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Abstract

Newton flows are dynamical systems generated by a continuous, desingularized Newton
method for mappings from a Euclidean space to itself. We focus on the special case
of meromorphic functions on the complex plane. Inspired by the analogy between the
rational (complex) and the elliptic (i.e., doubly periodic meromorphic) functions, a
theory on the class of so-called Elliptic Newton flows is developed.

With respect to an appropriate topology on the set of all elliptic functions f of fixed
order r(> 2) we prove: For almost all functions f , the corresponding Newton flows are
structurally stable i.e., topologically invariant under small perturbations of the zeros
and poles for f [genericity].

The phase portrait of a structurally stable elliptic Newton flow generates a con-
nected, cellularly embedded, graph G(f) on T with r vertices, 2r edges and r faces
that fulfil certain combinatorial properties (Euler, Hall) on some of its subgraphs. The
graph G(f) determines the conjugacy class of the flow [characterization].

A connected, cellularly embedded toroidal graph G with the above Euler and Hall

properties, is called a Newton graph. Any Newton graph G can be realized as the graph
G(f) of the structurally stable Newton flow for some function f [classification].

This leads to: up till conjugacy between flows and (topological) equivalency between
graphs, there is a 1-1 correspondence between the structurally stable Newton flows and
Newton graphs, both with respect to the same order r of the underlying functions f

[representation].
In particular, it follows that in case r = 2, there is only one (up to conjugacy)

structurally stabe elliptic Newton flow, whereas in case r = 3, we find a list of nine

graphs, determining all possibilities.
Moreover, we pay attention to the so-called nuclear Newton flows of order r, and

indicate how - by a bifurcation procedure - any structurally stable elliptic Newton flow
of order r can be obtained from such a nuclear flow.

Finally, we show that the detection of elliptic Newton flows is possible in polynomial
time.
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The proofs of the above results rely on Peixoto’s characterization/classification the-
orems for structurally stable dynamical systems on compact 2-dimensional manifolds,
Stiemke’s theorem of the alternatives, Hall’s theorem of distinct representatives, the
Heffter-Edmonds-Ringer rotation principle for embedded graphs, an existence theorem
on gradient dynamical systems by Smale, and an interpretation of Newton flows as
steady streams.

Subject classification: 05C45, 05C75, 30C15, 30D30, 30F99, 33E15, 34D30, 37C15,
37C20, 37C70, 49M15, 68Q25.

Keywords: Dynamical system (gradient-), Newton flow (rational-, elliptic-; desingular-
ized), structural stability, elliptic function (Jacobian, Weierstrass), phase portrait, Newton
graph (elliptic-, nuclear-, pseudo-; rational-), cellularly embedded toroidal (distinguished)
graph, face traversal procedure, steady stream, complexity.

1 Meromorphic Newton flows

In this section we briefly explain the concept of meromorphic Newton flow. For details and
historical notes, see [3], [4], [8], [21], [22]. In the sequel, let f stand for a non-constant
meromorphic function on the complex plane. So, f(z) is complex analytic for all z in C with
the possible exception of (countably many) isolated singularities: the poles for f .

The (damped) Newton method for finding zeros of f (with starting point z0) is given by

zn+1−zn = −tn
f(zn)

f ′(zn)
, tn 6= 0, n = 0, 1, . . . , z0 = z0. (1)

Dividing both sides of (1) by the ”damping factor” tn and choosing tn smaller and smaller,
yields an ”infinitesimal version” of (1), namely

dz

dt
=

−f(z)

f ′(z)
. (2)

Conversely, Euler’s method applied to (2), gives rise to an iteration of the form (1). A
dynamical system of type (2) is denoted by N (f). For this system we will interchangeably
use the following terminologies: vector field [i.e. the expression on its r.h.s.], or (Newton-)flow
[when we focus on its phase portrait(=family of all maximal trajectories as point sets)].

Obviously, zeros and poles for f are removable singularities for f
f ′

and turn into isolated

equilibria for N (f). Special attention should be paid to those points z where f(z) 6= 0
and f

′

(z) = 0. In these (isolated!) so-called critical points , the vector field N (f) is not
well-defined. We overcome this complication by introducing an additional ”damping factor”
(1 + |f(z)|4)−1|f ′

(z)|2(≥ 0) and considering a system N (f) of the form

dz

dt
= −(1 + |f(z)|4)−1f ′(z)f(z). (3)

Clearly, N (f) may be regarded as another infinitesimal version of Newton’s iteration (1).
Note that, where both N (f) and N (f) are well-defined, their phase portraits coincide,
including the orientations of the trajectories (cf. Fig. 1). Moreover, N (f) is a smooth, even
real (but not complex) analytic vector field on the whole plane. In the sequel, we refer to
N (f) as to a desingularized Newton flow for f on C.
Integration of (2) yields:

f(z(t)) = e−tf(z0), z(0) = z0, (4)
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z(t) 

z( 

N (f)

N (f)

Figure 1: N (f) versus N (f).

where z(t) denotes the maximal trajectory for N (f) through a point z0. So we have

N (f)-trajectories and also those of N (f), are made up of lines arg f(z) = constant. (5)

It is easily verified that these Newton flows fulfil a duality property which will play an
important role in the sequel:

N (f) = −N (
1

f
) and N (f) = −N (

1

f
). (6)

As a consequence of (5), (6), and using properties of (multi-)conformal mappings, we picture
the local phase portraits of N (f) and N (f) around their equilibria. See the comment on
Fig.2, where N(f), P (f) and C(f) stands for respectively the set of zeros, poles and critical
points of f .

