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Summary

Shell elements are commonly used in simulations of sheet metal forming using finite element
analysis. Element matrices, due to their complexity, cannot conveniently be calculated in
a closed form and therefore numerical integration is employed. The most commonly used
rules for through-thickness integration in shell elements are Gauss quadrature and rules
based on the Newton-Cotes formula.

Considering the integrand in the expression for the internal force vector, one may state
that it is smooth only if during a finite element analysis the material remains in the
elastic regime. When the material is in the elastic-plastic regime the integrand becomes
non-smooth in, for example, out-of-plane direction since the stress profile may have a
point of discontinuity at the surface that separates the elastic and plastic regions. The
traditional numerical schemes do not perform well when integrating a non-smooth function
and integration error may increase significantly. Therefore, if a shell element is in the
elastic-plastic regime, the error due to numerical integration may be large and has to be
dealt with.

A large number of sampling points in thickness direction may decrease the error due to
numerical integration at the cost of increased computation time. Alternatively, the in-
tegration error can be decreased without a drastic increase in the computation time by
using an adaptive through-thickness integration. A distinguishing feature of this integra-
tion scheme is that the location and/or the number of the sampling points is adapted to
the through-thickness stress profile, leading to accurate numerical integration at minimal
costs.

An adaptive through-thickness integration strategy for shell elements is developed in this
report. The strategy consists of several algorithms that locate points of discontinuity in
the out-of-plane stress profile, adapt sampling points, update values of internal variables
and perform numerical integration.

Performance of the integration strategy is evaluated using a problem of bending of a beam
under tension. It is shown that with adaptive integration it is possible to obtain accurate
results with a very low number of sampling points.
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Introduction

Accuracy of prediction of springback phenomenon in sheet metal forming is affected by
factors that control quality of results of forming simulation. Various simplifications, intro-
duced for making a simulation of forming more efficient, may have a significant influence
on the accuracy of springback prediction. Assumptions in modelling material behaviour,
method of unloading, chosen element type and mesh densities can be the reasons of devi-
ation of the numerically predicted springback from that observed in real practice.

The material thickness in sheet metal forming is small comparing to the in-plane dimensions
and therefore shell elements are often used in a finite element modelling of the process. The
major advantage of shell elements is the reduced number of degrees of freedom of a finite
element model, since the sheet geometry is described using only the midplane variables.

From the theory of finite element analysis it is known that the characteristic matrices of a
shell element are volume integrals which cannot be easily calculated analytically. Therefore,
it is a common practice to use the in-plane and the through-thickness numerical integration
for calculating the element matrices. Numerical integration includes multiplication of an
integrand’s value at the predefined locations within an element by weight factors and
adding results. Numerical schemes for the in-plane integration and the optimal location of
integration points are discussed in [1, 2] and are not considered in this report.

To integrate through the thickness several integration rules are commonly used, namely,
rules based on the Newton-Cotes integration formula, Gauss quadrature or Lobatto rule.
Each of these integration rules has some advantages and the comparison of their perfor-
mance in plate and shell elements can be found in [3]. The through-thickness stress profile
defines the internal bending moment which governs a change of shape during an unload-
ing. More than one integration point in thickness direction is needed to describe bending
effects. For a material in the elastic regime the through-thickness stress profile is linear
and the bending effects can be represented by a limited amount of the integration points
(e.g. 2 for the Gauss quadrature). However, when the material undergoes plastic defor-
mations there appear points of discontinuity in the stress distribution. At the presence of
the discontinuity points none of the integration rules is capable of calculating accurately
and the number of the integration points required to represent the nonlinear stress profile
increases [4]. Wagoner et al. [5] showed that depending on the material, process param-
eters and the integration rule 5 − 50 integration points may be needed in the thickness
direction to minimise the influence of numerical integration on the springback prediction.
Such a broad range for the adequate number of the integration points shows inefficiency
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of commonly used integration rules. Furthermore, using more than 20 integration points
places high demands on computational costs and is very undesirable.

To overcome this problem one may use the approach proposed by Simo et al. [6]. In this ap-
proach a constitutive model is formulated directly in terms of stress resultants which allows
eliminating entirely the through-thickness integration from a finite element computational
procedure. However, as mentioned by the authors themselves, the main disadvantage of
this approach is that even the simplest yield criteria for the elastic-plastic analysis take
a considerably more complex functional form when expressed in stress resultants. As a
result, implementation of three-dimensional material models becomes a difficult task.

The second approach is to use an adaptive integration, which identifies presence of the
points of discontinuity and adapts the integration rule depending on the stress profile. An
adaptive integration strategy is developed in this report. To be used in the finite element
analysis the adaptive strategy has to include several algorithms:

• algorithm to locate the points of discontinuity in the through-thickness stress profile
for an arbitrary history of deformation;

• algorithm to manage the location and the number of integration points and to perform
the actual integration;

• algorithm to update internal variables at newly introduced or relocated integration
points.

Defining the points of discontinuity in the stress profile in case of an arbitrary loading is
not a trivial task. Multiple points of discontinuity may be present and their position and
the number depends on the deformation path. Some attempts have been made to trace
the stress profile discontinuities (see [7]), however, due to the underlying assumptions the
presented algorithms are only applicable to a limited number of deformation scenarios,
namely bending with tension and bending/unbending under tension. In light of that, it
is decided to split the development of the adaptive integration strategy into two phases.
During the first phase the existing algorithms for locating the points of discontinuity will
be tested and a simplified adaptive strategy will be developed. During the second phase
the strategy will be extended to make it applicable to any loading scenario and to make it
capable of dealing with an arbitrary number of the points of discontinuity.

This report focuses on the first phase and describes the development of the simplified
adaptive strategy for shell elements. It is started with a brief introduction to available
integration strategies for plate and shell elements and outlines their advantages and disad-
vantages. Origins of the numerical integration error are discussed in chapter 2. In chapter
3 an adaptive integration strategy is developed for the problem of bending of a beam un-
der tension. Major components of the strategy are described and its potential is shown.
The adaptive integration strategy is elaborated further in chapter 4 to be applicable in a
finite element analysis with shell elements. A simple numerical algorithm for locating the
points of discontinuity which occur in the stress profile during pure elastic-plastic bending
is presented in chapter 5. It can be used as a basis for developing alternative numerical
algorithms for locating the points of discontinuity in case of an arbitrary loading. The
report is finished with conclusions and a brief description of the future work.



Chapter 1

Common integration rules for shell

elements

In finite element analysis the element characteristic matrices are often complex volume in-
tegrals that are usually solved using numerical integration. Formulation of shell elements
requires that the characteristic matrices are found by integrating numerically in-plane and
in thickness direction. For a triangular shell element there are usually three in-plane sam-
pling points that are uniformly distributed over the triangle. Their location is symmetric
in terms of the area coordinates. For the integration in thickness direction there are sev-
eral widely used numerical procedures, namely trapezoidal, Simpson’s, Lobatto rules and
Gauss quadrature.

The global idea behind numerical integration is presented here. Let I(f) =
∫ b

a
f(x) dx

be an integral to evaluate. For the integrand f(x) one can find an approximating family
{fn(x)|n ≥ 1} and define:

In(f) =

∫ b

a

fn(x) dx = I(fn) (1.1)

It is required that the approximations fn(x) satisfy:

||f − fn||∞ → 0 with n → ∞ (1.2)

An additional requirement is that the form of fn(x) must be chosen such that In(f) can
be evaluated easily. The error of the integration can be defined as follows:

En(f) = I(f) − In(f) =

∫ b

a

[f(x) − fn(x)]dx (1.3)

Finally, most numerical integrals after the evaluation will have the following form:

In(f) =
n

∑

j=1

wj,n f(xj,n)| n ≥ 1 (1.4)

The coefficients wj,n are the integration weights and xj,n define the location of sampling
points that usually belong to the interval [a, b]. The dependence of the weights and the
locations of the sampling points on n in the following text will be understood implicitly.
Thus, to simplify, expressions wj,n and xj,n will be written as wj and xj.
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1.1 Newton-Cotes integration

Let I(f) =
∫ b

a
f(x) dx be an integral to be evaluated numerically and [a, b] is the interval

of integration. For n ≥ 1 one can define h = (b − a)/n and the location of any sampling
point within the integration interval can be found from xj = a + jh for j = 0, 1, . . . , n. To
define In(f) the integrand f(x) should be replaced with its interpolating polynomial pn(x)
on the sampling points x0, x1, . . . , xn:

I(f) =

∫ b

a

f(x) dx
.
= In(f) =

∫ b

a

pn(x) dx (1.5)

pn(x) can be found using the Lagrange’s formula for the interpolating polynomial which
in general form is written as follows:

pn(x) =
n

∑

j=0

lj(x)f(xj) , where lj(x) =
n

∏

i6=j

( x − xi

xj − xi

)

, for j = 0, 1, . . . , n (1.6)

Therefore In(f) becomes:

In(f) =

∫ b

a

n
∑

j=0

lj(x) f(xj) dx =
n

∑

j=0

wj f(xj) (1.7)

where
∫ b

a
lj(x) dx = wj, for j = 0, 1, . . . , n.

The Newton-Cotes formula provides a general framework for deriving several well-known
integration rules. For example, with n = 1 it leads to trapezoidal rule and with n = 2 to
Simpson’s rule.

1.1.1 Trapezoidal rule

The trapezoidal rule is based on approximating f(x) on [a, b] by the first order polynomial
or a straight line, as shown in figure 1.1. Using the Langrange’s formula for the interpolating
polynomial (equation 1.6) one can define the approximating polynomial p1(x):

p1(x) =
x − x1

x0 − x1

f(x0) +
x − x0

x1 − x0

f(x1) =
x − b

a − b
f(a) +

x − a

b − a
f(b) (1.8)

and

I1(f) =

∫ b

a

(x − b

a − b
f(a) +

x − a

b − a
f(b)

)

dx =
b − a

2

(

f(a) + f(b)
)

(1.9)

Prior to deriving a formula for the error of integration with the trapezoidal rule some math-
ematical concepts are introduced. For a given function f(x) one can define the first- and
second-order divided differences of this function, see equations 1.10 and 1.11 respectively:

f [x0, x1] =
f(x1) − f(x0)

x1 − x0

(1.10)



11

x =b

y=f(x)
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1

x =a

y=p (x)

y

x

Figure 1.1: Integration with trapezoidal rule.

f [x0, x1, x2] =
f [x1, x2] − f [x0, x1]

x2 − x0

(1.11)

The first- and second-order divided differences are related to the derivatives of f(x) [8]:

f [x0, x1] = f ′(ξ) and f [x0, x1, x2] =
1

2
f ′′(ζ) (1.12)

Where ξ is a value between x0 and x1 and ζ is a value between the maximum and minimum
of x0, x1 and x2.

Theorem 1. Integral mean value: Let f(x) be a continuous function on [a, b] and let
w(x) be a function which is nonnegative and integrable on [a, b], then:

∫ b

a

w(x) f(x) dx = f(ξ)

∫ b

a

w(x) dx (1.13)

for some ξ on [a, b]. The proof of this theorem is given in [8].

Using the introduced notation and equation 1.3 the integration error formula can be de-
rived. Assuming that the function f(x) is twice continuously differentiable on [a, b]:

E1(f) =

∫ b

a

[

f(x) − p1(x)
]

dx =

∫ b

a

[

f(x) − x − b

a − b
f(a) − x − a

b − a
f(b)

]

dx =

=

∫ b

a

(x − a)(x − b)f [a, b, x] dx (1.14)

Applying the integral mean value theorem:

E1(f) = f [a, b, ξ]

∫ b

a

(x − a)(x − b) dx, for some a ≤ ξ ≤ b

E1(f) =
1

2
f ′′(η)

∫ b

a

(

x2 − (a + b)x + ab
)

dx =
1

2
f ′′(η)

(x3

3

∣

∣

∣

b

a
− (a + b)

x2

2

∣

∣

∣

b

a
+ abx

∣

∣

∣

b

a

)

=

=
1

2
f ′′(η)

(

− 1

6
(b − a)3

)

= −(b − a)3

12
f ′′(η), for some η ∈ [a, b] (1.15)
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Equation 1.15 shows that if the interval (b − a) is not sufficiently small the error of in-
tegration with the trapezoidal rule will be high. In practice the integration interval [a, b]
is divided into n smaller subintervals of equal size and the integral I(f) is broken into a
sum of integrals over every subinterval. If h = (b − a)/n | n ≥ 1, then xj = a + jh for
j = 0, 1, . . . , n and

I(f) =

∫ b

a

f(x) dx =
n

∑

j=1

∫ xj

xj−1

f(x) dx
.
=

n
∑

j=1

h

2

(

f(xj−1) + f(xj)
)

(1.16)

Expanding this sum and adding the first an the last terms one obtains the formula of the
composite trapezoidal rule:

In(f) = h
(1

2
f(x0) + f(x1) + f(x2) + · · · + f(xn−1) +

1

2
f(xn)

)

(1.17)

The error formula becomes [8]:

En(f) = −(b − a)h2

12
f

′′

(η), with η ∈ [a, b] (1.18)

Equation 1.18 shows that when n is doubled and consequently h is halved, the error
decreases by a factor of 4. The factor is the speed of convergence of the trapezoidal rule.

1.1.2 Error of Newton-Cotes integration. General formulae

The general expression for the error of numerical integration using the Newton-Cotes for-
mulae is defined by the following theorem [8].

Theorem 2. For n even and assuming that f(x) is n+2 times continuously differentiable
on [a, b]

En(f) = Cnh
n+3f (n+2)(η), for some η ∈ [a, b] (1.19)

and

Cn =
1

(n + 2)!

∫ n

0

µ2(µ − 1) · · · (µ − n) dµ, with 0 ≤ µ ≤ n (1.20)

For n odd and assuming that f(x) is n + 1 times continuously differentiable on [a, b]

En(f) = Cnh
n+2f (n+1)(η) (1.21)

and

Cn =
1

(n + 1)!

∫ n

0

µ(µ − 1) · · · (µ − n) dµ (1.22)

The proof of this theorem is not provided here. It is similar to the derivations of the error
formula for the trapezoidal integration and can be found in [8].
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Figure 1.2: Integration with Simpson’s rule.

1.1.3 Simpson’s rule

Simpson’s rule can be derived by using a quadratic interpolating polynomial p2(x) to ap-
proximate f(x) on the interval [a, b] (see figure 1.2). The approximating function p2(x) can
be derived using the Lagrange’s formula for the interpolating polynomial. From equation
1.6:

p2(x) =
(x − x2)(x − x1)

(x0 − x2)(x0 − x1)
f(x0) +

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
f(x1) +

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
f(x2) =

=
(x − b)(x − c)

(a − b)(a − c)
f(a) +

(x − a)(x − b)

(c − a)(c − b)
f(c) +

(x − a)(x − c)

(b − a)(b − c)
f(b) (1.23)

Therefore

I2(f) =

∫ b

a

((x − b)(x − c)

(a − b)(a − c)
f(a) +

(x − a)(x − b)

(c − a)(c − b)
f(c) +

(x − a)(x − c)

(b − a)(b − c)
f(b)

)

dx (1.24)

Performing integration one obtains:

I2(f) =
h

3

(

f(a) + 4f(c) + f(b)
)

, h =
b − a

2
(1.25)

Equations 1.19 and 1.20 can be used to obtain the error formula for Simpson’s integration:

E2(f) = −h5

90
f (4)(η), where η ∈ [a, b] (1.26)

Splitting the interval [a, b] into n even and equal subintervals gives:

I(f) =

∫ b

a

f(x) dx =

n/2
∑

j=1

∫ x2j

x2j−2

f(x) dx =

n/2
∑

j=1

h

3

(

f(x2j−2) + 4f(x2j−1) + f(x2j)
)

(1.27)

Expanding this equation and gathering terms gives the composite Simpson’s rule:

In(f) =
h

3

(

f(x0)+ 4f(x1)+ 2f(x2)+ 4f(x3)+ · · ·+2f(xn−2)+ 4f(xn−1)+ f(xn)
)

(1.28)
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The error of integration with the composite Simpson’s rule [8]:

En(f) = −h4(b − a)

180
f (4)(η), with η ∈ [a, b] (1.29)

Equation 1.29 shows that the error of integration with the Simpson’s rule is proportional
to h4, which becomes a factor of 16 when h is halved. It is clear that the Simpson’s rule is
superior to the trapezoidal rule since the speed of convergence is higher.

Other integration rules can be derived by using the Newton-Cotes formula 1.7 and higher
order polynomials to approximate f(x) . However, it is usually recommended not to use
higher order formulae since they may not converge for well-behaved integrands [8].

1.2 Integration based on spline interpolation

Splines are known as functions which can be used to put a very smooth curve through a
set of points. They do not show the oscillatory behaviour which is a characteristic of high
order polynomials and are good candidates for approximation of the integrand.

