The CEO
programme is coordinated by the Institute for Remote Sensing Applications (IRSA) of the EC’s
Joint Research Centre (JRC) at Ispra, Italy.

To support the CEO programme, a set of information retrieval services will be installed that help
Internet users to locate and retrieve earth observation data through the use of facilities such as
electronic catalogues, subscription services and gateways to existing data bases. The CEO
information retrieval services will be distributed across Europe, and will be based upon the
existing European Internet infrastructure.
To manage these services, monitoring facilities are needed that help the participants of the CEO
programme to improve the (quality of) delivered services and assist information providers and
service administrators in finding possible solutions to match quality of service levels to user
expectations.

Considering that the WWW has become the favoured mechanism for making information
available over the Internet, a method for monitoring the utilisation and performance of WWW
Information Servers is a desirable asset for the CEO and one of the features that has been
identified for a possible implementation in the CEO enabling Services monitoring facility.

In mid-1995, the CEO has selected ESYS Ltd. (UK) and the Centre for Telematics and
Information Technology (CTIT) of the University of Twente (the Netherlands) for the design
and implementation of WWW monitoring prototypes. ESYS Ltd. became responsible for the
development of a WWW manager application, which should be based on HP OpenView. The
University of Twente became responsible for the development of WWW MIBs and agents. The
emphasis of this document is on this latter development.

11

2 WWW technology

The World Wide Web (WWW) is a distributed application with users all over the Internet. It is
an information providing / retrieving application which operates on a request/response
paradigm, the traditional client/server model. The Internet systems that provide information are
called servers; the systems that request information are called clients.

Figure 1: The WWW application

Figure 1 depicts a WWW application; a client initiates a request for a document which is
available on some server. The server responds and sends the requested document back to the
client.
Some of the key components of WWW will be explained in this chapter.

2.1 Clients
A WWW client, sometimes called a “browser” is a computer program which requests a
document from a WWW server, and presents what it receives to its user. Often auxiliary or
helper programs assist the client in presenting certain kinds of documents such as sound,
picture, or video files. The most popular WWW client is Netscape, which comes in versions for
Unix workstations running X-Windows, Personal Computers using Microsoft Windows, and
Macintosh personal computer. Computers without graphical display capability can use text-
only clients, such as Lynx, to browse WWW documents.

2.2 Servers
A WWW server is merely a relay system, receiving requests for WWW documents from clients
and sending back the documents requested. WWW servers appeared first on UNIX hosts, but
versions for Windows NT as well as other operating systems are now available. More
sophisticated servers are able to pass requests for documents via the so-called Common
Gateway Interface (CGI) to other applications (often databases), which return WWW-formatted
information. These generated files will subsequently be transmitted by the server to the
requesting client. A detailed discussion of WWW servers can be found in Section 3.

2.3 Documents
WWW documents consist of one or more files, and include text, picture, sound and sometimes
video information. The text files include special codes that describe how it should be displayed
and how it may be linked to other documents. These codes, which follow a standard called the

Internet

client

client
request

request

response

response server

12

HyperText Mark-up Language (HTML) allow WWW client or browser applications to display
the document with the appropriate visual formatting. A WWW document may also contain
codes that direct the reader to other documents, which may be available on the same or on a
different server. These other documents may again contain text, picture, sound or video
information.

2.4 The Network
WWW is made possible because of the ubiquity of the Internet, a mega-network of computer
systems which can be considered as the forerunner of the electronic super highway. The rules
and formats for communication between WWW clients and servers are defined by application
layer protocols, which in turn make use of underlying transport and network layer protocols
(e.g. TCP/IP). One of the best known application layer protocols is the HyperText Transfer
Protocol (HTTP). Depending on the information that is contained within the WWW document,
the size of HTTP data units may be anything between 300 bytes and many megabytes. Until
now most WWW users do not pay for the actual use of individual WWW servers, but instead
pay a flat monthly rate to access the entire Internet. This is likely to be changed in the future,
which implies that payment may become usage sensitive.

2.5 Uniform Resource Locators
Uniform Resource Locators (URLs) are identifiers for resources within the WWW. URLs
consist of three parts:
• an identifier for the protocol that should be used to access the resource (e.g. http or ftp),
• the (DNS) name of the machine on which the resource resides,
• the precise name of the resource on that machine (often a file name)
Work is currently performed within the IETF to come up with a more universal identification
scheme, called Uniform Resource Identifiers (URIs).

2.6 Virtual servers
Virtual domains is a technique to assign multiple IP addresses to a single physical interface. It
reduces the cost of setting up servers by allowing multiple ‘virtual’ servers to coexist on a single
piece of hardware. Although the servers are connected to the same physical network, they
operate as if they belong to multiple domains. To realize virtual domains, the operating system
should be modified to support multiple addresses for a single physical interface. This
modification or ‘hack’ is already supported in many OS's, such as SunOS, SOLARIS, Linux and
NT.

Also the alias technique provides the capability to assign multiple names to a single host. There
is a difference however between the alias and the virtual domains technique: the alias technique
should be used to assign multiple host names to thesame server. An example of the alias
technique is to use ‘wwwsnmp.cs.utwente.nl’ and ‘rose.cs.utwente.nl’ for the same server.

13

3 WWW servers

WWW applications can be decomposed into two conceptual layers:
• A layer responsible for the transparenttransfer of WWW documents. This layer does not

interpret the HTML formatting codes that may be contained within WWW documents. The
operation of this layer is defined by the HTTP protocol.

• A layer responsible for thestorageor construction (at the server side) andformatting (at the
client side) of WWW documents. For this purpose, the client interprets the various HTML
codes that are contained within the document. The precise way to transfer WWW documents
is not significant within this layer.

As will be illustrated in Part III of this report, the idea to decompose the WWW into these two
layers will be helpful to identify and structure possible WWW management information.

Figure 2: Structure of a WWW server.

Figure 2 shows the internal structure of a typical WWW server. The entity responsible for the
storage of WWW documents is called the ‘Information Store’ (IS). This entity has access to the
file systems and may as well communicate, via the Common Gateway Interface (CGI) and
scripts, to external programs such as database systems. Information concerning the operation of
the IS and the HTTP entities is stored within special logfiles.

3.1 File system
The file system is the place to storestatic WWW documents. Such documents are static, in the
sense that they should be createdbefore they can be requested by clients. Static documents
consist of (a combination of) HTML formatted ascii files, image files, sound files and even
video files. Home pages, articles and conference announcements are possible examples of static
WWW documents.

The (network) file system is usually an integral part of the operating systems. Each WWW
server gets his ownWWW root within this file system. This concept of a WWW root is similar
to the concept of a file system root, in the sense that all WWW documents should be stored in
directories below the WWW root (see Figure 3).

CGI

TCP

file system

logfiles

HTTP-entity

Information Store

scripts

14

Figure 3: Example of a file system with WWW server root

3.2 CGI
The Common Gateway Interface (CGI) allows the server program to communicate with other
programs, such as database systems. As opposed to static WWW documents, these external
programs may dynamically create WWW documents after a request from a client has been
received. This mechanism ensures that the provided information can always be up to date.

Example:The CGI is used to pass queries to a system which includes all share prices of
the stock market.

The external programs that dynamically produce WWW documents are usually running as
separate processes on the host of the WWW server. Running CGI programs on your WWW
server host is relatively insecure; clients who want to attack your system may ‘hack their way’
via CGI.

3.3 Logfiles
Most WWW servers maintain logfiles with information concerning client requests and server
errors. Logfiles allow managers to obtain statistical information concerning the servers usage
and to trace possible problems.

Theaccess logfile includes the information of client requests. The format of this logfile, which
is described in a de facto standard, is shown in Figure 4.

Figure 4: Format of a logfile

Figure 5 gives an example of a logfile entry.

Figure 5: Example of an access logfile entry

WWW root

usr packages

WWW utilsharrie wwwinfo

pictures text

remotehost rfc931 authuser [date] "request" status bytes

• remotehost is the remote host name or IP address of the client.
• rfc931 is the remote log name of the user.
• authuser is the name by which the user has authenticated himself.
• date is the date and time of the request.
• "request" is the request line (URL), exactly as it came from the client
• status is the returned status code to the client.
• bytes is the number of bytes transferred to the remote host.

annex1s13.urc.tue.nl - - [06/Feb/1996:21:16:09 +0000] "GET /vloot.html HTTP/1.0" 200 3321

15

Theerror logfile includes the information of server, communication and information related
errors (Figure 6). Unfortunately, the format of this type of logfile is not standardized.

Figure 6: Example of error logfile entries

Server related error:

Communication related error:
[Sat Nov 25 18:33:58 1995] send timed out for case.cs.utwente.nl

Information related error:
[Tue Dec 5 11:05:57 1995] access to /home/misc/hazewink/APACHE/htdocs/ijzeil.gif

failed for cam027313.student.utwente.nl, reason: File does not exist

[Thu Nov 2 16:00:37 1995] httpd: caught SIGTERM, shutting down

16

17

Part II

Network management technology

18

4 Protocol selection

The purpose of this chapter is to select which protocol should be used to manage WWW. It starts
with an overview1 of the protocols and techniques that are the potential candidates. These
candidates are2:
• the Simple Network Management Protocol (SNMP)
• version 2 of SNMP
• the Common Management Information Protocol (CMIP)
• the Telecommunications Management Network (TMN)
• the protocols and techniques of the Network Management Forum
• the management protocol of the IEEE.
The overview sections are followed by a section that states the criteria on which the selection
of the management protocol should be based. The chapter concludes with a recommendation
concerning the protocol that should be used.

4.1 SNMP
In the second half of the previous decade the Internet Engineering Task Force (IETF) concluded
that management of the Internet could no longer be provided on an ad-hoc basis. After some
discussion, the IETF decided that it would be best to use the ‘Common Management’ protocol
that was being developed as part of the OSI program [15]. To allow the OSI management
protocol to run on top of a TCP/IP stack, minor modifications were necessary. The resulting
protocol was called ‘Common Management Over TCP/IP’ (CMOT) [18].
Unfortunately, standardization of OSI management did not progress at great pace. To satisfy the
immediate management needs of the Internet, the IETF therefore decided to introduce for the
short term an extended version of the ‘Simple Gateway Monitoring Protocol’ (SGMP) [14].
This protocol was called the ‘Simple Network Management Protocol (SNMP) [17]; the idea was
to replace this protocol as soon as OSI management standards were ready.
Apparently SNMP was the right solution at the right time. Already a few years its introduction,
most datacommunication equipment could be managed via SNMP; SNMP had become the de
facto management standard. The overwhelming success of SNMP urged the IETF to review its
original plans and drop the support for OSI management: in 1992 it removed CMOT from the
IETF standardization track.

The ideas behind SNMP are as follows:
• All systems connected to the network should be manageable with SNMP.
• The cost of adding network management to existing systems should be minimal.
• It should be relatively easy to extend the management capabilities of existing systems (by

extending the Management Information Base).
• Network management must be robust. Even in case of failures, a small set of management

capabilities must still be available.

SNMP allows a central manager to control the operation of many systems (Figure 7). The
managed systems are called ‘agents’ and the behaviour of each of these systems may be
monitored and modified via its ‘Management Information Base’ (MIB). Each MIB includes a
large number of management variables [19]. These variables are expressed in terms of simple
scalars and two-dimensional tables; as opposed to other management approaches it is not

1. Additional information can be found in [13].
2. If the project would be performed again, Web-based Management should also be considered.

19

possible to define structured variables. A further limitation is that SNMP can only operate on
the individual elements of the table; it is not possible to operate on the table as a whole. As a
result, SNMP management is performed at a relative low level of abstraction. In fact, SNMP
may be seen as a ‘remote debugging’ facility. Its strengths are its simplicity, costs and ubiquity;
it is not well suited however for complex management tasks.

SNMP operations

Communication from the manager to the agent is performed in a confirmed way. The manager
takes the initiative by sending one of the following PDUs:GetRequest, GetNextRequest or
SetRequest. TheGetRequest andGetNextRequest are used to retrieve management information
from the agent, theSetRequest is used to store (or change) management information. After
reception of one of these PDUs, the agent responds with aResponse PDU (Figure 8). This PDU
carries the requested information or indicates failure of the previous request.

It is also possible that the agent takes the initiative. This happens in case the agent detects some
extraordinary event, such as a re-initialization or a status change at one of its links. As a
reaction, the agent sends aTrap PDU to the manager. Reception of theTrap is not confirmed
(Figure 9).

SNMP does not describe how a manager should relate the variousGet, Set andTrap interactions.
What to do after reception of aTrap, for example, is not defined by the standards.

manager

MIB

agent

Figure 7: Manager - agent relationship

MIB

agent

MIB

agent

MIB

agent

MIB

agent

Figure 8: Manager takes the initiative

GetRequest

Response

GetNextRequest

Response

SetRequest

Response

manager agentmanager agent manager agent

Figure 9: Agent takes the initiative

Trap

manager side agent side

20

4.2 SNMPv2
Since publication of the original SNMP protocol, several proposals have been presented to
improve SNMP. In 1992 it was decided to collect these proposals and produce a new standard:
SNMP version 2 (SNMPv2). As compared to the original version, version 2 offers better
performance, better security and the possibility to build a hierarchy of managers. Next to these
main improvements also a large number of small improvements were included.

SNMPv2 was first described in RFC 1441 - RFC 1452 [20]-[31] and became Proposed Standard
in 1993. Soon after its publication several research groups started to implemented the protocol
to obtain practical experience. It soon turned out that SNMPv2 was not as straightforward as
expected. As in 1994 the IETF reopened the discussion to determine whether progression to
Draft Standard was possible, many people complained about the complexity of the ‘party based’
administrative model. This model describes the ‘parties’ and ‘contexts’, which are exchanged
between the manager and agent on behalf of the security functions (authentication, encryption
and access control). Because of the ongoing criticism, two of the four original editors of
SNMPv2 dropped their support for the ‘party based’ model and proposed to replace it by a much
easier to understand ‘user based’ model.

In the three month that followed it was impossible to find sufficient support for this new model.
In september 1995 the Network Management Area Director (NM-AD) therefore decided to
freeze discussions on the complex security aspects of SNMPv2. Instead, it was decided to
develop a version with the same simple (community based) security features of SNMPv1. This
new version of SNMPv2 is described in RFC 1901-1908 [32]-[39]. At the start of this project it
is to early to judge the support for this new version.

4.3 CMIP
The first standardization organization that addressed network management was the
International Organization for Standardization (ISO). Around 1980 it formed a special working
group to define OSI management. This group started to develop the ‘OSI Management
Framework’ [7], which was intended to provide the architectural basis behind OSI
management. Standardization of this framework and its associated management protocol, the
‘Common Management Information Protocol’ (CMIP) took many years[8]. In the mean time
SNMP appeared and manufacturers of data communication equipment decided not to wait until
completion of OSI management, but to implement SNMP instead.

Only recently manufacturers ofmanager systems (e.g. HP, SUN and BULL) started to
implement CMIP. This support of CMIP may be motivated by the desire of these manufacturers
to earn some money in the rapidly growing field of telecommunication management (CMIP
oriented management systems are far more expensive than their SNMP oriented counterparts).
In the datacom world, CMIP managers are only used in very large networks as ‘top level
managers’. This is because there are hardly any implementations of CMIPagents available;
communication between manager and agent must therefore still be based upon SNMP.

From a technical point of view OSI management has advantages and disadvantages. One of the
main advantages is the rich (object oriented) information model, which allows the creation of
every possible managed object type (remember that SNMP allowed only creation of simple
scalars and two dimensional tables). With CMIP it is also possible to directly operate on
complex objects (SNMP required the manager to operate on each individual table element).

21

A disadvantage of OSI management is that many management functions should be performed
by the managed systems. This hinders the ubiquity of OSI management; especially in case of
relatively simple and inexpensive systems (PCs, workstations, bridges, modems etc.) addition
of OSI management functions may be too complex and expensive.

4.4 TMN
The term TMN is introduced by the ITU-T (the former CCITT) as an abbreviation for
‘Telecommunications Management Network’. The concept of a TMN is defined by
Recommendation M.3010 [2].

According to M.3010, "a TMN is conceptually a separate network that interfaces a
telecommunications network at several different points". The relationship between a TMN and
the telecommunication network that is managed, is shown in Figure 10. According to this
figure, the interface points between the TMN and the telecommunication network are formed
by exchanges and transmission systems (called ‘network elements’). For the purpose of
management, these exchanges and transmission systems are connected via a ‘Data
Communication Network’ (DCN) to one or more ‘Operations Systems’. The Operations
Systems perform management functions, which may be carried out by human operators but also
automatically. It is possible that a single management function will be performed by multiple
Operations Systems. In this case, the DCN is used to exchange management information
between the Operation Systems. The Data Communication Network is also used to connect
Work Stations, which allow operators to interpret management information. Work Stations
have man-machine interfaces, the definition of such interfaces fall outside the scope of TMN
(Work Stations are therefore drawn at the border of the TMN).

TMN should be seen as an attempt to align terminology and ideas. It provides an overview of
management functions and structures at a high level of abstraction. Note that TMN does not
introduce any new management protocols; the communication between operation systems and
network elements TMN relies on the use of CMIP. For the purpose of this chapter it is therefore
not necessary to consider TMN any further.

Figure 10: General relationship of a TMN to a telecommunication network

Data Communication Network

Operations

System

Operations

System

Operations

System

Exchange
Transmission

systems

Transmission

systems
Exchange Exchange

Telecommunication network

TMN

Work
Station

22

4.5 Network Management Forum
In 1988 the ‘OSI/Network Management Forum’ was formed to promote the rapid development,
acceptance and implementation of ISO and CCITT management standards [5]. The Forum is a
non-profit organization whose members are manufacturers, operating companies and research
laboratories. After a few years the prefix ‘OSI’ was removed to indicate that the Forum had
widened its scope to reference management standards from other sources.
Examples of such standards are:
• SNMP from the IETF.
• The ‘Distributed Management Environment’ (DME) [1] from the Open Software Foundation

(OSF).
• The ‘Management Protocol API’ (XMP) and the ‘OSI-Abstract Data Manipulation API’

(XOM) from X/Open.
• The ‘Common Object Request Broker Architecture’ (CORBA) from the Object Management

Group (OMG).

To organize its work, the NM Forum has defined the OMNIPoint1 program. This program
comprises "a set of standards, implementation specifications, testing methods plus tools, object
libraries that make possible the development of interoperable management systems and
applications" [9][10]. Outside the telecom world the OMNIPoint program was not very
successful. Reasons for this lack of success seem to be:
• The goals set for DME were over-ambitious: it was built upon a number of false assumptions,

it focused ondistributed management of objects instead ofmanagement of distributed
objects, object orientedness was seen as the solution for all problems and too many informa-
tion models were being supported [42].

• XOM turned out to be more complex than expected [3]. In a number of implementations
XOM was in fact replaced by a proprietary API.

• The delivery schedule envisaged for CORBA could not be met.

4.6 IEEE
The Institute of Electrical and Electronics Engineers (IEEE) is a professional organization
which, amongst others, defines standards for Local and Metropolitan Area Networks (LANs
and MANs). These standards are commonly known as the IEEE 802 standards. Some of these
standards define how management should be performed in LAN and MAN environments
(Figure 11).

The IEEE management standards are based upon the ISO CMIP standard. As opposed to ISO,
IEEE does not use this protocol at application level (layer 7), but at data link level (layer 2). The
name that is used for the IEEE approach, is Common Management Over LLC (CMOL). A

1. OMNIPoint stands for Open Management Interoperability Point

Number Title

IEEE 802.1B LAN/WAN Management

IEEE 802.1E System Load Protocol

IEEE 802.1F Common Definitions and procedures for IEEE 802 Management Information

Figure 11: IEEE Management standards

23

problem with CMOL is that it is impossible to manage stations located at other sides of routers
(routers, by definition, relay via layer 3). IEEE management is thus restricted to single (bridged)
LANs or MANs; management of large internets is thus impossible.

4.7 Selection criteria
The management protocol that will be selected should satisfy the following criteria:
• the protocol should allow monitoring of the information servers, as well as the Internet to

which these servers will be connected. Monitoring should be possible from a remote place,
somewhere on the Internet.

• the protocol should be standardized, and not be proprietary technology.
• the protocol should be proven technology.
• the protocol should be accepted by the datacom market and available from several vendors.
• the protocol should support at least some limited level of security.
• implementation should be inexpensive.

4.8 Conclusions
Several of the protocols that were mentioned in the overview section do not satisfy the above
criteria:
• TMN need not be considered because it does not define any management protocol itself

(instead it references CMIP).
• CMOL can not be used over the Internet.
• The technologies of the network management forum can not be regarded as proven technol-

ogy.
• The same is true for SNMPv2.

The real choice is therefore between (version 1 of) SNMP and CMIP. Although CMIP is
potentially more powerful than SNMP, it is not (yet?) accepted by the datacom market and can
hardly be considered as proven technology. Besides, the use of CMIP will be far more
expensive because vendors ask relatively high prices (compared to SNMP) and various
components (e.g. agents) may not be available elsewhere and need therefore be tailor made for
this project.

The conclusion is therefore to use SNMP. In the mean time progression of SNMPv2 should be
monitored. If this new version becomes a success, the decision to use SNMP version 1 may be
reconsidered (it is assumed the new version will be capable to operate with version 1).