◦ : attractor (in N(f))
(a)

• : repellor (in P (f))
(b)

+ : 1-fold saddle (in C(f))
(c)

∗ : 2-fold saddle (in C(f))
(d)

Figure 2: Local phase portraits around equilibria of N (f)

Comment on Fig. 2:
Fig. 2-(a), (b): In case of a k-fold zero (pole) the Newton flow exhibits an attractor (repellor)
and each (principal) value of argf appears precisely k times on equally distributed incoming
(outgoing) trajectories. Moreover, the (positively measured) angle between two different
incoming (outgoing) trajectories intersect under a non vanishing angle (= ∆

k
), where ∆

stands for the difference of the argf values on these trajectories. In the sequel we will use:
If two incoming (outgoing) trajectories at a simple zero (pole) admit the same argf value,
those trajectories coincide.
Fig. 2-(c), (d): In case of a k-fold critical point (i.e. a k-fold zero for f ′, no zero for f)
the Newton flow exhibits a k-fold saddle, the stable (unstable) separatrices being equally

3



#"!!!!!!!!!!!!!!!!!!!!!!!!!!$!

!

!"#$%$&'
!

"!

Figure 3: Phaseportrait N (z2 − 1)
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Figure 4: Phaseportrait N ( 1
z2−1 )

distributed around this point. The two unstable (stable) separatrices at a 1-fold saddle, see
Fig.2(c), constitute the local unstable (stable) manifold at this saddle point.

In the sequel we shall need:

Remark 1.1. Let z0 be either a simple zero, pole or critical point for f . Then z0 is a
hyperbolic1 equilibrium for N (f). (In case of a zero or critical point for f , this follows by
inspection of the linearization of the r.h.s. of N (f): in case of a pole use (6).)

Remark 1.2. (Desingularized meromorphic Newton flows in R2-setting)
If we put F : (Re(z), Im(z))T (= (x1, x2)

T ) 7→ (Ref(z), Imf(z))T , the desingularized Newton
flow N (f) takes the form

d

dt
(x1, x2)

T = −[1 + |F (x1, x2)|
4]−1 det(DF (x1, x2))(DF )−1(x1, x2)F (x1, x2) (7)

= −[1 + |F (x1, x2)|
4]−1D̃F (x1, x2)F (x1, x2),

1An equilibrium for a C1- vector field on R2 is called hyperbolic if the Jacobi matrix at this equilibrium
has only eigenvalues with non vanishing real parts(cf.[20]).
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Figure 5: Phaseportrait N (sin z)

where (·)T stands for transpose, and D̃F (·) for the co-factor (adjoint) matrix2 of the Jacobi
matrix DF (·) of F . (The r.h.s. of (7) vanishes at points corresponding to poles of f)

We end up with some pictures illustrating the above explanation.

2i.e. D̃F (x1, x2) · DF (x1, x2) = det(DF (x1, x2))I2, where I2 stands for the 2 × 2-unit matrix.

 

�� 
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Figure 6: Phaseportrait of N (tanhz)
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2 Rational Newton flows

Here we present some earlier results on meromorphic Newton flows in the special case of
rational functions. Throughout this section, let f be a (non-constant) rational function.
By means of the transformation w = 1

z
we may regard f as a function on the extended

complex plane C ∪ {z = ∞}. As usual, we identify the latter set with the sphere S2 ( as a
Riemann surface) and the set R of extended functions f with the set of all (non-constant)
meromorphic functions on S2. The transformation w= 1

z
turns the planar rational Newton

flow N (f), f ∈ R, into a smooth vector field on S2, denoted N (f), cf. [23], [36]. In the theory
on such vector fields the concept of structural stability plays an important role, see e.g. [32]

or [20]. Roughly speaking, structural stability of N (f) means ”topological invariance of its
phase portrait under sufficiently small perturbations of the problem data”. Here we briefly
summarize the results as obtained by Jongen, Jonker, Twilt (cf. [22], [23], [24]):

Theorem 2.1. (Structural stability for rational Newton flows)
Let f ∈ R, then:

(i) Characterization:

The flow N (f), f ∈ R, is structurally stable iff f fulfils the following conditions:

• All finite zeros and poles for f are simple.

• All critical points for f , possibly including z = ∞, are simple.

• No two critical points for f are connected by an N (f)-trajectory.

(ii) Genericity:

For “almost all” functions f in R, the flows N (f) are structurally stable, i.e. the
functions f as in (i) constitute an open and dense subset of R (w.r.t. an appropriate
topology on R).

(iii) Classification:

The conjugacy classes of the stucturally stable flows N (f) can be classified in terms of
certain sphere graphs that are generated by the phase portraits of these flows.

(iv) Representation:
Up to conjugacy for flows and (topological) equivalency for graphs, there is a 1-1-

correspondence between the set of all structurally stable flows N (f) and the set of
all so-called Newton graphs, i.e., cellularly embedded sphere graphs that fulfil some
combinatorial (Hall ) condition.

The purpose of the present paper is to find out wether similar results hold for elliptic
Newton flows (i.e., meromorphic Newton flows in the case of elliptic functions). See also the
forthcoming Section 13.1.

Phase portraits of rational Newton flows (even structurally stable) on C are presented
in Fig. 3 and 4. The simplest example of a spherical rational Newton flow is the so-called

North-South flow, given by N (zn), see Fig. 7; structurally stable if n = 1. Intuitively, it is

clear that the phase portraits of N (zn) and N (( z−a
z−b

)n), a 6= b, are topologically equivalent
(i.e. equal up to conjugacy), see see Fig. 7 and 8.
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N (zn) N (zn)

Figure 7: The planar and spherical North-South flow

a

b

Figure 8: N (( z−a
z−b

)n)
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3 Elliptic Newton flows: definition

Throughout this section, let f be a (non-constant) elliptic, i.e. a meromorphic and doubly
periodic function of order r (2 ≤ r < ∞) with (ω1, ω2) as a pair of basic periods.3 We may
assume that Imω2

ω1
> 0. The associated period lattice is denoted by Λ, and Pω1, ω2

stands
for the ”half open/half closed” period parallelogram {t1ω1 + t2ω2 | 0 ≤ t1 < 1, 0 ≤ t2 < 1}.
On Pω1,ω2

, the function f has r zeros and r poles (counted by multiplicity).
By Liouville’s Theorem, these sets of zeros and poles determine f up to a multiplicative

constant C(6= 0), and thus also the class [f ] of all elliptic functions of the form Cf,C(6= 0).
Let Tω1,ω2

be the torus obtained from Pω1,ω2
by identifying opposite sides in the bound-

ary of this parallelogram. The planar, desingularized Newton flow N (f) is doubly periodic
on C with periods (ω1, ω2). Hence, this flow may be interpreted as a smooth (not com-

plex analytic) vector field -say N (fω1,ω2
)- on Tω1,ω2

; its trajectories correspond to the lines

argf(z) = constant, cf. (5). We refer to N (fω1,ω2
) as the (desingularized) elliptic Newton

flow for f on Tω1,ω2
.