To define a spline let the interval [a, b] be divided into n subintervals a < x0 < x1 < · · · <
xn−1 < xn < b that are not necessarily of equal length. A spline S(x) of degree m can be
called a function defined on [a, b] which [9]:

• coincides with a polynomial of degree m on each subinterval: [xi−1, xi], i = 1, 2, . . . , n;

• is m − 1 times continuously differentiable.

A cubic spline will be considered in the following text. The abscissas xi are called
nodes of the spline and it is assumed that a spline S(x) interpolates a set of points
(x0, y0), . . . , (xn, yn) if S(xi) = yi for i = 0, 1, . . . , n.

1.2.1 Derivation of a cubic spline

To derive a mathematical representation for the cubic spline S(x) the following procedure
can be followed [9, 10]. Let hj = xj+1 − xj for j = 0, 1, . . . , n − 1. Since S(x) is piece-
wise cubic then S

′

(x) is piecewise quadratic and S
′′

(x) is piecewise linear and continuous.
Therefore, using the Lagrange formula for the interpolating polynomial (equation 1.6) one
can write:

S
′′

(x) =
x − xj+1

xj − xj+1

Mj +
x − xj

xj+1 − xj

Mj+1 =
xj+1 − x

hj

Mj +
x − xj

hj

Mj+1,

on ∆j = [xj, xj+1] (1.30)

where
Mj = S

′′

(xj) and Mj+1 = S
′′

(xj+1)
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Performing twice the indefinite integration on 1.30 it is possible to obtain:

S(x) =
(xj+1 − x)3

6hj

Mj +
(x − xj)

3

6hj

Mj+1 + (xj+1 − x)Aj + (x − xj)Bj, on ∆j (1.31)

Using S(xj) = yj and S(xj+1) = yj+1 it is possible to determine Aj and Bj:

yj =
(xj+1 − xj)

3

6hj

Mj + (xj+1 − xj)Aj ⇒

yj =
h2

j

6
Mj + hjAj ⇒

Aj =
6yj − h2

jMj

6hj

(1.32)

and

yj+1 =
(xj+1 − xj)

3

6hj

Mj+1 + (xj+1 − xj)Bj ⇒

yj+1 =
h2

j

6
Mj+1 + hjBj ⇒

Bj =
6yj+1 − h2

jMj+1

6hj

(1.33)

Therefore the equation for the cubic spline S(x) becomes:

S(x) =
(xj+1 − x)3

6hj

Mj +
(x − xj)

3

6hj

Mj+1 +
(

yj −
h2

jMj

6

)(xj+1 − x)

hj

+

+
(

yj+1 −
h2

jMj+1

6

)(x − xj)

hj

(1.34)

Using equation 1.34 it is possible to derive an alternative formula for S(x) which is more
convenient for plotting the cubic spline on every subinterval [xj, xj+1]. The derivation can
be found in Appendix A.

Mj and Mj+1 are unknown values and to find expressions for these unknowns one can
differentiate equation 1.34 to get:

S
′

(x) = −(xj+1 − x)2

2hj

Mj +
(x − xj)

2

2hj

Mj+1 +
yj+1 − yj

hj

− Mj+1 − Mj

6
hj, on ∆j (1.35)

Noting the special values:

S
′

(x−
j ) =

hj−1Mj

3
+

hj−1Mj−1

6
+

yj − yj−1

hj−1

S
′

(x+
j ) = −hjMj

3
− hjMj+1

6
+

yj+1 − yj

hj

(1.36)
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and recalling the fact that S
′

(x) is required to be continuous, which means that S
′

(x−
j ) =

S
′

(x+
j ), one obtains:

hj−1Mj

3
+

hj−1Mj−1

6
+

yj − yj−1

hj−1

= −hjMj

3
− hjMj+1

6
+

yj+1 − yj

hj

⇒

hj−1Mj−1

6
+

(hj−1 + hj)Mj

3
+

hjMj+1

6
=

yj+1 − yj

hj

− yj − yj−1

hj−1

⇒

hj−1
Mj−1

2
+ (hj−1 + hj)Mj + hj

Mj+1

2
= 3

(yj+1 − yj

hj

− yj − yj−1

hj−1

)

⇒

hj−1cj−1 + 2(hj−1 + hj)cj + hjcj+1 = 3
(yj+1 − yj

hj

− yj − yj−1

hj−1

)

,

for j = 1, 2, · · · , n − 1 (1.37)

Equation 1.37 can be simplified by setting:

lj =
hj

hj−1 + hj

, kj = 1 − lj =
hj−1

hj−1 + hj

, mj =
yj+1 − yj

hj

,

nj =
3(mj − mj−1)

hj−1 + hj

, cj =
Mj

2
, j = 1, 2, . . . , n − 1 (1.38)

and
kjcj−1 + 2cj + ljcj+1 = nj, j = 1, 2, . . . , n − 1 (1.39)

This equation can be used to form the system of n − 1 linear equations. To find all
parameters c0, c1, · · · , cn it is required to have two more additional equations which can be
written in the following form:

2c0 + l0c1 = n0

kncn−1 + 2cn = nn (1.40)

The combined system of the linear equations in its general form becomes:






















2 l0 0 · · · 0 0 0
k1 2 l1 · · · 0 0 0
0 k2 2 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · 2 ln−2 0
0 0 0 · · · kn−1 2 ln−1

0 0 0 · · · 0 kn 2













































c0

c1

c2
...

cn−2

cn−1

cn























=























n0

n1

n2
...

nn−2

nn−1

nn























(1.41)

There are several possibilities for choosing values of the constants l0, n0, kn, nn:

a) the simplest option is to choose l0 = n0 = kn = nn = 0. This leads to c0 = cn = 0
and the equation for a natural cubic spline. The spline can be envisioned as a beam
with simple supports at the ends;
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b) another option is to prescribe the slope of the spline at the ends, thus:

S ′(a) = y′
0, S ′(b) = y′

n (1.42)

These conditions are equivalent to selecting from equations 1.38:

l0 = 1 = kn, n0 =
6

h1

(y1 − y0

h1

− y′
0

)

, nn =
6

hn

(

y′
n − yn − yn−1

hn

)

(1.43)

In this case it is required to define y′
0 and y′

n. They may be approximated using the
derivatives of cubic interpolating polynomials based on the four points closest to the
endpoints of the interval [9].

There exist some other ways of defining the constants l0, n0, kn, nn, for example, using
the ”not-to-knot” condition [9, 8]. However, the first scheme is the simplest to apply and
the resulting spline seems to give a good approximation of a function. Therefore, the
determining equations for the natural cubic spline:















k1 2 l1 · · · 0 0 0
0 k2 2 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · 2 ln−2 0
0 0 0 · · · kn−1 2 ln−1





























c1

c2
...

cn−2

cn−1















=















n1

n2
...

nn−2

nn−1















(1.44)

Any solution procedure can be used to find c1, c2, . . . , cn−1 from the system of the linear
equations 1.44. As soon as these parameters are found the equation for the cubic spline
1.34 is completely defined on every subinterval.

1.2.2 Spline integration

As soon as the spline that fits the points (xi, yi) is found it is possible to integrate it
formally to find the equation for spline integration. The derivation of the formula can be
found in Appendix B. Integration on every subinterval [xj−1, xj] can be performed using
B-7:

∫ xj

xj−1

S(x) dx =
yj−1 + yj

2
hj −

Mj−1 + Mj

24
h3

j

The final formula for the spline integration on [a, b] becomes:

∫ b

a

S(x) dx =
n

∑

j=1

yj−1 + yj

2
hj −

n
∑

j=1

Mj−1 + Mj

24
h3

j (1.45)

Equation 1.45 can also be understood as the trapezoidal rule with a correction.
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1.3 Gauss integration

The trapezoidal and the Simpson’s rules are using a low order polynomial approximation of
the integrand f(x) on subintervals that are decreasing in size. There is a class of integration
methods that use polynomial approximations of f(x) of increasing degree. These methods
were developed for integrals in which the integrand has some kind of bad behaviour. In
this case the integral is usually written as follows:

I(f) =

∫ b

a

w(x) f(x) dx (1.46)

where w(x) is the weight function which incorporates the bad behaviour and the func-
tion f(x) is assumed to be well-behaved. The problem of finding I(f) using numerical
integration can now be written as follows:

I(f) =

∫ b

a

w(x) f(x) dx
.
=

n
∑

j=1

wjf(xj) = In(f) (1.47)

The weight function w(x) is assumed to be nonnegative and integrable on [a, b] and the
major goal is to find the location of sampling points xj and the weights wj such that In(f)
equals I(f) exactly for polynomials f(x) of as high degree as possible. A simple case can
be considered to explain the strategy of finding values of the nodes xj and the weights wj.
Let w(x) = 1 and the integral becomes:

I(f) =

∫ 1

−1

f(x) dx
.
=

n
∑

j=1

wjf(xj) (1.48)

The weights wj and the nodes xj have to be determined to make the integration error equal
zero for a polynomial f(x) of as high degree as possible:

En(f) =

∫ 1

−1

f(x) dx −
n

∑

j=1

wj f(xj) = 0 (1.49)

If f(x) is the polynomial of mth degree the error formula can be written differently [8]:

En(a0 + a1x + · · · + amxm) = a0En(1) + a1En(x) + · · · + amEn(xm) = 0 (1.50)

The error En(f) is equal to zero for every polynomial of degree ≤ m if and only if

En(xi) = 0, for i = 0, 1, . . . ,m (1.51)

For n = 1 and only one node in the interval of integration there are two parameters w1

and x1 to be calculated from

En(1) = 0, En(x) = 0 (1.52)
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Which means that

∫ 1

−1

1dx − w1 = 0,

∫ 1

−1

x dx − w1x1 = 0 (1.53)

Solving these equations one obtains w1 = 2 and x1 = 0. When the weights and nodes
are determined one may say that the obtained integration rule is of Gauss type. As will
be shown below, the type of the Gauss integration depends on the chosen weight function
w(x).

For a general n there are 2n parameters xi and wi to be defined and there exists an
integration formula that uses n nodes and gives a degree of precision of 2n − 1. Similarly
to the previous example, to find the required parameters the following equations will have
to be solved [8]:

En(xi) = 0, i = 0, 1, . . . , 2n − 1

or

n
∑

j=1

wjx
i
j =

{

0, i = 1, 3, . . . , 2n − 1
2

i+1
, i = 0, 2, . . . , 2n − 2

(1.54)

This is a set of nonlinear equations which can only be solved easily for a small number of
the nodes. For a large or any number of the nodes another approach must be followed.
This approach is based on the theory of orthogonal polynomials and is briefly described
below. The complete theory of the orthogonal polynomials and some related computational
procedures can be found in literature, see for example [8, 9, 11].

Several terms are introduced first. Two functions are said to be orthogonal if their scalar
product equals zero. A function is said to be normalised if its scalar product with itself
equals unity. A set of functions that are mutually orthogonal and also all individually
normalised is called an orthogonal set. Let w(x) ≥ 0 be a fixed weight function defined on
the interval [a, b]. It is possible to define a sequence of polynomials ϕ0(x), ϕ1(x), . . . which
are orthogonal to w(x) on [a, b]:

∫ b

z

w(x) ϕm(x) ϕn(x) dx =

{

1, when m=n
0, when m 6=n

The polynomial ϕn(x) can generally be represented as follows [11]:

ϕn(x) = An

n
∏

i=1

(x − xi), with a < x1 < x2 < . . . < xn < b (1.55)

Where An are some coefficients and xi are n real roots of the polynomial. For An > 0 and
using some additional definitions:

an =
An+1

An

and γn =

∫ b

a

w(x) [ϕn(x)]2 dx
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the following theorem can be presented [8].

Theorem 3: Let f(x) be a function which is 2n times continuously differentiable on [a, b],
a formula for In(f) and its error can be given as follows:

I(f) =

∫ b

a

w(x) f(x) dx
.
=

n
∑

j=1

wjf(xj) +
γn

A2
n(2n)!

f 2n(η) = In(f),

for some a < η < b (1.56)

The nodes xj are zeros of ϕn(x) and the weights wj are given by:

wj =
−anγn

ϕ′

n(xj) ϕn+1(xj)
, j = 1, . . . , n (1.57)

Proof of the theorem can be found in [8]. It is important to emphasise, that the roots
of the orthogonal polynomials are the abscissas of the integration rule of Gauss type. In
other words, when a set of polynomials orthogonal to a weight function is derived, their
roots are found and the weights wj are calculated from equation 1.57 the Gauss rule for n
nodes is completely defined.

A set of orthogonal polynomials ϕn(x) for a specific weight function w(x) and an interval
[a, b] can be found using the triple recursion relation given by the following theorem [8].

Theorem 4. Let ϕn be an orthogonal family of polynomials on [a, b] with weight function
w(x) ≥ 0. Let it be defined as follows:

ϕn(x) = Anx
n + Bnxn−1 + · · · , where An and Bn are some coefficients.

Then for n ≥ 1
ϕn+1(x) = (anx + bn)ϕn(x) − cnϕn−1(x) (1.58)

with

bn = an ·
[Bn+1

An+1

− Bn

An

]

cn =
An+1An−1

A2
n

· γn

γn−1

Proof of this theorem is given in [8]. The theorem allows finding a set of polynomials
orthogonal to a weight function w(x) on an interval [a, b], provided that coefficients bn

and cn are known. For most ”classical” weight functions these coefficients are defined
and formulae for generating orthogonal polynomials are readily available in the literature
[8, 9, 12]. Table 1.1 presents a list of weight functions, intervals and recurrence relations
that generate the most commonly used orthogonal polynomials. For an arbitrary weight
function w(x) on any interval [a, b] coefficients bn and cn are not known and a set of
orthogonal polynomials can be constructed using the Gram-Schmidt process [8, 11].

Formulae for calculating the weights wj of the well-known orthogonal polynomials have
also been defined. For example, in case of the Gauss-Legendre quadrature equation 1.57
becomes [13]:

wj =
2

(1 − x2
j)

(

P ′
n(xj)

)2 (1.59)
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Name Weight function Interval Recurrence relations

Legendre 1 [-1,1] (j + 1)Pj+1 = (2j + 1)xPj − jPj−1

Tschebyscheff (1 − x2)−
1

2 [-1,1] Tj+1 = 2xTj − Tj−1

Laguerre xαe−x [0,∞] (j + 1)Lα
j+1

= (−x + 2j + α + 1)Lα
j −

−(j + α)Lα
j−1

Hermite e−x2

[−∞,∞] Hj+1 = 2xHj − 2jHj−1

Table 1.1: Commonly used orthogonal polynomials.

where P ′
n(xj) is the derivative of the orthogonal polynomial at its zero xj.

To summarise, the computation of the abscissas and the weights of the Gauss quadrature
with an arbitrary number of the nodes comprises several phases:

• computation of the coefficients bn and cn and generation of a set of orthogonal polyno-
mials. For well-known weight functions calculation of the coefficients can be omitted
and the orthogonal polynomials can be derived from, for example, formulae in table
1.1;

• calculation of zeros xj of the orthogonal polynomials using a root-finding method;

• calculation of the associated weights wj using equation 1.59.

To provide an example of using the theory presented above, the weights and the abscissas
of the Gauss-Legendre quadrature with three integration points (n=3) are calculated. As
the first step, a set of the orthogonal polynomials is defined. Let P−1(x) ≡ 0 and P0(x) ≡ 1,
then using the recurrence relation of the Legendre polynomials (see table 1.1) for n=3 and
j = 0, 1, 2:

P1 = x, P2 =
3

2
x2 − 1

2
, P3 =

5

2
x3 − 3

2
x (1.60)

Roots of the P3(x) polynomial are

x1 = 0, x2 =

√

3

5
, x3 = −

√

3

5
(1.61)

These roots are the desired abscissas of the Gauss-Legendre quadrature. To calculate the
weights it is necessary to find the derivative of the polynomial P3(x):

P ′
3(x) =

15

2
x2 − 3

2
(1.62)

Finally, from equation 1.59 one can calculate the weights:

w1 =
2

(1 − x2
1)

(

P ′
3(x1)

)2 =
8

9

w2,3 =
2

(1 − x2
2)

(

P ′
3(x2)

)2 =
10

18
(1.63)
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FORTRAN 90 subroutine gauleg which calculates the weights and the abscissas of the
Gauss-Legendre quadrature with an arbitrary number of the integration points is given in
Appendix C (source - Numerical Recipes in Fortran 90 [13]).

1.4 Lobatto integration

Lobatto integration can be considered as the integration formula of Gauss type with two
preassigned nodes [9]:

∫ b

a

w(x) f(x) dx ≈
2

∑

k=1

ak f(yk) +
n

∑

k=1

wk f(xk) (1.64)

In this formula two nodes yk are fixed and prescribed in advance to lie on the limits of the
integration interval [a, b]. 2 + 2n constants ak, wk and xk are to be determined so that the
rule is exact for polynomials of the highest possible degree, which is 2 + 2n − 1 = 2n + 1.