24

5 Evaluation of Network Management Products

This chapter presents an overview of the Public Domain (PD) network management products1

that can be used to develop WWW management agents. To select an appropriate network
management product, several requirements are identified (Section 5.1); each network
management product will be evaluated with respect to these requirements (Section 5.2). The
chapter concludes with a recommended network management product (Section 5.3).

5.1 Requirements
To guide the selection of a network management product for the development of an agent,
several requirements are needed. The following requirements were identified during the
meeting in Ispra (27 July 1995). The most important requirements were:
• The agent must at least support the SNMPv1 protocol.
• The agent must run under the Solaris operating system
• The agent must preferably implement the MIB-II [19]. The MIB-II provides information on

several Internet protocols, for instance, Transmission Control Protocol (TCP), User Data-
gram Protocol (UDP) and Internet Control Message Protocol (ICMP).

Some requirements a bit less (but still) important were:
• Extensible agent technology will be preferable.
• The agent must preferably be freely distributed among customers on the Internet, so it is

attractive whenever the agent implementation could run on as many systems as possible.

To simplify the implementation of the WWW-MIB and the WWW agent, some additional
desirable properties were identified by the project partner:
• The product must include tools for easy MIB implementation. Such a tool can be a MIB com-

piler or an SNMP implementation capable of auto-loading a MIB specification. During the
loading process, an internal MIB representation will be build corresponding to the hierarchy
of the MIB specification. The internal MIB representation is suited to store the entire MIB.
Usually, such a MIB specification is written in the Abstract Syntax Notation One (ASN.1)
language.

• To implement an WWW agent, it seems attractive to modify an already existing agent. The
source code of the agent must therefore be available.

5.2 Software Products
On the Internet, several interesting network management products can be found. The most
important of these products are summarized below. The functionality of every product is
globally described and then the product is evaluated against the requirements mentioned before.

5.2.1 The CMU-SNMP package

The CMU-SNMP package is developed at the Carnegie Mellon University (USA). The package
was build primarily to improve the world-wide acceptance of the SNMP protocol. The main
developer of this package is Steve Waldbusser, one of the architects of SNMPv2.

1. An overview of commercial management products has been performed by ESYS Ltd. and will not be discussed
in this report.

25

The main part of the package consists of an SNMPv1/v2 protocol stack. This stack is available
to an application programmer via an C programming interface. The protocol stack is capable of
auto-loading a MIB written in the ASN.1 language. Around this stack, a complete MIB-II
compliant agent has been developed. This agent is probably the most widely and frequently
used SNMP agent. The implementation seems to be very stable during the past years.
Besides the aforementioned ANSI-C interface, a Tool Command Language (TCL) interface and
a PERL interface is also available. Unfortunately, the supported TCL version is outdated, but
the PERL interface is up-to-date.
The entire CMU-SNMP package is in source code available. The package is poorly
documented: just some rudimentary manual pages are included in the package. No extensible
agent technology is supported. The package contains several manager programs, which are very
suitable for testing purposes.
The CMU-SNMP package is ported to the Solaris operating system.

5.2.2 The ISODE package

The ISODE software is primarily intended for the development and testing of new Internet
protocols. The SNMPv1/v2 part of the ISODE package is primarily build by Marshall T. Rose,
who is probably the most important architect of the SNMP framework.
The SNMPv1/v2 protocol stack in the ISODE package are accessible via an ANSI-C and TCL
application programming interface. A MIB-II compliant agent completes the SNMP
implementation. The entire ISODE package is in source code available. The package is
reasonably documented, but the enormous disksize needed for this package (around 100
megabytes) can be a major drawback. Another drawback is the implementation structure of the
SNMP agent, which is not always very clear.
The ISODE SNMP implementation seems to be very stable. A MIB compiler is included in the
package, and the SNMP implementation supports the building of extensible agents.
Unfortunately, the extensible agent technology (SMUX) is outdated and not supported any
more. The ISODE software is available for the Solaris operating system.

5.2.3 The SCOTTY software

The SCOTTY software, written at the Technical University of Braunschweig in Germany,
consists of several individual tools; the SCOTTY tool, the BONES network configuration
database and the TKINED graphical network editor.
The SCOTTY tool provides a TCL interface to several internet protocol stacks, for instance,
SNMPv1/v2, UDP, TCP, ICMP and the HyperText Transfer Protocol (HTTP). The TCL
interface supports the latest version of the TCL/TK language. A MIB, specified in the ASN.1
language, is auto-loaded in the SCOTTY tool and the internal corresponding MIB
representation can immediately be used to store MIB information. The internal representation
in the SCOTTY tool is accessible via the aforementioned TCL interface.
The documentation could have been better, but the software is stable. A TCL script of an simple
agent is included for demonstration purposes. All tools are in source code form available. The
SCOTTY is one of the newer network management tools on the Internet. No extensible agent
technology is supported. A Solaris implementation is available.

26

5.2.4 The Tricklet software

The purpose of the Tricklet software, developed at the Technical University of Delft in the
Netherlands, is to provide tools for performability and manageability of Local Area Networks
(LANs).
The Tricklet package comprises a SNMPv1 protocol stack. The included agent implements the
Remote Monitoring (RMON) MIB. The SNMP protocol stack can be accessed via a PERL
language interface. This interface does not support the latest version of the PERL language. The
Tricklet software is well documented and especially the agent implementation seems to be
widely applied. No extensible agent technology is supported and the Tricklet software is
available for Solaris.

5.2.5 The SNMP Development kit

The SNMP software developed at the Massachusetts Institute of Technology is very well
structured. Although the MIT software includes partly MIB-II support, unfortunately only
SNMPv1 is implemented in the development kit. The MIT software is in source code available,
but lacks any documentation. The software is not ported to the Solaris operating system. No
extensible agent technology is available.

5.2.6 The UT-SNMP package

The UT-SNMP software is one of the results of the UT-SNMP project at the University of
Twente in the Netherlands. One of the goals of the project was to implement the entire SNMPv2
framework based on the Internet Request For Comment documents 1441-1452.
The UT-SNMP software provides primarily a SNMPv2 protocol stack. Unfortunately, the latest
UT-SNMP version lacks the support of SNMPv1. Several applications, a simple agent and
manager, are added for demonstration purposes.
The SNMP protocol stack is accessible via an ANSI-C and TCL interface. The documentation
is a bit outdated. A MIB compiler for ASN.1 specifications is available. The UT-SNMP
package runs under the Solaris operating system and supports extensible agent technology. The
package is in source code available.

5.2.7 The WILMA toolkit

This WILMA toolkit, developed at the Technical University of Munich, provides a SNMP
based set of tools, such as a MIB compiler, MIB browser, and several demonstration SNMP
agents. The demonstration agents contain several pre-defined MIB implementations, for
instance the RMON-MIB, SNMP-MIB and the HOST-MIB. Extensible agent technology is not
included in the toolkit.
The toolkit supports version 1 and version 2 of the SNMP protocol. The SNMPv2 is new and
seems not very stable. The protocol stack is accessible via an C application programming
interface. The documentation is very clear. The toolkit is ported to the Solaris operating system.
The source code of the WILMA toolkit is freely available.

27

5.2.8 Summary of PD products

The table below shows all public domain products, as well as the email address, the ftp location
and the universal resource locator (url) address for additional information.

The following table summarizes some of the product specific information.

Name of product Organisation Email address / Url address / Ftp location

CMU-SNMP Carnegie Mellon University
(USA)

Email address:
Url address:
Ftp location: ftp://lancaster.andrew.cmu.edu/pub/snmp-dist/

ISODE Email address: ISODE-SNMPv2@ida.liu.se
Url:
Ftp location: ftp:/ftp.ics.uci.edu/mrose/

RMON University of Delft (NL) Email address: btng@dnpap.et.tudelft.nl
Url address: http://dnpap.et.tudelft.nl/DNPAP/Software/software.html
Ftp location: ftp://dnpap.et.tudelft.nl/pub/btng

SCOTTY University of Braunschweig (DE) Email address: tkined@ibr.cs.tu-bs.de
Url address: http://www.cs.tu-bs.de/ibr/projects/nm/scotty/
Ftp location: ftp://ftp.ibr.cs.tu-bs.de/pub/local/tkined/

MIT Massachusetts Inst. of T. (USA) Email address: snmp-dk@allspice.lcs.mit.edu
Url:
Ftp: ftp://ptt.lcs.mit.edu/pub/snmp/

UT-SNMP University of Twente (NL) Email address: snmp@cs.uwtente.nl
Url address: http://wwwsnmp.cs.utwente.nl/
Ftp location: ftp://ftp.cs.utwente.nl/pub/src/snmp/software/

WILMA University of Munich (DE) Email address: wilma-list@ldv.e-technik.tu-muenchen.de
Url address: file://ftp.ldv.e-technik.tu-muenchen.de:/dist/WILMA/
Ftp location: ftp://ftp.ldv.e-technik.tu-muenchen.de/dist/WILMA/

Name of Product GUI PI PL Sp Sr T V

CMU-SNMP 2.1 X11 Windows Ansi-C
TCL
PERL

Solaris
HPUX
LINUX

no yes MIB-II agent and manager
SNMP stack

1/2

ISODE 8.0 ascii ANSI-C
TCL

Solaris
AIX
HPUX

no yes MIB II agent
SNMP stack
MIB compiler

1/2

Tricklet 3.1 X11 Windows ANSI-C
PERL

Solaris
LINUX
OS2

yes yes RMON agent
SNMP stack

1

SCOTTY 2.0 X11 Windows TCL Solaris
LINUX
HPUX
and many others

yes yes SNMP stack
Simple agents

1/2

MIT 1.1 ascii ANSI-C no ? SNMP stack 1

UT-SNMP 4.0 ascii ANSI-C
TCL

Solaris
HPUX

yes yes SNMP stack
MIB compiler
Simple agent and manager

2

Wilma 2.0 X11 Windows ANSI-C HPUX/
Solaris/LINUX ...

yes yes SNMP stack
MIB compiler
agents and manager

1/2

28

Legend:
• GUI: Graphical User Interface
• PI: Programming Language Interface
• PL: Running on PLatforms
• Sp: Support
• Sr: Sources available
• T: Tools
• V: SNMP version 1 or SNMP version 2 support

5.3 Conclusions
Two of the most important requirements, the SNMPv1 - and MIB-II requirements, selects two
public domain products; the ISODE - and the CMU-SNMP package. The Solaris requirement
is supported by both packages.
Both products support the easy implementation of MIBS. Although the ISODE package
includes a MIB compiler, the CMU-SNMP package provides the build-in facility for auto-
loading MIBS.
Both packages provide a stable SNMP agent. It seems that the CMU-SNMP agent is more
preferable, due to the more clear implementation structure. This agent implementation makes
the incorporation of a new WWW-MIB easier and more straight forward.
The enormous disksize of the ISODE package is another significant drawback.
The concluding recommendation is to apply theCMU-SNMP package for the development of
a SNMP agent with a WWW-MIB implemented.1

1. After completion of the ‘Overview of commercial network management products’, it was decided to use SNMP-
Research’s EMANATE package; primarily because of its extensible agent technology capabilities.

29

Part III

Definition of the WWW MIBs

30

6 Introduction to the WWW MIBs

To monitor the utilisation and performance of WWW servers, a number of Management
Information Bases (MIBs) must be defined by the project.
This part of the report describes the design and structure of these MIBs. Section 6.1 identifies
the user requirements and Section 7 shows the basic design. In this design three different MIBs
will be distinguished: a HyperText Transfer Protocol (HTTP) MIB, a Retrieval Service (RS)
MIB and an Information Store (IS) MIB). These MIBs will be presented in Sections 8 through
10.

6.1 User Requirements
To guide the development of WWW MIB modules, the following user requirements were
identified:
• The MIB modules must include management information for the monitoring of WWW serv-

ers. Modules for WWW clients may be considered too, but are not of prime concern.
• The MIB modules must also include management information to monitor the performance of

the transport network that is used by the various WWW systems.
• The structure of the MIB modules should be generic, which means that their basic structure

should also be applicable in case alternative protocols and information storage systems will
be used.

• The WWW server MIB module must include management information concerning possible
support applications that are used to dynamically generate information (for example a data-
base manager which interacts with the WWW server via the CGI interface).

31

7 WWW MIB design.

World Wide Web (WWW) enables the provision and collection of hypertext linked information
via the Internet. Anyone who wants to provide information can connect to the Internet and
makes his or her information available via WWW; anyone who wants to collect information,
can also connect to the Internet and thus the WWW.
The enormous growth of the Internet and the World Wide Web makes management an
important albeit difficult task. A prerequisit for good management is that management
information should be well-defined and structured in a logical way. Within our project, the
management information has been structured into a number of independent modules, each
having a well-defined purpose.

7.1 Application structure
The distributed WWW application can be decomposed into two parts:
• An information dependant part, which is responsible for the provision and interpretation of

hypertext linked information.
• An information independent part, which is responsible for the transfer of information and

does not interpret the information. Within the project this part is called the Retrieval Service.

Figure 12: application parts and its underlying service.

This decomposition is shown in figure Figure 12. Because of the request/response paradigm of
the WWW application, two different application parts are recognised; the server part, which is
the interface towards the information provider and client part, which is the interface towards the
information consumer.

7.2 Retrieval Service
The Retrieval Service (RS) provides a connectionless service to its users (the client and server
entities). In the specific case of World Wide Web, the Retrieval Service can be decomposed into
a HyperText Transfer Protocol (HTTP) on top of an Transmission Control Protocol (TCP) /
Internet Protocol (IP) stack. This is shown in Figure 13.
The WWW designers preferred TCP above the User Datagram Protocol (UDP), because TCP
is able to guarantee error free information exchange. As a consequence, the HTTP entities do
not need to include recovery procedures.

information independent part

Information consumer Information provider

client information dependant server
part

32

Figure 13: HTTP and its underlying service (TCP).

7.3 Management Information Bases
According to the user requirements of Section 6.1, the Information provider part as well as the
Information transfer part (the Retrieval Service) that were identified during the previous
decomposition should be manageable. There is no strict requirement however that the
Information consumer part should be manageable.
To enable such management, MIBs should be associated with each of these parts (Figure 14).

Figure 14: WWW MIB distributed over the WWW application

Three kind of MIBs have been identified:
• An Information Storage (IS) MIB, which contains managed objects concerning the docu-

ments (the information) that are provided by the WWW server. An example of such an object
is a table that indicates how often each individual document has been accessed. This MIB,
which need not be available at the client side, will be discussed in Section 10.

• A Retrieval Storage (RS) MIB, which contains managed objects that monitor the transfer of
documents. This MIB, which will be discussed in Section 9, contains for example objects that
count the number of service primitives and that measure the provided Quality of Service
(QoS). Although this MIB must in principle be implemented at each Retrieval Service Access
Point, it may in practice be sufficient to implement this MIB only at the server side.

• A HyperText Transfer Protocol (HTTP) MIB, which contains information to control the oper-
ation of the HTTP protocol. An example of such information is a PDU (=message) counter.
Due to the symmetric nature of the HTTP protocol, the same MIB structure can be used for
the client as well as the server side. The HTTP MIB will be discussed in Section 8.

Management of the lower level TCP/IP protocol stack does not require the definition of new
MIBs, since the existing MIB-II [19] can be used for this purpose.

TCP service

protocolHTTP protocol
entity

Retrieval Service

protocol
entity

Information consumer Information provider

serverclient information dependant part

TCP service

protocol
HTTP protocol entity

Retrieval Service

protocol
entity

MIB
IS

MIB
HTTP

MIB
HTTP

MIB
RS

MIB
RS

33

8 HyperText Transfer Protocol MIB

Although HTTP entities can act in a number of different roles, e.g. a client, server or proxy role,
their fundamental behaviour is the same. It is therefore possible to define a single MIB structure,
and have a special variable that indicates the role each entity is performing.
Figure 15 shows the basic structure of the MIB; the most important groups (httpSystem,
httpStatistics and httpTimeOuts) will be introduced below.

Figure 15: HTTP MIB structure.

8.1 System group
The System group consists of a single table: the httpEntityTable. Entity specific information is
organised as a table, since more than one HTTP entity may be running on a single host machine.
The table includes information concerning the possible use of virtual domains (Section 2.6) and
is indexed with a unique entity identification number, which is also used as index in the other
tables of this MIB.
For each entity the following information is provided:
• The kind of protocol implemented by the entity. This value should be derived from the ‘list

of assigned numbers’; in the case of HTTP this number is 80.
• A brief description of the entity and an email address of the responsible person.
• The version of the protocol that is implemented, the producer of the software, the software

release version and (optionally) an object identifier for the producer.
• Configuration information, such as the address of the host machine (both in text form and as

an IP address), the port in use, the time of last initialisation, and whether the entity is a client,
server, proxy, or a caching proxy.

8.2 Statistics group.
The Statistics group provides information concerning the PDUs received and transmitted by the
entity. The group consists of the httpSummaryTable, the httpRequestTable, and the
httpResponseTable.

The SummaryTable contains for each HTTP entity a set of counters which provide a quick
summary of the number of requests received, bytes transmitted, and so on. The SummaryTable

httpMIB

httpMIBObjects (1)

httpSystem (1)

httpConformance (2)

httpStatistics (2)

httpEntity httpSummary httpRequest httpResponse

httpCompliances (1) httpGroups (2)httpTimeOuts (3)

Table (1) Table (1) Table (2) Table (3)
httpTimeOut
TableSize (1)

httpTimeOut
Table (2)

34

also holds counters for requests and responses which have been discarded or received in error.
Note that certain variables are redundant with respect to the Request and Response tables, they
have been included however to reduce network traffic.

The Request and Response tables provide detailed information, broken down by entity as well
as by type of Request / Response. Each Request / Response type has a separate table entry,
giving the total count of the number sent / received, as well as a time-stamp to denote the last
interaction.
To allow easy addition of new PDU types, for instance in case a new version of the HTTP
protocol is defined, the information has been organized as tables. One of the indexes of the table
is the PDU type. In case the agent detects a new PDU type, it should automatically extend the
table with a new row to store the information concerning this new PDU type.

8.3 TimeOuts group.
The last group in the HTTP module contains time-out information for each of the HTTP entities.
The information is presented in the form of a table, and may be resized by the Network
Management system. It contains the address of the remote party involved, as well as the time at
which the time-out occurred. Since the HTTP protocol specification does not define time-outs,
discussions are needed whether this table is really useful.

35

9 Retrieval Service MIB

The Retrieval Service MIB contains high level information, such as service primitive statistics
and Quality of Service (QoS) figures, concerning the transfer of documents. It abstracts from
the specific protocols that provide this service, and has therefore some similarities with the
service management MIBs that are defined by TMN [2]. Note however that, as opposed to the
TMN service management MIBs, the RS-MIB provides management information concerning a
single Service Access Point (SAP) only. To obtain an overview of the entire service, the
manager should collect and combine the information from all RS-MIBs.

Within the context of this project it is of course not feasible to implement the RS-MIB in all
systems (servers as well as clients). Still it is expected that useful management information may
already be obtained if the MIB is implemented only within server systems.

The structure of the RS-MIB is shown in Figure 16; its main groups (rsStatistics and rsQoS) will
be discussed in the following subsections.

Figure 16: The Retrieval Service MIB structure.

9.1 Statistics group.
Interaction with the Retrieval Service takes place by means of service primitives. The statistics
group contains objects that count, at a single Service Access Point (SAP), the occurrence of
these service primitives.
Two possible solutions exist to define these counters:
• The total numbers of service primitives are counted by type. This requires for each service

primitive type a dedicated managed object.
• The total number of service primitives are counted by typeand remote host. This requires the

introduction of a table, indexed by the service primitive type as well as the IpAddress of the
remote host. Note that the remote host is a parameter of the service primitive.

For reasons of simplicity it was decided to implement the first solution.

retrievalServiceMIB

rsMIBObjects (1)

rsStatistics (1)

rsConformance (2)

rsQoS (2)

rsT
otal

rsDelay rsThroughput

rsCompliance s(1) rsGroups (2)

R
equests (1)

Table (1) Table (4)rsT
otal

R
esponses (3)

rsT
otal

Indications (2)

rsT
otal

C
onfirm

ations (4)

rsN
um

berO
f

T
im

eO
uts (3)

rsN
um

berO
f

E
rrors (2)

36

9.2 Quality of Service group
The Quality of Service QoS group contains network management information about the quality
of the document transfer. The information in this group provides the network manager with high
level visibility of the performance of the underlying network. The recognised QoS values are:
the transport delay, the number of errors, the number of time-outs and the throughput.

Transport delay values are stored within a table, which is indexed by the source and destination
addresses of the communicating systems. Figure 17 shows an example.

The total round trip delay can be computed by the Network Management System (NMS). If, for
example, the NMS wants to know the round-trip delay from host x.x.x.x to host y.y.y.y, it
should retrieve and subsequently add the variables ‘delayTable.1.3.x.x.x.x.y.y.y.y’ and
‘delayTable.1.3.y.y.y.y.x.x.x.x’. In the example of Figure 17, the round-trip delay is 13 + 18 =
31.