If g is another function in [f ], the planar flows N (g) and N (f) have equal phase portraits,
as follows by inspection of the expressions of these flows in Section 1; see also Fig.1. Hence,

the flows N (fω1,ω2
) and N (gω1,ω2

), both defined on Tω1,ω2
, have equal phase portraits.

Next, we choose another pair of basic periods for f , say (ω′
1, ω

′
2), with Im

ω′

2

ω′

1

> 0, i.e.

(ω1, ω2) and (ω′
1, ω

′
2) generate the same lattice Λ and are related by a unimodular4 linear

transfomation M . Note that under M the zeros/poles for f on Pω1,ω2
are mapped onto the

zeros/poles for f on Pω
′

1
,ω

′

2

.

The above introduction of the concept “elliptic Newton flow for f” leads to different flows
(being defined on different tori Tω1,ω2

and Tω
′

1
,ω

′

2

). However, from a topological point of

view, all these flows may be considered as equal:

Lemma 3.1. Let (ω1, ω2) and (ω
′

1, ω
′

2) be pairs of basic periods for f . Then, the unimodular
mapping from (ω1, ω2) to (ω

′

1, ω
′

2) induces a homeomorphism from Tω1,ω2
to Tω

′

1
,ω

′

2

such

that the phase portraits of N (fω1,ω2
) and N (fω

′

1
,ω

′

2

) correspond under this homeomorphism,

thereby respecting the orientations of the trajectories.

Proof. We turn over from N (fω1,ω2
) and N (fω

′

1
,ω

′

2

) to their R2-settings, say N (F ) resp.

N (F
′

), cf. Remark 1.2. (Note that N (F )=N (F
′

)). The linear isomorphism, given by the
basis transfomation (Ω) from (ω1, ω2) to (1, i) -considered as two ordered bases for C as the
real vector space R2- is given by a 2 × 2-matrix, also denoted Ω. Analogously, we define Ω′

with respect to (ω′
1, ω

′
2) and (1, i). The (linear) unimodular transformation from (ω1, ω2) to

(ω′
1, ω

′
2) is given by a 2 × 2-matrix M . We put

H = Ω′MΩ−1 and H(xT ) = yT , x = (x1, x2), y = (y1, y2) ∈ R2.

Then F=F
′ ◦ H. The flow N (F ) takes the form

dxT

dt
= −[1 + |F (x)|4]−1D̃F (x)F (x). (8)

By the Chain Rule, this equation turns -under the transformation xT = H−1(yT )- into:

dyT

dt
= −[1 + |F ′

(y)|4]−1 det(H) ˜DF ′(y)F
′

(y).

3i.e. each period is of the form nω1 + mω2, n, m ∈ Z. In particular, Im ω2

ω1
6= 0 (cf. [27], [6]).

4M is given by a 2 × 2-matrix with coefficients in Z and determinant +1(cf. [6]).
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Apart from the mutiplicative factor det(H) -always strictly positive- this is the expression for
the desingularized Newton flow N (F

′

). Hence, under H the phase portrait of N (F ) remains

invariant. It follows that the phase portraits of N (fω1,ω2
) and N (fω

′

1
,ω

′

2

) correspond under

the homeomorphism from Tω1,ω2
to Tω

′

1
,ω

′

2

, induced by M .

The above lemma, together with the preceding observation, leads to:

Definition 3.2. If f is an elliptic function of order r, then:

(1) The elliptic Newton flow for f , denoted N ([f ]), is the collection of all flows N (gω1,ω2
),

for any g ∈ [f ] and any pair (ω1, ω2) generating the period lattice Λ of f .

(2) The set of all elliptic Newton flows of order r with respect to a given period lattice Λ
is denoted Nr(Λ).

This definition might look rather complicated. However, a natural interpretation is possible.
To see this, let us consider the quotient space T (Λ) :=C/Λ, endowed with the complex
analytic structure5 determined by the pair (ω1, ω2). A pair (ω

′

1, ω
′

2), related to (ω1, ω2)
by a unimodular map, generates the same lattice Λ and determines on T (Λ) another -but
isomorphic- complex analytic structure (cf. [14]). Each parallelogram Pω1,ω2

resp. Pω
′

1
,ω

′

2

contains precisely one representative for each of the classes mod Λ. Hence, the tori Tω1,ω2
and

Tω
′

1
,ω

′

2

may be identified with T (Λ), endowed with isomorphic complex analytic structures.

Now, the flows N (fω1,ω2
) and N (fω

′

1
,ω

′

2

) can be interpreted as smooth flows on T (Λ) with

the same phase portraits. Regarding flows on T (Λ) with the same phase portraits as equal,
compare the “desingularization” step leading from (2) to (3) and see also Fig. 1, we may

interprete the elliptic Newton flow N ([f ]) as a smooth vector field on the compact torus
T (Λ). Consequently, it is allowed to apply the theory for smooth vector fields on compact
two-dimensional differential manifolds. For example: Since there are no closed orbits by (4),
and applying the Poincaré-Bendixson-Schwartz Theorem, cf. [21], [22], [32], we find:

Lemma 3.3. The limiting set of any (maximal) trajectory of N ([f ]) tends -for increasing
t- to either a zero or a critical point for f on T (Λ), and -for decreasing t- to either a pole
or a critical point for f on T (Λ).

We also have:

Remark 3.4. Hyperbolic equilibria for N (f) correspond to such equilibria for N ([f ]).

4 Elliptic Newton flows: representation

Let f be as introduced in Section 3, i.e. an elliptic function of order r (2 ≤ r < ∞) with
(ω1, ω2), Imω2

ω1
> 0, as an (arbitrary) pair of basic periods generating a period lattice Λ.