When w(x) equals unity and f(x) is 2n − 2 times continuously differentiable on interval
[−1, 1] the Lobatto rule becomes [9]:

∫ 1

−1

f(x) dx =
2

n(n − 1)
[f(1) + f(−1)] +

∫ n−1

j=2

wjf(xj) (1.65)

Where xj are the roots of the Legendre polynomials P (x). The weights wj can be deter-
mined as follows:

wj =
2

n(n − 1)[Pn−1(xj)]2
, for xj 6= ±1 (1.66)

The algorithm for calculating the abscissas xj and the weights wj of the Lobatto rule can
be found in [14]. The tabulated abscissas and weights of the Lobatto rule with up to 20
integration points can also be found in [15].

The major advantage of the Lobatto rule over the Gauss quadrature is the presence of
sampling points on the limits of the integration interval. This fact can be very important
for through-thickness integration in shell elements, since the Lobatto rule can take into
account an initiation of yielding at the sheet surface.

1.5 Choice of an integration rule for shell elements

All presented numerical procedures can be used to integrate through the thickness of plates
and shells and they are usually available in commercial finite element packages. Their use
depends on a problem and each of them has its advantages and disadvantages.

The rules based on the Newton-Cotes formula are simple to implement since the entire
step of calculation of weights and nodal locations can be omitted. However, if the function
to be integrated is nonlinear and continuous on [a, b] then the Gauss quadrature and the
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Lobatto rule are more preferable. The speed of convergence of these rules increases with
increasing integrand smoothness. In contrast, the trapezoidal and the Simpson’s rules will
not converge faster than the specific level.

Presence of integration points on the interval’s limits may give extra advantages. When
an element is bent to a certain radius, yielding of a material will be initiated in the outer
surfaces and the Lobatto rule can directly identify that. For the same situation, the
outermost Gauss integration points may still be in the elastic regime and, as a result, the
internal bending moment will be overestimated. The Lobatto rule, however, requires more
integration points to achieve the accuracy similar to the Gauss integration. For example,
when a material is in the elastic regime, the Gauss quadrature will give the exact solution
for the bending moment with only two points and the Lobatto rule will need three points.

If a function to be integrated has discontinuities on [a, b] the advantages of the considered
integration rules diminish. Burgoyne and Crisfield [3] investigated performance of various
numerical strategies in integrating stresses through the thickness of plates and shells when
there are discontinuities in stress profiles. Using four different problems they showed that
all the rules do not perform well when using less than 10 integration points. The Gauss
quadrature was recommended as the most accurate one. Additionally, it was noted that in
some cases it may be preferable to use a simpler integration strategy, such as the trapezoidal
rule. Depending on the stress profile, due to error cancellation, accuracy of a simple rule
can be comparable to that of the Gauss quadrature with similar number of integration
points.

In the analysis of Burgoyne and Crisfield simple stress profiles through only half of the
plate thickness were considered leading to the necessity of using even more integration
points in general cases. An alternative numerical scheme is needed that is more suitable
for integrating functions with discontinuities and which can guarantee accurate results
with a low number of points independently of the stress profile complexity. To develop
such a scheme one has to investigate performance of the traditional numerical schemes in
more general situations when the integrand discontinuities are changing in their shape and
number.





Chapter 2

Origins of numerical integration error

2.1 Analytical model of bending of a beam under ten-

sion

To understand performance of numerical strategies in integrating a function with discon-
tinuities a simple problem of bending of a beam under in-plane tension is considered. The
analytical model that represents this problem is developed below. The model allows cal-
culation of the internal bending moment in a beam bent to a certain radius under in-plane
tension. The analytical model is based on following assumptions:

• normal section planes remain plane and normal to the middle surface (Kirchhoff
hypothesis);

• the plane strain condition exists in the bending plane;

• the plane stress situation is assumed;

• bends with a constant curvature are considered. Within the bends radial ρ and
circumferential directions θ can be distinguished. Due to the Kirchhoff hypothesis
the radial and the circumferential directions are the principal strain directions.

2.1.1 Strains and stresses

Bending of a sheet material over a tool radius R with a superimposed tension is considered
(figure 2.1). As can be seen in this figure, due to the applied tension T the neutral line
shifts towards the curvature centre. Variable a describes the position of the neutral line.
The total circumferential strain consists of two parts: the tensile strain εm and the bending
strain εb. The tensile strain has a constant value in a cross-section and is equal to:

εm = −a

ρ
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Figure 2.1: Stretch bending. Distribution of strains and stresses through the thickness.

where ρ = R + t/2 and t is the material thickness.

Assuming that the bending strain is εb = z/ρ, the total circumferential strain becomes:

εθ =
z − a

ρ
(2.1)

Variables b1 and b2 shown in figure 2.1 are used to describe a position of yield points in
tension and compression regions. The coordinates of the yield points can be found as
follows:

z1 = a + b1

z2 = a − b2
(2.2)

Substituting equations 2.2 into equation 2.1 the yield strains in tension and compression
regions can be found:

tension region

εy
θ =

z1 − a

ρ
⇒ εy

θ =
a + b1 − a

ρ
⇒ εy

θ =
b1

ρ
(2.3)

compression region

εy
θ =

z2 − a

ρ
⇒ εy

θ =
a − b2 − a

ρ
⇒ εy

θ = −b2

ρ
(2.4)

In the elastic region the circumferential stress is found from the Hook’s law for plane strain:

σe
θ =

E

1 − ν2
εe

θ =
E

1 − ν2

z − a

ρ
(2.5)

where E is the Young’s modulus and ν is the Poisson’s ratio. Using the expression for the
Hill’48 yield function in plane strain, the value of the circumferential strain at yield can
be found as follows:

εy
θ =

σy0 (1 − ν2)

E
=

2√
3
σun (1 − ν2)

E
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where σy0 is the initial yield stress and σun is the uniaxial yield stress. Making the simpli-
fying substitution, C1 = 2√

3
(1 − ν2), the circumferential yield strain becomes:

εy
θ =

C1 σun

E
(2.6)

Equation 2.6 can be used to find the position of the yield points b1 and b2 for a particular
material and a curvature of bending. Combining equations 2.3 and 2.4 with the yield strain
equation 2.6 one obtains:

b1

ρ
=

C1 σun

E
⇒ b1 =

C1 σun ρ

E
(2.7)

− b2

ρ
= −C1 σun

E
⇒ b2 =

C1 σun ρ

E
(2.8)

The total circumferential strain in the region of plastic deformations can be defined as
the sum of two parts - the constant strain at yield and the plastic strain due to material
workhardening:

εθ = εy
θ + εp

θ

Rewriting the foregoing equation, the plastic strain due to the material workhardening can
be derived:

tension region

εθ = εy
θ + εp

θ ⇒ z − a

ρ
=

C1 σun

E
+ εp

θ ⇒

εp
θ =

z − a

ρ
− C1 σun

E
(2.9)

compression region

εθ = εy
θ + εp

θ ⇒ z − a

ρ
= −C1 σun

E
+ εp

θ ⇒

εp
θ =

z − a

ρ
+

C1 σun

E
(2.10)

The circumferential stress in the region of plastic deformations can be approximated by a
power law:

σθ = C ′
(

εp
θ

)n

(2.11)

where C ′ = C
(

2√
3

)(n+1)

and C and n are parameters that describe the material workhard-

ening. Substituting the plastic strain equations 2.9 and 2.10 into equation 2.11 it is possible
to obtain formulae that describe the plastic part of the circumferential stress in tension
and compression regions:
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tension region

σp
θ = C ′

(

ε0 +
z − a

ρ
− C1σun

E

)n

(2.12)

compression region

σp
θ = −C ′

∣

∣

∣
ε0 +

z − a

ρ
+

C1σun

E

∣

∣

∣

n

(2.13)

where ε0 is a pre-strain which can be found from the following condition:

σy0 = C ′εn
0

2.1.2 Stress resultants

Using the circumferential stresses it is possible to find forces and bending moments acting
on the sheet per unit length:

T =

∫ t/2

−t/2

σθdz (2.14)

M =

∫ t/2

−t/2

σθzdz (2.15)

To simplify the derivation the tension applied at the middle plane is split into four com-
ponents:

T = T e + Ce + T p + Cp (2.16)

In this equation T e and Ce are the tensile and the compressive forces caused by the elastic
stresses. T p and Cp are the tensile and the compressive forces caused by the plastic stresses.
The contribution of the elastic and the plastic stresses to the total tension will be:

tension region

T e =

∫ z1

a

E

1 − ν2

z − a

ρ
dz (2.17)

T p =

∫ t
2

z1

C ′
(

ε0 +
z − a

ρ
− C1σun

E

)n

dz (2.18)

compression region

Ce =

∫ a

z2

E

1 − ν2

z − a

ρ
dz (2.19)

Cp = −
∫ z2

− t
2

C ′
∣

∣

∣
ε0 +

z − a

ρ
+

C1σun

E

∣

∣

∣

n

dz (2.20)

The full derivation of these equations can be found in Appendix C. Final formulae that
can be used for calculating the total tension and the resulting shift of the neutral line are
presented below.

T e =
C2

1 σ2
un ρ

2 (1 − ν2) E
(2.21)
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T p =
C ′ ρ

n + 1

((

ε0 +
t
2
− a

ρ
− C1σun

E

)n+1

− εn+1
0

)

(2.22)

Ce = − C2
1 σ2

un ρ

2 (1 − ν2) E
(2.23)

Cp = − C ′ ρ

n + 1

∣

∣

∣
εn+1
0 −

∣

∣

∣

− t
2
− a

ρ
+

C1σun

E
− ε0

∣

∣

∣

n+1∣
∣

∣
(2.24)

The total moment per unit width acting about the middle plane can be described as follows:

M = M e
T + Mp

T + M e
C + Mp

C (2.25)

where M e
T and Mp

T are the elastic and the plastic parts of the total bending moment in the
region of tension. M e

C and Mp
C are the elastic and the plastic parts of the total bending

moment in the region of compression. The parts of the total bending moment can be found
as follows:

tension region

M e
T =

∫ z1

a

E

1 − ν2

(z − a

ρ

)

z dz (2.26)

Mp
T =

∫ t
2

z1

C ′
(

ε0 +
z − a

ρ
− C1σun

E

)n

z dz (2.27)

compression region

M e
C =

∫ a

z2

E

1 − ν2

(z − a

ρ

)

z dz (2.28)

Mp
C = −

∫ z2

− t
2

C ′
∣

∣

∣
ε0 +

z − a

ρ
+

C1σun

E

∣

∣

∣

n

z dz (2.29)

The closed form solution of the foregoing equations is presented in Appendix C. Final
expressions for the parts of the total bending moment are presented below:

M e
T =

C2
1 σ2

un ρ

E (1 − ν2)

(C1 σun ρ

3 E
+

a

2

)

(2.30)

Mp
T = C ′ ρ

( ρ

n + 2

(( t
2
− a

ρ
− C1σun

E
+ ε0

)n+2

− εn+2
0

)

+
(C1 σun ρ

E
− ε0ρ + a

) 1

n + 1
(( t

2
− a

ρ
− C1σun

E
+ ε0

)n+1

− εn+1
0

))

(2.31)
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M e
C =

C2
1 σ2

un ρ

E (1 − ν2)

(C1 σun ρ

3 E
− a

2

)

(2.32)

Mp
C = C ′ ρ
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ρ
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(
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0 −

∣

∣

∣

− t
2
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ρ
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E
− ε0
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(2.33)

2.1.3 Change of curvature - springback

During unloading, when external loads are removed the deformed sheet springs back to a
different shape. The expression for a curvature change can be found by considering the
change of internal stresses due to the elastic unloading:

∆σθ =
E

1 − ν2
∆εθ, where

∆εθ =
z

ρ
− z

ρ′ = ∆
(1

ρ

)

z (2.34)

ρ′ is a radius after unloading. The change in internal stresses causes the change in bending
moment, ∆M :

∆M = 2

∫ t/2

0

∆σθzdz = 2

∫ t/2

0

E

1 − ν2
∆

(1

ρ

)

z2dz ⇒

∆M =
Et3

12(1 − ν2)
∆

(1

ρ

)

=
t3

12

∆σθ

z
(2.35)

If the bending moment is M = M e
T +Mp

T +M e
C+Mp

C the removal of the external loads results
in ∆M = −M . Therefore the change of shape during the unloading can be obtained:

Et3

12(1 − ν2)
∆

(1

ρ

)

= −M

∆
(1

ρ

)

= −12M (1 − ν2)

Et3
(2.36)

The last equation shows that the change of curvature (∆1/ρ) or springback is proportional
to the bending moment M. Therefore, an error in calculating the moment can be considered
as the measure of accuracy of a springback calculation.
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2.1.4 Influence of in-plane tension on springback

To show what effect an increase in tension has on the amount of springback a simplified
model of bending of a beam under tension is considered. In this model the elastic, perfectly
plastic material is used. The assumptions introduced in section 2.1 are also applied here.
At first the beam is bent elastically. The resulting bending moment can be found from
2.15:

M =

∫ t
2

− t
2

E

1 − ν2

z

ρ
z dz =

Et3

12(1 − ν2)ρ
=

σθt
3

12z
(2.37)

The elastic limit is reached when σθ reaches the plane strain yield stress σy0 = (2/
√

3σun)
at the outer fibers. The corresponding radius of bending is called limiting bending radius
ρe. The elastic limiting moment can be defined as follows:

Me =
Et3

12(1 − ν2)ρe

=
σy0t

2

6
(2.38)

The ratio between the current moment M and the elastic limiting moment Me:

M

Me

=
ρe

ρ
(2.39)

When the tension is applied after applying the bending loads the circumferential stress σθ

will be a superimposition of bending and tensile stresses:

σθ = σb + σt =
12Mz

t3
+ σt (2.40)

The tensile stress needed to cause plastic deformations in the outer fiber of the beam (at
z = t/2) is defined as follows:

σt = σθ −
12Mz

t3
= σy0 −

6M

t2
(2.41)

Therefore, the tension needed to cause the plastic deformation:

T = σy0t −
6M

t
= Ty

(

1 − 6M

σy0t2

)

= Ty

(

1 − ρe

ρ

)

(2.42)

As soon as the tension exceeds this value the bending moment will start to reduce. At
some moment, the yield point is at distance mt/2 from the central line, see figure 2.2,
where −1 < m < 1. At this point the circumferential strain is equal to the yield strain:

εθ = εm + εb = εm +
z

ρ
=

σy0(1 − ν2)

E
(2.43)
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σy0

t/2

t/2

z

0 0
mt/2

z
εm εb

Figure 2.2: Distribution of strains and stresses in elastic, perfectly plastic beam bent to a radius and
stretched.

The tensile part of the total strain becomes:

εm =
σy0(1 − ν2)

E
− mt

2ρ
(2.44)

The circumferential strain at a distance z from the central line can be written as follows:

εθ =
σy0(1 − ν2)

E
− mt

2ρ
+

z

ρ
(2.45)

The stress distribution in the elastic region can be found from the Hook’s law:

σe
θ =

E

1 − ν2
εθ = σy0 +

E

(1 − ν2)ρ

(

z − mt

2

)

(2.46)

Using equation 2.15 one can find the resulting bending moment:

M =

∫ mt
2

− t
2

(
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(1 − ν2)ρ

(
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2

))

zdz +
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2
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∣
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2

∣
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∣
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2
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=
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E

(1 − ν2)ρ

(m3t3

24
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t3

24
− m3t3

16
+

mt3

16

)

=
Et3

(1 − ν2)ρ

(2 + 3m − m3

4

)

=

= Me

(2 + 3m − m3

4

)

(2.47)

Increasing the tension will cause the yield point move inwards and, as can be seen from
equation 2.47, the bending moment will decrease. Thus, if due to tools geometry or process
conditions the beam is fully plastic, no elastic springback will take place.

2.1.5 Results of analytical calculations

A number of calculations is performed to test the developed analytical model. The cal-
culations are done with various values of the in-plane tension for two different materials,
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namely IF steel and aluminium alloy AL5182. Thickness of the beam is 1mm and material
parameters are summarised in table 2.1.

E, GPa ν σy0, MPa C, MPa n
IF steel 210 0.3 150 425 0.4
AL5182 70.6 0.341 125.02 561.34 0.321

Table 2.1: Material properties for IF steel and AL5182.

Calculated values of the bending moment plotted versus the neutral line shift are shown
in figure 2.3. As expected, the bending moment decreases with increasing amount of the
in-plane tension.
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Figure 2.3: Dependency of bending moment on neutral line shift.