The instrumentation to obtain QoS values out of the system may not be easy to implement. One
of the ways to obtain at least QoSestimates, is to use ‘ping’ and the ‘echo’ protocol. It should
be noted however that ‘ping’ and ‘echo’ operate at network respectively transport level, and not
at HTTP service level. The obtained QoS estimates may therefore not be correct.

source(1) destination(2) delay (3)

x.x.x.x y.y.y.y 13

x.x.x.x z.z.z.z 25

y.y.y.y x.x.x.x 18

Figure 17: Example of a delayTable

37

10 Information Store MIB

The Information Store (IS) MIB specifies the network management information pertaining to
WWW servers. This section discusses the four major IS groups: isGeneral, isAccess, isErrors,
and isDocuments. The structure of the IS MIB is shown in Figure 18.

Figure 18: The Information Store MIB structure.

10.1 General Group
The isGeneral group (Figure 19) contains overall administrative data concerning the identity of
the IS. It includes simple variables which holds the server’s name, the organisation that operates
the server, the contact address of the responsible person, the time the server was last initialized
and a variable for the supported media types (e.g. text, pictures, sound and movies). Note that a
variable to indicate the location of the server is missing; such variable is already available within
the system group of the MIB-II and should not be duplicated.

Figure 19: The information store general group

The isGeneral group also includes two tables: isApplDependancy and isTopic. The last one
indicates the kind of information that is provided by this server. The isApplDependancy table,
which is needed in case the server operates as a proxy server, shows which applications (e.g. an
Oracle database) are used to generate documents. It includes the application’s name, version
number, uptime, operational status and errors.

For the purpose of the project it was decided to initialize the isApplDependancy table by reading
a configuration file. This file, which should be maintained off-line, contains the names of all
associated applications. The status of these applications can be checked dynamically however,
by using the ‘process status’ command of the UNIX environment.

informationStoreMIB

isMIBObjects (1) isConformance (2)

isError

isCompliances (1) isGroups (2)

Table (1)
isDocument

Table (4)

isGeneral (1) isAccess (2) isErrors (3) isDocuments (4)

isD
ocum

ent
T

ableS
ize (1)

isD
ocum

ent
T

ableD
ate (3)

isD
ocum

ent
T

ableR
efresh (2)

See figure 8 and 9.

isApplDependancy
Table (6)isLast

Initialisation (4)

isGeneral (1)

isN
am

e (2)

isC
ontact (3)

isO
rganisation (2)

isTopic
Table (7)

isS
upported

M
ediaT

ypes (5)

38

In fact the isApplDependancy table provides the same kind of information as the system
application (SYSAPPL) MIB, for which standardization has also been started within the IETF.
In the future the applicationTable may therefore be replaced by the SYSAPPL-MIB.

10.2 Access group
To inform the manager about server usage, the access group (Figure 20) provides the following
information:
• general summary information,
• domain specific information,
• document usage information, for the last N days,
• information concerning the most frequent and the most recent users.

Figure 20: The information store access group

The following general summary information is provided: the total number of accesses
(isNumberOfAccesses), the total number of bytes received (isNumberOfBytesIn) and the total
number of bytes transmitted (isNumberOfBytesOut). Although the manager could compute
these three figures from other MIB information, they were included to avoid the large amount
of traffic that must otherwise be exchanged for this computation.

Domain specific information is provided by the isDomainTable, which breaks down the
accesses to the IS by Internet domain. The table allows the manager to determine how often the
server has been accessed from each individual domain. This information helps the manager to
decide whether and where mirror servers may be useful to reduce network traffic and server
load.

The isAccessOfLastNDays Table shows how often the server has been accessed during the last
couple of days. It allows the manager to determine whether server usage increases, and if
additional server capacity is needed in the near future.

To understand which users have visited the IS, an isMostRecentUserTable and an
isMostFrequentUserTable have been defined. Both tables are typical ‘TopN’ tables. The size of
these tables, as well as the size of the isAccessOfLastNDays table, can be determined by the
manager and may not exceed 128.

Figure 21 shows an example of the isMostRecentUserTable. Since updating this table may be
expensive in memory as well as processing time, it will not be updated automatically, but only
after an explicit request is received from the manager. A special ‘refresh’ variable has been
included for this purpose. As a result of this request, the agent recalculates the table and updates
the time-stamp variable that indicates the date and time when the table was last refreshed.

isAccessOfLastN
DaysTable (6)

isA
ccessO

fLastN
D

aysT
ableS

ize (5)

isAccess (2)

isDomain
Table (4)

isN
um

berO
f

A
ccesses (1)

isN
um

berO
f

B
ytesO

ut (3)

isN
um

berO
f

B
ytesIn (2)

isMostFrequent
NuserTable (10)

isM
ostF

requent
U

serT
ableS

ize (7)

isM
ostF

rquent
U

serT
ableD

ate (9)

isM
ostF

requent
U

serR
efresh (8)

isMostRecent
UserTable (12)

isM
ostR

ecent
U

serT
ableS

ize (11)

39

The isMostRecentUsers table provides information on which users are the last ones who
accessed the IS. The name of this table may be somewhat misleading, since it does not unveil
the real identities of the (human) users that access the server (such information is not conveyed
by the WWW protocols), but the names of the machines from which the users operate. These
names should preferably be in DNS format, but IP addresses are allowed too. The table also
contains the time of the last access, as well as the document that was accessed. Figure 22 shows
an example of such table in which the isMostRecentNUsersTableSize is equal to 3. The most
recent user is ppp_7.mad.servicom.es, who retrieved the document ‘index.html’ and
immediately afterwards ‘worldmap.xbm’.

10.3 Error Group
The error group contains network management information about errors which occurred during
IS access. This group does not include possible network errors, but only errors that relate to
information access (e.g. document not available). The group is defined as a table with an error
description, the number of occurrences of that error as well as the time at which the error last
occurred. The reason to define this information as a table, is that extending tables with new error
types can be performed without changing the MIB module definition.

10.4 Document Group
The document group contains network management information about the documents that are
provided by the Information Store. The information is kept in a table, showing the document’s
name, access rights1, size, type, and other features such as the number of accesses, time of last
update, and any associated errors. The isDocumentTable has the same implementation
constraints as the isMostFrequentUserTable, and is handled in a similar fashion with TableSize,
TableRefresh, and TableData variables. It should be noted that (in the current implementation)
the isDocumentTable is populated from the log files, and thus documents which have not been
accessed will not appear in the table.

1. It should be noted that these access rights refer to the UNIX filesystem, and not to WWW. It is therefore not
completely clear if variables that show these access rights are really useful.

mfIndex(1) mfUserName(2) mfNumberOfAccesses(3)

1 ppp_7.mad.servicom.es 120

2 dijkstra.cs.utwente.nl 87

3 jipdmac.rb.noda.sut 36

Figure 21: Example of an isMostFrequentNUsersTable

mrIndex(1) mrUserName(2) mrlastTime(3) mrDocument(4)

1 ppp_7.mad.servicom.es 07 cc 01 13 0c 0f 27 00 worldmap.xbm

2 ppp_7.mad.servicom.es 07 cc 01 13 0c 0f 26 00 index.html

3 jipdmac.rb.noda.sut 07 cc 01 13 0c 0d 10 00 iso/mngt-arti.html

Figure 22: Example of an isMostRecentNUsersTable

40

41

Part IV

Implementation of the management agent

42

11 Introduction to the WWW agent

This part of the report describes how the agent was built. Subsection 11.1 summarizes the user
requirement to which the implementation has to comply. Section 12 discusses the
implementation environment; it provides a tutorial of the EMANATE package which was used
to develop and implement an extensible agent. EMANATE is a kit to develop sub-agents, and
is made by SNMP Research. Section 13 presents the design of the WWW sub-agent; Section 14
provides a detailed description of the sub-agent’s functional parts.

11.1 User requirements
The project agreed on the following user requirements:
• Network management of WWW servers will be done with the Simple Network Management

Protocol.
• Because standardisation of SNMP version 2 is not yet complete, it was agreed to use SNMP

version 1.
• Extensible agent technology is preferred.
• The agent has to support next to the WWW MIB also MIB-II.
• Different WWW servers should be supported (the solution should thus be generic).
• WWW server software should not be altered to include management instrumentation.
• An attempt should be made to support a broad range of alternative protocols, such as gopher

and ftp.

43

12 Implementation environment

The project decided to use the EMANATE package, made by SNMP Research Inc. (Knoxville,
Tennessee, U.S.A). EMANATE (Enhanced MANagement Agent Through Extensions)
supports SNMP version 1, as well as an early (and therefore not standardized) variant of SNMP
version 2. The package supports extensible agent technology, which means that it uses a master
agent to which sub-agents can be connected (Figure 23). Although the master and sub-agents
are implemented as separate UNIX processes, their external behaviour is the same as if they
were implemented as a monolithic SNMP agent.

Figure 23: The EMANATE architecture.

The master agent includes a small MIB, which contains the variables for the MIB-II system and
SNMP group. All other MIB variables are contained within the various sub-agents. For several
standard MIBs, for example the MIB-II, ready to run implementations can be purchased from
SNMP Research. To implement other MIBs (e.g. our WWW MIBs), SNMP Research offers an
easy to use Sub-Agent Development Kit (SADK). The WWW MIBs that were discussed in the
previous part of this report, have been implemented with this kit; Section 12 explains how this
was done.

EMANATE allows duplication of MIB variables, which means that different sub-agents may
contain variables with the same name. For this purpose EMANATE supports the following
mechanism. If a sub-agent registers a variable, the master agent checks whether the variable’s
name is already in use. If the name has not yet been used, EMANATE will pass subsequent
requests for this variable to the sub-agent that registered the variable. If the name has already
been used, the newly registered variable will be ignored. To allow communication between the
master and sub-agents, a proprietary ‘protocol’ (a standard for such a ‘protocol’ is under
development by the IETF) has been defined by EMANATE. It is also possible that sub-agents
communicate among each other, but always in an indirect way via the master agent. EMANATE
supports dynamic addition and deletion of sub-agents, without the need to recompile, start or
stop the master agent (plug and play concept).

internet (UDP/IP)

SNMP agent

sub
agent-2

MIB
WWW

sub
agent-1

MIB-II

master agent

MIB

sub
agent-3

MIB
other

44

12.1 Sub Agent Development Kit.
To add a new MIB, the EMANATE package comes with a Sub Agent Development Kit
(SADK). This kit consists of various tools and libraries with which sub-agents can be
implemented.

Figure 24: The EMANATE architecture.

Figure 24 shows the general structure of a sub-agent. To communicate with the master agent,
the sub-agent includes a special communication interface. This interface is supplied in the form
of a library and is used by the system independent methods. These methods can be generated
from the MIB specifications, and include a dispatch table. The Application Programmers
Interface (API) of the sub-agent consists of the system dependent methods; the communication
part is well hidden to the agent implementor. The instrumentation towards the managed device
cannot be generated, because it depends on the specific implementation of the device. The main
piece of programming that the agent implementor has to do, is to connect the device via the API
to the sub-agent.

To develop a sub-agent, the implementor does not need to know the details of the SNMP
framework. The SADK allows relatively large MIB to be implemented within a short period of
time. It distinguishes five different steps:
• Define the MIB.

MIBs can be defined from scratch, but in most cases it will be easier to start from an existing
definition. MIBs should be defined according to the rules of the Structure of Management
Information (SMI) for SNMP version 2.

• Add the instrumentation to the device which has to be managed.
The instrumentation should provide the required information with which the MIB variables
in the MIB can be computed.

• Edit the ‘makefile’.
This step consists of editing a number of rules and dependencies. These rules define how MIB
definitions will be implemented into so called method routines, which are C-code constructs.
Next to the method routines, a dispatch table will be generated which defines which variables
are available in the MIB definition. The function of the dispatch table is to connect the
method routines to the sub-agent’s API.

internet (UDP/IP)

master agent
SNMP agent

sub
agentsystem independent methods

proprietary protocol

system dependent methods

instrumentation towards device

communication interface

45

• Complete the system dependent method routines.
The SADK tools compile MIB definitions into C-stub routines. These routines form the API,
which has to be filled in by the implementor with the appropriate instrumentation. This
instrumentation is device specific and can therefore not be generated.

• Compile, link and test the agent.
A sub-agent can now be created, which forms in conjunction with the master agent the new
SNMP agent.

Figure 25: Overview of the sub-agent development process.

Figure 25 depicts the development process of the SADK. It shows the way from the MIB
specification via the method routines towards the executable sub-agent.

12.2 The method routines.
The method routines can be seen as the pieces of C-code that access and control the managed
device. Because parts of this code depends upon the specific way the device is implemented, the
implementor has to extend some of these routines manually. To allow easy ports to other
implementation environments, each method routine is divided into two parts:
• The System Independent Routines, which check all things that have been defined by the MIB

and relate to types, ranges, etc.
• The System Dependent Routines. The implementor extends these routines in order to provide

the computational functions of the concrete variables. This involves translating internal types
and values into the system independent types, as used by the System Independent Routines.

The computational functions consist of two sorts of processing. These are the GET methods that
retrieve values (GET, GET-NEXT and GET-BULK) and the SET methods that change values
(SET). In the following two subsections these functions are described in somewhat more detail.

12.2.1 GET processing.

The get processing consists of GET methods which are invoked when the value of a MIB
variable has to be computed. Since there are two sorts of MIB variables, scalar variables and
tabular variables, there are also two types of GET methods. Based on some examples [43], these
methods will be explained below.

MIB
specification

sys. dep.
methods

MIB compiler

must be edited by agent
implementor with the
instrumentation towards
managed device

sys. indep.
methods

libraries

subagentC compiler

(C-code)

(C-code)

46

12.2.1.1 GET method for scalar variables.

Code 1: MIB definition for two scalar variables

After compilation the following stub routine is generated for the complete group. This
compilation involves all scalars with the same prefix, i.e. OID ‘examples’, and will combine
these variables in a single method.

Code 2: generated stub function for scalars

The resulting method is a family structure, in the example this is ‘examples_t’. A family
structure is a group of scalar (concrete) variables with the same prefix and a variable indicating
whether a scalar variable is valid (correct). In the example, the prefix is the OID ‘examples’.

The ‘serialNum’ is used to indicate a unique number which refers to the request PDU. This
number could be used to gain performance by using a caching scheme.
The ‘contextInfo’ is used when concrete values depend on the context in which they are defined.
For instance, if a variable exists in a certain context only, the method must have the information
to check the context.
The ‘nominator’ indicates whether a variable of the family structure is filled with the correct
data. This value should correspond to the variable in the family structure indicating whether a
scalar variable is valid.

examples OBJECT IDENTIFIER ::= { enterprises 785 10 }

integerScalar OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION "An example of an integer."
 ::= { examples 1 }

octetStringScalar OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0..255))
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION "An example of an octet string."
 ::= { examples 2 }

examples_t *
k_examples_get(serialNum, contextInfo, nominator)
 int serialNum;
 ContextInfo *contextInfo;
 int nominator;
{
#ifdef NOT_YET
 static examples_t examplesData;

 /*
 * put your code to retrieve the information here
 */

 examplesData.integerScalar = ;
 examplesData.octetStringScalar = ;
 SET_ALL_VALID(examplesData.valid);
 return(&examplesData);
#else /* NOT_YET */
 return(NULL);
#endif /* NOT_YET */
}

47

The method shown above has to be edited by the implementor in order to compute the concrete
values of the family. In the example, a random number is returned as both type ‘INTEGER’ and
type ‘OCTET STRING’.

Each time this method is invoked to compute a concrete variable, a complete family structure
is returned. That means that a manager performing a ‘GET(examples.1.0, examples.2.0)’ receives
two different values. To avoid this, the ‘serialNum’ variable should be used to cache the random
number; each time the method is invoked it should check whether the ‘serialNum’ is changed.
(This caching is not shown in the example.)

Code 3: an instrumented method routine.

12.2.1.2 GET method for tabular variables.

Code 4: MIB definitions for a table containing random numbers.

examples_t *
k_examples_get(serialNum, contextInfo, nominator)
 int serialNum;
 ContextInfo *contextInfo;
 int nominator;
{
 static examples_t examplesData;
 unsigned long number;
 char str[30];

 number = random();
 str = ltoa(number);

 examplesData.integerScalar = number;
 examplesData.octetStringScalar = MakeOctetStringFromText(str);
 SET_ALL_VALID(examplesData.valid);
 return(&examplesData);
}

examples OBJECT IDENTIFIER ::= { enterprises 785 10 }

exampleTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ExampleEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION "A list of a table with random number."
 ::= { examples 3 }

exampleEntry OBJECT-TYPE
 SYNTAX ExampleEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION "A table entry."
 INDEX { tableIndex }
 ::= { exampleTable 1 }

ExampleEntry ::= SEQUENCE {
 tableIndex
 INTEGER,
 tableRandomNumber
 INTEGER
 }

48

After compilation the following stub routine is generated for the complete table. This
compilation involves all scalars with the same prefix, i.e. OID ‘exampleEntry’, and combines
these in a single method.

Code 5: generated stub routine.

The result of the method is a complete family structure, in this example ‘exampleEntry_t’.
The parameters ‘serialNum’, ‘ contextInfo’ and ‘nominator’ are equal to those in the methods for
scalar variables. The difference is the additional ‘searchType’ and ‘tableIndex’ parameter.
The ‘searchType’ indicates whether the next variable has to be returned or not. The possible
values for ‘searchType’ are ‘EXACT’ and ‘NEXT’. The values depend on the GET or GET-NEXT
operation received from a manager.
The ‘tableIndex’ indicates the entry on which the action has to be performed. In this example
only one index is used, but multiple indexes are possible.

The agent implementor has to edit this method in order to compute the concrete values. In this
example, the value of the index number is returned and the number has a random value between
1 and 10.

tableIndex OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION "The index of the table"
 ::= { exampleEntry 1 }

tableRandomNumber OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION "The random number"
 ::= { exampleEntry 2 }

exampleEntry_t *
k_exampleEntry_get(serialNum, contextInfo, nominator,
searchType, tableIndex)
 int serialNum;
 ContextInfo *contextInfo;
 int nominator;
 int searchType;
 SR_INT32 tableIndex;
{
#ifdef NOT_YET
 static exampleEntry_t exampleEntryData;

 /*
 * put your code to retrieve the information here
 */

 exampleEntryData.tableIndex = ;
 exampleEntryData.tableRandomNumber = ;
 SET_ALL_VALID(exampleEntryData.valid);
 return(&exampleEntryData);
#else /* NOT_YET */
 return(NULL);
#endif /* NOT_YET */
}

49

The example is coded in the following manner:
• The correct entry has to be selected. This is done in two steps:

• distinguish whether the ‘EXACT’ or ‘NEXT’ value has to be returned,
• check whether the index is within the range.

• Filling the entry structure with the index and its associated random number.

Code 6: an instrumented stub routine for a table with 10 random numbers

12.2.2 SET processing

In order to handle the ‘as-if-simultaneous’ requirements of SNMP sets, 4 types of methods are
necessary for scalar and tabular variables.

Code 7: MIB definition for a writeable scalar variable

After compilation the following stub routines for the set-processing are generated (at group
level).

exampleEntry_t *
k_exampleEntry_get(serialNum, contextInfo, nominator,
searchType, tableIndex)
 int serialNum;
 ContextInfo *contextInfo;
 int nominator;
 int searchType;
 SR_INT32 tableIndex;
{
 static exampleEntry_t exampleEntryData;
 int index;

 /* selection of correct entry */
 if (searchType == EXACT) {
 if ((tableIndex <= 1) && (10 <= tableINdex))
 /* in range, thus value is tableIndex */
 index = tableIndex;
 else
 /* out of range, thus NoSuchInstance */
 return(NULL);
 else /* searchType == NEXT */
 if ((tableIndex <= 0) && (9 <= tableINdex))
 /* in NEXT range, thus value is NEXT tableIndex */
 index = tableIndex + 1;
 else
 /* out of range, thus noSuchInstance */
 return(NULL);

 /* filling of entry structure */
 exampleEntryData.tableIndex = index;
 exampleEntryData.tableRandomNumber = random();
 SET_ALL_VALID(exampleEntryData.valid);
 return(&exampleEntryData);
}

examples OBJECT IDENTIFIER ::= { enterprises 785 10 }

writeableScalar OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION "An example of a writable variable."
 ::= { examples 4 }

50

Code 8: generated stub function for writeable scalars

The generated set-processing stubs consists of 4 method, of which the last one is only for SNMP
version 2.
• ‘k_examples_test’ method checks whether the implementation allows to perform this set. This

test is not dependent on SYNTAX constraints defined in a MIB specification, because those
kind of checks are done by the system independent method routines. This method is for local
(system dependant) testing and does not depend on other values in the set request or current
values of other variables. For instance, this function checks the range of an implementation
dependent ‘INTEGER’.

• ‘k_examples_ready’ method is used for global testing. That is, it checks the consistency of the
system with respect to other MIB variables.

• ‘k_examples_set’ is responsible for adding, modifying, or deleting of the values. This method
is only invoked if all ‘test’ and ‘ready’ methods have been succeeded.

• ‘examples_undo’ method is only available in agents supporting SNMPv2.