The set of all such functions is denoted by Er(Λ).
Let the zeros and poles for f on Pω1,ω2

be a1,· · ·, ar, resp. b1,· · ·, br (counted by multi-
plicity). Then we have: (cf. [28])

ai 6= bj , i, j = 1,· · ·, r and a1 + · · · + ar = b1 + · · · + br mod Λ. (9)

We may consider f as a meromorphic function on the quotient space T (Λ):=C/Λ. The zeros
and poles for f on T (Λ) are given by respectively: [a1],· · ·, [ar] and [b1],· · ·, [br], where [·]
stands for the congruency class modΛ of a number in C. Apparently, from (9) it follows:

[ai] 6= [bj ], i, j = 1,· · ·, r and [a1] +· · ·+ [ar] = [b1] +· · ·+ [br]. (10)

5As coordinate neighborhoods in T (Λ) take open subsets of C that contain no points congruent to one
another mod Λ.
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Moreover, a parallelogram of the type Pω1,ω2
contains one representative of each of these

classes: the r zeros/poles for f on this parallelogram.

An elliptic Newton flow N ([f ])(∈ Nr(Λ)) corresponds uniquely to the class [f ]. So we
may identify the set Nr(Λ) with the set {[f ]|f ∈ Er(Λ)}.

On its turn, the class [f ] is uniquely determined (cf. Section 3) by sets of zeros/poles,
say {a1,· · ·, ar}/ {b1,· · ·, br} , both situated in some Pω1,ω2

. Thus, the sets

{[a1],· · ·, [ar]}, {[b1],· · ·, [br]}

fulfill the conditions (10). Conversely, we have:
Let two sets {[a1],· · ·, [ar]}, {[b1],· · ·, [br]} of classes modΛ (repetitions permitted!), fulfilling
conditions (10), be given. Choose (the unique)representatives, say a1,· · ·, ar and b1,· · ·, br

of these classes situated in a half open/half closed parallelogram spanned by an (arbitrary)
pair of basic periods of Λ. We put

b
′

r = a1 +· · ·+ ar − b1 −· · ·− br−1,

thus b
′

r = br mod Λ and [b
′

r] 6= [bj ], j = 1,· · ·, r − 1, and consider functions of the form

C
σ(z − a1)· · ·σ(z − ar)

σ(z − b1)· · ·σ(z − br−1)σ(z − b′

r)
, (11)

where C(6= 0) is an arbitrary constant, and σ stands for the Weierstrass sigma function (cf.
[28]) corresponding to Λ. Since σ is a holomorphic, quasi-periodic function with only simple
zeros, cf. [28], at the lattice points of Λ, a function given by (11) is elliptic (with respect to
Λ) of order r. The zeros and poles are a1,· · ·, ar resp. b1,· · ·, br. Such a function determines
precisely one element of Nr(Λ). (Note that if we choose representatives in an other period
parallelogram we obtain a representative of the same Newton flow, cf. Section 3).

Altogether, we have proved:

Lemma 4.1. Given a lattice Λ, then the flows in Nr(Λ) are represented by the set of all
ordered pairs ({[a1],· · ·, [ar]}, {[b1],· · ·, [br]}) of sets of classes modΛ that fulfil (10).

Remark 4.2. Interchanging the roles of ({[a1],· · ·, [ar]} and {[b1],· · ·, [br]}) reflects the duality

property, cf. (6). In fact, we have N ([ 1
f
]) = −N ([f ]).

On the subset Vr(Λ) in T r(Λ) × T r(Λ) of pairs (c, d), c := ([c1],· · ·, [cr]), d := ([d1],· · ·, [dr]),
that fulfil condition (10), we define an equivalence relation (≈):

(c, d) ≈ (c
′

, d
′

) iff {[c1],· · ·, [cr]} = {[c
′

1],· · ·, [c
′

r]} and {[d1],· · ·, [dr]} = {[d
′

1],· · ·, [d
′

r]}

The topology τ0 on Er(Λ)

Clearly, the set Vr(Λ)/≈ may be identified with the representation space for Nr(Λ) in Lemma
4.1 , and thus with {[f ] | f ∈ Er(Λ)}. Hence, this space can be endowed with a topology
which is successively induced by the quotient topology on T (Λ) = (C/Λ)), the product
topology on T r(Λ) × T r(Λ), the relative topology on Vr(Λ) as a subset of T r(Λ) × T r(Λ),
and the quotient topology w.r.t. the relation ≈.
Finally, we endow Er(Λ) with the weakest topology, say τ0, making the mapping

Er(Λ) → Nr(Λ) : f 7→ [f ]

continuous.
The topology τ0 on Er(Λ) is induced by the Euclidean topology on C, and is natural in

the following sense: Given f in Er(Λ) and ǫ > 0 sufficiently small, a τ0-neighbourhood O of

10



f exists such that for any g ∈ O , the zeros (poles) for g are contained in ε-neighbourhoods
of the zeros (poles) for f .

Uptill now, we dealt with elliptic Newton flows N (f) with respect to an arbitrary, but
fixed, lattice, namely the lattice Λ for f . Now, we turn over to a different lattice, say
Λ∗, i.e., pairs of basic periods for Λ and Λ∗ are not necessarily related by a unimodular
transformation. Firstly, we treat a simple case: For α ∈ C\{0}, we define fα(z) := f(α−1z).
Thus fα is an elliptic function, of order r, with basic periods (αω1, αω2) generating the
lattice Λ∗ = αΛ.

The following lemma is in the same spirit as Lemma 3.1. The proof (also based on the
Chain Rule) will be omitted.

Lemma 4.3. The transformation z 7→ w := αz induces a homeomorphism from the torus

Tω1,ω2
onto Tαω1,αω2

, such that the phase portraits of the flows N ([f ]) and N ([fα]) corre-
spond under this homeomorphism, thereby respecting the orientations of the trajectories.