Through-thickness distribution of the circumferential stresses which occur in the beam
bent to the radii of 100mm and 5mm is shown in figures 2.4(a) and 2.4(b). The material
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Figure 2.4: Stress profiles for various process conditions.

of the beam is AL5182 and the calculations are performed with various values of in-plane
tension. The applied tension causes the neutral line shift equal to 0.0mm, -0.2mm and
-0.4mm. From these figures it can be seen that bending the beam to a smaller radius
results into much higher values of the stresses.
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The integrand σθ · z from the integral for calculating the bending moment (see equation
2.15) is plotted in figures 2.5(a) and 2.5(b). The integrand’s profile intersects the x axis at
the points which coincide with the locations of the neutral line, since the stresses at these
points are equal to zero. It can be seen that increasing the shift of the neutral line and
decreasing the radius of bending makes the integrand’s profile less smooth and its points
of discontinuity become more pronounced.
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Figure 2.5: Integrand profiles for various process conditions.

2.2 Numerical calculation of bending moment

Influence of the numerical integration error on the accuracy of calculation of springback is
evaluated in this section. Two integration schemes, namely the trapezoidal rule and the
Gauss quadrature, are used to calculate the integral 2.15:

Mnum =
1

2

n
∑

j=1

wj σθ(ξj) ξj (2.48)

where n is the number of the integration points, σθ(ξj) is the integration point’s value of the
circumferential stress and ξj are the through-thickness locations of the integration points.
The error due to applying the numerical integration is quantified by finding a relative
difference between values of the bending moment calculated analytically and numerically.

RME =
Mnum − Manalytical

Manalytical

· 100% (2.49)

where RME is the relative moment error. The first set of calculations is performed for
the beam of 1mm thickness. The material of the beam is IF steel, the bending radius is
5mm and the neutral line shift is -0.4mm. Dependency of the relative moment error on
the number of the integration points for the trapezoidal rule and the Gauss quadrature is
shown in figure 2.6. The Gauss quadrature performs better than the trapezoidal rule and
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converges faster to a saturated value of the moment error. At the same time, due to the
complexity and the non-smoothness of the integrand, both rules lead to a considerably high
error when using 3 − 10 integration points. It can also be seen that the relative moment
error oscillates with changing the number of the integration points. The oscillation of the
moment error, which is best visible in figure 2.6(a), can be explained by a more preferable
location of the integration points relative to the position of the points of discontinuity
in the integrand’s profile [16]. In other words, changing the integration points number
changes their through-thickness position and at some instant an integration point lies in
the vicinity of the point of discontinuity leading to a drastic decrease in the integration
error.
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Figure 2.6: Relative moment error due to numerical integration.

As was shown earlier, the integrand profile changes with variation of process parameters,
such as, for example, the in-plane tension or the R/t ratio. Variation of these parameters
leads to a change of the integrand smoothness, especially near the points of discontinuity.
Apparently, the integration error, that depends on the integrand profile, will also be a
function of the process parameters. To ascertain key factors that have an influence on the
level of the integration error, several sets of calculations are performed in which the R/t
ratio and amount of the in-plane tension are varied. The material of the beam is IF steel
and the trapezoidal rule with 50 integration points is used in these calculations.

The relative moment error as a function of the in-plane tension for R/t = 5 is shown in
figure 2.7. The tension in this figure and in all subsequent figures is represented by the
normalised shift of the neutral line, which is defined as the neutral line shift divided by a
half of the beam thickness:

ā =
2a

t
(2.50)

As can be seen the error due to numerical integration oscillates and increases with increasing
tension. Once again, the oscillation can be explained by more favourable or less favourable
position of the integration points relative to the points of discontinuity in the integrand
profile. In this case the location of the integration points is fixed, and the points of
discontinuity are moving through the thickness with the increasing tension. The increase
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of the numerical integration error can be explained by recalling the fact that the bending
moment decreases with increasing tension. Therefore, a given absolute moment error due
to numerical integration will lead to a larger relative error. At the same time, the absolute
moment error is not constant, as can be seen in figure 2.8. It increases with the increasing
tension since the integral profile becomes less smooth.

Influence of the R/t ratio on the relative moment error under constant tension is shown in
figure 2.9. The calculations are performed using the trapezoidal rule. Due to the oscillation
a term maximum error is introduced. It is an extreme value of the relative moment error
for a given set of the process conditions. Figure 2.9 shows that when the bending radius is
sharp the relative moment error is larger and more integration points are needed to assure
a certain accuracy level.
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The observed increase in the relative moment error when using smaller bending radii can
be explained with the help of figure 2.10, where the through-thickness integrand profiles are
plotted for various R/t ratios. Two trends are visible in this plot. Decreasing the bending
radius makes the integrand profile more curved in tension and compression regions and
more sharp near the points of discontinuity. To understand if these trends are responsible
for the larger relative moment error similar calculations are performed for Al5182 (see
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figures 2.11 and 2.12). It can be seen that despite the higher curvature in the integrand’s
profile the relative moment error is smaller for AL5182 (compare the curves with R/t = 5
in figures 2.11 and 2.9). The integrand profile near the points of discontinuity, however, is
less sharp and can be a reason of the relative moment error being smaller for the aluminium
alloy comparing to IF steel. As a result, one may conclude that mainly the shape of the
integral profile near the points of discontinuity is responsible for variation of the relative
moment error with changing process parameters.
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To complete this section and to show what influence the error due to the numerical integra-
tion may have on the shape after springback one may consider a real example of bending
of a strip under tension. The material of the strip is IF steel and its thickness is 1mm. The
radius of bending is 20mm and the strip length is 100mm. The middle part of the strip
is subjected to bending. Forming angle, which is the angle between the free edge of the
strip and the central line, is 45◦. The change of curvature during springback, calculated
from equation 2.36 using the analytical value of the bending moment, is shown in figure
2.13 for varying value of tension. Additionally, the change of curvature, found using the
numerically calculated bending moment, is plotted in this figure. The numerical integra-
tion is performed with the Gauss quadrature using 7 integration points. The global trend -
reduction of the curvature change by increasing the tension - can be easily explained. The
change of curvature is proportional to the bending moment which decreases with increasing
the tension (as can be seen in figure 2.3). In addition to this trend, the curve obtained
using the numerical bending moment is oscillatory. There are three plateaus where the
curvature change is almost constant. To explain this fact the numerical moment is plotted
as a function of tension, see figure 2.15. Five different values of tension are considered,
marked in this figure with a, b, c, d and e. These values are used to calculate the integrand’s
profiles that are shown in figure 2.16. The through-thickness location of all seven integra-
tion points is highlighted with the dashed lines. Increasing the tension makes the points of
discontinuity in the integrand’s profile move with respect to the integration points. Before
they reach the closest integration point (point 3 in figure 2.16) the bending moment value
decreases only slightly, since in the vicinity of every sampling point the integrand’s profile
undergoes only small modifications with changing the process parameters. As soon as the
integration point 3 falls into the elastic region (profile b) its contribution to the bending



38 Origins of numerical integration error

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
ha

ng
e 

of
 c

ur
va

tu
re

Normalised shift of netral line

analytical results
Gauss quadrature, 7 i.p.s

Figure 2.13: Change of curvature as a func-
tion of in-plane tension. R/t = 20, IF
steel.

45,00°

46,51°

46,18°

R 20

Numerical springback

Analytical springback

Shape after forming

Figure 2.14: Shape of the strip after form-
ing and springback.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
om

en
t, 

[N
]

Normalised shift of neutral line

a b c d e

analytical results
Gauss rule, 7 i.p.s

Figure 2.15: Numerical bending moment
as a function of in-plane tension. R/t =
20, IF steel.

-60

-40

-20

 0

 20

 40

 60

 80

 100

 120

-0.4 -0.2  0  0.2  0.4

In
te

gr
an

d,
 [N

/m
m

]

Thickness, [mm]

1 2 3 4 5 6 7

a
b
c
d
e

Figure 2.16: Integrand’s profiles for differ-
ent values of tension.

moment value decreases abruptly and after becomes negative. As a result the value of the
bending moment drops sharply (see figure 2.15). Soon after the integration point 3 passes
the elastic region (profile d) the moment value stabilises and remains relatively constant
until the integration point 2 falls into the elastic region.

The oscillation of the bending moment can result in under- or over-estimation of the
change of shape during springback. For example, let 0.71 be a value of the normalised
shift of the neutral line (see figure 2.13). The analytical and the numerical values of the
curvature change are 1.3109e-03 and 1.6808e-03 correspondingly. These values together
with the initial curvature and the forming angle can be used to build the shape of the strip
after forming and springback which is shown in figure 2.14. In this figure, the analytical
springback corresponds to the shape of the strip which is built using the analytical value
of the curvature change. The numerical springback is the shape based on the numerical
value of the curvature change. The error due to numerical integration is responsible for the
overestimation of the angle after springback and this increase is about 28% of the total,
analytically calculated change of the angle. Underestimation of the springback angle will
take place if the normalised shift of the neutral line is 0.75.
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2.3 Error due to numerical integration

By using the simple problem of bending of a beam under tension it is shown that the
commonly used integration rules require up to 20 integration points to assure a low value
of the error due to numerical integration. For deformation regimes which occur in sheet
metal forming the through-thickness stress profile may be more complex leading to even
higher number of the integration points.

If an integration rule uses integration points that are fixed in thickness direction the error
due to numerical integration is oscillatory in nature. It is related to more favourable or
less favourable position of the integration points relative to the points of discontinuity in
the stress profile. This fact makes it impossible to develop practical guidelines for choosing
an appropriate number of the integration points. For a particular problem, depending on
process conditions and material parameters a fixed number of the integration points may
lead to a very high or a very low integration error.

Presence of the points of discontinuity in the stress profile diminishes advantages of various
integration rules with the fixed location of sampling points. Both the trapezoidal rule and
the Gauss quadrature require a large number of the integration points to obtain negligible
numerical integration error.

The error due to numerical integration depends on the smoothness of the integrand profile
near the points of discontinuity. A higher concentration of the integration points in this
region will lead to a smaller error. A curvature at other regions of the integrand profile
has second order effects on the integration error and its influence can be cancelled by using
higher order rules.

It is clear that, due to the presence of the discontinuities in the integrand profile, traditional
integration rules are not so effective and an alternative numerical scheme is needed. Such
an alternative can be an adaptive strategy that uses algorithms to choose abscissas and
weights depending on integrand’s properties and, thus, can perform accurate integration
while using a small number of the integration points.





Chapter 3

Adaptive integration scheme for

bending with tension problem

In this chapter an adaptive integration strategy for the simple problem of bending of
a beam under tension is developed. The main characteristic feature of the strategy is
the ability to find the accurate numerical solution of an integral while using a limited
number of integration points. In the beginning, the existing numerical schemes for adaptive
integration are described and their advantages and disadvantages are discussed. The most
suitable strategy is chosen and then further developed to be applicable to the bending with
tension problem. After, the adaptive strategy is tested and compared with the traditional
integration schemes.

3.1 Rules for adaptive integration

In addition to the global integration rules, described in chapter 1, there are numerical
schemes that use an adaptive strategy. The integration rule in these schemes varies place-
ment of its points to reflect a changing local behaviour of the integrand. Adaptive quadra-
ture schemes are as effective and efficient for well-behaved integrands as the traditional
integration rules. Furthermore, they are equally effective and efficient for a broad range
of badly-behaved integrands where the traditional formulae are ineffective. All adaptive
integration schemes can be classified as iterative and noniterative [9].

In an iterative scheme, successive approximations to an integral are computed until the final
result is satisfactory within a given tolerance. Plenty of adaptive iterative algorithms have
been developed, see for example [17,18,19,20], with the main goal to compute an integral
value as accurately as possible with no strong restriction on the amount of integration
points used for that purpose. A global description of this group of adaptive schemes is
given below:

1) to find an integral value an initial number of integration points is chosen and a global
integration rule is applied to each panel. The panel is a part of the integration interval
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which consists of a certain number of the integration points, for example three points
for the Simpson’s rule;

2) the error estimate is found on every panel and if it is higher than a specified value
this panel is subdivided into a number of sub-panels. Several subdivision strategies
are available starting with a simple halving till increasing the number of points with
optimising their location. The detailed description of some strategies for the interval
subdivision can be found in [20,21,22];

3) the same global integration rule is applied on every sub-panel. Alternatively, a higher
order rule can be applied on the entire panel or a group of sub-panels;

4) each new sub-panel is subdivided as many times as necessary until the error estimate
is within a given tolerance;

5) the final value of the integral is a found by adding the integral values on every sub-
panel.

In a noniterative scheme, prior to calculating the final integral value the integrand is
evaluated to choose the most optimal location and the number of the integration points.
This scheme, in contrast to an iterative one, is focused on finding the accurate integral
value using a limited number of the integration points. Therefore, it is the best candidate
to be used for numerical calculation of integrals in the bending with tension problem.

The framework for constructing an adaptive integration scheme was suggested by Rice [17].
It was formulated that the meta-algorithm for an adaptive integration consists of several
groups of components, namely: interval processor components, algorithm controller com-
ponents and interval collection management components. The meta-algorithm is presented
graphically in figure 3.1. In this case an interval is more than just two points. It also in-

Algorithm 
controller

Interval 
collection 
manager

Interval 
processor

Interval 
collection

Figure 3.1: Meta-algorithm for adaptive integration. Solid lines show flow of intervals and light lines show
flow of control and other information [17].

cludes all additional information associated with this interval, for example coordinates of
the endpoints and their integrand values, error information and some auxiliary data. The
interval collection is organised into some data structure which is created and maintained
by the interval collection manager. Intervals are taken from the collection and the interval
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processor performs all required computations associated with each interval, for example
integration and error estimation. The interval processor may use different integration rules
or their combinations. The overall error estimate and its distribution is calculated by com-
ponents of the algorithm controller. Additionally, components of the algorithm controller
calculate presence and location of singularities and discontinuities in the integrand profile.
Finally, components of the interval collection manager define and organise new intervals in
a way suitable for subsequent calculations. An adaptive algorithm can be constructed by
choosing from each block specific components that depend on characteristics of a problem.

3.2 Definition of adaptive noniterative strategy

The meta-algorithm of Rice can be used to develop an adaptive integration scheme for
calculating the bending moment in a beam which is bent under tension (see figure 2.1).
It is modified to yield the algorithm which has a unidirectional flow of information. This
modification is possible since one seeks to develop the noniterative adaptive scheme. Some
components of the algorithm controller and the interval collection manager are grouped
into a new block which is called interval manager. The second block, the interval processor,
is left unchanged. The main blocks of the adaptive noniterative scheme are shown in figure
3.2 and their components are described in greater detail below.

Interval processor

- applies integration rule to every
subinterval.

Interval manager

- identifies location of elastic-plastic
transitions;

- defines integration subintervals;
- adapts location of integration

points on each subinterval;
- activates/diactivates integration

points;
- prepares information for integration.

Figure 3.2: Block diagram of adaptive noniterative algorithm.

3.2.1 Interval manager

The main task of the interval manager is to evaluate an integrand prior to numerical
integration. It includes several components that are required to:

• identify location of points of discontinuity in the integrand profile. For the bending
with tension problem the discontinuities are the points where the material transits
from elastic into plastic. The locations of these transition points can be calculated
analytically using equations 2.7 and 2.8;

• subdivide the integration interval into subintervals. Figure 3.3 shows the integrand
profile for IF steel and a particular set of process conditions: R/t = 5, t = 1mm,
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neutral line shift= −0.2mm. Points B and C mark the location of the discontinuities
and AB, BC and CD are the subintervals;

• activate or deactivate the integration points and adapt their location. The integration
points inside of every subinterval are marked with the crosses and on the subinterval’s
limits they are marked with the solid dots. Their location and number depends on
integration rule and is adapted to improve the accuracy of integration;

• prepare information for subsequent integration. Depending on the integration rule
that will be used on every subinterval weights and some other parameters must be
recalculated.
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Figure 3.3: Subdivision of integration interval.

3.2.2 Interval processor

The integration points on every subinterval do not necessarily have to be equally spaced. It
is known that for low order rules, such as for example the trapezoidal rule, curvature of the
integrand profile influences the integration error. The error increases with the increasing
curvature. Therefore, it is highly possible that when using a simple rule the interval
manager will create a higher concentration of the integration points near the points of
discontinuity, where the curvature is the highest. Thus, a numerical scheme is needed that
is capable of performing integration using unequally distributed integration points.