#ifdef SETS
int
k_examples_test(object, value, dp, contextInfo)
 ObjectInfo *object;
 ObjectSyntax *value;
 doList_t *dp;
 ContextInfo *contextInfo;
{
 return NO_ERROR;
}

int
k_examples_ready(object, value, doHead, dp)
 ObjectInfo *object;
 ObjectSyntax *value;
 doList_t *doHead;
 doList_t *dp;
{
 dp->state = ADD_MODIFY;
 return NO_ERROR;
}

int
k_examples_set(data, contextInfo, function)
 examples_t *data;
 ContextInfo *contextInfo;
 int function;
{
 return GEN_ERROR;
}
#endif /* SETS */

#ifdef SR_SNMPv2
#ifdef SR_examples_UNDO
/* add #define SR_examples_UNDO in sitedefs.h to
 * include the undo routine for the examples family.
 */
int
examples_undo(doHead, doCur, contextInfo)
 doList_t *doHead;
 doList_t *doCur;
 ContextInfo *contextInfo;
{
 return UNDO_FAILED_ERROR;
}
#endif /* SR_examples_UNDO */
#endif /* SR_SNMPv2 */

51

The agent implementor has to edit these methods in order to provide the correct instrumentation
for the set-processing. In this example, a global variable is set.

Code 9: instrumented method routine.

If set-processing is required for table, then the family level is replaced by the entry level which
is in principle equivalent to the GET/GET-NEXT processing.

#ifdef SETS
int
k_examples_test(object, value, dp, contextInfo)
 ObjectInfo *object;
 ObjectSyntax *value;
 doList_t *dp;
 ContextInfo *contextInfo;
{
 return NO_ERROR;
}

int
k_examples_ready(object, value, doHead, dp)
 ObjectInfo *object;
 ObjectSyntax *value;
 doList_t *doHead;
 doList_t *dp;
{
 dp->state = ADD_MODIFY;
 return NO_ERROR;
}

int
k_examples_set(data, contextInfo, function)
 examples_t *data;
 ContextInfo *contextInfo;
 int function;
{
 if (VALID(I_writeableScalar, data->valid)) {
 globalVariable = data->writeableScalar;
 return NO_ERROR;
 }
 return GEN_ERROR;
}
#endif /* SETS */

#ifdef SR_SNMPv2
#ifdef SR_examples_UNDO
/* add #define SR_examples_UNDO in sitedefs.h to
 * include the undo routine for the scalar family.
 */
int
examples_undo(doHead, doCur, contextInfo)
 doList_t *doHead;
 doList_t *doCur;
 ContextInfo *contextInfo;
{
 return UNDO_FAILED_ERROR;
}
#endif /* SR_examples_UNDO */
#endif /* SR_SNMPv2 */

52

13 Sub-agent design

Figure 26 shows a WWW server managed by an extensible agent. Besides the WWW MIB, the
agent also implements the MIB-II. Because this MIB-II implementation has been purchased
from SNMP Research, the remainder of this section focuses on the WWW sub-agent.

Figure 26: Management structure

The WWW sub-agent is designed according to the rules explained in Section 12, i.e.:
• the WWW server has to be extended with management instrumentation,
• the WWW MIBs have to be compiled to generate the stub-routines

(create a sub-agent without the instrumentation of the WWW server),
• to compile all sources, a ‘makefile’ has to be edited,
• the stub-routines have to be instrumented to compute the concrete values

(connect the stub-routines to the management instrumentation), and
• the WWW sub-agent has to be tested.

To obtain management information from the WWW server, the following approaches are
possible:
• The direct access approach. In this approach WWW server code has to be extended/modified

in order to adopt the MIB population. This approach was rejected by the project, because it
implied that for each server version the extensions/modifications must be made again. If on
the long term implementors of WWW servers include MIB support, this approach may
become the preferred one.

• The logfile scanning approach. The advantage of this approach is that WWW server software
need not be altered to include management instrumentation. Another important advantage is
that the same sub-agent implementation can be used with different WWW servers, because
the logfile format is defined according to a de facto standard. For these reasons the logfile
scanning approach was selected by our project. A disadvantage of scanning logfiles is that
certain variables that are not included in the logfile, cannot be computed. The second major
disadvantage is that the management instrumentation will be limited to monitoring; changing
the behaviour of the WWW server by modification of MIB variables will not be possible.

To increase performance, it was decided to implement all WWW MIBs (IS, RS and HTTP)
within a single sub-agent.

13.1 Management instrumentation
Figure 27 shows the selected approach. The logfile is filled by the WWW application and the
HTTP entity. The logfile is read by the WWW sub-agent, and used to compute / update the

HTTP-entity

application

internet (TCP/IP)

WWW server

internet (UDP/IP)

master agent
WWW
agent

MIB-II
agent

SNMP agent

MIB

WWW

MIB
MIB-II

MIB

53

WWW MIB variables. These variables are read and set (remember the manager could update
certain tables by setting certain variables) by the master agent.

Figure 27: The logfile approach

13.2 The time/space problem.
The size of logfiles that are generated by busy WWW servers can easily grow to many
Megabytes. The impact of interpreting such logfiles, with respect to processing time as well as
memory usage, should not be underestimated. In fact we are confronted with the traditional
time/space problem which, as always, has two extreme solutions:
• Compute the value of a MIB variable only after a specific request is obtained from the

manager. This solution demands that after each SNMP request a scan is made through the
entire logfile.

• Compute / update MIB variables each time a new entry is detected at the end of the logfile.
This solution demands that the sub-agent continuously monitors the logfile, even if no SNMP
requests are made.

Although both solutions provide the desired functionality, there are important differences.
The first solution saves memory and guarantees that values are always up-to-date (because they
are computed at the time the SNMP request is made). The major disadvantage of this solution
is the time needed to compute the requested values. In case the size of the logfile has become
many megabytes, scanning the file may consume so much time that the manager gets a time-out.

With the second solution pre-computed MIB values are stored in memory. On receipt of an
SNMP request, the requested value can immediately be returned to the manager. The main
disadvantage of this approach is that a large amount of memory may be needed to cache the MIB
variables. Also the computing time that is needed to constantly monitor the logfiles and update
the MIB variables (even if no SNMP requests are made) may become a problem. The usual way
to cope with this problem, is to monitor the logfiles and update the MIB variable periodically
instead of constantly. This introduces another disadvantage however: MIB values may not
always be up-to-date.

The solution selected for the project is a hybrid approach. For most variables, the second
solution has been implemented: the logfiles are constantly monitored and many variables are
kept in main memory. For two tables, the most frequent user table and the document table, the
first solution has been selected. This is because storing these tables requires a lot of memory.
The WWW MIBs have therefore been defined in such a way that these two tables could be

HTTP-entity

application

CGI

TCP/IP

file system

logfile

UDP/IP

master agent

MIB

WWW

WWW server

SNMP agent

WWW subagent

scripts

54

computed upon request of the manager only. To avoid superfluous updates, a timestamp
variable, denoting the time the table was last updated, has been associated with each table.

13.3 Functional decomposition.
To structure the implementation, a functional decomposition was made. This decomposition
divides the agent into functional elements with well defined behaviour. As illustrated in Figure
28, the main function of the agent is to translate the logfile information into concrete values for
the MIB variables.

Figure 28: Functional decomposition of a sub-agent

The figure shows how the access and error logfiles of possibly multiple WWW servers1 are
scanned (tailed) by thetail_file functions. The result of these functions are processed by the
scan_access_line andscan_error_line functions. These functions create from individual logfile
lines meaningful elements of informations. On its turn, theMIB_computation function updates all
cached MIB variables.

1. Remember that multiple servers may run on a single system.

access
logfile

error
logfile

access
logfile

error
logfile

tail_file tail_file tail_file tail_file

scan_error_line

log information
by lines

log information
by elements

MIB computation

‘conceptual’

AGENT
configuration

system independent MIB functions
(generated from EMANATE)

API to master agent

WWW server 1 WWW server 2

log information

(sys. dep.)
MIB variables

WWW subagent

http-
protocol

retrieval-
service

info-
storefile

scan_access_line

cached MIB values

55

14 Sub-agent details

This section describes the functional elements identified in Figure 28. It provides a detailed
view of the instrumentation and the way the information from the logfiles is processed in order
to populate (compute) the MIB variables.

14.1 Tail_file function
After each server access a line containing access or error information is appended to the logfile.
The agent keeps track of these lines and computes from these the MIB variables values. The
function that keeps track of new lines is called ‘Tail_file’. This function shows the following
behaviour:
• If a correct line is read from the logfile, the function returns this line (success).
• If the end-of-file is reached, the function returns an empty line (success).
• If an incorrect line is read from the logfile, the function skips this line and proceeds reading

(error-recovery).

14.2 Scan_*_line function
The lines returned by the ‘Tail_file’ function are character strings. In order to process and
compute MIB variables from these lines, they have to be split into basic line elements. This
conversion is executed by thescan_*_line functions. For the access logfile the basic elements are
defined by the Common Logfile Format. Unfortunately the format for the error logfile has not
been standardized. Two scan functions have therefore been implemented: one for the access
logfile (this function can be used with every type of server) and one for the error logfile (this
function must be modified in case different types of servers will be managed).

The function for the access logfile is calledscan_access_line and returns the following:
• success: a correctly filled structure of type ‘AccessLine’ is returned,
• error: no structure is returned.
The function for the error logfile is calledscan_error_line and returns the following:
• success: a correctly filled structure of type ‘ErrorLine’ is returned,
• error: no structure is returned.

14.3 MIB computation
MIB computation, which is needed to compute the concrete MIB values, has been divided into
three different parts:
• HTTP MIB computation, see Subsection 14.3.1.
• RS MIB computation, see Subsection 14.3.2.
• IS MIB computation, see Subsection 14.3.3.

To compute concrete MIB values, the following sources have been used:
• The access logfile, which records all accesses executed at the WWW server.
• The error logfile, which records all server (access) errors.
• System internal functions, like OS functions to compute the time and day.
• A special agent configuration file, which has been specifically introduced for the purpose of

WWW server management. It contains, in text format, information like the applications that
create dynamic information via the CGI interface.

56

Since current WWW server software does not yet include management instrumentation, the
direct access method (see Section 13) cannot not be used and certain fields cannot be computed.
Also some variables are only meaningful in clients/proxies; these variables are not computed,
but return a zero value.

14.3.1 HyperText Transfer Protocol MIB computation

System group

The system group contains a table with entity specific information. Most of this information is
read from a static agent configuration file. This configuration file contains concrete values for
some MIB variables, but also pointers to places where additional information can be found.
Figure 29 shows how the system table has been populated.

Statistics group

The statistics group contains three tables: the summary table, the request table and the response
table. Figure 30, Figure 31 and Figure 32 show how these tables have been computed.

Parts of the summary table’s information can also be found in the request or response table.
There are therefore two alternatives to calculate summary table values:
• Direct calculation: the values are derived from the logfiles.
• Indirect calculation: the values are derived from the request or response table.

variable population

httpEntityIndex system internal

httpEntityProtocol agent configuration file

httpEntityDescription agent configuration file

httpEntityContact http server configuration file

httpEntityProcotolVersion agent configuration file

httpEntityVendor agent configuration file

httpEntityVersion agent configuration file

httpEntityObjectID agent configuration file

httpEntityAddress http server configuration file

httpEntityPort http server configuration file

httpEntityIpAddress system internal (DNS)

httpEntityLastInitialisation agent configuration file

httpEntityType agent configuration file

Figure 29: System table

variable population

httpSummaryIndex system internal

httpSummaryRequests entry from access logfile

Figure 30: Summary table

57

The request table, which contains entries for each type of request, is indexed by both the entity
which is monitored as well as the request type. Although the HTTP protocol uses names to
identify the various request types, the MIB uses an enumeration of INTEGERS. The mapping
from INTEGERS to names is defined by a textual convention.

The response table specifies all individual response types.

httpSummaryRequestsErrors - (direct calculation)

httpSummaryRequestsDiscards - (direct calculation)

httpSummaryResponses entry from access logfile

httpSummaryResponsesErrors - (direct calculation)

httpSummaryResponsesDiscards - (direct calculation)

httpSummaryinUnknowns - (direct calculation)

httpSummaryInBytes - (direct calculation)

httpSummaryOutBytes bytes from access logfile entry

httpSummaryTimeOuts time out from error logfile entry

variable population

httpRequestIndex system internal

httpRequestMethodIndex URI from access logfile entry / protocol standard

httpRequestInCount entry from access logfile

httpRequestInLastTime date and time from access logfile entry

httpRequestOutCount -

httpRequestOutLastTime -

Figure 31: Request table

variable population

httpResponseIndex system internal

httpResponseMethodIndex system internal / protocol standard

httpResponseInCount -

httpResponseInLastTime -

httpRequestOutCount entry from access logfile

httpRequestOutLastTime date and time from entry of access logfile

Figure 32: Response table

variable population

Figure 30: Summary table

58

TimeOuts group

This group of the HTTP protocol counts the number of time-outs and shows the address of the
remote system that causes the time-out. Figure 33 shows how the variables have been computed.

The length of the TimeOut table can be determined by the manager by setting the
‘httpTimeOutTableSize’ variable. The maximum value of this variable is limited by the
pre-defined‘maxhttpTimeOutTableSize’. The table is implemented by means of a circular buffer.

Figure 34: Implementation of the TimeOut table

Figure 34 shows this implementation. The ‘lastTimeOut’ variable points to the most recent time-
out entry and advances to the right if new time-outs occur. If a client requests information from
the entry that has indexn, the circular buffer should be searchedn places into the opposite
direction (of coursen should not exceed ‘httpTimeOutTableSize’).

Example:If the fourth table entry (index = 4) is requested, the contents of entryx is
returned. In case the seventh table entry is requested, no value is returned sincey is outside
the ‘httpTimeOutTableSize’. In such case the SNMP response carries as error indication
‘noSuchInstance’.

14.3.2 Retrieval Service MIB computation

Statistics group

This group counts the number of Retrieval Service primitives at the WWW server side.

variable population

httpTimeOutTableSize system internal

httpTimeOutTable - httpTimeOutEntityIndex
httpTimeOutNumber

httpTimeOutRemoteAddress
httpTimeOutTime

system internal
system internal
remotehost from error logfile entry
remotehost from error logfile entry

Figure 33: TimeOut group

variable population

rsTotalRequests -

rsTotalIndications entry from access logfile

rsTotalResponses entry from access logfile

rsTotalConfirmations -

Figure 35: Statistics group

maxhttpTimeOutTableSize

circular buffer
with entries

lastTimeOut

httpTimeOutTableSize

direction into which

xy

lastTimeOut advances

59

Quality of Service group

Most Quality of Service values cannot be computed from the logfiles. Therefore only the
counters ‘rsNumberOfErrors’ and ‘rsNumberOfTimeOuts’ have been implemented.

14.3.3 Information Store MIB computation

General group

As shown in Figure 37, the general group is primarily populated from the agent configuration
file.

Population of the application dependency table is not straightforward, since the ‘associated
processes’ can not automatically be determined. It was therefore decided to introduce an agent
configuration file, which contains the names of all associated applications. After the
application’s name has been read from the file, the status of the application process is computed
by using the ‘process status’ command. It should be noted that the system administrator is
responsible for the initialization and maintenance of the table.

variable population

rsDelayTable - rsSource
rsDestination

rsDelay

remote host from access logfile entry / system
remote host from access logfile entry / system
-

rsNumberOfErrors entry from error logfile

rsnumberOfTimeOuts entry from error logfile

rsThroughputTable - rsClient
rsThroughput

remote host from access logfile entry
-

Figure 36: Quality of Service group

variable population

isName agent configuration file

isOrganisation agent configuration file

isContact agent configuration file

isLastInitialisation system internal

isSupportedMediaTypes agent configuration file

isApplDependancyTable - applIndex
applResourceIdentifier

applProcessName
applVersion
applUptime

 applOperStatus
applLastChange
applLastActivity

applFailedActivities

system internal
agent configuration file
agent configuration file
-
-
‘proces status’ - command
-
-
-

TopicTable - topic agent configuration file

Figure 37: General group

60

Also the Topic table is populated from the agent’s configuration file. The administrator has to
enter the topics in lexical graphical order, because the agent cannot order them itself.

Access group

Figure 38 shows how the access group is populated.

Error group

The MIB definition does not prescribe which specific errors have to be counted, but leave that
decision up to the agent implementor. In our proof of concept study, it was decided to record
the following errors:
• CGI errors (script errors).
• Document errors (access failures).
• Transfer aborted messages.

variable population

isNumberOfAccess entry from access logfile

isNumberOfBytesIn -

isNumberOfBytesOut bytes from access logfile entry

isDomainTable - domainName
domainAccesses

remotehost from access logfile entry
remotehost from access logfile entry

isAccessOfLastNDaysTableSize system internal

isAccessOfLastNDaysTable - daysIndex
daysAccesses

date and time from access logfile entry
date and time from access logfile entry

isMostFrequentUserTableSize system internal

isMostFrequentUserTableRefresh system internal

isMostFrequentUserTabledate system internal

isMostFrequentUserTable - mfIndex
mfUserName

mfUserAccesses

system internal
remotehost from access logfile entry
remotehost from access logfile entry

isMostRecentUserTableSize system internal

isMostRecentUserTable - mrIndex
mrUserName

mfTime
mfDocument

system internal
remotehost from access logfile entry
date and time from access logfile entry
req URL from access logfile entry

Figure 38: Access group

variable population

errorIndex system internal

errorDescription system internal

errorCount sort of error from error logfile entry

errorLastTime date and time from error logfile entry

Figure 39: Error Table

61

Document group

Figure 40 shows how the document group is populated.

variable population

isDocumentTableSize system internal

isDocumentTableRefresh system internal

isDocumentTableDate system internal

isDocumentTable - documentIndex
documentName

documentAccesses
documentAccessRights

documentSize
documentErrors

documentUpdate
documentAccessesAtLastUpdate

documentLastAccesses
documentType

system internal
remotehost of entry from access logfile
remotehost of entry from access logfile
system internal
system internal
-
-
-
system internal
-

Figure 40: Document group

62

63

Part V

Conclusions and Recommendations

64

15 Conclusions and recommendations

The main goal of the project, to demonstrate that information retrieval applications can be
managed, was achieved. The project selected the World Wide Web (WWW) to implement the
information retrieval applications, and SNMP to manage these applications. After the decision
was made to use SNMP, an alternative management technique, called Web Based Management
(WBM) appeared. It is recommended that subsequent projects seriously investigate the merits
of WBM.

15.1 MIB definition
The idea of dividing the WWW MIB into three separate MIBs (IS, RS and HTTP MIB) is a good
idea. It allows to separate concerns and it makes future modifications easier. If, for example, the
decision is made to use another information transport protocol, the HTTP MIB needs to be
replaced only.
Another advantage of structuring the management information into independent MIBs, became
apparent at the time the project decided to collaborate with others, who were also interested in
WWW management, but wanted to focus on the definition of HTTP related management
information. The fact that we had separate MIBs, allowed us to work together on the definition
of the HTTP MIB but work individually on the definition of the two other MIBs. The
collaboration took place via the HTTP MIB mailinglist.

At the end of the project the three MIBs were presented as ‘internet-drafts’ to the IETF. The
exact text of these drafts is included in the appendixes. The HTTP MIB is now being further
progressed by the members of the HTTP MIB mailinglist.

The IS MIB contains an application dependency table (see Subsection 10.1), which keeps track
of the applications that provide the server with dynamic WWW information. Such an
application may for instance be a database that communicates to the WWW server via the CGI
interface. At the time the application dependency table was defined, an IETF working group just
started to define a special Application MIB. Now that some results of this IETF group are
available, it is suggested to investigate the possibility to remove the application dependency
table from the IS MIB and use the Application MIB instead.
Other MIB aspects that may need further discussion, are the access rights that are defined in the
document group of the IS MIB (see Subsection 10.4) and the TimeOut table of the HTTP MIB
(see Subsection 8.3).

The amount of data needed to store all possible pieces of WWW management information may
not be neglected. Also the processing time to calculate all MIB values should not be
underestimated. To control memory usage and CPU demand, it was decided to introduce special
MIB variables that allow managers to specify when certain tables should be updated and what
sizes various tables should have (see for instance Subsection 10.2).
At the end of the project an idea appeared on the mailinglist to reduce the number of SNMP
transactions that are needed to update tables at the manager side, by using a time filter such as
described by the RMON-2 MIB.

15.2 Agent implementation
Most parts of the MIBs could be implemented within the time frame of the project. An
exception is the RS MIB, which could only be partially implemented.

65

The implementation is based on the EMANATE sub-agent development kit, which is produced
by SNMP Research. Since our software is implemented as a sub-agent, it cannot be used
without a master agent. Master agents can not be distributed freely, but should be purchased
from SNMP Research.

To allow free distribution of WWW management software, the UT also started to develop a
Public Domain version of the agent. This version, which is produced outside the scope of this
project, uses the Scotty package and will be based on the latest version of the HTTP MIB, as
defined by the mailinglist.

WWW servers do not yet include management APIs. The project therefore decided to populate
the MIBs from the logfiles that are maintained by every server. The use of logfiles has some
disadvantages however; logfiles can for instance not be used to modify the server’s behaviour.
Although this didn’t turn out to be a problem within the context of our project, manufacturers
of WWW servers are still advised to include management APIs.

The format of access logfiles is defined by a de facto standard, which implies that our software
can be used with a variety of servers. Unfortunately the error logfiles have not been
standardized, which means that our software will not be able to provide all available error
information with each kind of server. The servers that are supported by our software, are those
from NCSA and APACHE.