In other words: from a topological point of view, the Newton flows N ([f ]) ∈ Nr(Λ) and

N ([fα]) ∈ Nr(αΛ) may be considered as equal.

More general, we call the Newton flows N ([f ]) ∈ Nr(Λ) and N ([g]) ∈ Nr(Λ
∗) equiva-

lent (∼) if they attain representatives, say N (fω1,ω2
), respectively N (gω∗

1
,ω∗

2
), and there is

a homeomorphism Tω1,ω2
→ Tω∗

1
,ω∗

2
, induced by the linear (over R) basis transformation

(ω1, ω2) 7→ (ω∗
1 , ω∗

2), such that their phase portraits correspond under this homeomorphism,
thereby respecting the orientations of the trajectories.

From now on, we choose for (ω1, ω2) a pair of so-called reduced6 periods for f , such that
the quotient τ = ω2

ω1
satisfies the conditions:

{

Im τ > 0, |τ | ≥ 1,− 1
2 ≤ Re τ < 1

2 ,

Re τ ≤ 0, if |τ | = 1
(12)

(Such a choice is always possible (cf. [6]). Moreover, τ is unique in the following sense: if

(ω
′

1, ω
′

2) is another pair of reduced periods for f , such that τ
′

=
ω

′

2

ω
′

1

also satisfies the conditions

(12), then τ = τ
′

).
We emphasize that τ depends on the given lattice Λ, not on the incidental choice of the

elliptic functions f with Λ as period lattice. We put D := {τ ∈ C | τ fulfills (12)}).

Lemma 4.4. Let f be -as before- an elliptic function of order r with Λ as period lattice,
and let Λ∗ be an arbitrary lattice. Then, there exists a function, say f∗, with f∗ ∈ Er(Λ

∗),

such that N ([f ]) ∼ N ([f∗]).

Proof. Choose (ω1, ω2), respectively (ω∗
1 , ω∗

2), as pairs of reduced periods for Λ and Λ∗ such

that ω2

ω1
= τ and

ω∗

2

ω∗

1

= τ∗ satisfy (12). Then, (1, τ) and (1, τ∗) are pairs of primitive

periods for the lattices Λ1,τ (=( 1
ω1

Λ)), respectively Λ∗
1,τ∗(=( 1

ω∗

1

Λ∗)). Let F be the linear

basis transformation from (1, τ) to (1, τ∗) and choose the linear basis transformations Ω and
Ω∗ from (1, τ) to (1, i), resp. from (1, τ∗) to (1, i), as Ω and Ω∗, in the proof of Lemma 3.1.

We consider N ([f
1

ω1 ]) : a flow in Nr(Λ1,τ ), determined by two tuples of classes mod Λ1,τ ,
say {[a1],· · ·, [ar]}/{[b1],· · ·, [br]} , and satisfying (10). Under F these tuples turn into tuples
of classes mod Λ∗

1,τ∗ , say {[a∗
1],· · ·, [a

∗
r ]}/{[b∗

1],· · ·, [b
∗
r ]} satisfying (10) as well.

6The pair of basic periods (ω1, ω2) for f is called reduced or primitive if |ω1| is minimal among all periods
for f , whereas |ω2| is minimal among all periods ω for f with the property Im ω2

ω1
> 0 (cf. [6]).
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By Lemma 4.1, the latter tuples determine a Newton flow, say N ([g]), in Nr(Λ
∗
1,τ∗). The

transfomation Ω∗FΩ−1 induces an equivalency: N ([f
1

ω1 ]) ∼ N ([g]). The proof -based on
the Chain Rule- is similar to the proof of Lemma 3.1, and will be deleted. We define f∗

as f∗ := gω1 . Thus, by Lemma 4.3: N ([f∗]) = N ([gω1 ]) ∼ N ([g]), N ([f ]) ∼ N ([f
1

ω1 ]).

Altogether, we find: N ([f ]) ∼ N ([f∗]).

Remark 4.5. Note that if -in Lemma 4.4- we have Λ = Λ∗, i.e. the basic periods for Λ, and
Λ∗ are related by unimodular transformations, then: f = f∗. Moreover, the function f∗ is
uniquely determined by f , and g ∈ [f ] implies g∗ ∈ [f∗].

We summarize the results, obtained in this (and the preceding) section:

Theorem 4.6. When studying (topological) features of elliptic Newton flows of order r, it
is enough to choose a fixed (but arbitrary) lattice Λ, determining a unique parameter τ in
the fundamental domain D, as specified in (12). Then, any Newton flow in Nr(Λ) can be

represented by a flow N (f1,τ ) on a torus T1,τ , where f1,τ is of the form (11) with C = 1,
and (1, τ) stands for a pair of reduced periods. If Λ∗ is any other lattice, then there is an f∗

in Er(Λ
∗) such that N ([f ]) ∼ N ([f∗]). In particular, we may choose Λ∗ = Λ1,i, i.e. τ = i.

We end up by presenting two pictures of Newton flows for snω1,ω2
, where snω1,ω2

stands
for a Jacobian function. This is a 2nd order elliptic function, attaining only simple zeros,
poles and critical points. This function is characterized by the basic periods 4K, 2iK ′ , and
so does the phase portrait of its Newton flow. Here K, K ′ are two parameters defined in
terms of the Weierstrass function ℘ω1,ω2

It turns out that for the phase portrait there are -up to conjugacy- only two possibilities
(rectangular or not), corresponding to the form of the parallelogram P1,τ with (1, τ) in D

and τ = ( 2iK′

4K
) mod 1. In fact, these conjugacy classes are determined by the stable and

unstable manifolds at the saddles of the flow (cf. [9]). Hence, it is sufficient to select for each
possibility one suitably chosen example. See Fig. 9 [non-rectangular, equiharmonic subcase,
given by τ = 1

3

√
3 exp(πi

6 )] and Fig. 10 [rectangular subcase given by Reτ = 0]. For a
detailed argumentation, see our previous work [9]; compare also the forthcoming Remarks
6.14, 6.15.