The idea behind integration on unequally distributed points is similar to that of the
Newton-Cotes integration. As the first step, an integrand f(x) is approximated by an
interpolating function p(x) on integration points a ≤ x1, x2, . . . , xn ≤ b. After that, solv-

ing analytically the integral
∫ b

a
p(x) dx gives the formula for integration with the unequally

distributed points. Various functions can be used for approximation, for example a poly-
nomial or a natural cubic spline. Some integration formulae are developed below.
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Generalised composite trapezoidal rule

Let a ≤ x0, x1, . . . , xn ≤ b be a set of unequally spaced abscissas with y0, y1, . . . , yn their
corresponding functional values. The linear polynomial that approximates f(x) on two
consecutive points xj−1, xj for j = 1, 2, . . . , n can be written as follows:

p1(x) =
x − xj

xj−1 − xj

yj−1 +
x − xj−1

xj − xj−1

yj =
yj−1x − yj−1xj + yjxj−1 − yjx

xj−1 − xj

=

=
yj−1 − yj

xj−1 − xj

x +
yjxj−1 − yj−1xj

xj−1 − xj

(3.1)

The formula for numerical integration with generalised composite trapezoidal rule then
becomes:

In(f) =
n

∑

j=1

∫ xj

xj−1

p1(x) dx =
n

∑

j=1

∫ xj

xj−1

( yj−1 − yj

xj−1 − xj

x +
yjxj−1 − yj−1xj

xj−1 − xj

)

dx =

=
n

∑

j=1

( yj−1 − yj

2(xj−1 − xj)
x2

∣

∣

∣

xj

xj−1

+
yjxj−1 − yj−1xj

xj−1 − xj

x
∣

∣

∣

xj

xj−1

)

=

=
n

∑

j=1

( yj−1 − yj

2(xj−1 − xj)
(x2

j − x2
j−1) +

yjxj−1 − yj−1xj

xj−1 − xj

(xj − xj−1)
)

=

=
n

∑

j=1

((yj − yj−1)(xj + xj−1)

2
− yjxj−1 + yj−1xj

)

=

=
n

∑

j=1

(yjxj − yj−1xj + yjxj−1 − yj−1xj−1 − 2yjxj−1 + 2yj−1xj

2

)

=

=
n

∑

j=1

(yjxj + yj−1xj − yjxj−1 − yj−1xj−1

2

)

⇒

In(f) =
n

∑

j=1

(1

2
(xj − xj−1)(yj + yj−1)

)

(3.2)

If the abscissas are equally spaced and h = xj − xj−1, then equation 3.2 transforms into
the formula for the composite trapezoidal rule (see equation 1.16).

Generalised composite Simpson’s rule

Let a ≤ x0, x1, . . . , xn ≤ b be a set of unequally spaced abscissas with y0, y1, . . . , yn their
corresponding functional values. Quadratic polynomial that approximates f(x) on three
consecutive points xj−1, xj, xj+1 for j = 1, 2, . . . , n − 1 can be written as follows:

p2(x) =
(x − xj)(x − xj+1)

(xj−1 − xj)(xj−1 − xj+1)
yj−1 +

(x − xj−1)(x − xj+1)

(xj − xj−1)(xj − xj+1)
yj +

+
(x − xj−1)(x − xj)

(xj+1 − xj−1)(xj+1 − xj)
yj+1 (3.3)
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For simplicity of derivation a particular case is considered. The quadratic polynomial on
x0, x1, x2 becomes:

p2(x) =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
y0 +

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
y1 +

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
y2 =

=
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
y0 −

(x − x0)(x − x2)

(x0 − x1)(x1 − x2)
y1 +

(x − x0)(x − x1)

(x0 − x2)(x1 − x2)
y2 =

=
(x − x1)(x − x2)(x1 − x2)y0 − (x − x0)(x − x2)(x0 − x2)y1

(x0 − x1)(x0 − x2)(x1 − x2)
+

+
(x − x0)(x − x1)(x0 − x1)y2

(x0 − x1)(x0 − x2)(x1 − x2)
=

(x2 − x(x1 + x2) + x1x2)(x1 − x2)y0

(x0 − x1)(x0 − x2)(x1 − x2)
−

− (x2 − x(x0 + x2) + x0x2)(x0 − x2)y1

(x0 − x1)(x0 − x2)(x1 − x2)
+

(x2 − x(x0 + x1) + x0x1)(x0 − x1)y2

(x0 − x1)(x0 − x2)(x1 − x2)
=

=
(x1 − x2)y0 − (x0 − x2)y1 + (x0 − x1)y2

(x0 − x1)(x0 − x2)(x1 − x2)
x2 +

+
−(x1 + x2)(x1 − x2)y0 + (x0 + x2)(x0 − x2)y1 − (x0 + x1)(x0 − x1)y2

(x0 − x1)(x0 − x2)(x1 − x2)
x +

+
x1x2(x1 − x2)y0 − x0x2(x0 − x2)y1 + x0x1(x0 − x1)y2

(x0 − x1)(x0 − x2)(x1 − x2)
=

= kx2 + lx + m (3.4)

where k, l,m are coefficients of the polynomial:

k =
y0

(x0 − x1)(x0 − x2)
+

y1

(x0 − x1)(x2 − x1)
+

y2

(x0 − x2)(x1 − x2)

l = − (x1 + x2)y0

(x0 − x1)(x0 − x2)
− (x0 + x2)y1

(x0 − x1)(x2 − x1)
− (x0 + x1)y2

(x0 − x2)(x1 − x2)

m =
x1x2y0

(x0 − x1)(x0 − x2)
+

x0x2y1

(x0 − x1)(x2 − x1)
+

x0x1y2

(x0 − x2)(x1 − x2)
(3.5)

Using

t1 =
y0

(x0 − x1)(x0 − x2)

t2 =
y1

(x0 − x1)(x2 − x1)

t3 =
y2

(x0 − x2)(x1 − x2)
(3.6)

equations 3.5 can be simplified:

k = t1 + t2 + t3

l = −(x1 + x2)t1 − (x0 + x2)t2 − (x0 + x1)t3

m = x1x2t1 + x0x2t2 + x0x1t3 (3.7)
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In general case, the coefficients k, l,m of the quadratic polynomial are

k =
yj−1

(xj−1 − xj)(xj−1 − xj+1)
+

yj

(xj−1 − xj)(xj+1 − xj)
+

yj+1

(xj−1 − xj+1)(xj − xj+1)

l = − (xj + xj+1)yj−1

(xj−1 − xj)(xj−1 − xj+1)
− (xj−1 + xj+1)yj

(xj−1 − xj)(xj+1 − xj)
− (xj−1 + xj)yj+1

(xj−1 − xj+1)(xj − xj+1)

m =
xjxj+1yj−1

(xj−1 − xj)(xj−1 − xj+1)
+

xj−1xj+1yj

(xj−1 − xj)(xj+1 − xj)
+

xj−1xjyj+1

(xj−1 − xj+1)(xj − xj+1)

(3.8)

The formula for integration with generalised composite Simpson’s rule:

In(f) =

n/2
∑

j=1

∫ x2j

x2j−2

(kx2 + lx + m) dx =

n/2
∑

j=1

(kx3

3

∣

∣

∣

x2j

x2j−2

+
lx2

2

∣

∣

∣

x2j

x2j−2

+ mx
∣

∣

∣

x2j

x2j−2

)

=

=

n/2
∑

j=1

(k

3
(x3

2j − x3
2j−2) +

l

2
(x2

2j − x2
2j−2) + m(x2j − x2j−2)

)

(3.9)

Overlapping parabolas

The approximation of the integrand f(x) with the second order polynomial p2(x) can be
used to develop the integration rule which is based on overlapping parabolas. The rule
combines an integrating and a smoothing features [9, 23]. Let a ≤ x0, x1, . . . , xn ≤ b be
a set of unequally spaced abscissas. As was shown, using the Lagrange’s formula for the
interpolating polynomial it is possible to define the second order function that approximates
f(x) at three consecutive points xj−1, xj, xj+1 for j = 1, 2, . . . , n − 1:

p2(xj−1, xj, xj+1) = kjx
2 + ljx + mj (3.10)

where coefficients kj, lj,mj can be found from equations 3.8.

On the intervals [x0, x1] and [xn−1, xn] no smoothing is done and the integral is calculated
using these formulae:

I1
n(f) =

∫ x1

x0

p2(x0, x1, x2) dx

I2
n(f) =

∫ xn

xn−1

p2(xn−2, xn−1, xn) dx (3.11)

On all other intervals the integral is calculated as an average integral of two overlapping
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parabolas

I3
n(f) =

1

2

∫ xj+1

xj

(

p2(xj−1, xj, xj+1) + p2(xj, xj+1, xj+2)
)

dx =

=
1

2

∫ xj+1

xj

(

kjx
2 + ljx + mj + kj+1x

2 + lj+1x + mj+1

)

dx =

=
1

2

∫ xj+1

xj

(

(kj + kj+1)x
2 + (lj + lj+1)x + (mj + mj+1)

)

dx =

=
kj + kj+1

2

(x3
j+1 − x3

j

3

)

+
lj + lj+1

2

(x2
j+1 − x2

j

2

)

+
mj + mj+1

2

(

xj+1 − xj

)

for j = 1, 2, . . . , n − 2 (3.12)

The final integral value is obtained by adding the values of all three integrals. One of the
advantages of this rule over the generalised composite Simpson’s formula is that odd and
even numbers of the integration points can be used on the integration interval.

Spline integration

Integration on unequally spaced abscissas can also be performed using the natural cubic
spline approximation, presented in section 1.2. Formula 1.45 can be used for this purpose.

General remarks

Other numerical schemes which perform integration using unequally distributed points,
such as the Gauss quadrature and the Lobatto rule, are not considered here. These in-
tegration rules do not allow an arbitrary placement of the integration points. Moving a
point to a specific location will require repositioning of all other points and recalculation
of all information associated with the points. In addition to that, when using the Gauss
quadrature, it is not possible to place the points at the limits of the integration interval.

Each of the presented integration rules places specific demands on the interval manager.
The demands are related to a minimal number of the integration points required on each
subinterval and to their location. At least three points are needed for the generalised
composite Simpson’s rule and for the spline integration on every subinterval. Four points
are required to take full advantage of the integration rule based on overlapping parabolas.
As for the generalised composite trapezoidal rule, due to the lower order polynomial used
for the interpolation, more points must be placed at highly curved regions of the integrand
profile to decrease the integration error.
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3.3 Calculation of bending moment using adaptive

noniterative strategy

The developed adaptive noniterative strategy provides a possibility to select certain com-
ponents of the interval manager and the interval processor and, thus, allows constructing
specific schemes for adaptive integration. Performance of several schemes in calculating
the moment resulting from bending of a beam under tension is tested in this section. The
obtained bending moment Mnum is compared to the analytical one Manalytical which is cal-
culated using equation 2.25. The relative difference between Mnum and Manalytical is used
to quantify the error of numerical integration. Based on the calculations performed in
section 2.1.5 the set of material and process parameters is chosen for which the numerical
integration error is the highest. The material of the beam is IF steel (see table 2.1 for the
material properties). The beam thickness is 1mm. The radius of bending is 5mm and the
calculations are performed for a range of values of tension. Reference solutions, obtained
by using the traditional integration schemes with 20 integration points, are shown in figure
3.4.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.2  0.4  0.6  0.8  1

R
el

at
iv

e 
m

om
en

t e
rr

or
, [

%
]

Normalised shift of neutral line

(a) Trapezoidal rule

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.2  0.4  0.6  0.8  1

R
el

at
iv

e 
m

om
en

t e
rr

or
, [

%
]

Normalised shift of neutral line

(b) Simpson’s rule

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.2  0.4  0.6  0.8  1

R
el

at
iv

e 
m

om
en

t e
rr

or
, [

%
]

Normalised shift of neutral line

(c) Gauss quadrature

Figure 3.4: Relative moment error as a function of in-plane tension. Integration is performed with 20 i.p.s.

Comparing the graphs 3.4(a) and 2.7 it is possible to see that for a smaller number of
integration points the distance between the peeks increases. Furthermore, figure 3.4(c)
shows that the relative moment error obtained with the Gauss quadrature at higher tension
forces decreases. This can be explained by recalling the fact that under these process
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conditions one of the points of discontinuity is reaching the outer surface and the integrand
becomes most curved, like a polynomial (see figure 2.5(b)). Comparing to the trapezoidal
and Simpson’s rules, Gauss quadrature uses a higher order approximating polynomial that
better represents the integrand under these process conditions.

3.3.1 Adaptive scheme 1

The interval manager of this adaptive scheme identifies the location of the points of dis-
continuity in the integrand profile, splits the integration interval into three subintervals
and adapts location of the integration points on every subinterval. The number of the
integration points on each subinterval remains constant, as shown in figure 3.5. Two or
three integration points are used on the subinterval BC. The remaining points are equally
distributed between the subintervals AB and CD. The interval processor is allowed to use
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Figure 3.5: Distribution of 10 points on integration interval.

any of the integration rules with unequally distributed points.

Results of calculations with the generalised composite trapezoidal rule are shown in figure
3.6. These calculations are performed with different total number of the integration points.
All integration points are equally spaced. It can be seen that tracing the location of points
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of discontinuity helps to get rid of the error oscillation. Furthermore, as can be seen in
figure 3.8 the reasonable level of the integration error is obtained while using twice as
less integration points. The relative moment error increases smoothly with increasing the
tension. As was explained earlier, it increases due to the decreasing value of the bending
moment and the increasing non-smoothness of the integrand.
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Figure 3.8: Advantages of adaptive integration.

An additional set of calculations is performed to see if the error can be decreased further
by densifying the integration points in the regions with high integrand’s curvature. The
total number of the integration points on every subinterval remains unchanged and their
concentration is increased near the points B and C in the integrand’s profile (see figure
3.5(b)). The results, presented in figure 3.7, show that the integration error increases
contrary to expectations. However, it can be explained by recalling the fact that one
of the subintervals (subinterval CD in figure 3.5(b)) increases in size with increasing the
tension. Therefore, the contribution to the integration error from this particular interval
will become higher if the total number of the integration points does not change. The
integration error will increase even further since, due to the shifting, less points are used
in the major part of the subinterval.

Results of calculations when the spline integration is used by the interval processor are
shown in figures 3.9 and 3.10. The advantages of using a smooth and a flexible function for
the integrand approximation are clearly visible. Comparing to the generalised composite
trapezoidal rule much less integration points are needed to reach the low level of the
integration error. Additionally, it can be seen from figure 3.10 that shifting the integration
points towards the regions with high integrand’s curvature decreases the error even further.
Placing more points in the highly curved regions gives the spline which better approximates
the integrand and, the integration error decreases.

Outstanding results are obtained when the interval processor uses the generalised composite
Simpson’s rule and the rule based on overlapping parabolas, as shown in figures 3.11 and
3.12. The negligible integration error is obtained with only 7 points. The Simpson’s rule
outperforms the spline integration and the rule based on overlapping parabolas. Despite
using less accurate approximating function the accuracy of the Simpson’s rule is higher
due to the fortuitous cancellation of errors (see figure 1.2). Since the integration error
is already small, less than 2.5%, no attempt is made to decrease it further by using the
unequally distributed points.
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Figure 3.9: Adaptive scheme 1, spline in-
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tegration.
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Figure 3.11: Simpson’s rule.
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Figure 3.12: Overlapping parabolas.

3.3.2 Adaptive scheme 2

Most of the tasks, performed by the interval manager of the second adaptive integration
scheme, are similar to the previous one. It identifies location of the discontinuities, splits
the integration interval into three subintervals and adapts location of integration points
on every subinterval. However, in contrast to the first adaptive scheme, the number of the
integration points on every subinterval changes as a function of its length. It is known that
with increasing the tension the subinterval AB decreases in size. Therefore, it is logical
to move the excessive integration points from this subinterval to that which increases in
size (the subinterval CD in figure 3.13). Depending on a problem, there can be plenty of
conditions for transferring the integration points. Here, if the length of the subinterval
AB becomes less than 60% of its initial value, an integration point is transferred to the
increasing subinterval. The accuracy of the scheme in which the interval processor uses the
generalised composite trapezoidal rule increases considerably. Figure 3.14 shows results of
calculations with 8 and 10 integration points which are equally spaced on every subinterval.
The previous results of the calculations with 8, 10 and 14 points are added to this plot for
comparison. They are marked as 8 i.p. scheme 1, 10 i.p. scheme 1 and 14 i.p. scheme 1
correspondingly. It can be seen, that as soon as an integration point is transferred to the
increasing subinterval the integration error decreases abruptly. The error becomes even
lower when using 10 integration points. As shown in figure 3.14(b) several relocations
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Figure 3.14: Comparison of performance of adaptive schemes. Interval processor uses the trapezoidal rule.

of the integration points take place and the error due to numerical integration becomes
less than 4%. Similar calculations are performed with the spline integration. 9 and 10

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1

R
el

at
iv

e 
m

om
en

t e
rr

or
, [

%
]

Normalised shift of neutral line

9 i.p.s, scheme 1
11 i.p.s, scheme 1

9 i.p.s, scheme 2

(a) 9 integration points

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1

R
el

at
iv

e 
m

om
en

t e
rr

or
, [

%
]

Normalised shift of neutral line

11 i.p.s, scheme 1
11 i.p.s, scheme 2

(b) 11 integration points

Figure 3.15: Adaptive scheme 2. Spline integration.

integration points are used and results are presented in figure 3.15. From figure 3.15(a)
it is interesting to note that after transferring a point from the subinterval AB to the
subinterval CD the error follows the curve obtained from the rule 11 i.p.s, scheme 1. This
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rule uses 11 integration points in total and therefore 5 points on the subinterval CD. This
fact shows that when discontinuities are accounted for, the increasing subinterval CD has
the biggest contribution to the total integration error and must be properly described.