66

67

16 References

[1] Autrata M., Strutt C.: “DME Framework and Design”, in: Network and Distributed Systems Management,
Chapter 23, Addison-Wesley Publishing Company, 1994

[2] CCITT: “Recommendation M.3010, Principles for a Telecommunications Management Network”, Geneva
1992

[3] CMIP Run!; “New APIs for Management Data”, Vol 3, No 2, 2nd Q ’94, page 11
[4] Comer D.E. and Stevens D.L.: “Internetworking with TCP-IP Vol.II - Design, Implementation & Internals”,

Englewood Cliffs NJ, Prentice Hall, 1991, ISBN 0-13-134677-6.
[5] Embry J., Manson P., Milham D., “Interoperable Network Management: OSI/NM Forum Architecture and

Concepts”, in: Proceedings of the IFIP TC6/WG 6.6 Second International Symposium on Integrated Network
Management, page 29-44, North-Holland, 1991

[6] Feih S.: “SNMP - A guide to network management”, McGraw-Hill, Inc., 1995, ISBN
[7] ISO 7498-4: “Information Processing Systems - Open Systems Interconnection - Basic Reference Model -

Part 4: Management Framework”, Geneva, 1989
[8] ISO 9596: “Information Processing Systems - Open Systems Interconnection - Common Management

Information Protocol”, Geneva, 1991
[9] Murrill B.: “OMNIPoint: An Implementation Guide to Integrated Networked Information Systems

Management”, in: Proceedings of the IFIP TC6/WG 6.6 Third International Symposium on Integrated
Network Management, page 405-418, North-Holland, 1993

[10] Network Management Forum: “Discovering Omnipoint - a common approach to the Integrated Management
of Networked Information Systems”, 1993

[11] Perkins D. T.: “Understanding SNMP MIBs, revision 1.1.5”, July 1992
[12] Perkins, D.: “User’s guide for SMICng - The SNMP MIB Information Compiler”, SynOptics

Communications, Inc., U.S.A., November 1994.
[13] Pras A.: “Network Management Architectures”, Ph.D. thesis University of Twente, the Netherlands, CTIT

95-02, 1995
[14] RFC 1028: “Simple Gateway Monitoring Protocol”, Davin J., Case J.D., Fedor M., Schoffstall M.L.,

November 1987
[15] RFC 1052: “IAB recommendations for the development of Internet network management standards”, Cerf

V.G., April 1988
[16] RFC 1155, “Structure and identification of Management Information for TCP/IP-based internets”, Rose

M.T., McCloghrie K., May 1990
[17] RFC 1157: “Simple Network Management Protocol (SNMP)”, Case J.D., Fedor M., Schoffstall M.L., Davin

C., May 1990
[18] RFC 1189: “Common Management Information Services and Protocols for the Internet (CMOT and CMIP)”,

Warrier U.S., Besaw L., LaBarre L., Handspicker B.D., October 1990
[19] RFC 1213: “Management Information Base for network management of TCP/IP-based internets: MIB-II”,

McCloghrie K., Rose M.T., March 1991
[20] RFC 1441: “Introduction to version 2 of the Internet-standard Network Management Framework”, Case J.,

McCloghrie K., Rose M.T., Waldbusser S., April 1993
[21] RFC 1442: “Structure of Management Information for version 2 of the Simple Network Management

Protocol (SNMPv2)”, Case J., McCloghrie K., Rose M., Waldbuster S., April 1993
[22] RFC 1443: “Textual Conventions for version 2 of the Simple Network Management Protocol (SNMPv2)”,

Case J., McCloghrie K., Rose M., Waldbuster S., April 1993
[23] RFC 1444: “Conformance Statements for version 2 of the Simple Network Management Protocol

(SNMPv2)”, Case J., McCloghrie K., Rose M., Waldbuster S., April 1993
[24] RFC 1445: “Administrative Model for version 2 of the Simple Network Management Protocol (SNMPv2)”,

McCloghrie K., Galvin J., April 1993
[25] RFC 1446: “Security Protocols for version 2 of the Simple Network Management Protocol (SNMPv2)”,

McCloghrie K., Galvin J., April 1993
[26] RFC 1447: “Party MIB for version 2 of the Simple Network Management Protocol (SNMPv2)”, McCloghrie

K., Galvin J., April 1993
[27] RFC 1448: “Protocol Operations for version 2 of the Simple Network Management Protocol (SNMPv2)”,

Case J., McCloghrie K., Rose M., Waldbuster S., April 1993
[28] RFC 1449: “Transport mappings for version 2 of the Simple Network Management Protocol (SNMPv2)”,

Case J., McCloghrie K., Rose M., Waldbuster S., April 1993
[29] RFC 1450: “Management Information Base for version 2 of the Simple Network Management Protocol

(SNMPv2)”, Case J., McCloghrie K., Rose M.T., Waldbusser S., April 1993
[30] RFC 1451: “Manager-to-Manager Management Information Base”, Case J., McCloghrie K., Rose M.T.,

Waldbusser S., April 1993
[31] RFC 1452: “Coexistence between version 1 and version 2 of the Internet-standard Network Management

Framework”, Case J., McCloghrie K., Rose M., Waldbuster S., April 1993

68

[32] RFC 1901: “Introduction to Community-based SNMPv2”
[33] RFC 1902: “Structure of Management Information for Version 2 of the Simple Network

ManagementProtocol”, Case J., McCloghrie K., Rose M.T., Waldbusser S., January 1996
[34] RFC 1903: “Textual Conventions for Version 2 of the Simple Network Management Protocol”, Case J.,

McCloghrie K., Rose M.T., Waldbusser S., January 1996
[35] RFC 1904: “Conformance Statements for Version 2 of the Simple Network Management Protocol”, Case J.,

McCloghrie K., Rose M.T., Waldbusser S., January 1996
[36] RFC 1905: “Protocol Operations for Version 2 of the Simple Network Management Protocol”, Case J.,

McCloghrie K., Rose M.T., Waldbusser S., January 1996
[37] RFC 1906: “Transport Mappings for Version 2 of the Simple Network Management Protocol”, Case J.,

McCloghrie K., Rose M.T., Waldbusser S., January 1996
[38] RFC 1907: “Management Information Base for Version 2 of the Simple Network Management Protocol”,

Case J., McCloghrie K., Rose M.T., Waldbusser S., January 1996
[39] RFC 1908: “Coexistence between Version 1 and Version 2 of the Internet-standard Network Management

Framework”, Case J., McCloghrie K., Rose M.T., Waldbusser S., January 1996
[40] Rose M.T.: “The Simple Book - Second Edition”, Prentice-Hall International Editions, 1994
[41] Rose M.T., McCloghrie K.: “How to manage your network using SNMP”, 1994
[42] Scott Marcus J.: “Icaros, Alice and the OSF DME”, in: Proceedings of the IFIP TC6/WG 6.6 Fourth

International Symposium on Integrated Network Management, page 83-92, Chapman & Hall, 1995
[43] SNMP Research International: “SNMP Research EMANATE Subagent Development Kit - Developer

Documentation”, SNMP Research International, Inc., Knoxvile Tennessee U.S.A., December 1994.
[44] Stallings W.: “SNMP, SNMPv2 and CMIP - The Practical Guide to Network Management Standards”,

Addison Wesley, 1994

69

Appendix A: HyperText Transfer Protocol MIB definition

httpMIB

httpMIBObjects

httpSystem

httpEntityTable

httpEntityEntry

httpEntityIndex

httpEntityProtocol

httpEntityAddress

httpEntityDescription

httpEntityContact

httpEntityObjectID

httpEntityVersion

httpEntityVendor

httpEntityProtocolVersion

httpEntityIpAddress

httpEntityPort

httpEntityLastInitialisation

httpEntityType

httpStatistics

httpSummaryTable

httpSummaryEntry

httpSummaryEntityIndex

httpSummaryRequests

httpSummaryInBytes

httpSummaryRequestErrors

httpSummaryRequestDiscards

httpSummaryInUnknowns

httpSummaryResponsesDiscards

httpSummaryResponsesErrors

httpSummaryResponses

httpSummaryTimeOuts

httpSummaryOutBytes

httpRequestTable

httpRequestEntry

httpRequestEntityIndex

httpRequestMethodIndex

httpRequestInCount

httpRequestInLastTime

httpRequestOutLastTime

httpRequestOutCount

70

httpMIBStatistics

httpResponseTable

httpResponseEntry

httpTimeOuts

httpTimeOutTableSize

httpTimeOutTable

httpTimeOutEntry

httpTimeOutEntityIndex

httpTimeOutNumber

httpTimeOutRemoteAddress

httpTimeOutTime

httpMIBCompliance

httpMIBConformance

httpMIBCompliances

httpMIBGroup

httpMIBGroups

httpMIB

httpObjects

httpResponseEntityIndex

httpResponseStatusIndex

httpResponseInCount

httpResponseInLastTime

httpResponsesErrors

httpResponseOutCount

71

Internet Draft HTTP MIB April 22,1996

 Definitions of Managed Objects for HTTP

 April 22, 1996

 <draft-hazewinkel-httpmib-00.txt>

 Harrie Hazewinkel
 University of Twente
 hazewink@cs.utwente.nl

 Eric van Hengstum
 University of Twente
 hengstum@cs.utwente.nl

 Aiko Pras
 University of Twente
 pras@cs.utwente.nl

 Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its
areas, and its working groups.Note that othergroups may also
distribute working documents asInternet-Drafts.

Internet-Draftsare draft documents valid for amaximumof six
months and may be updated, replaced, orobsoleted by other
documents at any time.It is inappropriate to use Internet-
Drafts as reference material orto citethem other thanas ‘‘work
in progress.''

To learn the current status of any Internet-Draft, please check
the ‘‘1id-abstracts.txt'' listing contained in the Internet-
Drafts Shadow Directories on ds.internic.net (US East Coast),
nic.nordu.net (Europe),ftp.isi.edu (USWest Coast), or
munnari.oz.au (Pacific Rim).

ExpiresOctober 22, 1996 [Page 1]

72

Internet Draft HTTP MIB April 22,1996

1. Abstract

 This draft defines a MIB to manage the HTTP protocol. The HTTP
 protocol is used by World Wide Web applications to transfer
 information between WWW clients and WWW servers. HTTP is
 based on the request/response paradigm.
 The HTTP MIB is especially useful to manage the WWW
 server-side. The MIB is defined in such a way that it allows
 multiple servers to run within a single system.

ExpiresOctober 22, 1996 [Page 2]

73

Internet Draft HTTP MIB April 22,1996

2. TheSNMPv2 Network Management Framework

The SNMPv2 Network Management Frameworkconsists of four major
components. They are:

o STD 17, RFC 1213 [2] defines MIB-II, the core set of managed
 objects for the Internet suite of protocols.

o RFC 1901 Introduction to Community-based SNMPv2

o RFC 1902 Structureof Management Information for Version 2of
 the SimpleNetworkManagement Protocol (SNMPv2)

o RFC 1903 Textual Conventions for Version 2of the Simple
 Network ManagementProtocol (SNMPv2)

o RFC 1904 Conformance Statements for Version 2 of the Simple
 Network ManagementProtocol (SNMPv2)

o RFC 1907 Management Information Base for Version 2of the
 Simple Network Management Protocol(SNMPv2)

o RFC 1908 Coexistence between Version 1 andVersion2 of the
 Internet-standard Network Management Framework

The Framework permits new objects to bedefinedfor thepurposeof
experimentationand evaluation.

2.1. Object Definitions

Managedobjects are accessed via a virtual information store,
termed the Management Information Base or MIB. Objects in the MIB
are defined using the subset ofAbstract SyntaxNotation One
(ASN.1)defined in the SMI[1]. In particular, each object type is
named by an OBJECT IDENTIFIER, an administratively assigned name.
The object typetogether with an objectinstance servesto
uniquely identify a specific instantiation of the object. For
human convenience, we often usea textual string, termed the
object descriptor, to refer to the object type.

ExpiresOctober 22, 1996 [Page 3]

74

Internet Draft HTTP MIB April 22,1996

3. Introduction.

 The HTTP protocol instantiates the information transport in the
 WWW application which is done with protocol entities exchanging
 information with each other via the underlying service.

 The work performed for this MIB is a result of a project performed
 for the Centre of Earth Observations. The document should not be
 considered to be complete, but should be seen as a first step
 towards standardization of WWW management.
 An implementation of this MIB already exists. Due to the use of a
 commercial development package it cannot be distributed. However,
 a public domain version is now being developed.

ExpiresOctober 22, 1996 [Page 4]

75

Internet Draft HTTP MIB April 22,1996

4. HyperText Transfer Protocol MIB structure

 The HTTP MIB module contains detailed network management
 information concerning HTTP. The MIB module is divided into entity-
 and traffic-related information.

 The HTTP MIB consists of three groups:
 1. httpSystem,
 2. httpStatistics, and
 3. httpTimeOuts.

4.1. System group

 The System group consists of the httpEntityTable. This table contains
 not only basic network management information for (potentially)
 multiple HTTP entities running on a single host machine, but also
 entity information for virtual domains which give the physical
 interface of the host multiple addresses. The table is indexed with
 a unique number specifying the entity in the table which is also
 used as index of the other tables in this MIB. For each entity the
 following information is provided and:
 - The protocol implemented by the entity; this value should be
 derived from the assigned number for the service; in the case
 of HTTP, this would be 80.

 - A brief description of the entity and a contact e-mail address
 for the person responsible.

 - The version of the protocol implemented by the entity, the
 producer of the software, the release version, and (optionally)
 an object identifier for the producer.

 - Configuration information such as the address of the host
 machine (both in text form and as an IP address), the port in
 use, the time of last initialization, and whether the entity
 is a client, server, proxy, or a caching proxy.

4.2. Statistics group

 The Statistics group provides network management information for the
 network traffic received and transmitted by the entity. The group
 consists of the httpSummaryTable, the httpRequestTable, and the
 httpResponseTable.

 - The SummaryTable contains a set of counters for each HTTP
 entity which provide a quick summary of the number of requests
 received, bytes transmitted, and so on. The SummaryTable also
 holds counters for Requests and Responses which have been
 discarded or received in error.
 However certain variables are redundant with respect to the
 Request and Response tables, they are added to reduce network
 traffic.

ExpiresOctober 22, 1996 [Page 5]

76

Internet Draft HTTP MIB April 22,1996

 - The Request and Response tables provide much more detailed
 information broken down by entity and the type of Request or
 Response. For each entity, each type of Request or Response
 has a separate entry giving a count of the number received,
 sent, and time stamps for the last interaction.

 These tables are not only indexed by an entityIndex pointing to an
 entry in the httpEntityTable, but also with the Request
 c.q. Response type. The main reason to define this in a table is
 that the MIB objects are not dependent on the protocol standard.
 Only the textual convention should be changed then new types can
 simply be added by the implementation.

2.3. TimeOuts group

 The final group in the HTTP module contains timeout information for
 each of the HTTP entities. The information is presented in the form
 of a table which may be resized by the Network Management System,
 and contains the address of the remote entity and the time at which
 the timeout occurred.

ExpiresOctober 22, 1996 [Page 6]

77

Internet Draft HTTP MIB April 22,1996

5. HyperText Transfer Protocol MIB definition

HTTP-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, experimental, Counter32

FROM SNMPv2-SMI
TEXTUAL-CONVENTION, DisplayString, TimeStamp

FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP

FROM SNMPv2-CONF;

httpMIB MODULE-IDENTITY
LAST-UPDATED"9511080000Z"
ORGANIZATION"HTTP MIB Interest Group"
CONTACT-INFO

" Mark Gamble

Post: ESYS Limited
Berkeley House
London Square
Cross Lanes
GUILDFORD
Surrey
UK

Tel: +44 1483 304545
Fax: +44 1483 303878
Email: mgamble@esys.co.uk"

DESCRIPTION
 "The MIB module for http Servers and Clients. The http
 in the module name is intended to cover a family of
 ‘Networked Information Retrieval' protocols such as
 http, nntp, ftp, gopher and so on.

Membership of this family is difficult to define
 exactly, but all members share a similar
 request-response structure used to retrieve information
 (in the form of files, documents, articles) from a
 remote server."

::= { enterprises universityOfTwente(785) 2 }

httpMIBObjects OBJECT IDENTIFIER ::= { httpMIB 1 }
httpMIBConformance OBJECT IDENTIFIER ::= { httpMIB 2 }
httpMIBCompliances OBJECT IDENTIFIER ::= { httpMIBConformance 1 }
httpMIBGroups OBJECT IDENTIFIER ::= { httpMIBConformance 2 }

ExpiresOctober 22, 1996 [Page 7]

78

Internet Draft HTTP MIB April 22,1996

HttpMethod ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION

"This data type is used to describe http methods. The
 value of a variable of this type is exactly the same
 method token usedin an http request. The currently
 defined methods for http areGET, HEAD and POST.

For ftp, this type would cover the access control,
 transfer parameter, and service commands."

SYNTAX INTEGER {
 get(1), head(2), put(3), post(4),
 delete(5), link(6), unlink(7) }

HttpStatusCode ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION

"The status code of an http response as defined in the
 RFC specification.

The StatusCode (or reply code) is structured as a three
 digit code of the attempt to understand and satisfy the
 request.

The following description is derived from the HyperText
Transfer Protocol RFC:

The first digit of the Status-Code defines the class of
 response.

The last two digits do not have any categorization role.
 There are 5 values for the first digit:

1xx: Informational - Not used, but reserved for
 future use.

2xx: Success - The action was successfully received,
 understood, and accepted.

3xx: Redirection - Further action must be taken in
 order to complete the request.

4xx: Client Error - The request contains bad syntax
 or cannot be full filed.

5xx: Server Error - The server failed to fulfill an
 apparently valid request.

Currently defined values for http are:
ok(200), created(201), accepted(202), noContent(204),
movedPermanently(301), movedTemporarily(302),

 notModified(304), badRequest(400), unauthorized(401),
forbidden(403), notFound(404), internalServerError(500),
notImplemented(501), badGateway(502),

 serviceUnavailable(503)."

SYNTAX INTEGER (100..999)

ExpiresOctober 22, 1996 [Page 8]

79

Internet Draft HTTP MIB April 22,1996

--
-- The http System Group
--
-- The http System group contains information about the http
-- protocol entity.
--

httpSystem OBJECT IDENTIFIER ::= { httpMIBObjects 1 }

httpEntityTable OBJECT-TYPE
SYNTAX SEQUENCE OF HttpEntityEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The table of http Servers and Clients present on the
 system."
 ::= { httpSystem 1 }

httpEntityEntry OBJECT-TYPE
SYNTAX HttpEntityEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"Details of a particular http Server or Client."
INDEX { httpEntityIndex }
::= { httpEntityTable 1 }

HttpEntityEntry ::= SEQUENCE {
httpEntityIndex INTEGER,
httpEntityProtocol INTEGER,
httpEntityDescriptionDisplayString,
httpEntityContact DisplayString,
httpEntityProtocolVersionDisplayString,
httpEntityVendor DisplayString,
httpEntityVersion DisplayString,
httpEntityObjectID OBJECT IDENTIFIER,
httpEntityAddress DisplayString,
httpEntityPort INTEGER,
httpEntityIpAddress IpAddress,
httpEntityLastInitialisationTimeStamp,
httpEntityType INTEGER
 }

httpEntityIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"A unique (on this machine) identifier for this entity."
::= { httpEntityEntry 1 }
-- Instrumentation: Agent internal.

ExpiresOctober 22, 1996 [Page 9]

80

Internet Draft HTTP MIB April 22,1996

httpEntityProtocol OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This should be the number from /etc/services (or its
 equivalent) which is associated with the service
 implemented. For example, the value of this variable
 would be 21 for ftp, 80 for http."

::= { httpEntityEntry 2 }
-- Instrumentation: System file.

httpEntityDescription OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Textual description of the http Server or Client."
::= { httpEntityEntry 3 }
-- Instrumentation: Configuration file.

httpEntityContact OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The textual identification of the contact person
for this http Server or Client, together with
information on how to contact this person."

::= { httpEntityEntry 4 }
-- Instrumentation: Configuration file.

httpEntityProtocolVersion OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Textual description of the version of the protocol
 implemented."

::= { httpEntityEntry 5 }
-- Instrumentation: Log file

httpEntityVendor OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Textual description of the organization which
 implemented the protocol."

::= { httpEntityEntry 6 }
-- Instrumentation: Log file

ExpiresOctober 22, 1996 [Page 10]

81

Internet Draft HTTP MIB April 22,1996

httpEntityVersion OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Textual description of the implementated version."
 ::= { httpEntityEntry 7 }
-- Instrumentation: Log file

httpEntityObjectID OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The authoritative identification for the private MIB
 for this http Entity, presumably based on the vendor.

If no OBJECT IDENTIFIER exists for the private MIB,
 attempts to access this object will return noSuchName
 (SNMPv1) or noSuchInstance (SNMPv2)."

::= { httpEntityEntry 8 }
-- Instrumentation: Direct access

httpEntityAddress OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The DNS address at which the http Entity listens for
Requests or Responses. This is variable is useful

 when the entity listens to a virtual domain (address)."
::= { httpEntityEntry 9 }
-- Instrumentation: Config file

httpEntityPort OBJECT-TYPE
SYNTAX INTEGER (0..4096)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The TCP port at which the http Entity listens for
Requests or Responses."