Note that in Fig. 9, 10 the points, labelled by 0, 4K, 2iK ′ and 4K + 2iK ′ correspond
to the same toroidal zero for snω1,ω2

(denoted by ◦1) , whereas both 2K and 2K + 2iK ′

correspond to the other zero (denoted by ◦2) Similarly, 2K + iK ′ stands for a pole (denoted
by •3) on the torus, the pair (iK ′, 4K + iK ′) for the other pole (denoted by •4). The four
torodial critical points (denoted by +5, · · · ,+8) are represented by respectively the pairs
(K, K + 2iK ′), (3K, 3K + 2iK ′) and the points K + iK ′ and 3K + iK ′ ; see e.g. [1] or [27].

It is well-known that the periods 4K, 2iK ′ are not independent of each other, but related
via a parameter m, 0 < m < 1, see e.g. [1]. In the situation of Fig. 10: if m ↓ 0, then
4K → 2π,±2iK ′ → ∞ and the phase portraits of N (snω1,ω2

) turn into that of N (sin); if
m ↑ 1, then ±4K → ∞, 2iK ′ → 2πi and the phase portraits of N (snω1,ω2

) turn into that of
N (tanh); compare also Fig. 5, 6.
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Figure 9: Newton flows for sn; non-rectangular case; τ = 1
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Figure 10: Newton flows for sn; rectangular case; Re τ=0

5 Structural stability: Genericity and Characterization

Adopting the notations introduced in the preceding section, let f be a function in Er(Λ) and

N ([f ]) (∈ Nr(Λ)) its associated Newton flow (as a smooth vector field on the torus T (Λ)).
By X(T (Λ)) we mean the set of all C1-vector fields on T (Λ), endowed with the C1-

topology (cf. [18]). We consider the map:

FΛ : Er(Λ) → X(T (Λ)) : f 7→ N ([f ])

The topology τ0 on Er(Λ) and the C1-topology on X(T (Λ)) are matched by:

Lemma 5.1. The map FΛ is τ0−C1 continuous.

Proof. In accordance with Theorem 4.6 and (11) we assume

f(z) =
σ(z−a1)· · ·σ(z−ar)

σ(z−b1)· · ·σ(z−br−1)σ(z−b′

r)
.

Put p(z) = σ(z−a1)· · ·σ(z−ar) and q(z) = σ(z−b1)· · ·σ(z−br−1)σ(z−b
′

r). Then, the planar

version N (f) of the flow N ([f ]) takes the form: (cf. (3))

dz

dt
= −(|p(z)|4 + |q(z)|4)−1(p(z)p′(z)|q(z)|2 − q(z)q′(z)|p(z)|2) (13)

The expression in the r.h.s. is well-defined (since |p(z)|4 + |q(z)|4 6= 0 for all z) and depends
- as function (F ) on R2- continuously differentiable on x(=Re z) and y(=Im z). So does the
Jacobi matrix (DF ) of F . Analogously, a function g ∈ Er(Λ) chosen τ0-close to f , gives

13



rise to a system N (g) and a function G with Jacobi matrix DG. Taking into account the
very definition of C1-topology on X(T (Λ)), the mapping FΛ is continuous as a consequence
of the following observation: If -w.r.t. the topology τ0- the function g approaches f , i.e.
the zeros and poles for g approach those for f , then G and DG approach F , respectively
DF on every compact subset of R2.

Next, we make the concept of structural stability for elliptic Newton flows more precise
(compare also Section 2):

Definition 5.2. Let f, g be two functions in Er(Λ). Then, the associated Newton flows are

called conjugate, denoted N ([f ]) ∼ N ([g]), if there is a homeomorphism from T (Λ) onto

itself, mapping maximal trajectories of N ([f ]) onto those of N ([g]) , thereby respecting the
orientation of these trajectories.

Note that the above definition is compatible with the concept of “ equivalent represen-
tations of elliptic Newton flows” as introduced in Section 4; compare also (the comment on)
Definition 3.2.

Definition 5.3. The flow N ([f ]) in Nr(Λ) is called (τ0-)structurally stable if there is a

τ0-neighborhood O of f , such that for all g ∈ O we have: N ([f ]) ∼ N ([g]).

The set of all structurally stable Newton flows N ([f ]) is denoted Ñr(Λ).

From Lemma 5.1 it follows:

Corollary 5.4. If N ([f ]), as an element of X (T (Λ)), is C1-structurally stable ([32]) , then
this flow is also τ0-structurally stable.

So, when discussing structural stability in the case of elliptic Newton flows, we may skip
the adjectives C1 and τ0.

Definition 5.5. The function f in Er(Λ) is called non-degenerate if:

• All zeros, poles and critical points for f are simple;

• No two critical points for f are connected by a N ([f ])-trajectory.

The set of all non degenerate functions in Er(Λ) is denoted by Ẽr(Λ).

Note: if f is non-degenerate, then 1
f

is non-degenerate.
The main result of this section is:

Theorem 5.6. Genericity and characterization of structural stability.

(1) The set Ẽr(Λ) is open and dense in Er(Λ))

(2) N ([f ]) is structurally stable if and only if f in Ẽr(Λ)

Proof. Will be postponed until the end of this section.

We choose another lattice, say Λ∗. The functions f and g in Er(Λ) determine respectively,
the unique functions f∗ and g∗ in Er(Λ

∗), compare Lemma 4.4. Then the following assertions
are easily verified:

• N ([f ]) ∼ N ([g]) if and only if N ([f∗]) ∼ N ([g∗])

• N ([f ]) is structurally stable if and only if N ([f∗]) is structurally stable.
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• f in Ẽr(Λ) if and only if f∗ in Ẽr(Λ
∗)

Hence, the map
Er(Λ) → Er(Λ

∗) : f 7→ f∗

induces bijections between Ẽr(Λ) and Ẽr(Λ
∗) and between Ñr(Λ) and Ñr(Λ

∗). As a conse-
quence (compare also Theorem 4.6) we may assume without loss of generality that:

Λ = Λ1,τ , τ ∈ D, and f is of the form (11) with C = 1.