Finally, the redistribution of the integration points is employed together with the gener-
alised composite Simpson’s rule and the overlapping parabolas. The total number of the
integration points is 11. Two points must be moved at the same time for the Simpson’s
rule to keep their number uneven on every subinterval. The obtained integration error is
shown in figures 3.16 and 3.17.
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Figure 3.16: Simpson’s rule.
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3.3.3 Summary of results

Advantages of the adaptive noniterative strategy over the traditional integration schemes
are demonstrated in this section. Two adaptive schemes tuned specifically to the bending
with tension problem were developed and tested. As shown in figures 3.18 and 3.19, both
schemes perform well and the negligible integration error is obtained while using a limited
number of the integration points. When using an adaptive scheme, by tracing the location
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Figure 3.18: Adaptive scheme 1.
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Figure 3.19: Adaptive scheme 2.

of the points of discontinuity, the error oscillation can be suppressed and as a result, the
integration error increases smoothly with increasing the tension. The best performance -
the lowest integration error while using the smallest number of points - can be achieved
when the Simpson’s rule is used by the interval processor.



Chapter 4

Adaptive integration strategy for

Kirchhoff triangular elements

In this chapter the adaptive noniterative integration strategy is developed further to make
it applicable to a three-dimensional finite element analysis with shell elements. Some modi-
fications of the interval manager are discussed and several new components are introduced.
Since the strategy is developed for the Kirchhoff triangular element a brief description of
this element type is provided.

4.1 Overview of integration strategy

An implicit finite element solution procedure is considered which is often used for simulation
of sheet metal forming and especially in a springback analysis. In the implicit procedure,
state variables that satisfy the equilibrium in the end of a load increment are found itera-
tively by the Newton-Raphson method. One iteration of the Newton-Raphson procedure
can generally be split into three parts: calculation of the stiffness matrix, calculation of
the incremental displacement vector and calculation of the internal force vector.

Adapting the integration points during a numerical solution process will have an influence
on the internal force vector value and therefore may result into a divergence of the solu-
tion process. To minimise the divergence, the adaptation of the integration points must
take place after finding the converged solution in the end of the load increment. It is
schematically shown in figure 4.1.

As can be seen, right after finding the converged solution the interval manager of the
adaptive strategy is called, the discontinuities are located and the integration points are
adapted to decrease the integration error. As soon as an integration point is relocated
or newly introduced there is no history information available at this point. Therefore,
the interval manager must include an extra component to calculate new values of internal
variables, such as stress and strain vectors and hardening parameters.

If loading continues, the stiffness matrix is calculated and the iterative process is initiated to
find state variables for the new load increment. If unloading occurs, the adapted integration
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- locates points of discontinuity

- defines integration subintervals

- adapts integration points

- prepares information for integration

- calculates internal variables

Iterative Newton-Raphson procedure
...

Iterative Newton-Raphson procedure
...

Incremental
step i

Interval manager

Incremental
step i+1

Figure 4.1: Adaptive integration within implicit finite element solution procedure.

points will guarantee more accurate stress resultants and, therefore, more accurate change
of shape. It is believed that a deviation of the bending moment after adaptation from that
obtained by the Newton-Raphson process is small and an influence of this difference on
the change of shape can be neglected. At the same time, if loading continues the difference
will be accounted for during the next load increment.

4.2 Discrete Kirchhoff triangular element

In simulations of sheet metal forming shell elements are commonly used. They are based
on different plate bending theories which are applicable to situations when the material
thickness is considerably smaller comparing to other dimensions. The theories assume that
while bending a plate, plane stress state occurs and the plate geometry can be described
by using variables of the middle plane. The Kirchhoff plate bending theory prohibits a
transverse shear deformation which means that any straight line normal to the middle plane
remains straight and normal after a deformation. Only the main definitions are introduced
in this section and the complete description of the element based on the Kirchhoff theory
can be found in [1, 24].

A deformation of a plate can be divided into a membrane part and a bending part. If one
considers the membrane part, displacements of the plate can be defined using values of the
middle plane [24]:
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(4.1)

Where u, v and w are the displacements in x, y and z directions correspondingly and
superscript mp denotes that the displacements of the middle plane are considered. The
membrane strain vector can be found from:
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The thickness-direction strain εzz cannot be found from the kinematic relations. For elastic
deformations it is found using constitutive relations and the in-plane components. For
example, for isotropic elastic material and in case of the plane stress state the thickness-
direction strain becomes:

εzz = − ν

1 − ν
(εxx + εyy) (4.3)

In case of plastic deformations the thickness strain is found from the incompressibility
condition:

εzz = −εxx − εyy (4.4)

When considering only the bending part of deformations, the vector of the plate displace-
ments can be written as follows:
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Variables θx and θy are rotations about x and y axes. The vector of strains due to the
bending deformation [24]:
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Combining equations 4.2 and 4.6 one obtains the complete vector of strains for the plate
deformed under combined influence of bending and tension:
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For the Kirchhoff plate bending theory the transverse shear strains must be equal zero. As
a result:
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Taking into account the Kirchhoff constraints 4.8 the complete vector of strains becomes:
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Or in a more convenient form:
{ε} = {η} + z · {κ} (4.10)

In practice, the discrete Kirchhoff elements are used, in which the transverse shear strains
are not equal zero throughout the element but only at specified locations - at nodes situated
in the middle of an element side. The typical discrete Kirchhoff triangular element with
some of its external degrees of freedom is shown in figure 4.2. In total, there are 18 degrees
of freedom: 9 translational, 6 in-plane rotational and 3 out-of-plane rotational. The out-
of-plane rotational degrees of freedom are commonly used to prevent zero energy modes.
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Figure 4.2: Kirchhoff triangle with some of
its external degrees of freedom.
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Figure 4.3: Points for in-plane and out-of-
plane integration.

When using an anisotropic elastic-plastic material model, characteristic matrices of the
Kirchhoff triangular element are complex volume integrals which can only be found by
integrating numerically in-plane and in thickness direction. The optimal location of the
in-plane integration points, indicated by squares in figure 4.3, is well-discussed in literature,
see for example [1, 2, 25]. The out-of-plane integration points are indicated by crosses and
the curvature values w,xx, w,yy and w,xy are different for every column of them. This follows
from the definition of the Kirchhoff triangular element which requires that the membrane
part of the total strain η is constant throughout the element and the bending part κ varies
linearly. As a result, for a general case of deformation, the location of the elastic-plastic
transitions may be different for every column of the integration points.

4.3 Components of interval manager

Most of the components of the interval manager of the adaptive strategy for shell elements
are comparable to those for the bending with tension problem. Differences are related to
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the presence of the new component which is required to update internal variables and to a
more complex algorithm to calculate points of discontinuity in stress profiles in a general
three dimensional case.

4.3.1 Calculation of points of discontinuity

Several points of discontinuity may be present in the through-thickness stress profile when
a material undergoes cyclic bending and unbending while passing, for example, a die radius
or a drawbead. Figures 4.4 and 4.6 show through-thickness stress profiles which occur in
a beam after bending, elastic unbending, reverse bending and repeated bending in the
original direction. The cyclic deformation is performed without in-plane tension. An
elastic, perfectly plastic material is chosen and, due to the symmetry, only a half of the
stress profiles is shown.
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Figure 4.4: Points of discontinuity in stress profiles after bending and unbending.

While bending, as soon as yielding of the material is initiated, an elastic-plastic boundary
or a point of discontinuity (POD1 in figure 4.4) appears in the stress profile. Having
reached some radius of bending the material is elastically unloaded. After unloading the
bilinear stress distribution remains and the upper layer of the material is in compression.
For the elastic-perfectly plastic material, the yielding in the reverse direction will start
after reaching the initial yield stress value σy0. Additionally, the lines c − d and e − f
intersect the neutral axis at the yield stress that is reached during the bending part of the
cycle. To show this, the equation that describes stresses during unloading is derived. For
simplicity, only one cycle consisting of bending and unbending of a beam without tension
is considered. From equation 2.1 the bending strain can be approximated by:

εθ =
z

ρ
(4.11)

where z is the through-thickness coordinate and ρ is the bending radius. Equations 2.5
and 2.12 can be used to find the stress distribution in the regions of elastic and plastic
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deformations:

σe
θ =

E

1 − ν2

z

ρ
, σp

θ = σy0 (4.12)

where σy0 = 2/
√

3σun is the plane strain yield stress.

Using equation 2.25 it is always possible to find the bending moment per unit width of the
beam. For the specific case, shown in figure 4.5(a), there is no elastic zone in the stress
profile and the bending moment can be found from:

M =
σy0t

2

4
(4.13)

During an elastic unloading the circumferential stresses decrease in value. This causes the

- y0σ
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y0σz

(a) bending

1/2 y0σ

σθ

z

(b) elastic unloading

Figure 4.5: Through-thickness stress profiles for rigid, perfectly plastic material.

change of the bending moment which, from equation 2.35, is equal to:

∆M =
t3

12

∆σθ

z
(4.14)

For the bending moment M = σy0t
2/4 the removal of external forces during the elastic

unloading results in ∆M = −σy0t
2/4 and therefore the change of the circumferential

stresses becomes:

∆σθ = −12z

t3
M = −3σy0

z

t
(4.15)

Let σA and σB be values of the circumferential stresses during the loading and the elastic
unloading. Then, the stress in a through-thickness point after the unloading can be found
as follows:

σB = σA + ∆σθ = σA − 3σy0
z

t
= σy0 − 3σy0

z

t
(4.16)

The through-thickness stress profile after the elastic unloading is shown in figure 4.5(b).
The line e − f (see figure 4.4) can be described by using equation 4.16 and for z = 0 this
line intersects the neutral axis at the yield stress point.

Using similar considerations it is possible to define the point of intersection of the lines
c − d and e − f for a material with linear hardening. Again, from equations 2.5 and 2.12
the stresses in the elastic and plastic regions can be written as follows:

σe
θ = E ′ z

ρ
, σp

θ = σy0 + Et

(z

ρ
− σy0

E ′

)

(4.17)
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In this equation Et is the slope of the stress-strain curve in the region of plastic deformations
and E ′ = E/(1 − ν2). The point of intersection of the line c − d with the neutral line can
be found by substituting z = 0 into the last equation:

σp
θ = σy0 − σy0

Et

E ′ = σy0 − β (4.18)

Using equation 4.15 the line e − f of the stress profile can be defined by:

σB = σA + ∆σθ = σy0 + Et

(z

ρ
− σy0

E ′

)

− 12z

t3
M (4.19)

This equation shows that if z = 0 the lines c− d and e− f intersect the neutral line at the
same point, namely at the point where the stress is equal to σy0 − β.

Yielding of the material during loading in the reverse direction produces a new elastic-
plastic boundary and a new point of discontinuity (POD2). If the second elastic-plastic
boundary does not propagate further than the first one, the stress profile contains two
points of discontinuity. Unloading the beam from this situation and plastically loading it
in the original direction produces a new point of discontinuity (POD3) (see figure 4.6).
The description of algorithms for calculating through-thickness location of the points of
discontinuity POD1 and POD2 resulting from bending and reverse bending is given below.

+σ−σ

Reverse bending

t/2

0
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Stress

T
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ss

POD2

Bending after
reverse bending

POD3

σy0 y0σ

Figure 4.6: Point of discontinuity in stress profile after repeated bending in original direction.

To explain the algorithm for locating POD1, bending a strip to a certain radius is conside-
red. The strip is deformed under a combined influence of a bending moment and tension.
The typical distribution of the equivalent stress in a cross-section of the strip for a material
with arbitrary hardening is shown in Figure 4.7. In this figure σy is the stress at yield and
the variable a defines the shift of the neutral line which occurs due to applied tension.

To identify the location of POD1 the strategy of Armen and Pifko [7] can be followed. Let
l = z− t

2
be the coordinate of the elastic-plastic transition with respect to the central line.
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Figure 4.7: Equivalent stress profile after bending.

z is measured from the lower surface of the strip with: z = 0 at the lower surface, z = t
2

at the central line, and z = t at the upper surface. The vector of stresses for a material in
elastic regime can be written using the Hooke’s law for plane stress:







σxx

σyy

τxy







=
E

1 − ν2





1 ν 0
ν 1 0
0 0 1 − ν











εxx

εyy

γxy







(4.20)

The complete vector of strains using the Kirchhoff theory with z measured from the lower
surface becomes:







εxx

εyy

γxy







=







u,mp
x

v,mp
y

u,mp
y +v,mp

x







− l ·







wmp
,xx

wmp
,yy

2wmp
,xy







(4.21)

Combining equations 4.20 and 4.21 one obtains expressions for the components of the stress
vector:

σxx =
E

1 − ν2

[

ump
,x − l wmp

,xx + ν
(

vmp
,y − l wmp

,yy

)]

σyy =
E

1 − ν2

[

vmp
,y − l wmp

,yy + ν
(

ump
,x − l wmp

,xx

)]

τxy =
E

2(1 + ν)

[

ump
,y + vmp

,x − 2l wmp
,xy

]

(4.22)

In the text that follows the superscript mp will be omitted for simplicity. Equations 4.22
can also be rewritten as follows:

σxx =
E

1 − ν2
(u,x + νv,y) − l

E

1 − ν2
(w,xx + νw,yy)

σyy =
E

1 − ν2
(v,y + νu,x) − l

E

1 − ν2
(w,yy + νw,xx) ⇒

τxy =
E

2(1 + ν)
(u,y + v,x) − l

E

1 + ν
w,xy (4.23)
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σxx = Nxx − l Mxx

σyy = Nyy − l Myy ⇒ {σ} = {N} + l {M}
τxy = Nxy − l Mxy (4.24)

Where {N} represents the membrane contribution to the stress and {M} represents the
bending contribution. It is known that a material remains elastic through its thickness
until the yield condition is satisfied. A function that relates the stress state to the onset of
yielding is called yield function. By substituting the components of the stress vector into
a yield function equation it is possible to derive the expression for l.

The von Mises yield function for the three-dimensional stress state:

√

(σxx − σyy)2 + (σxx − σzz)2 + (σyy − σzz)2 + 6τ 2
xy + 6τ 2

xz + 6τ 2
yz −

√
2σun = 0 (4.25)

For the plane stress situation it reduces to:

σ2
xx + σ2

yy − σxxσyy + 3τ 2
xy = σ2

un (4.26)

Substituting the stress components from equation 4.24 into equation 4.26 and gathering
terms gives:

(

M2
xx + M2

yy + 3 M2
xy − MxxMyy

)

l2 −

−
(

NxxMxx + NyyMyy + 3NxyMxy −
1

2
(NyyMxx + NxxMyy)

)

2 l +

+N2
xx + N2

yy + 3 N2
xy − NxxNyy = σ2

un (4.27)

Using additional variables A, B and C:

A = M2
xx + M2

yy + 3 M2
xy − MxxMyy

B = −2 (NxxMxx + NyyMyy + 3NxyMxy −
1

2
(NyyMxx + NxxMyy))

C = N2
xx + N2

yy + 3 N2
xy − NxxNyy (4.28)

equation 4.27 can be simplified to give:

A l2 + B l + C − σ2
un = 0 (4.29)

Solving this quadratic equation gives two values of l:

l1,2 =
−B ±

√

B2 − 4A(C − σ2
un)

2A
(4.30)

which define the location of the elastic-plastic transitions POD1 for the case of bending
with tension.

As can be seen, to locate the transition points the algorithm uses the strain vector compo-
nents which are readily available after each incremental step of the finite element solution
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procedure. If, for example, Kirchhoff triangular elements are used to describe the strip,
then by performing similar calculations for each column of integration points for every
element in the mesh, the interval manager can always track the location of POD1 during
the analysis.

To define the method for calculating location of POD2 cyclic bending of a strip under
tension is considered. For simplicity, an isotropic elastic, perfectly plastic material is con-
sidered. The fictive distribution of equivalent stresses through the thickness after bending
and reverse bending is shown in figure 4.8. In this figure σ̄y1 is the initial yield stress and
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Figure 4.8: Locating point of discontinuity in stress profile for bending and reverse bending. Elastic,
perfectly plastic material.