::= { httpEntityEntry 10 }
-- Instrumentation: Config file

httpEntityIpAddress OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The IP Address at which the http Entity listens for
Requests or Responses."

::= { httpEntityEntry 11 }
-- Instrumentation: System

ExpiresOctober 22, 1996 [Page 11]

82

Internet Draft HTTP MIB April 22,1996

httpEntityLastInitialisation OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime at the time the http Entity
was last initialised. If the http Entity was
last initialised prior to the last initialisation of the
network management subsystem, then this object contains
a zero value."

::= { httpEntityEntry 12 }
-- Instrumentation: Config file

httpEntityType OBJECT-TYPE
SYNTAX INTEGER { server(1), client(2), proxy(3),

 cachingProxy(4) }
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Identification of the role of the http Entity."
::= { httpEntityEntry 13 }
-- Instrumentation: Direct access

--
-- The http Statistics Group
--
-- The http Statistics group contains information concerning the
-- utilization of the http protocol entity.
--

httpStatistics OBJECT IDENTIFIER ::= { httpMIBObjects 2 }

httpSummaryTable OBJECT-TYPE
SYNTAX SEQUENCE OF HttpSummaryEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The table providing overview statistics for the http
 protocol entities on this system."

 ::= { httpStatistics 1 }

httpSummaryEntry OBJECT-TYPE
SYNTAX HttpSummaryEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"Overview statistics for an individual http entity."
INDEX { httpSummaryEntityIndex }
::= { httpSummaryTable 1 }

ExpiresOctober 22, 1996 [Page 12]

83

Internet Draft HTTP MIB April 22,1996

HttpSummaryEntry ::= SEQUENCE {
httpSummaryEntityIndex INTEGER,
httpSummaryRequests Counter32,
httpSummaryRequestErrorsCounter32,
httpSummaryRequestDiscardsCounter32,
httpSummaryResponses Counter32,
httpSummaryResponseErrorsCounter32,
httpSummaryResponseDiscardsCounter32,
httpSummaryInUnknowns Counter32,
httpSummaryInBytes Counter32,
httpSummaryOutBytes Counter32,
httpSummaryTimeOuts Counter32

 }

httpSummaryEntityIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The unique (on this machine) identifier for this
 entity. This Index corresponds to httpEntityIndex in
 the System group."

::= { httpSummaryEntry 1 }
-- Instrumentation: Agent internal

httpSummaryRequests OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of Requests generated or received by
 this entity."

::= { httpSummaryEntry 2 }
-- Instrumentation: Log file

httpSummaryRequestErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of Request errors detected by this
 entity (server only.)"

::= { httpSummaryEntry 3 }
-- Instrumentation: Log file

httpSummaryRequestDiscards OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of Requests discarded by this entity
(server only)."

::= { httpSummaryEntry 4 }
-- Instrumentation: Direct Access

ExpiresOctober 22, 1996 [Page 13]

84

Internet Draft HTTP MIB April 22,1996

httpSummaryResponses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of Responses generated or received by
 this entity."

::= { httpSummaryEntry 5 }
-- Instrumentation: Log file

httpSummaryResponseErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of Response errors detected by this
 entity (client only)."

::= { httpSummaryEntry 6 }
-- Instrumentation: Direct Access

httpSummaryResponseDiscards OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of Responses discarded by this entity
(client only.)"

::= { httpSummaryEntry 7 }
-- Instrumentation: Direct Access

httpSummaryInUnknowns OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of unknown messages received by this
 entity."

::= { httpSummaryEntry 8 }
-- Instrumentation: Log file

httpSummaryInBytes OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of bytes received by this entity."
::= { httpSummaryEntry 9 }
-- Instrumentation: Log file

ExpiresOctober 22, 1996 [Page 14]

85

Internet Draft HTTP MIB April 22,1996

httpSummaryOutBytes OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of bytes generated by this entity."
::= { httpSummaryEntry 10 }
-- Instrumentation: Log file

httpSummaryTimeOuts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of timeouts for this entities."
::= { httpSummaryEntry 11 }
--Instrumentation: Log file

httpRequestTable OBJECT-TYPE
SYNTAX SEQUENCE OF HttpRequestEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The table providing detailed request statistics for
 the http protocol entities on this system."

::= { httpStatistics 2 }

httpRequestEntry OBJECT-TYPE
SYNTAX HttpRequestEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"Request statistics for an individual http entity."
INDEX { httpRequestEntityIndex, httpRequestMethodIndex }
::= { httpRequestTable 1 }

HttpRequestEntry ::= SEQUENCE {
httpRequestEntityIndexINTEGER,
httpRequestMethodIndexHttpMethod,
httpRequestInCount Counter32,
httpRequestInLastTimeTimeStamp,
httpRequestOutCount Counter32,
httpRequestOutLastTimeTimeStamp
}

ExpiresOctober 22, 1996 [Page 15]

86

Internet Draft HTTP MIB April 22,1996

httpRequestEntityIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The unique (on this machine) identifier for this
 entity. This Index corresponds to httpEntityIndex
 in the System group."

::= { httpRequestEntry 1 }
-- Instrumentation: Agent internal

httpRequestMethodIndex OBJECT-TYPE
SYNTAX HttpMethod
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The particular request method the statistics apply to."
::= { httpRequestEntry 2 }
-- Instrumentation: Log file

httpRequestInCount OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of requests of this type received by this
 entity."

::= { httpRequestEntry 3 }
-- Instrumentation: Log file

httpRequestInLastTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime at the time the last request
 was received."

::= { httpRequestEntry 4 }
-- Instrumentation: Log file

httpRequestOutCount OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of requests of this type generated by this
 entity."

::= { httpRequestEntry 5 }
-- Instrumentation: Log file

ExpiresOctober 22, 1996 [Page 16]

87

Internet Draft HTTP MIB April 22,1996

httpRequestOutLastTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime at the time the last request
 was generated."

::= { httpRequestEntry 6 }
-- Instrumentation: Log file

httpResponseTable OBJECT-TYPE
SYNTAX SEQUENCE OF HttpResponseEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The table providing detailed response statistics for
 the http protocol entities on this system."

::= { httpStatistics 3 }

httpResponseEntry OBJECT-TYPE
SYNTAX HttpResponseEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"Response statistics for an individual http Server or
 Client."

INDEX { httpResponseEntityIndex, httpResponseStatusIndex }
::= { httpResponseTable 1 }

HttpResponseEntry ::= SEQUENCE {
httpResponseEntityIndexINTEGER,
httpResponseStatusIndexHttpStatusCode,
httpResponseInCount Counter32,
httpResponseInLastTimeTimeStamp,
httpResponseOutCount Counter32,
httpResponseOutLastTimeTimeStamp
}

httpResponseEntityIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The unique (on this machine) identifier for this
 entity. This Index corresponds to httpEntityIndex in
 the System group."

::= { httpResponseEntry 1 }
-- Instrumentation: Agent internal

ExpiresOctober 22, 1996 [Page 17]

88

Internet Draft HTTP MIB April 22,1996

httpResponseStatusIndex OBJECT-TYPE
SYNTAX HttpStatusCode
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The particular response status the statistics apply
 to."

::= { httpResponseEntry 2 }
-- Instrumentation: Log file

httpResponseInCount OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only

 STATUS current
DESCRIPTION

"The number of responses of this type received by this
 entity."

::= { httpResponseEntry 3 }
-- Instrumentation: Log file

httpResponseInLastTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime at the time the last response
 was received."

::= { httpResponseEntry 4 }
-- Instrumentation: Log file

httpResponseOutCount OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of responses of this type generated by
 this entity."

::= { httpResponseEntry 5 }
-- Instrumentation: Log file

httpResponseOutLastTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime at the time the last response
 was generated."

::= { httpResponseEntry 6 }
-- Instrumentation: Log file

ExpiresOctober 22, 1996 [Page 18]

89

Internet Draft HTTP MIB April 22,1996

--
-- The Time Out group contains information about the time outs occurred
-- with the protocol entity.
--

httpTimeOuts OBJECT IDENTIFIER ::= { httpMIBObjects 3 }

httpTimeoutTableSize OBJECT-TYPE
SYNTAX INTEGER (0..64)
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"The number of last TimeOuts contained by the
 httpTimeOutTable."

::= { httpTimeOuts 1 }
-- Instrumentation: Log file

httpTimeoutTable OBJECT-TYPE
SYNTAX SEQUENCE OF HttpTimeoutEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The table providing detailed timeout statistics for
 the http protocol entities on this system."

::= { httpTimeOuts 2 }

httpTimeoutEntry OBJECT-TYPE
SYNTAX HttpTimeoutEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"Timeout statistics for a particular http entity."
INDEX { httpTimeoutEntityIndex, httpTimeoutNumber }
::= { httpTimeoutTable 1 }

HttpTimeoutEntry ::= SEQUENCE {
httpTimeoutEntityIndexINTEGER,
httpTimeoutNumber INTEGER,
httpTimeoutRemoteAddressDisplayString,
httpTimeoutTime TimeStamp
}

httpTimeoutEntityIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The unique (on this machine) identifier for this
 entity. This Index corresponds to httpEntityIndex
 in the http System group."

::= { httpTimeoutEntry 1 }
-- Instrumentation: Agent internal

ExpiresOctober 22, 1996 [Page 19]

90

Internet Draft HTTP MIB April 22,1996

httpTimeoutNumber OBJECT-TYPE
SYNTAX INTEGER (0..64)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The unique identifier for the last Timeout."
::= { httpTimeoutEntry 2 }
-- Instrumentation: Agent internal

httpTimeoutRemoteAddress OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The address of the remote entity."
::= { httpTimeoutEntry 3 }
-- Instrumentation: Log file

httpTimeoutTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The time when the time out occured with the
 remote entity."

::= { httpTimeoutEntry 4 }
-- Instrumentation: Log file

--
-- Conformance and compliance definitions.
--

httpMIBCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION

"The compliance statement for SNMP entities
which implement the HTTP MIB."

MODULE -- this module
MANDATORY-GROUPS { httpMIBGroup }

::= { httpMIBCompliances 4 }

ExpiresOctober 22, 1996 [Page 20]

91

Internet Draft HTTP MIB April 22,1996

httpMIBGroup OBJECT-GROUP
OBJECTS {

 httpEntityIndex, httpEntityProtocol,
 httpEntityDescription, httpEntityContact,
 httpEntityProtocolVersion, httpEntityVendor,

httpEntityVersion, httpEntityObjectID,
httpEntityAddress, httpEntityPort, httpEntityIpAddress,
httpEntityLastInitialisation, httpEntityType,
httpSummaryEntityIndex,
httpSummaryRequests, httpSummaryRequestErrors,
httpSummaryRequestDiscards,
httpSummaryResponses, httpSummaryResponseErrors,
httpSummaryResponseDiscards,
httpSummaryInUnknowns,
httpSummaryInBytes, httpSummaryOutBytes,
httpSummaryTimeOuts,
httpRequestEntityIndex,
httpRequestMethodIndex, httpRequestInCount,
httpRequestInLastTime, httpRequestOutCount,
httpResponseEntityIndex,
httpResponseStatusIndex, httpResponseInCount,
httpResponseInLastTime, httpResponseOutCount,
httpResponseOutLastTime,
httpTimeoutNumber,
httpTimeoutEntityIndex, httpTimeoutRemoteAddress,
httpTimeoutTime }

STATUS current
DESCRIPTION

"The collection of objects allowing the
management of HTTP servers and clients."

::= { httpMIBGroups 1 }

END

ExpiresOctober 22, 1996 [Page 21]

92

Internet Draft HTTP MIB April 22,1996

6. Acknowledgments

 This document has been produced by the University of Twente
 (The Netherlands), together with ESYS Limited (The United Kingdom),
 as part of a ‘proof of concept' study for the ‘Centre of Earth
 Observation' (CEO) of the ‘Joint Research Centre' (JRC) of the
 European Community. This document has benefited greatly to the
 comments of:

Carl W. Kalbfleisch
<cwk@onramp.net>

Mark Gamble
<mgamble@esys1.esys.co.uk>

Rui Meneses
<rui.meneses@jrc.it>

Juergen Schoenwaelder
<schoenw@cs.utwente.nl>

ExpiresOctober 22, 1996 [Page 22]

93

Internet Draft HTTP MIB April 22,1996

7. References

[1] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Structure of Management Information for version 2
 of the Simple Network Management Protocol (SNMPv2)", RFC 1902,
 January 1996.

[2] McCloghrie, K., and M. Rose, Editors, "Management Information Base
 for Network Management of TCP/IP-based internets: MIB-II", STD 17,
 RFC 1213, Hughes LAN Systems, Performance Systems International,
 March 1991.

[3] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Textual Conventions for version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1903, January 1996.

[4] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Protocol Operations for version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1905, January 1996.

[5] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Conformance Statements for version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1904, January 1996.

[6] Case, J., M. Fedor, M. Schoffstall, J. Davin, "Simple Network
 Management Protocol", RFC 1157, SNMP Research, Performance Systems
 International, MIT Laboratory for Computer Science, May 1990.

[7] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Introduction to Community-based SNMPv2", RFC 1901,
 January 1996.

[8] HTTP Working Group, Berners-Lee, T., Fielding R. and Frystyk, H.,
 "Hypertext Transfer Protocol -- HTTP/1.0", Internet draft,
 October 1995.

8. Security Considerations

Security issues are not discussed in this memo.

9. Authors' Addresses

 Harrie Hazewinkel / Eric van Hengstum / Aiko Pras
 University of Twente
 Centre for Telematics and Information Technology (CTIT)
 POBox 217
 7500 AE Enschede, The Netherlands
 Phone: +31-53-4893778
 Email: hazewink@cs.utwente.nl
 hengstum@cs.utwente.nl
 pras@cs.utwente.nl

ExpiresOctober 22, 1996 [Page 23]

94

Internet Draft HTTP MIB April 22,1996

Table of Contents

1 Abstract .. 2
2 The SNMPv2 Network ManagementFramework 3
2.1 Object Definitions 3
3 Introduction .. 4
4 HyperText Transfer Protocol MIB structure 5
4.1 System group .. 5
4.2 Statistics group .. 5
4.3 TimeOuts group .. 6
5 HyperText Transfer Protocol MIB definition 7
6 Acknowledgements ..22
7 References ..23
8 Security Considerations23
9 Authors' Addresses ..23

ExpiresOctober 22, 1996 [Page 24]

95

Appendix B: Retrieval Service MIB definition

rsMIB

rsMIBObjects

rsStatistics

rsTotalRequests

rsMIBConformance

rsMIBCompliances

rsMIBCompliance

rsMIBGroup

rsMIBGroups

rsTotalIndications

rsTotalResponses

rsTotalConfirmations

rsQoS

rsDelayTable

rsDelayEntry

rsSource

rsDestination

rsdelay

rsNumberOfErrors

rsNumberOfTimeOuts

rsThroughputTable

rsTroughputTable

rsClient

rsThroughput

96

Internet Draft Retrieval Service MIB April 22, 1996

Definitions of Managed Objects for an Information Retrieval Service

 April 22, 1996

 <draft-hazewinkel-rsmib-01.txt>

 Harrie Hazewinkel
 University of Twente
 hazewink@cs.utwente.nl

 Eric van Hengstum
 University of Twente
 hengstum@cs.utwente.nl

 Aiko Pras
 University of Twente
 pras@cs.utwente.nl

 Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its
areas, and its working groups.Note that othergroups may also
distribute working documents asInternet-Drafts.

Internet-Draftsare draft documents valid for amaximumof six
months and may be updated, replaced, orobsoleted by other
documents at any time.It is inappropriate to use Internet-
Drafts as reference material orto citethem other thanas ‘‘work
in progress.''

To learn the current status of any Internet-Draft, please check
the ‘‘1id-abstracts.txt'' listing contained in the Internet-
Drafts Shadow Directories on ds.internic.net (US East Coast),
nic.nordu.net (Europe),ftp.isi.edu (USWest Coast), or
munnari.oz.au (Pacific Rim).

ExpiresOctober 22, 1996 [Page 1]

97

Internet Draft Retrieval Service MIB April 22, 1996

1. Abstract

 This memo defines a MIB for use with managing information services.
 The term "information services" is construed to mean any information
 providing application, such as World Wide Web (WWW), File Transfer
 Protocol (FTP), and Gopher. The retrieval service is an abstraction
 for the information transport protocol. The retrieval service which
 is a connection-less service can by instantiate by, for instance, the
 Hyper Text Transfer Protocol, or the File Transfer Protocol.

ExpiresOctober 22, 1996 [Page 2]

98

Internet Draft Retrieval Service MIB April 22, 1996

2. TheSNMPv2 Network Management Framework

The SNMPv2 Network Management Frameworkconsists of four major
components. They are:

o STD 17, RFC 1213 [2] defines MIB-II, the core set of managed
 objects for the Internet suite of protocols.

o RFC 1901 Introduction to Community-based SNMPv2

o RFC 1902 Structureof Management Information for Version 2of
 the SimpleNetworkManagement Protocol (SNMPv2)

o RFC 1903 Textual Conventions for Version 2of the Simple
 Network ManagementProtocol (SNMPv2)

o RFC 1904 Conformance Statements for Version 2 of the Simple
 Network ManagementProtocol (SNMPv2)

o RFC 1907 Management Information Base for Version 2of the
 Simple Network Management Protocol(SNMPv2)

o RFC 1908 Coexistence between Version 1 andVersion2 of the
 Internet-standard Network Management Framework

The Framework permits new objects to bedefinedfor thepurposeof
experimentationand evaluation.

2.1. Object Definitions

Managedobjects are accessed via a virtual information store,
termed the Management Information Base or MIB. Objects in the MIB
are defined using the subset ofAbstract SyntaxNotation One
(ASN.1)defined in the SMI[1]. In particular, each object type is
named by an OBJECT IDENTIFIER, an administratively assigned name.
The object typetogether with an objectinstance servesto
uniquely identify a specific instantiation of the object. For
human convenience, we often usea textual string, termed the
object descriptor, to refer to the object type.

ExpiresOctober 22, 1996 [Page 3]

99

Internet Draft Retrieval Service MIB April 22, 1996

3. Introduction.

 The Retrieval Service is a connection-less service providing
 transport of information between a client and a server. The service
 is an abstraction of the information transport protocol used.
 The Retrieval Service MIB module contains network management
 information about a provided service. Because the Retrieval Service
 is an abstraction of the information transport service used in, for
 instance, the World Wide Web, details of the transport protocol
 providing this service are of no importance to the users of the
 Retrieval Service.

 The work performed for this MIB is a result of a project executed for
 the Centre of Earth Observations. It is not seen as complete, but it
 should be a first step in an effort to manage the WWW application.
 An implementation of this MIB already exists. Due to the use of a
 commercial development package it cannot be distributed. However, a
 public domain version is now developed.

ExpiresOctober 22, 1996 [Page 4]

100

Internet Draft Retrieval Service MIB April 22, 1996

4. Retrieval Service MIB structure

 The Retrieval Service module contains the following groups:
 1. service primitives/ statistics,
 2. quality of service.

4.1. Statistics group

 Communication via the Retrieval Service takes place by means of
 service primitives used by the connection-less service. The statistics
 group contains statistical information concerning the service
 primitives passed over the Service Access Point (SAP). The variables
 of this group count the number of service primitives executed on the
 retrieval service.

 Two possible solutions were seen to define these counters:
 1. The total numbers of service primitives are counted by type.
 For each service primitive type used by the retrieval service
 a managed object has to be defined.
 2. The total number of service primitives related to a remote host
 and service primitive-type are counted. This results in a
 conceptual table; for each service primitive type used by the
 retrieval service a table has to be defined, indexed with the
 IpAddress of the remote host. The remote host is a parameter of
 the service primitive.

 It was decided that the simplicity of the first solution outweighed
 the increased information present in the second.

4.2. Quality of Service group

 The Quality of Service QoS group contains network management
 information about the quality of the retrieval service. The
 information in this group provides the network manager with
 visibility of the performance of the underlying network.

 The recognized QoS parameters are:

 - The transport delay is defined as a table. The table is indexed
 with the source and destination addresses of the delay.

 The total round trip delay can be computed by the Network
 Management System user.

 - The number of errors variable provides information on errors
 which have occurred in the retrieval service.
 - The number of timeouts variable provides information on timeouts
 which have occurred in the retrieval service.
 - The throughput table provides information on the speed of the
 network with a given client. The address of the client is used
 to index the table.

ExpiresOctober 22, 1996 [Page 5]

101

Internet Draft Retrieval Service MIB April 22, 1996

5. Retrieval Service MIB definition

RS-MIB DEFINITIONS ::=
BEGIN

IMPORTS
enterprises, MODULE-IDENTITY, OBJECT-TYPE, Counter32, TimeTicks,
IpAddress

FROM SNMPv2-SMI
MODULE-COMPLIANCE, OBJECT-GROUP

FROM SNMPv2-CONF;

rsMIB MODULE-IDENTITY
LAST-UPDATED"9601251800Z"
ORGANIZATION"University Of Twente"
CONTACT-INFO

" Harrie Hazewinkel
Postal: Centre of Telematics and
 Information Technology

University Of Twente
POBox 217
7500 AE Enschede
The Netherlands

phone : +31 53 8943746
E-mail: H.Hazewinkel@cs.utwente.nl

This document benefited greatly from the comments of
all participants in the CEO project for management of
World Wide Web Servers."