Hence, we suppress -unless strictly necessary- references to the pair (1, τ), the lattice Λ, and

the class [·]. So we shall write Λ, T, Er, Nr,N (f) instead of resp. Λ1,τ , T (Λ), Er(Λ), Nr(Λ)

and N ([f ]).

Steady streams
As an intermezzo, we look at (elliptic) Newton flows from a slightly different point of view.
To this aim, we consider a steady stream on C (cf. [27]) with complex potential

w(z) = − log f(z) (14)

The stream lines are given by the lines argf(z) = constant, and the velocity field of this

stream by w′(z). Zeros and poles for f of order n and m respectively, are just the sinks
and sources of strength n, respectively m. Moreover, it is easily verified that the so called
stagnation points of the steady stream (i.e., the zeros for w′(z)) are the critical points of the
planar Newton flow N (f). Altogether, we may conclude that the velocity field of the steady
stream given by w(z) and the (desingularized) planar Newton flow N (f) exhibit equal phase
portraits.

From now on, we assume that f has -on the period parallelogram P (= Pω1,ω2
=P1,τ )- the

points (a1,· · ·,aA) and (b1,· · ·,bB) as zeros, resp. poles, with multiplicities n1,· · ·, nA, resp.
m1,· · ·,mB We even may assume7 that all these zeros and poles are situated inside P (not
on its boundary), cf. Fig. 11.

!

!! 

! 
!! 

!!  

!!  

!! 

!! 

zero 

pole 

! 

! 

e 1 e 2 Type

Figure 11: All zeros and poles for f inside P = P1,τ ; after shift

7If this is not the case, an (arbitrary small) shift of P is always possible such that the resulting parallel-
ogram satisfies our assumption (cf. Fig. 11 and [28]).
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Since f is elliptic of order r, we have:











n1 +· · ·+ nA = m1 +· · ·+mB = r

n1a1 +· · ·+ nAaA = m1b1 +· · ·+mBbB mod Λ, i.e.

bB = 1
mB

[n1a1 +· · ·+ nAaA −m1b1 −· · ·−mB−1bB−1 + λ0], some λ0 ∈ Λ.

(15)

Note that there is an explicit formula for λ0. In fact, we have:

λ0 = −η(f(γ2))ω1 + η(f(γ1))ω2,

where ω1(= 1) and ω2(= τ) are basic (reduced) periods for Λ, and η(·) stands for winding
numbers of the curves f(γ1) and f(γ2) (compare Fig. 11 and [28]).

The derivative f
′

is an elliptic function of order (m1 + 1) +· · ·+ (mB + 1) = r +B, and

♯(crit. points for f) = r +B − (n1 − 1) −· · ·− (nA − 1) = A+B(=: K)

In view of our assumptions on f we have: (cf. (11))

f(z) =
σn1(z − a1)· · ·σnA(z − aA)

σm1(z − b1)· · ·σmB−1(z − bB)σ(z − b
′

B
)
, with

b
′

B = n1a1 +· · ·+ nAaA −m1b1 −· · ·− (mB − 1)bB, (16)

and thus b
′

B = bB mod Λ.

So, by (14)

w′(z) = − n1
σ′(z − a1)

σ(z − a1)
−· · ·− nA

σ′(z − aA)

σ(z − aA)
+m1

σ′(z − b1)

σ(z − b1)
+· · ·

+ (mB−1)
σ′(z−bB)

σ(z−bB)
+
σ′(z−b

′

B
)

σ(z−b
′

B
)

= − n1ζ(z−a1)· · ·− nAζ(z−aA) +m1ζ(z−b1)· · ·+ (mB−1)ζ(z−bB) + ζ(z−b
′

B)

where ζ stands for the Weierstrass zeta function (cf. [28]) associated with the lattice Λ(=
Λ1,τ ). Since ζ is a quasi-periodic, meromorphic function with only poles (all simple!) in the
points of the lattice Λ, the function w′(z) is elliptic of order K(= A + B) with K (simple)
poles given by: a1,· · ·,aA,b1,· · ·,bB , situated in its period parallelogram P . It follows that
w′(z) has also K zeros (counted by multiplicity) on P . These zeros correspond with the

critical points for N (f) on the torus T .
Since ζ ′ =−℘, where ℘ stands for the (elliptic!) Weierstrass ℘-function (cf. [28]) associ-

ated with Λ(= Λ1,τ ), we find (use also b
′

B
= bB mod Λ):

w′′(z) = n1℘(z−a1)· · ·+ nA℘(z−aA) −m1℘(z−b1)· · ·−mB℘(z−bB) (17)

From (15) and (16) it follows: bB is determined by a1,· · ·,aA,b1,· · ·,bB−1. In mutually
disjoint and suitably small8 neighborhoods, say U1,· · ·, UA, andW1,· · ·,WB−1, of respectively
a1,· · ·,aA,b1,· · ·,bB−1 we choose arbitrary points a1,· · ·, aA, b1,· · ·, bB−1 and put, with fixed
values ni,mj :

bB :=
1

mB

[n1a1 +· · ·+ nAaA −m1b1 −· · ·−mB−1bB−1 + λ0]. (18)

8Choose these neighborhoods so that they are contained in the period parallelogram P , cf Fig. 11.
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In this way a1,· · ·, aA, b1,· · ·, bB−1 are close to respectively a1,· · ·,aA,b1,· · ·,bB−1 and bB is
close to bB. Finally, we put

b
′

B = n1a1 +· · ·+ nAaA −m1b1· · ·−mB−1bB−1 − (mB − 1)bB (close to b
′

B). (19)

Perturbating a1,· · ·,aA,b1,· · ·,bB−1 into respectively a1,· · ·, aA, b1,· · ·, bB−1 , and putting
ǎ = (a1,· · ·, aA), b̌ = (b1,· · ·, bB−1) , we consider functions9 f(z; ǎ, b̌) on the product space
C × U1 ×· · ·UA ×W1 ×· · ·WB−1 given by: (compare (16))

f(z; ǎ, b̌) =
σn1(z − a1)· · ·σnA(z − aA)

σm1(z − b1)· · ·σmB−1(z − bB(ǎ, b̌))σ(z − b
′

B(ǎ, b̌))
. (20)