σ̄t1 is the effective trial stress computed using the total strains as elastic strains. Based on
the method presented above it is possible to calculate l1 and l2 - the coordinates of POD1
after bending. Knowing these values the neutral line shift a can be found:

a = l1 −
l1 − l2

2
=

l1 + l2
2

(4.31)

Using similar triangles it is possible to calculate the location of the elastic-plastic transition
which occurs during the reverse bending [7]:

m1 − a
t
2
− a

=
2σ̄y1

σ̄y1 + σ̄t2

⇒

m1 = a +
2σ̄y1

σ̄y1 + σ̄t2

·
( t

2
− a

)

(4.32)

where σ̄t2 is the effective stress that would exist if the material did not have plastic defor-
mations during the reverse loading. The through-thickness location of the second POD2
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can be calculated from the condition of symmetry about the neutral line:

m2 = −(|m1| + 2|a|) (4.33)

Now the method for calculating the location of POD2 is developed further to be applicable
for an isotropic elastic-plastic material with linear hardening. The fictive distribution of
effective stresses through the thickness after bending and reverse bending is shown in figure
4.9. In this figure σ̄1 is the effective stress reached during the loading part of the cycle.
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Figure 4.9: Locating point of discontinuity in stress profile for bending and reverse bending. Elastic-plastic
material with linear hardening.

α = σ̄1 − σ̄y1 can be described as a measure of the material hardening. Variable β defines
the location where the lines c−d and e−f intersect the neutral line and can be calculated
from:

β =
l1 − a
t
2
− l1

α (4.34)

Using similar triangles it is possible to calculate the location of the elastic-plastic transition
which occurs during the reverse bending [7]:

m1 − a
t
2
− a

=
( σ̄y1 + σ̄y2 − β

σ̄y1 + σ̄t2 − β

)

⇒

m1 = a +
( σ̄y1 + σ̄y2 − β

σ̄y1 + σ̄t2 − β

)

·
( t

2
− a

)

(4.35)

where σ̄2 is the effective stress obtained in the upper layer during the bending in reverse
direction, σ̄y2 is the yield stress and σ̄t2 is the effective stress that would exist if the ma-
terial did not have plastic deformations during the reverse loading. The through-thickness
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location of the second POD2 can be calculated from the condition of symmetry about the
neutral line.

This method can be used for the calculation of the positions of POD2 when m1 > l1.
Increasing the bending moment in the reverse loading will cause POD2 propagate further
and as soon as it coincides with POD1 the method that calculates the location of POD1
must be used.

It can be seen that β can only be calculated under the assumption of linear distribution of
the stresses in the plastic range. This assumption may introduce some error in calculating
the location of POD2. Therefore, it is required to check an extent of the error and a
validity of the complete method. Additional points of discontinuity may appear in the
stress profile during subsequent loading cycles (see figure 4.6) which may produce more
complex, multilinear distributions of stresses and strains. As a result, an application of
the strategy underlying the presented methods to define the algorithm for locating POD3
will require extra assumptions and the accuracy of the method will be questionable. An
alternative strategy is needed to locate the discontinuities in stress profiles obtained during
cyclic loading for a material with arbitrary hardening. A simple example of such a strategy
is given in chapter 5 of this report.

4.3.2 Update of internal variables

Having found the location of the discontinuities in the stress profile the interval manager di-
vides the complete integration interval [− t

2
, t

2
] into several subintervals. Integration points

are rearranged so that there are several points inside every subinterval and two of the
points are lying on its limits. If required, the location and the number of the integration
points on each subinterval can be adapted depending on numerical integration scheme
used and smoothness of the integrand. A newly introduced or relocated integration point
does not contain any information about previous loading and its internal variables must
be calculated.

The J2 flow model based on the von Mises yield surface is often used to describe plasticity
in metals. The key assumption of the model is that the plastic flow in metals is unaffected
by hydrostatic stresses. Only deviatoric stresses have influence on the yield condition and
the plastic flow direction. The detailed formulation of the J2 flow theory of plasticity can be
found in [1,4]. The rate of the plastic multiplier λ̇ in the von Mises theory is equal to the rate
of the accumulated effective plastic strain ˙̄ε. Additionally, the only hardening parameter q
equals the accumulated effective plastic strain ε̄. During the iterative-incremental solution
procedure, quantities that must be available at each integration point and updated as the
solution progresses are stresses {σ} and the hardening parameter q. Therefore, for every
new integration point these values must be calculated.

Figure 4.10 shows distributions of the total effective strain, the effective plastic strain and
the effective stress through the thickness of a strip deformed in bending with tension. For
simplicity, only the region is shown where the material is in tension. Linear hardening is
assumed and therefore the distribution of the effective stress is bilinear. Due to the in-plane
tension the neutral line shifts through a distance of a. Location of the integration points
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Figure 4.10: Effective stress, total strain and plastic strain distributions for bending with tension.

is also shown in this figure. Old points that were used for integration during the previous
successfully converged incremental step are shown with the crosses. A new integration
point defined by the interval manager is shown with the encircled cross. To calculate the
internal variables for the new integration point 3 information of the old integration points
1 and 2 can be used. The linear distribution of the internal variables makes it possible
to calculate values of the accumulated effective plastic strain and the effective stress by
simple interpolation. From the Lagrange’s formula for the interpolating polynomial:

f(z3) =
z3 − z2

z1 − z2

f(z1) +
z3 − z1

z2 − z1

f(z2) (4.36)

where z1, z2, z3 are the through-thickness coordinates of the integration points and f(z1),
f(z2), f(z3) are the associated function values. Simple interpolation requires to have at
least two old integration points on every region to be able to perform the interpolation of
data.

The next step is to calculate components of the stress vector. The method proposed by
B.K. Chun [26] can be used. To explain the method let b and c be ratios of the stress
vector components:

b =
σyy

σxx

and c =
τxy

σxx

(4.37)

The von Mises effective stress for the plane stress situation then becomes:

σ̄ =
√

σ2
xx + σ2

yy − σxxσyy + 3τ 2
xy =

√

σ2
xx + b2σ2

xx − bσ2
xx + 3c2σ2

xx =

=
√

1 + b2 − b + 3c2 · σxx = ρ · σxx (4.38)

Using equation 4.36 it is possible to find ratios of the stress components for the integration
point 3 by simple interpolation:

b3 = f(b1, b2) and c3 = f(c1, c2) (4.39)

and thus the parameter ρ can also be determined:

ρ3 =
√

1 + b2
3 − b3 + 3c2

3 (4.40)
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Finally the components of the stress vector at the integration point 3 can be found:

σxx =
σ̄3

ρ3

, σyy = b3 σxx, τxy = c3 σxx (4.41)

More physically-based algorithm for updating the stress state was defined by M. Avetisyan,
see for example [27, 28]. The algorithm, which was initially developed as a part of the
strategy to incorporate effects of a trimming operation in the simulation of deep drawing,
is a good alternative for calculating the stress vector at the new integration point.

Through-thickness distributions of the effective strains and the effective stress which occur
in a strip after bending and reverse bending under tension is shown in figure 4.11. As can
be seen, after bending and reverse bending the distribution of the accumulated effective
plastic strain is bilinear. Similarly to the strategy outlined above, the effective stress and
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Figure 4.11: Effective stress, total strain and plastic strain distributions for bending, reverse bending with
tension.

strains for the new integration point 3 can be found by simple interpolation using values
of the old integration points 1 and 2. The update of the internal variables is finished with
calculating the components of the stress vector.

4.4 Components of interval processor

As soon as the interval manager decides on integration intervals, appropriate location of
integration points and calculates information about the history of deformation, everything
is available to continue the iterative-incremental finite element solution procedure. During
the procedure the numerical integration is employed to find incremental strains at each in-
tegration point and to calculate the element characteristic matrices. Any of the integration
rules presented in section 3.2.2 can be used for that purpose. Application of the integration
rules to the bending with tension problem revealed that the generalised composite Simp-
son’s rule and the rule based on overlapping parabolas are superior to all others. These
are simple rules that can guarantee the lowest integration error while using the smallest
number of the integration points. In addition to that, comparing to the generalised com-
posite Simpson’s rule, the rule based on overlapping parabolas does not require an uneven
number of the integration points on every subinterval.



Chapter 5

Alternative numerical algorithm for

locating points of discontinuity

In chapter 4 the algorithms for locating the points of discontinuity POD1 (bending)
and POD2 (bending/unbending) were presented. It is known that the idea underly-
ing these algorithms cannot be used to develop schemes for locating points of discon-
tinuity for an arbitrary loading scenario. Already for the discontinuities POD3 (bend-
ing/unbending/bending) in addition to the linear hardening other assumptions are needed,
which together with an increased complexity of the algorithm will have an impact on the
accuracy of calculations [7].

5.1 Stress profiles in realistic forming conditions

In a realistic simulation of forming the in-plane tension may have a greater influence on
through-thickness stress profiles than that which was assumed while deriving the algorithms
for locating POD1 and POD2. To investigate that, several simulations of the top-hat
section test are performed. The test is schematically shown in figure 5.1.
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Figure 5.1: Schematic of the top-hat sec-
tion test.
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recording.
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An aluminium alloy is used in the simulations. Its properties and some process parameters
are summarised in table 5.1. To describe the blank, discrete Kirchhoff triangular elements
are used with 30 Gauss points through the thickness. The level of discretisation is chosen
which results into 7 elements being in contact with the die radius. This mesh density
minimises influence of the discretisation error on the accuracy of simulations [29]. The
tools are described by means of analytical surfaces. Two simulations are performed to
define the effect of the in-plane tension, namely with friction and without friction.

An element of the blank is chosen that completely passes the die radius during forming.
For a column of integration points the circumferential stresses σxx are recorded at the
moment when: the element is in the bending region (region 1 in figure 5.2); the element
is in the region of constant die curvature (region 2) and the element is in the unbending
region (region 3).
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Figure 5.4: Evolution of stresses in region 2.

The simulation without friction can be characterised by negligible values of the in-plane
tension. In this case, when the material enters region 1 of the die radius it is bent without
tension to a certain curvature. After that, in the region of the constant die curvature
loading conditions change and the material is allowed to relax. As a result, as shown in
figure 5.3, the stress level decreases. The change of the stress state which takes place while

Sheet thickness, mm 0.81

Blank dimensions, mm 35×350

Young’s modulus, GPa 71

Poisson’s ratio 0.33

YSmean, MPa 135.3

r0, r45, r90 0.71, 0.58, 0.70

C, MPa 576.79

n 0.3593

Friction coefficient 0.162

Blankholder force, N 19600

Table 5.1: Material and process parameters of the top-hat section test.
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moving around the die radius is shown in figure 5.4. The stress profiles at three different
moments of the simulation are presented.

As soon as the material reaches the end of the die curvature it is straightened and it
experiences bending in the opposite direction. It is possible that during this process the
elastic limit is reached and the material starts to deform plastically, as can be seen in figure
5.3. The stress profiles shown in this figure are comparable to those considered earlier when
defining the algorithms for locating the points of discontinuity POD1 and POD2 (see for
example figure 4.4).

The simulation with friction shows that the in-plane tension has a significant effect on the
through-thickness stress profiles. In region 1 the material is bent under tension and, as
shown in figure 5.5, the shift of the neutral line takes place. While travelling around the
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Figure 5.5: Stress profiles in regions 1 and 2.
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Figure 5.6: Evolution of stresses in region 2.

die radius, when the curvature does not change, the bending part of loading conditions
decreases and the material mainly undergoes tensile deformations. Due to the change in
loading conditions the stress relaxation occurs in the outer layers, but the main part of the
material remains in tension (see figure 5.5).

Figure 5.6 shows the evolution of the stress state which occurs when the material travels
around the die curvature. In this figure the stress distributions at three different moments
of the simulation are plotted. It can be seen that contrary to the situation without friction
the tensile deformations flatten the stress profiles and make the points of discontinuity less
distinguishable. In region 3 unbending takes place and the material again experiences a
combined influence of bending moment and tension. As can be seen in figure 5.7, the outer
layer is in compression, the inner layer is in tension and there are two clearly visible points
of discontinuity.

These results show that in realistic simulations of forming, when friction is included, the
influence of tension is two-fold: it causes the shift of the neutral line and it modifies the
shape of the through-thickness stress profile. The flattening which occurs in the region of
constant die curvature decreases the number of points of discontinuity. The stress profiles
used to locate POD2 (see for example figure 4.9) were obtained based on the assumption
of uniform distribution of tension through the material thickness. In the analysis with
friction this assumption is not valid and therefore the strategy to define locations of POD2,
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Figure 5.7: Stress profiles from simulation with friction.

presented in chapter 4, is not applicable anymore. An alternative numerical scheme is
needed that is capable of locating points of discontinuity in a stress profile obtained from
an arbitrary loading scenario. An idea that can be used to develop such a scheme is given
below.

5.2 Numerical scheme to locate discontinuities

To explain the idea, pure bending of a beam to a radius of 60mm is considered. Thickness
of the beam is 1mm and its material is an aluminium alloy. The material properties can
be found in table 2.1. Using the assumptions presented in chapter 2, through-thickness
stress distribution, location of elastic-plastic transitions and the resulting bending moment
can be easily calculated analytically. In section 3.2 the adaptive integration strategy was
defined and used to calculate the bending moment numerically. One of the components
of the interval manager used the analytical formulae to define the position of the elastic-
plastic transitions. The main goal now is to redefine this component and to substitute the
analytical formulae by a numerical procedure.

Due to the symmetry only half of the beam thickness is considered. For simplicity of
explanation, there are only 4 equally spaced integration points and the interval processor
of the adaptive scheme uses the generalised composite trapezoidal rule to perform the
actual integration. Let the beam be deformed in two incremental steps. During the first
increment the beam is bent to a radius ρ1 = 100mm. The stress distribution calculated
analytically is shown in figure 5.8.

The procedure to find the location where the material transits from elastic into plastic
consists of several steps:

1) the incremental circumferential strain is calculated for every integration point. It can
be found using equation 2.1:

∆ε = ε1 − ε0 =
z

ρ1

(5.1)
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Figure 5.8: Analytical stress distribution
after the first load increment.
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Figure 5.9: Stress values at integration
points after the first load increment.

where ε0 is the initial total strain, ε1 is the total strain after bending and z is the
through-thickness coordinate. Before the bending the initial total strain equals zero,
therefore:

∆ε =
z

ρ1

(5.2)

2) the circumferential stress is calculated for every integration point. Depending on the
material and process conditions a point may be in the region of elastic or plastic
deformations. As a result, different formulae must be used to find values of the
circumferential stresses. To identify that, the yield condition is checked at every
integration point and for this simple problem it can be written as follows [1]:

F = |σ0 + σtrial| − σy0 (5.3)

Where σ0 is the circumferential stress before the deformation (σ0 = 0), σtrial is the
trial stress and σy0 is the initial yield stress. The trial stress is calculated by using
an assumption that the total strain increment is elastic:

σtrial =
E

1 − ν2
· ∆ε =

E

1 − ν2
· z

ρ1

(5.4)

The initial yield stress σy0, as was defined in chapter 2, is equal to 2/
√

3σun, where
σun is the uniaxial yield stress. A material point is in the elastic regime if the stress
state gives F < 0 and yielding of the material occurs when F = 0. If an integration
point is elastic its value of the circumferential stress equals σtrial. For integration
points in the plastic region the stress is calculated using equation 2.12. The crosses,
that are shown in figure 5.9, highlight the location and the associated stress values
of the integration points in the plastic region (points 3 and 4). The points in the
elastic region (1 and 2) are shown with the circles and, in addition to that, they are
flagged as elastic until the end of the incremental loading procedure.

3) two interpolating polynomials are defined to pass through the elastic and plastic
integration points. The Lagrange’s formulae for the interpolating polynomial 1.6 can
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be used for this purpose. For example, the following equation defines two lines that
pass through the points 1, 2 and 3, 4:

P j
1 (z) =

z − zi+1

zi − zi+1

f(zi) +
z − zi

zi+1 − zi

f(zi+1)

for j = 1, 2 and i = 1, 3 (5.5)

where f(z) are the stress values at the integration points. The intersection of the lines
will give an approximate location of the elastic-plastic transition (see figure 5.10).

The elastic integration point which is closest to the elastic-plastic transition is relocated.
As shown in figure 5.11 it is placed to lie at the position of the stress profile discontinuity.
Depending on the definition of the interval manager components, other integration points
can also be relocated to better describe the stress profile.
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Figure 5.10: Approximate location of
elastic-plastic transition point.
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Figure 5.11: Relocation of elastic integra-
tion point.
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Figure 5.12: Approximate location of transition point during the second load increment. Results of
analytical calculations are shown with dashed curves.

During the second load increment the beam is bent to the final radius ρ2 = 60mm. The new
increment of the total strain and the new stress value are calculated for every integration
point. For the points that are flagged as elastic only the trial stresses are calculated, which
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gives the accurate value of the slope in the elastic region. Two lines are again fitted to pass
through the elastic and plastic points and their intersection will approximately define the
new location of the elastic-plastic transition (see figure 5.12). From this figure it can be
seen that there is a mismatch between the analytical and numerical points of discontinuity.
However, it is believed that the difference between the points a and b can be reduced by
using more incremental steps to bend the beam to the final radius.

It has been shown that the alternative algorithm for locating points of discontinuity in one
dimensional stress profile performs well. This idea can be used as a basis to develop other
more complex numerical algorithms to locate stress profile discontinuities for an arbitrary
loading scenario.