DESCRIPTION
"A MIB module for the retrieval service. The retrieval
service is a service providing the capability of
information transport via a network.

It provides management information about an
information transport, which is exactly describing
what the transport provider is doing for the user,
without showing detailed information from inside
the transport provider, HTTP."

::= { enterprises universityOfTwente(785) 3 }

rsMIBObjects OBJECT IDENTIFIER ::= { rsMIB 1 }
rsMIBConformance OBJECT IDENTIFIER ::= { rsMIB 2 }
rsMIBCompliances OBJECT IDENTIFIER ::= { rsMIBConformance 1 }
rsMIBGroups OBJECT IDENTIFIER ::= { rsMIBConformance 2 }

ExpiresOctober 22, 1996 [Page 6]

102

Internet Draft Retrieval Service MIB April 22, 1996

--
-- The service statistics provides management
-- information about the service primitives that are
-- executed on the HTTP Service Provider.
--

rsStatistics OBJECT IDENTIFIER ::= { rsMIBObjects 1 }

rsTotalRequests OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of requests that have been executed
on the HTTP service provider.

This field is only interesting when management
functions are implemented at the client side."

::= { rsStatistics 1 }
-- Instrumentation: client

rsTotalIndications OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of indications that have been executed
on the HTTP service provider."

::= { rsStatistics 2 }
-- Instrumentation: logfile

rsTotalResponses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of responses that have been executed
on the HTTP service provider."

::= { rsStatistics 3 }
-- Instrumentation: logfile

rsTotalConfirmations OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of confirmations that have been
executed on the HTTP service provider.

This field is only interesting when management
functions are implemented at the client side."

::= { rsStatistics 4 }
-- Instrumentation: client

ExpiresOctober 22, 1996 [Page 7]

103

Internet Draft Retrieval Service MIB April 22, 1996

--
-- The provided QoS of the service provider.
--

rsQoS OBJECT IDENTIFIER ::= { rsMIBObjects 2 }

rsDelayTable OBJECT-TYPE
SYNTAX SEQUENCE OF RsDelayEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The table of the delay between source and destination."
::= { rsQoS 1 }

rsDelayEntry OBJECT-TYPE
SYNTAX RsDelayEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"Details of a particular http Server or Client."
INDEX { rsSource, rsDestination }
::= { rsDelayTable 1 }

RsDelayEntry ::=
 SEQUENCE {

rsSource DisplayString,
rsDestination DisplayString,
rsDelay TimeInterval
}

rsSource OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The DNS name of the source."
::= { rsDelayEntry 1 }
-- Instrumentation: logfile / own system

rsDestination OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The DNSname of the destination."
::= { rsDelayEntry 2 }
-- Instrumentation: logfile / own system

ExpiresOctober 22, 1996 [Page 8]

104

Internet Draft Retrieval Service MIB April 22, 1996

rsDelay OBJECT-TYPE
SYNTAX TimeInterval
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The delay which occured during transport of information
from source to destination."

::= { rsDelayEntry 3 }
-- Instrumentation: client / server

rsNumberOfErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of errors that have been occured."
::= { rsQoS 2 }
-- Instrumentation: client

rsNumberOfTimeouts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of time-outs that have been occured."
::= { rsQoS 3 }
-- Instrumentation: logfile

rsTroughputTable OBJECT-TYPE
SYNTAX SEQUENCE OF RsTroughputEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The table of the throughput with a certain client."
::= { rsQoS 4 }

rsTroughputEntry OBJECT-TYPE
SYNTAX RsTroughputEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"Details of a particular http Server or Client."
INDEX { rsClient }
::= { rsTroughputTable 1 }

RsTroughputEntry ::=
 SEQUENCE {

rsClient DisplayString,
rsThroughput INTEGER
}

ExpiresOctober 22, 1996 [Page 9]

105

Internet Draft Retrieval Service MIB April 22, 1996

rsClient OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The DNS name of the client."
::= { rsTroughputEntry 1 }
-- Instrumentation: logfile

rsThroughput OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The throughput of data with the client."
::= { rsTroughputEntry 2 }
-- Instrumentation: direct access

--
-- Conformance and compliance definitions.
--

rsMIBCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION

"The compliance statements for http service
which implement the HTTP MIB"

MODULE
MANDATORY-GROUPS { rsGroup }

::= { rsMIBCompliances 1 }

rsMIBGroup OBJECT-GROUP
OBJECTS { rsTotalRequests, rsTotalIndications,

rsTotalResponses, rsTotalConfirmations,
rsSource, rsDestination, rsDelay,
rsNumberOfErrors,
rsNumberOfTimeouts,
rsClient,rsThroughput }

STATUS current
DESCRIPTION

"The rsGroup defines the objects
of the retrieval service."

::= { rsMIBGroups 1 }

END

ExpiresOctober 22, 1996 [Page 10]

106

Internet Draft Retrieval Service MIB April 22, 1996

6. Acknowledgments

 This document has been produced by the University of Twente
 (The Netherlands), together with ESYS Limited (The United Kingdom),
 as part of a ‘proof of concept' study for the ‘Centre of Earth
 Observation' (CEO) of the ‘Joint Research Centre' (JRC) of the
 European Community. This document has benefited greatly to the
 comments of:

Mark Gamble
<mgamble@esys1.esys.co.uk>

Rui Meneses
<rui.meneses@jrc.it>

Juergen Schoenwaelder
<schoenw@cs.utwente.nl>

ExpiresOctober 22, 1996 [Page 11]

107

Internet Draft Retrieval Service MIB April 22, 1996

7. References

[1] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Structure of Management Information for version 2
 of the Simple Network Management Protocol (SNMPv2)", RFC 1902,
 January 1996.

[2] McCloghrie, K., and M. Rose, Editors, "Management Information Base
 for Network Management of TCP/IP-based internets: MIB-II", STD 17,
 RFC 1213, Hughes LAN Systems, Performance Systems International,
 March 1991.

[3] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Textual Conventions for version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1903, January 1996.

[4] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Protocol Operations for version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1905, January 1996.

[5] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Conformance Statements for version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1904, January 1996.

[6] Case, J., M. Fedor, M. Schoffstall, J. Davin, "Simple Network
 Management Protocol", RFC 1157, SNMP Research, Performance Systems
 International, MIT Laboratory for Computer Science, May 1990.

[7] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Introduction to Community-based SNMPv2", RFC 1901,
 January 1996.

8. Security Considerations

Security issues are not discussed in this memo.

9. Authors' Addresses

 Harrie Hazewinkel / Eric van Hengstum / Aiko Pras
 University of Twente
 Centre for Telematics and Information Technology (CTIT)
 POBox 217
 7500 AE Enschede, The Netherlands
 Phone: +31-53-4893778
 Email: hazewink@cs.utwente.nl
 hengstum@cs.utwente.nl
 pras@cs.utwente.nl

ExpiresOctober 22, 1996 [Page 12]

108

Internet Draft Retrieval Service MIB April 22, 1996

Table of Contents

1 Abstract .. 2
2 The SNMPv2 Network ManagementFramework 3
2.1 Object Definitions 3
3 Introduction .. 4
4 Retrieval Service MIB structure 5
4.1 Statistics group .. 5
4.2 Quality of Service group 5
5 Retrieval Service MIB definition 6
6 Acknowledgements ..11
7 References ..12
8 Security Considerations12
9 Authors' Addresses ..12

ExpiresOctober 22, 1996 [Page 12]

109

Appendix C: Information Store MIB definition

isMIB

isMIBObjects

isGeneral

isName

isOrganisation

isContact

isLastInitialisation

isApplDendancyTable

isApplDependancyEntry

applIndex

applResourceIdentifier

applProcessName

isTopicTable

isTopicEntry

topic

isSupportedMediaTypes

applVersion

applUpTime

applOperStatus

applLastChange

applLastActivity

applFailedActivities

isAccess

isNumberOfAccesses

isNumberOfBytesIn

isNumberOfBytesOut

isDomainTable

isDomainEntry

domainName

domainAccesses

isAccessOfLastNDaysTableSize

lastNDaysIndex

accessesOfLastNDay

isAccessOfLastNDaysTable

isAccessOfLastNDaysEntry

110

isMIB

isMIBObjects

isAccess

isMostFrequentUserTableSize

mfIndex

mfUserName

isMostFrequentUserTableDate

isMostFrequentUserEntry

isMostFrequentUserTable

isMostFrequentUserTableRefresh

mfNumberOfAccesses

mrIndex

mrUserName

isMostRecentUserTableSize

isMosRecentUserEntry

isMostRecentUserTable

mrLastTime

mrLastDocument

isError

errorIndex

errorDescription

isErrorEntry

isErrorTable

errorCount

errorLastTime

isDocument

isDocumentTableSize

documentIndex

documentName

isDocumentTableDate

isDocumentEntry

isDocumentTable

isDocumentTableRefresh

documentAccesses

documentAccessRights

documentSize

documentErrors

documentUpdate

documentAccessesAtLastUpdate

documentLastAccess

documentType

111

isMIB

isMIBConformance

isMIBCompliances

isMIBCompliance

isMIBGroup

isMIBGroups

112

Internet Draft Information Store MIB April 22,1996

 Definitions of Managed Objects for an Information Store

 April 22, 1996

 <draft-hazewinkel-ismib-00.txt>

 Harrie Hazewinkel
 University of Twente
 hazewink@cs.utwente.nl

 Eric van Hengstum
 University of Twente
 hengstum@cs.utwente.nl

 Aiko Pras
 University of Twente
 pras@cs.utwente.nl

 Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its
areas, and its working groups.Note that othergroups may also
distribute working documents asInternet-Drafts.

Internet-Draftsare draft documents valid for amaximumof six
months and may be updated, replaced, orobsoleted by other
documents at any time.It is inappropriate to use Internet-
Drafts as reference material orto citethem other thanas ‘‘work
in progress.''

To learn the current status of any Internet-Draft, please check
the ‘‘1id-abstracts.txt'' listing contained in the Internet-
Drafts Shadow Directories on ds.internic.net (US East Coast),
nic.nordu.net (Europe),ftp.isi.edu (USWest Coast), or
munnari.oz.au (Pacific Rim).

ExpiresOctober 22, 1996 [Page 1]

113

Internet Draft Information Store MIB April 22, 1996

1. Abstract

 This draft defines a MIB for use with managing information stores.
 The term "information store" is construed to mean any information
 providing application, such as World Wide Web (WWW), File Transfer
 Protocol (FTP), and Gopher. The information store is seen as the
 application responsible for the information providing capabilities.

ExpiresOctober 22, 1996 [Page 2]

114

Internet Draft Information Store MIB April 22, 1996

2. TheSNMPv2 Network Management Framework

The SNMPv2 Network Management Frameworkconsists of four major
components. They are:

o STD 17, RFC 1213 [2] defines MIB-II, the core set of managed
 objects for the Internet suite of protocols.

o RFC 1901 Introduction to Community-based SNMPv2

o RFC 1902 Structureof Management Information for Version 2of
 the SimpleNetworkManagement Protocol (SNMPv2)

o RFC 1903 Textual Conventions for Version 2of the Simple
 Network ManagementProtocol (SNMPv2)

o RFC 1904 Conformance Statements for Version 2 of the Simple
 Network ManagementProtocol (SNMPv2)

o RFC 1907 Management Information Base for Version 2of the
 Simple Network Management Protocol(SNMPv2)

o RFC 1908 Coexistence between Version 1 andVersion2 of the
 Internet-standard Network Management Framework

The Framework permits new objects to bedefinedfor thepurposeof
experimentationand evaluation.

2.1. Object Definitions

Managedobjects are accessed via a virtual information store,
termed the Management Information Base or MIB. Objects in the MIB
are defined using the subset ofAbstract SyntaxNotation One
(ASN.1)defined in the SMI[1]. In particular, each object type is
named by an OBJECT IDENTIFIER, an administratively assigned name.
The object typetogether with an objectinstance servesto
uniquely identify a specific instantiation of the object. For
human convenience, we often usea textual string, termed the
object descriptor, to refer to the object type.

ExpiresOctober 22, 1996 [Page 3]

115

Internet Draft Information Store MIB April 22, 1996

3. Introduction.

 The Information Store represents the information part of a World Wide
 Web application. The name Information Store (IS) is strongly related
 to the use of this part of the WWW application. Most WWW servers provide
 information to users / customers (clients) of the WWW application. In
 order to maintain and manage the provided information a specific MIB
 module is defined. The Information Store MIB module specifies the
 network management information of the WWW server, providing the
 aforementioned information.

 The work performed for this MIB is a result of a project executed
 for the Centre of Earth Observations. It is not seen as complete,
 but it should be a first step in an effort to manage the WWW. An
 implementation of this MIB already exists. Due to the use of a
 commercial development package it cannot be distributed. However,
 a public domain version is now being developed.

4. Information Store MIB structure.

 The Information Store MIB module structure contains the
 following groups:
 1. isGeneral,
 2. isAccess,
 3. isErrors, and
 4. isDocuments.

4.1 General Group

 The isGeneral group contains overall administrative data which
 uniquely identifies the IS, and should be static for the Information
 Store (IS). The network management information consists of the
 administrative data uniquely identifying the IS. In addition to the
 static data, such as the isContact object (a contact address for the
 person responsible for the information provided by the IS), the
 isGeneral group also contains the isTopicTable. The NMS user can use
 this table to discover what kinds of information are provided by
 the IS. It was originally intended to include an isLocation variable
 in this group. This variable would have provided information on the
 location of the IS, however, as this information is also contained
 in the sysLocation of the system group it was omitted.

 The general group contains also information of applications on which
 the IS depends (such as database applications for search facilities).
 The application dependency table provides that information. The
 status of these applications is checked dynamically and the values
 are related to the ‘process status' command of the UNIX environment.

ExpiresOctober 22, 1996 [Page 4]

116

Internet Draft Information Store MIB April 22, 1996

4.2 Access group

 The access group contains network management information about the
 network activity of the Information Store. The network activity is
 described in an abstract manner in regard to the service which
 transports the information.

 This group provides network management information with the
 following points of view:
 1. general data containing totals for the information store,
 2. domain data containing totals ordered by domains,
 3. daily access data which contains totals for the last N days,
 4. user data which contains information concerning the most
 frequent and most recent users.

 The general access data provides statistics relating to usage of
 the IS. For example, the variables number of accesses
 (isNumberOfAccesses) and the number of bytes in/ out
 (isNumberOfBytesOut, isNumberOfBytesIn) are defined.

 The isDomainTable breaks down accesses to the IS by Internet domain.
 The NMS operator can thus discover the countries or groups regular
 users of the IS belong. This on may be valuable, as an IS
 administrator can decide whether mirror servers in certain domains
 may be useful. Then long distance network traffic as well as the
 server load could be reduced.

 To see the number of hits for each day an isAccessOfLastNDaysTable
 is defined. Together with a variable setting the total number of
 days which can be traced backwards, this table provides information
 on the number of accesses executed on the IS on a day to day basis.

 The isDomainTable and isAccessOfLastNDaysTable provide useful
 information on the number and sources of accesses to the IS,
 however, it is equally important to know what information is
 attracting Users to the IS. In support of this function, two tables
 are defined. These tables are a most recent users table and a most
 frequent users table. The combination of these tables should give
 meaningful information of users and which information they access.

 The isMostFrequentUser table is defined in a slightly different
 fashion from the isMostRecentUser table. This is mainly because of
 implementation aspects such as the amount of memory used to store
 information relating to the IS users and the processing time to
 generate the information. Details on every User who has accessed
 the IS must be stored, because new accesses may give that User a
 new place in the table. Therefore, the following solution was
 adopted: the table is updated on initiative of the NMS, thus making
 the NMS responsible for limiting the number of updates requested.

ExpiresOctober 22, 1996 [Page 5]

117

Internet Draft Information Store MIB April 22, 1996

 The NMS requests an update by setting the refresh variable to the
 value ‘false'. An Agent subprocess then processes the new information
 and, on exiting, sets the refresh variable to the value ‘true'. The
 subprocess also updates the time stamp variable indicating the date
 and time when the table was last refreshed.

 Besides these variables, the size of the table can also be set with
 a size variable which has a value in the range of 0 to 128.
 The isMostRecentUsers table provides information on which users are
 the last ones who accessed the IS. The size of the table is limited
 to at most 128 and can be set in a range of 0 to 128. The table is
 indexed with the position of the User in the table, and contains
 information giving the Users name, the time of last access, and
 document that was accessed.

4.3 Error Group

 The error group contains network management information about errors
 which occurred during accesses of the IS. This group abstracts from
 the network errors that occur, it only shows errors resulting from
 information access. This group is defined as a table with an error
 description, the number of occurrences of that error and the time at
 which the error last occurred. The reason for defining this
 information in a table is that an implementor of the MIB module can
 simply add new errors to the table without changing the MIB module
 definition.

4.4 Document Group

 The document group contains the network management information about
 the data which is provided by the Information Store. The information
 is kept in a table containing the documents name, access rights,
 size, type, and other features such as the number of accesses, time
 of last update, and any associated errors. The isDocumentTable has
 the same implementation constraints as the isMostFrequentNUserTable,
 and is handled in a similar fashion, with TableSize, TableRefresh,
 and TableData variables. It should be noted that (in the current
 implementation) e isDocumentTable is populated from User accesses,
 and thus documents which have not been accessed will not appear in
 the table.

ExpiresOctober 22, 1996 [Page 6]

118

Internet Draft Information Store MIB April 22, 1996

5. Information Store MIB definitions

IS-MIB DEFINITIONS ::=
BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, Counter32, TimeTicks, Integer32

FROM SNMPv2-SMI
TEXTUAL-CONVENTION, DisplayString, DateAndTime, TruthValue, TimeStamp

FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP

FROM SNMPv2-CONF;

isMIB MODULE-IDENTITY
LAST-UPDATED"9601251800Z"
ORGANIZATION"University Of Twente"
CONTACT-INFO

" Harrie Hazewinkel

Postal: Centre of Telematics and
Information Technology

University Of Twente
POBox 217
7500 AE Enschede
The Netherlands

phone : +31 53 4893746
E-mail: H.Hazewinkel@cs.utwente.nl

This document benefited greatly from the comments of
all participants in the CEO project for management of
World Wide Web Servers."

DESCRIPTION
"A MIB module for an Information Store.
An Information Store is the application from which
the information is retrieved on the World Wide Web."

::= { enterprises universityOfTwente(785) 4 }

isObjects OBJECT IDENTIFIER ::= { isMIB 1 }
isConformance OBJECT IDENTIFIER ::= { isMIB 2 }
isCompliances OBJECT IDENTIFIER ::= { isConformance 1 }
isGroups OBJECT IDENTIFIER ::= { isConformance 2 }

ExpiresOctober 22, 1996 [Page 7]

119

Internet Draft Information Store MIB April 22, 1996

MediaType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION

"This type should be representing the media types
which the information store makes available. The
media types are those recognized by the RFC 1700.

The value is a sum and is initially the value zero.
Then, for each media type, L, in the range 1 through
7, 2 raised to (L - 1) is added to the sum.
For example, a server which only supports video
would have a value of 64 (2^(7-1)). In
contrast, a server which is offering text and images
would have a value of 17 (2^(1-1) + 2^(5-1)).

Note that in the context of this media type,
values should be calculated accordingly:

1 text
2 multipart
3 message
4 application
5 image
6 audio
7 video"

SYNTAX INTEGER (0..127)

ApplResourceIdentifier ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION

"A distinguished name which contains a host on which
the application is running and the application's name."

SYNTAX DisplayString

AccessRights ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION

"A type with which access rights of a document is
 described.

The rights are:
read-only permission
read-write permission
execute permission"

SYNTAX INTEGER {
 read-only(1), read-write(2), execute-able(3)
 }

ExpiresOctober 22, 1996 [Page 8]

120

Internet Draft Information Store MIB April 22, 1996

isGeneral OBJECT IDENTIFIER ::= { isObjects 1 }

isName OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An administratively-assigned name for this
Information Store."

::= { isGeneral 1 }
-- Instrumentation : Config file

isOrganisation OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The textual identification of the organisation
responsible for the Information Store server.

For example, if the organisation which is offering
information of the Information Store is named
‘Flintstones, Inc'. This value should have the
value of ‘Flintstones, Inc'."

::= { isGeneral 2 }
-- Instrumentation : Config file

isContact OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The textual identification of the contact person
for this Information Store server, together with
information on how to contact this person.

For example, when ‘Fred' of the ‘Flintstones, Inc'
is maintaining this Information Store, the value
should be ‘Fred@Flintstones'."

::= { isGeneral 3 }
-- Instrumentation : Config file

isLastInitialisation OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime at the time the Information
Store was last initialized. If the Information Store
was last initialized prior to the initialization of
the network management subsystem, then this object
contains a zero value."

::= { isGeneral 4 }
-- Instrumentation : Config file

ExpiresOctober 22, 1996 [Page 9]

121

Internet Draft Information Store MIB April 22, 1996

isSupportedMediaTypes OBJECT-TYPE
SYNTAX MediaType
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A value which indicates the set of media types that
this Information Store primarily offers."