Conclusions

The error due to numerical integration in thickness direction is one of the reasons of
common inaccuracy of springback prediction in a finite element analysis of sheet metal
forming. During a finite element solution procedure well-known numerical schemes, such
as, trapezoidal, Simpson’s, Lobatto rules or Gauss quadrature are commonly used for the
through-thickness integration in shell elements. For a linear analysis, when the material
is in the elastic regime, any of the schemes can be used and the negligible numerical inte-
gration error can be obtained with a limited number of integration points. The situation
changes when the material undergoes elastic-plastic deformations. The traditional integra-
tion rules can only guarantee low integration error when using a significant number of the
integration points. Even for a simple problem up to 50 integration points may be needed
to decrease the influence of numerical integration on the accuracy of springback prediction.

Influence of material and process parameters on the numerical integration error was tested
using the bending with tension problem. It was shown that the error increases with in-
creasing the sharpness of the integrand’s profile near the points of discontinuity. Varying
material and process parameters changes the integrand’s smoothness and, as a result, tra-
ditional integration rules may require different number of the integration points to achieve
the specified level of accuracy. In addition to that, when using a fixed number of the in-
tegration points their location relative to the points of discontinuity changes with varying
process conditions. At some instant the location of the integration points is favourable to
the numerical integration and the error is low. At some other moment, when the process
conditions are slightly different, the points location is less appropriate and the integration
error is high. Such oscillation makes it impossible to develop any practical guidelines that
can be used to choose the number of the integration points in thickness direction. Very high
number of the integration points, needed to assure certain accuracy, and the error oscilla-
tion reveal inefficiency of the traditional numerical schemes used for the through-thickness
integration in shell elements.

The adaptive integration strategy for the Kirchhoff shell elements, developed in this report,
may be a good alternative. It consists of two groups of components: interval manager
components and interval processor components. In the end of every successfully converged
incremental step of the implicit finite element solution procedure the interval manager
evaluates the integrand’s profile. Based on this information the location and the number
of the integration points is adapted. This ensures the correct bending moment which will
govern a change of shape in case of unloading. Within an incremental step, to minimise
divergence of the iterative Newton-Raphson process, the integration points are not adapted
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and the interval processor is called to perform numerical integration when it is required.
Presented in this report, generalised composite trapezoidal or Simpson’s rules, rules based
on overlapping parabolas and spline interpolation are the numerical schemes which can be
used by the interval processor. For high flexibility they are all based on the integration
using unequally distributed points.

Excellent results were obtained while testing the performance of the adaptive integration
strategy. Calculations of the bending with tension problem showed that for a similar set
of material and process parameters the adaptive Simpson’s integration with 7 integration
points performs significantly better than the traditional trapezoidal rule with 50 integration
points. Tracing the location of discontinuities in the integrand’s profile suppressed the
error oscillation. As a result, for this problem it became possible to guarantee a level of
the integration error which can be obtained when using the adaptive strategy with the
specific number of the integration points.

Clear definition of the components of the adaptive integration strategy allows initiation
of its trial implementation in finite elements. The strategy will be implemented for the
Kirchhoff triangular elements in the implicit finite element code DiekA. Subsequently its
performance will be tested using a number of representative examples.

It has been shown that, in its current definition, the adaptive through-thickness integration
strategy for shell elements has some limitations. It only allows tracing a location of the
stress profile discontinuities which occur after bending and bending/unbending and it is
only applicable in situations when friction is not included into a finite element analysis. To
be generally applicable, some components of the interval manager of the strategy will have
to be modified. New algorithms will be developed to locate stress profile discontinuities
which occur in arbitrary loading conditions.
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Appendix A: Alternative formula for

cubic spline.

Let hj = xj+1 − xj for j = 0, 1, . . . , n − 1. To derive a more convenient formula for the
cubic spline the equation 1.34 is modified to give:

S(x) =
(xj + hj − x)3

6hj

Mj +
(x − xj)

3

6hj

Mj+1 +
(

yj −
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jMj
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(
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Choosing

cj =
Mj

2
aj = yj

bj =
aj+1 − aj

hj

− (2cj + cj+1)

3
hj, for j = 0, 1, . . . , n − 1

dj =
cj+1 − cj

3hj

(A-2)

the cubic spline equation becomes:

Sj(x) = aj + bj(x − xj) + cj(x − xj)
2 + dj(x − xj)

3

for xj ≤ x ≤ xj+1, j = 0, 1, · · · , n − 1 (A-3)



Appendix B: Derivation of formula

for spline integration.

To derive the formula for spline integration a natural cubic spline Sj(x) on interval ∆j =
[xj−1, xj] can be considered. Let hj = xj − xj−1. Using equation 1.34 and formally inte-
grating the spline on the interval gives:

∫ xj

xj−1

Sj(x) dx =

∫ xj

xj−1

[(xj − x)3

6hj
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dx (B-1)

To simplify the derivation the integral B-1 can be split into several parts:
∫ xj

xj−1

Sj(x) dx = I1 + I2 + I3 + I4

where

I1 =
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To solve the integral I1 let a = xj − x be a new integration variable. Therefore da = −dx
and the new limits of integration are al = xj − xj−1 = hj and au = 0. Then

I1 = −Mj−1

6hj
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Similarly, let a = x − xj−1, then da = dx, al = 0, au = hj and the integral I2 becomes:
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The integral I3 can be found as follows:
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The integral I4 becomes:

I4 =
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Appendix C. Subroutine for

calculating Gauss-Legendre abscissas

and weights.

Given lower and upper limits of integration x1 and x2, the routine calculates arrays x
and w of length N containing the abscissas and weights of the Gauss-Legendre N-point
quadrature formula.

SUBROUTINE gauleg(x1, x2, x, w)

USE nrtype; USE nrutil, ONLY : arth, assert_eq, nrerror

IMPLICIT NONE REAL(SP), INTENT(IN) :: x1, x2

REAL(SP), DIMENSION(:), INTENT(OUT) :: x, w

REAL(DP), PARAMETER :: EPS=3.0e-14_dp

INTEGER(I4B) :: its, j, m, n

INTEGER(I4B), PARAMETER :: MAXIT=10

REAL(DP) :: xl, xm

REAL(DP), DIMENSION((size(x)+1)/2) :: p1, p2, p3, pp, z, z1

LOGICAL(LGT), DIMENSION((size(x)+1)/2) :: unfinished

n=assert_eq(size(x),size(w),gauleg)

! The roots are symmetric in the interval, so only half of them

! need to be found.

m=(n+1)/2

xm=0.5_dp*(x2+x1)

xl=0.5_dp*(x2-x1)

! Initial approximations to the roots.

z=cos(PI_D*(arth(1,1,m)-0.25_dp)/(n+0.5_dp))

unfinished=.true.

! Newtons method carried out simultaneously on the roots.

do its=1,MAXIT

where (unfinished)

p1=1.0

p2=0.0
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end where

! Loop up the recurrence relation to get the Legendre polynomials

! evaluated at z.

do j=1,n

where (unfinished)

p3=p2

p2=p1

p1=((2.0_dp*j-1.0_dp)*z*p2-(j-1.0_dp)*p3)/j

end where

end do

! p1 now contains the desired Legendre polynomials.

! Next pp, the derivatives, are computed by a standard

! relation involving also p2, the polynomials of one lower order.

where (unfinished)

pp=n*(z*p1-p2)/(z*z-1.0_dp)

z1=z

z=z1-p1/pp

unfinished=(abs(z-z1) > EPS)

end where

if (.not. any(unfinished)) exit

end do

if (its == MAXIT+1) call nrerror(too many iterations in gauleg)

! Scale the root to the desired interval, and put in its

! symmetric counterpart.

x(1:m)=xm-xl*z

x(n:n-m+1:-1)=xm+xl*z

! Compute the weight w(n:n-m+1:-1)=w(1:m) and its symmetric

! counterpart.

w(1:m)=2.0_dp*xl/((1.0_dp-z**2)*pp**2)

w(n:n-m+1:-1)=w(1:m)

END SUBROUTINE gauleg



Appendix D. Equations for in-plane

tension and bending moment.

Analytically solving the integral from equation 2.17 one obtains the formula that describes
the tension in the region of elastic deformations:

T e =
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using equation 2.7 for b1:
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The tension caused by the plastic stresses can be derived by solving equation 2.18:

T p =

∫ t
2
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Let u be a new integration variable, then:
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upper integration limit

u2 =
t
2
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E
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Hence, the tension T p becomes:
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The compressive force caused by the elastic stresses is found by solving equation 2.19:
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using equation 2.8 for b2:
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Solving equation 2.20 gives the expression for the compressive force caused by the plastic
stresses:
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and
dz = ρ du

lower integration limit

u1 =
− t

2
− a

ρ
+

C1σun

E
− ε0

upper integration limit

u2 =
a − b2 − a

ρ
+

C1σun

E
− ε0 = −b2

ρ
+

C1σun

E
− ε0 = −ε0



89

Hence, the compressive force Cp becomes:

Cp = −
∫ u2

u1

C ′ |u|n ρ du = −C ′ ρ
|u|n+1

n + 1

∣

∣

∣

u2

u1

=

= − C ′ ρ

n + 1

∣

∣

∣
εn+1
0 −

∣

∣

∣

− t
2
− a

ρ
+

C1σun

E
− ε0

∣

∣

∣

n+1∣
∣

∣
(D-4)

Closed form solution of equations 2.26 and 2.27 gives expressions for the parts of the total
bending moment in the tension region.

M e
T =

∫ z1

a

E

1 − ν2

(z − a

ρ

)

z dz =
E

ρ (1 − ν2)

∫ a+b1

a

(z2 − az) dz =

=
E

ρ (1 − ν2)

(z3

3

∣

∣

∣

a+b1

a
− az2

2

∣

∣

∣

a+b1

a

)

=

=
E

ρ (1 − ν2)

((a + b1)
3

3
− a3

3
−

(a(a + b1)
2

2
− a3

2

))

=

=
E

ρ (1 − ν2)

(a3 + 3a2b1 + 3ab2
1 + b3

1 − a3

3
−

(a3 + 2a2b1 + ab2
1 − a3

2

))

=

=
E

ρ (1 − ν2)

(3a2b1 + 3ab2
1 + b3

1

3
− 2a2b1 + ab2

1

2

)

=

=
E

ρ (1 − ν2)

(6a2b1 + 6ab2
1 + 2b3

1 − 6a2b1 − 3ab2
1

6

)

=
E

ρ (1 − ν2)

(2b3
1 + 3ab2

1

6

)

=

=
E

ρ (1 − ν2)
b2
1

(b1

3
+

a

2

)

=
E

ρ (1 − ν2)

(C1 σun ρ

E

)2(C1 σun ρ

3 E
+

a

2

)

⇒

M e
T =

C2
1 σ2

un ρ

E (1 − ν2)

(C1 σun ρ

3 E
+

a

2

)

(D-5)

Mp
T =

∫ t
2

z1

C ′
(z − a

ρ
− C1 σun

E
+ ε0

)n

z dz =

∫ t
2

a+b1

C ′
(z − a

ρ
− C1 σun

E
+ ε0

)n

z dz

Let u be a new integration variable, then:

u =
z − a

ρ
−C1 σun

E
+ε0 ⇒ z − a

ρ
= u+

C1 σun

E
−ε0 ⇒ z = u ρ+

C1 σun ρ

E
−ε0 ρ+a

and
dz = ρ du

lower integration limit

u1 =
a + b1 − a

ρ
− C1σun

E
+ ε0 =

b1

ρ
− C1σun

E
+ ε0 = ε0

upper integration limit

u2 =
t
2
− a

ρ
− C1σun

E
+ ε0
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Hence, the moment Mp
T becomes:

Mp
T =

∫ u2

u1

C ′ un
(

u ρ +
C1 σun ρ

E
− ε0 ρ + a

)

ρ du =

= C ′ ρ
(

∫ u2

u1

ρ un+1 du +

∫ u2

u1

(C1 σun ρ

E
− ε0 ρ + a

)

un du
)

=

= C ′ ρ
( ρ

n + 2
un+2

∣

∣

∣

u2

u1

+
(C1 σun ρ

E
− ε0 ρ + a

) un+1

n + 1

∣

∣

∣

u2

u1

)

=

= C ′ ρ
( ρ

n + 2

(( t
2
− a

ρ
− C1σun

E
+ ε0

)n+2

− εn+2
0

)

+
(C1 σun ρ

E
− ε0 ρ + a

)

×

× 1

n + 1

(( t
2
− a

ρ
− C1σun

E
+ ε0

)n+1

− εn+1
0

))

⇒

Mp
T = C ′ ρ

( ρ

n + 2

(( t
2
− a

ρ
− C1σun

E
+ ε0

)n+2

− εn+2
0

)

+
(C1 σun ρ

E
− ε0 ρ + a

)

×

× 1

n + 1

(( t
2
− a

ρ
− C1σun

E
+ ε0

)n+1

− εn+1
0

))
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Solving analytically equations 2.28 and 2.29 one obtains expressions for the parts of the
total bending moment in the compression region:

M e
C =

∫ a

z2

E

1 − ν2

(z − a

ρ

)

z dz =
E

ρ (1 − ν2)

∫ a

a−b2

(z2 − az) dz =

=
E

ρ (1 − ν2)

(z3

3

∣

∣

∣

a

a−b2
− az2

2

∣

∣

∣

a

a−b2

)

=

=
E

ρ (1 − ν2)

(a3

3
− (a − b2)

3

3
−

(a3

2
− a (a − b2)

2

2

))

=

=
E

ρ (1 − ν2)

(a3 − a3 + 3a2b2 − 3ab2
2 + b3

2

3
−

(a3 − a3 + 2a2b2 − ab2
2)

2

))

=

=
E

ρ (1 − ν2)

(3a2b2 − 3ab2
2 + b3

2

3
− 2a2b2 − ab2

2

2

)

=

=
E

ρ (1 − ν2)

(6a2b2 − 6ab2
2 + 2b3

2 − 6a2b2 + 3ab2
2

6

)

=
E

ρ (1 − ν2)

(2b3
2 − 3ab2

2

6

)

=

=
E

ρ (1 − ν2)
b2
2

(b2

3
− a

2

)

=
E

ρ (1 − ν2)

(C1 σun ρ

E

)2(C1 σun ρ

3 E
− a

2

)

⇒

M e
C =

C2
1 σ2

un ρ

E (1 − ν2)

(C1 σun ρ

3 E
− a

2

)

(D-7)

Mp
C = −

∫ z2

− t
2

C ′
∣

∣

∣

z − a

ρ
+

C1 σun

E
− ε0

∣

∣

∣

n

z dz = −
∫ a−b2

− t
2

C ′
∣

∣

∣

z − a

ρ
+

C1 σun

E
− ε0

∣

∣

∣

n

z dz
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Let u be a new integration variable, then:

u =
z − a

ρ
+

C1 σun

E
−ε0 ⇒ z − a

ρ
= u−C1 σun

E
+ε0 ⇒ z = u ρ−C1 σun ρ

E
+ε0 ρ+a

and
dz = ρ du

lower integration limit

u1 =
− t

2
− a

ρ
+

C1σun

E
− ε0

upper integration limit

u2 =
a − b2 − a

ρ
+

C1σun

E
− ε0 =

−b2

ρ
+

C1σun

E
− ε0 = −ε0

Hence, the moment Mp
C2

becomes:

Mp
C = −

∫ u2

u1

C ′ |u|n
(

u ρ − C1 σun ρ

E
+ ε0 ρ + a

)

ρ du =

= −C ′ ρ
(

∫ u2

u1

ρ |u|n+1 du +

∫ u2

u1

(

ε0 ρ + a − C1 σun ρ

E

)

|u|n du =

= −C ′ ρ
( ρ

n + 2
|u|n+2

∣

∣

∣

u2

u1

+
(

ε0 ρ + a − C1 σun ρ

E

) 1

n + 1
|u|n+1

∣

∣

∣

u2

u1

)

=

= C ′ ρ
∣

∣

∣

ρ

n + 2

(

εn+2
0 −

∣

∣

∣

− t
2
− a

ρ
+

C1σun

E
− ε0

∣

∣

∣

n+2)

−
(

ε0ρ + a − C1 σun ρ

E)

) 1

n + 1
×

×
(

εn+1
0 −

∣

∣

∣

− t
2
− a

ρ
+

C1σun

E
− ε0

∣

∣

∣

n+1)∣

∣

∣
⇒

Mp
C = C ′ ρ

∣

∣

∣

ρ

n + 2

(

εn+2
0 −

∣

∣

∣

− t
2
− a

ρ
+

C1σun

E
− ε0

∣

∣

∣

n+2)

−
(

ε0ρ + a − C1 σun ρ
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) 1

n + 1
×
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(
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∣

∣

∣

− t
2
− a

ρ
+
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E
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∣

∣

∣

n+1)∣

∣
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