::= { isGeneral 5 }
-- Instrumentation : Config file

isApplDependancyTable OBJECT-TYPE
SYNTAX SEQUENCE OF IsApplDependancyEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The table holding objects which apply to all different
kinds of applications provided by the Information
Store."

::= { isGeneral 6 }
-- Instrumentation : Config file

isApplDependancyEntry OBJECT-TYPE
SYNTAX IsApplDependancyEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"An entry associated with an application."
INDEX {applIndex}
::= {isApplDependancyTable 1}

IsApplDependancyEntry ::= SEQUENCE {
isApplIndex INTEGER,
isApplResourceIdentifierApplResourceIdentifier,
isApplProcessName DisplayString,
isApplVersion DisplayString,
isApplUptime TimeStamp,
isApplOperStatus INTEGER,
isApplLastChange TimeStamp,
isApplLastActivity TimeStamp,
isApplFailedActivitiesCounter32
}

isApplIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"An index to uniquely identify the application
application."

::= {isApplDependancyEntry 1}
-- Instrumentation : Config file

ExpiresOctober 22, 1996 [Page 10]

122

Internet Draft Information Store MIB April 22, 1996

isApplResourceIdentifier OBJECT-TYPE
SYNTAX ApplResourceIdentifier
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The distinguished name of the host on which the
 application is running and the application name."

::= {isApplDependancyEntry 2}
-- Instrumentation : Config file

isApplProcessName OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The process name of the application."
::= {isApplDependancyEntry 3}
-- Instrumentation : Config file

isApplVersion OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The version of the application software."
::= {isApplDependancyEntry 4}
-- Instrumentation : Config file

isApplUptime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime at the time the application
was last initialized. If the application was last
initialized prior to the last initialization of the
network management subsystem, then this object contains
a zero value."

::= {isApplDependancyEntry 5}
-- Instrumentation : Config file

ExpiresOctober 22, 1996 [Page 11]

123

Internet Draft Information Store MIB April 22, 1996

isApplOperStatus OBJECT-TYPE
SYNTAX INTEGER {running(1), sleeping(2),

 runnable(3), idle(4),
 zombie(5), traced(6),

 sxbrkState(7), notFound(8) }
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Indicates the operational status of the network service
application. The values are related to the output
of the ‘ps'-command and the values are:

running: running on a processor.
sleeping:waiting for an event to complete.
runnable:on run queue.
idle: being created.
zombie: terminated and parent not

 waiting.
traced: stopped by a signal because

 parent is tracing it.
sxbrkState:waiting for more primary memory.
notFound:not found in process list."

::= {isApplDependancyEntry 6}
-- Instrumentation : Config file

isApplLastChange OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime at the time the application
application entered its current operational state. If
the current state was entered prior to the last
initialization of the local network management
subsystem, then this object contains a zero value."

::= {isApplDependancyEntry 7 }
-- Instrumentation : Config file

isApplLastActivity OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime at the time this application
last performed some activity. If the last activity
occurred prior to the last initialization of the
application, then this object contains a zero value."

::= {isApplDependancyEntry 8 }
-- Instrumentation : Config file

ExpiresOctober 22, 1996 [Page 12]

124

Internet Draft Information Store MIB April 22, 1996

isApplFailedActivities OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number activities where the application
has failed, since application initialization."

::= {isApplDependancyEntry 9}
-- Instrumentation : Config file

isTopicTable OBJECT-TYPE
SYNTAX SEQUENCE OF IsTopicEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The table holding topics provided by this
Information Store."

::= { isGeneral 7 }
-- Instrumentation : Config file

isTopicEntry OBJECT-TYPE
SYNTAX IsTopicEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"An entry associated with the topics."
INDEX { IMPLIED topic }
::= {isTopicTable 1}
-- Instrumentation : Config file

IsTopicEntry ::= SEQUENCE {
isTopic DisplayString
}

isTopic OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A textual description of a topic."
::= {isTopicEntry 1}

--
-- This group provides general access information and access information
-- organized by domain, day, most recent users, most frequent users.
--

isAccess OBJECT IDENTIFIER ::= { isObjects 2 }

ExpiresOctober 22, 1996 [Page 13]

125

Internet Draft Information Store MIB April 22, 1996

isNumberOfAccesses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number accesses done at the Information
Store."

::= { isAccess 1 }
-- Instrumentation : Log file

isNumberOfBytesOut OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number bytes transfered by the Information
Store."

::= { isAccess 2 }
-- Instrumentation : Log file

isNumberOfBytesIn OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number bytes received by the Information
Store."

::= { isAccess 3 }
-- Instrumentation : Direct access

isDomainTable OBJECT-TYPE
SYNTAX SEQUENCE OF IsDomainEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The domain table keeps track of the number of
accesses done from a specific domain."

::= { isAccess 4 }
-- Instrumentation : Log file

isDomainEntry OBJECT-TYPE
SYNTAX IsDomainEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"Entry (conceptual row) of the domain table."
INDEX { IMPLIED domainName }
::= { isDomainTable 1 }

IsDomainEntry ::= SEQUENCE {
isDomainName DisplayString,
isDomainAccessesCounter32
}

ExpiresOctober 22, 1996 [Page 14]

126

Internet Draft Information Store MIB April 22, 1996

isDomainName OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The domain of which the number of accesses
specific has to be monitored."

::= { isDomainEntry 1 }
-- Instrumentation : Log file

isDomainAccesses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of accesses done from a certain domain."
::= { isDomainEntry 2 }
-- Instrumentation : Log file

isAccessOfLastNDaysTableSize OBJECT-TYPE
SYNTAX INTEGER (0..32)
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"The number of entries which is contained
in the accessOfLastNDaysTable."

::= { isAccess 5 }
-- Instrumentation : Agent internal

isAccessOfLastNDaysTable OBJECT-TYPE
SYNTAX SEQUENCE OF IsAccessOfLastNDaysEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The access of last days table keeps track of the
number of accesses that have been done in the past.
Each entry is a specific day in the past. The day
which is specified is related to the current day.

This table should be a Top N table and should be
configured by the NMS."

::= { isAccess 6 }

isAccessOfLastNDaysEntry OBJECT-TYPE
SYNTAX IsAccessOfLastNDaysEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"Entry (conceptual row) of the accessOfLastNDaysTable."
INDEX { lastNDayIndex }
::= { accessOfLastNDaysTable 1 }

ExpiresOctober 22, 1996 [Page 15]

127

Internet Draft Information Store MIB April 22, 1996

IsAccessOfLastNDaysEntry ::= SEQUENCE {
isLastNDayIndex INTEGER,
isAccessOflastNDayCounter32
}

isLastNDayIndex OBJECT-TYPE
SYNTAX INTEGER (0..32)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The index of the Last N Days Table"
::= { accessOfLastNDaysEntry 1 }
-- Instrumentation : Agent internal

isAccessOflastNDay OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of accesses done on the specified day
in the past."

::= { accessOfLastNDaysEntry 2 }
-- Instrumentation : logfile

isMostFrequentNUserTableSize OBJECT-TYPE
SYNTAX INTEGER (0..128)
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"The number of entries which is contained
in the MostFrequentNUserTable."

::= { isAccess 7 }
-- Instrumentation : Agent internal

isMostFrequentNUserTableRefresh OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"Field with which a new ‘most frequent N user table'
will be made."

::= { isAccess 8 }
-- Instrumentation : Agent internal

isMostFrequentNUserTableDate OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The universal date and time for the last time the
isMostFrequentNUserTable was refreshed.."

::= { isAccess 9 }
-- Instrumentation : Agent internal

ExpiresOctober 22, 1996 [Page 16]

128

Internet Draft Information Store MIB April 22, 1996

isMostFrequentNUserTable OBJECT-TYPE
SYNTAX SEQUENCE OF IsMostFrequentNUserEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The access of document table keeps track of the
number of accesses that have been done in the past.
Each entry is a separate user.

This is a Top N table with the N most recently accessed
documents."

::= { isAccess 10 }

isMostFrequentNUserEntry OBJECT-TYPE
SYNTAX IsMostFrequentNUserEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"Entry (conceptual row) of the document table."
INDEX { mfIndex }
::= { isMostFrequentNUserTable 1 }

IsMostFrequentNUserEntry ::= SEQUENCE {
isMfIndex INTEGER,
isMfUserName DisplayString,
isMfNumberOfAccessesCounter32
}

isMfIndex OBJECT-TYPE
SYNTAX INTEGER (0..128)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The index indicates the position in the Top N table."
::= { isMostFrequentNUserEntry 1 }
-- Instrumentation : Agent internal

isMfUserName OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The name of the user."
::= { isMostFrequentNUserEntry 2 }
-- Instrumentation : Log file

ExpiresOctober 22, 1996 [Page 17]

129

Internet Draft Information Store MIB April 22, 1996

isMfNumberOfAccesses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of accesses made by the user on
 this server."

::= { isMostFrequentNUserEntry 3 }
-- Instrumentation : Log file

isMostRecentNUserTableSize OBJECT-TYPE
SYNTAX INTEGER (0..128)
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"The number of entries which is contained
in the isMostRecentNUserTable."

::= { isAccess 11 }
-- Instrumentation : Agent internal

isMostRecentNUserTable OBJECT-TYPE
SYNTAX SEQUENCE OF IsMostRecentNUserEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The access of document table keeps track of the
number of accesses that have been done in the past.
Each entry is a document.

This is a Top N table with the N most recently accessed
documents."

::= { isAccess 12 }

isMostRecentNUserEntry OBJECT-TYPE
SYNTAX IsMostRecentNUserEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"Entry (conceptual row) of the most recent users table."
INDEX { mrIndex }
::= { isMostRecentNUserTable 1 }

IsMostRecentNUserEntry ::= SEQUENCE {
isMrIndex INTEGER,
isMrUserName DisplayString,
isMrLastTime DateAndTime,
isMrLastDocument DisplayString
}

ExpiresOctober 22, 1996 [Page 18]

130

Internet Draft Information Store MIB April 22, 1996

isMrIndex OBJECT-TYPE
SYNTAX INTEGER (0..128)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The index indicates the sequence of the recent users."
::= { isMostRecentNUserEntry 1 }
-- Instrumentation : Agent internal

isMrUserName OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The name of the user."
::= { isMostRecentNUserEntry 2 }
-- Instrumentation : Log file

isMrLastTime OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The last time the user has accessed this server."
::= { isMostRecentNUserEntry 3 }
-- Instrumentation : Log file

isMrLastDocument OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The last operation or document which is accessed
by the user at this server."

::= { isMostRecentNUserEntry 4 }
-- Instrumentation : Log file

--
-- The section of the errors that occured in the Information Store.
--

isErrors OBJECT IDENTIFIER ::= { isObjects 3 }

ExpiresOctober 22, 1996 [Page 19]

131

Internet Draft Information Store MIB April 22, 1996

isErrorTable OBJECT-TYPE
SYNTAX SEQUENCE OF IsErrorEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The access of document table keeps track of the
number of accesses that have been done in the past.
Each entry is a document.

This is a Top N table with the N most recently accessed
documents."

::= { isErrors 12 }

isErrorEntry OBJECT-TYPE
SYNTAX IsErrorEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"Entry (conceptual row) of the document table."
INDEX { errorIndex }
::= { isErrorTable 1 }

IsErrorEntry ::= SEQUENCE {
isErrorIndex INTEGER,
isErrorDescription DisplayString,
isErrorCount Counter32,
isErrorLastTime TimeStamp
}

isErrorIndex OBJECT-TYPE
SYNTAX INTEGER (0..128)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The index indicating the error."
::= { isErrorEntry 1 }

isErrorDescription OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The textual description of the error."
::= { isErrorEntry 2 }

isErrorCount OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of errors that occured."
::= { isErrorEntry 3 }

ExpiresOctober 22, 1996 [Page 20]

132

Internet Draft Information Store MIB April 22, 1996

isErrorLastTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The time of the last error occured."
::= { isErrorEntry 4 }

--
-- This group contains information about documents which are accessed
-- on the Information Store Server. That are the documents accessed since
-- the start of the server. This are the URI with which a information
-- can be accessed.

-- For example a document is index.html:
-- If this is a document retrieved from the directory root of the
-- Information Store.
-- If this document is in a directory beneath the directory root it
-- should also mention this path in the isDocumentName.
-- <path>'/'<name of script>
--
-- For example a document script of the cgi-interface:
-- The script is mentioned in this table with the isDocumentName
-- ‘cgi/'<path>'/'<name of script>
--

isDocuments OBJECT IDENTIFIER ::= { isObjects 4 }

isDocumentTableSize OBJECT-TYPE
SYNTAX INTEGER (0..128)
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"The number of entries which are contained
in the isDocumentTable."

::= { isDocuments 1 }

isDocumentTableRefresh OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"Field with which a new ‘document table' will be made."
::= { isDocuments 2 }

isDocumentTableDate OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The universal date and time for the last time the
isDocumentTable was refreshed."

::= { isDocuments 3 }

ExpiresOctober 22, 1996 [Page 21]

133

Internet Draft Information Store MIB April 22, 1996

isDocumentTable OBJECT-TYPE
SYNTAX SEQUENCE OF IsDocumentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The access of document table keeps track of the
number of accesses that have been done in the past.
Each entry is a document."

::= { isDocuments 4 }

isDocumentEntry OBJECT-TYPE
SYNTAX IsDocumentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"Entry (conceptual row) of the document table."
INDEX { documentIndex }
::= { isDocumentTable 1 }

IsDocumentEntry ::= SEQUENCE {
isDocumentIndex INTEGER,
isDocumentName DisplayString,
isDocumentAccesses Counter32,
isDocumentAccessRightAccessRights,
isDocumentSize Integer32,
isDocumentErrors Counter32,
isDocumentUpdate DateAndTime,
isDocumentAccessesAtLastUpdateCounter32,
isDocumentLastAccess DateAndTime,
isDocumentType MediaType
}

isDocumentIndex OBJECT-TYPE
SYNTAX INTEGER (0..127)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The ranking of the document is a top N table."
::= { isDocumentEntry 1 }
-- Instrumentation : Log file

isDocumentName OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The name of the document available at the Information
 Store."

::= { isDocumentEntry 2 }
-- Instrumentation : Log file

ExpiresOctober 22, 1996 [Page 22]

134

Internet Draft Information Store MIB April 22, 1996

isDocumentAccesses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of accesses of the document."
::= { isDocumentEntry 3 }
-- Instrumentation : Log file

isDocumentAccessRights OBJECT-TYPE
SYNTAX AccessRights
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The accessrights of the document. This field should
restrict the information retrieval of the clients."

::= { isDocumentEntry 4 }
-- Instrumentation : System

isDocumentSize OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The size of the document in bytes (octets)."
::= { isDocumentEntry 5 }
-- Instrumentation : System

isDocumentErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of errors that occured during accessing
this document."

::= { isDocumentEntry 6 }
-- Instrumentation : Log file

isDocumentUpdate OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Date and time when this file was last updated."
::= { isDocumentEntry 7 }
-- Instrumentation : System

ExpiresOctober 22, 1996 [Page 23]

135

Internet Draft Information Store MIB April 22, 1996

isDocumentAccessesAtLastUpdate OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of accesses of the document since
the document was updated for the last time."

::= { isDocumentEntry 8 }
-- Instrumentation : System

isDocumentLastAccess OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The date and time the document was last accessed."
::= { isDocumentEntry 9 }
-- Instrumentation : Log file

isDocumentType OBJECT-TYPE
SYNTAX MediaType
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The type of the document."
::= { isDocumentEntry 10 }
-- Instrumentation : -

--
-- Conformance and compliance definitions.
--

isGeneralGroup OBJECT-GROUP
OBJECTS { isName,

isOrganisation,
isContact,
isLastInitialisation,
isSupportedMediaTypes,
isTopic }

STATUS current
DESCRIPTION

"The isGeneralGroup defines the objects
which are common to all Information Store
applications"

::= { isGroups 1 }

ExpiresOctober 22, 1996 [Page 24]

136

Internet Draft Information Store MIB April 22, 1996

isApplDependancyGroup OBJECT-GROUP
OBJECTS{

isApplResourceIdentifier, isApplProcessName,
isApplVersion, isApplUptime,
isApplOperStatus, isApplLastChange,
isApplLastActivity, isApplFailedActivities }

STATUS current
DESCRIPTION

"The application dependency Group provides information
about additional processes (or helper processes) of
the information store."

::= { isGroups 2 }

isErrorGroup OBJECT-GROUP
OBJECTS { isErrorIndex, isErrorDescription,

isErrorCount, isErrorLastTime }
STATUS current
DESCRIPTION

"The isErrorGroup provides the information
about the errors occured with the
information store."

::= { isGroups 3 }

isAccessGroup OBJECT-GROUP
OBJECTS {

isNumberOfAccesses,
isNumberOfBytesOut,
isNumberOfBytesIn,
isDomainName, isDomainAccesses,
isAccessOfLastNDaysTableSize,
isLastNDayIndex, isAccessOflastNDay,
isMrUserName, isMrLastTime, isMrLastDocument,
isMostRecentNUserTableSize,
isMostFrequentNUserTableSize,
isMostFrequentNUserTableRefresh,
isMostFrequentNUserTableDate,
isMfUserName, isMfNumberOfAccesses }

STATUS current
DESCRIPTION

"The isAccessGroup provides the information
about the accesses performed on this
information store..
The group defines the total number of accesses
and the number of bytes belonging to the accesses.
The otherwise the accesses or ordered in tables
The ordination are:

by domain,
by day (LastNDays),
by most frequent users (TopN),
by most recent users (LastN)"

::= { isGroups 4 }

ExpiresOctober 22, 1996 [Page 25]

137

Internet Draft Information Store MIB April 22, 1996

isDocumentGroup OBJECT-GROUP
OBJECTS {

isDocumentTableSize,
isDocumentTableRefresh,
isDocumentTableDate,
isDocumentName,

 isDocumentAccesses, isDocumentAccessRights,
isDocumentSize, isDocumentErrors, isDocumentUpdate,
isDocumentAccessesAtLastUpdate, isDocumentLastAccess,
isDocumentType }

STATUS current
DESCRIPTION

"The isDocumentGroup provides the information
about the accesses which can be made on the
information store."

::= { isGroups 5 }

isMIBCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION

"The compliance statements for http entities
which implement the HTTP MIB"

MODULE
MANDATORY-GROUPS {

isGeneralGroup,
isApplDependancyGroup,
isErrorGroup,
isAccessGroup,
isDocumentGroup }

::= { isCompliances 1 }

END

ExpiresOctober 22, 1996 [Page 26]

138

Internet Draft Information Store MIB April 22, 1996

6. Acknowledgments

 This document has been produced by the University of Twente
 (The Netherlands), together with ESYS Limited (The United Kingdom),
 as part of a ‘proof of concept' study for the ‘Centre of Earth
 Observation' (CEO) of the ‘Joint Research Centre' (JRC) of the
 European Community. This document has benefited greatly to the
 comments of:

Mark Gamble
<mgamble@esys1.esys.co.uk>

Rui Meneses
<rui.meneses@jrc.it>

Juergen Schoenwaelder
<schoenw@cs.utwente.nl>

ExpiresOctober 22, 1996 [Page 27]

139

Internet Draft Information Store MIB April 22, 1996

7. References

[1] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Structure of Management Information for version 2
 of the Simple Network Management Protocol (SNMPv2)", RFC 1902,
 January 1996.

[2] McCloghrie, K., and M. Rose, Editors, "Management Information Base
 for Network Management of TCP/IP-based internets: MIB-II", STD 17,
 RFC 1213, Hughes LAN Systems, Performance Systems International,
 March 1991.

[3] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Textual Conventions for version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1903, January 1996.

[4] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Protocol Operations for version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1905, January 1996.

[5] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Conformance Statements for version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1904, January 1996.

[6] Case, J., M. Fedor, M. Schoffstall, J. Davin, "Simple Network
 Management Protocol", RFC 1157, SNMP Research, Performance Systems
 International, MIT Laboratory for Computer Science, May 1990.

[7] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Introduction to Community-based SNMPv2", RFC 1901,
 January 1996.

8. Security Considerations

Security issues are not discussed in this memo.

9. Authors' Addresses

 Harrie Hazewinkel / Eric van Hengstum / Aiko Pras
 University of Twente
 Centre for Telematics and Information Technology (CTIT)
 POBox 217
 7500 AE Enschede, The Netherlands
 Phone: +31-53-4893778
 Email: hazewink@cs.utwente.nl
 hengstum@cs.utwente.nl
 pras@cs.utwente.nl

ExpiresOctober 22, 1996 [Page 28]

140

Internet Draft Information Store MIB April 22, 1996

Table of Contents

1 Abstract .. 2
2 The SNMPv2 Network ManagementFramework 3
2.1 Object Definitions 3
3 Introduction .. 4
4 Information Store MIB structure 4
4.1 General group ... 4
4.2 Access group .. 5
4.2 Error group ... 6
4.2 Document group .. 6
5 Information Store MIB definition 7
6 Acknowledgements ..27
7 References ..28
8 Security Considerations28
9 Authors' Addresses ..28

ExpiresOctober 22, 1996 [Page 29]