Then, for each (ǎ, b̌) in U1 ×· · ·UA × W1 ×· · ·WB−1 , the function f |ǎ,b̌(·) := f(·; ǎ, b̌) is
elliptic in z, of order r. The points a1,· · ·, aA, resp. b1,· · ·, bB are the zeros and poles for
f |ǎ,b̌ on P ( of multiplicity n1,· · ·, nA, resp. m1,· · ·,mB). Moreover, f |ǎ,b̌ has K(= A + B)

critical points on P (counted by multiplicity). Note that the Newton flow N (f |ǎ,b̌) on T is

represented by the pair (ǎ, b̌) in U1 ×· · ·UA ×W1 ×· · ·WB−1, i.e. by

a1, · · ·, aA; b1, · · ·, bB−1, arbitrarily chosen in suitably small
↑ ↑ ↑ ↑ neighbourhoods U1 ×· · ·UA ×W1 ×· · ·WB−1

1× 1× 1× 1×

but also by the pair (a, b) in the quotient space Vr(Λ)/ ≈ as introduced in Section 4, i.e. by

(([a1], · · ·, [aA]), ([b1], · · ·, [bB ])), that fulfil condition (10)
↑ ↑ ↑ ↑

n1× nA× m1× mB×

Apparently, we have:

• If (ǎ, b̌) = (ǎ, b̌), then f |
ǎ,b̌(z) = f(z) and thus N (f |

ǎ,b̌) = N (f);

• If A = B = r (thus K = 2r), then

(ǎ, b̌) = (a1,· · ·, ar; b1,· · ·, br−1) ∈ U1 ×· · ·Ur ×W1 ×· · ·Wr−1, and

(a, b) = (([a1],· · ·, [ar]), ([b1],· · ·, [br])) + condition (10)

Now we have the following useful lemma:

Lemma 5.7. Let K(= A+B) > 2. Then:
Under suitably chosen -but arbitrarily small- perturbations of the zeros and poles for f ,

thereby preserving the multiplicities of these zeros and poles, the Newton flow N (f)) turns

into a flow N (f |ǎ,b̌) with only (K different)1-fold saddles.

Proof. We consider ŵ(z; ǎ, b̌) := −logf(z; ǎ, b̌) and write:

∂ŵ

∂z
= ŵ

′

(z; ǎ, b̌);
∂2ŵ

∂2z
= ŵ

′′

(z; ǎ, b̌).

9Note that, when perturbing (a,b) in the indicated way, the winding numbers η(f(·,a,b)(γ1)),

η(f(·,a,b)(γ2)), and thus also λ0, remain unchanged.
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These are meromorphic functions in each of the variables z, a1,· · ·, aA, b1,· · ·, bB−1.
Define:

Σ = {(z; ǎ, b̌) | ŵ′

(z; ǎ, b̌) = 0} “critical set”

Σnd = {(z; ǎ, b̌) | ŵ′

(z; ǎ, b̌) = 0, ŵ
′′

(z; ǎ, b̌) 6= 0} “non-degenerate critical set”

Σd = {(z; ǎ, b̌) | ŵ′

(z; ǎ, b̌) = 0, ŵ
′′

(z; ǎ, b̌) = 0} “degenerate critical set”

Since the ai, i = 1,· · ·, A, and bj , j = 1,· · ·, B, are poles for ŵ
′

(·; ǎ, b̌) as an elliptic function
in z, we have: If (z; ǎ, b̌) ∈ Σ, then:
{

z 6= ai mod Λ, z 6= bj mod Λ, z 6= b
′

B mod Λ, and (by construction)

ai1 6= ai2 mod Λ, i1 6= i2, i1, i2 = 1,· · ·, A; bj1 6= bj2 mod Λ, j1 6= j2, j1, j2 = 1,· · ·, B−1.

The subset V of elements (z; ǎ, b̌) ∈ C × U1 ×· · ·UA × W1 ×· · ·WB−1 that fulfills these
inequalities is open in C × CA × CB−1. On this set V (that contains the critical set Σ), the
function ŵ

′

is analytic in each of its variables. (Thus Σ is a closed subset of V). For the
partial derivatives of ŵ

′

on V we find: (use (14), (20), compare also (17) and Footnote 9)

∂ŵ
′

∂z
: n1℘(z − a1) +· · ·+ nA℘(z − aA) −m1℘(z − b1) −· · ·−mB℘(z − bB)

∂ŵ
′

∂ai

:
∂

∂ai

[−n1ζ(z−a1)· · ·− nAζ(z−aA) +m1ζ(z − b1)· · ·+ (mB − 1)ζ(z − bB) + ζ(z − b
′

B)]

= [ using the formulas (18) and (19)]

= [−ni℘(z − ai) + (mB − 1)[
ni

mB

]℘(z − bB) + (ni − (mB − 1)[
ni

mB

])℘(z − b
′

B)]

= −ni(℘(z − ai) − ℘(z − bB)) (i = 1,· · ·, A)

In a similar way:

∂ŵ
′

∂bj
: mj(℘(z − bi) − ℘(z − bB)) (j = 1,· · ·, B − 1)

[
∂ŵ

′

∂bB
= 0 (mB = 1, 2,· · ·)]

By the Addition Theorem of the ℘-function [cf. [28]], we have:

∂ŵ
′

∂ai

: −σ(ai−bB)σ(2z−ai − bB)

σ2(z−ai)σ2(z−bB)
, i = 1,· · ·, A

So, let (z; ǎ, b̌) in V, then

∂ŵ
′

∂ai

|(z;ǎ,b̌) = 0, some i ∈ {1,· · ·, A} ⇔


















ai = bB mod Λ, [in contradiction with “ai, bB different”]

or

2z = ai + bB mod Λ [ if 2z = ai1 + bB mod Λ, 2z = ai2 + bB mod Λ, i1 6= i2,

then ai1 = ai2 ; in contradiction with “ai1 , ai2 different”]

From this follows:
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If (z; ǎ, b̌) ∈ V , then at most one of ∂ŵ
′

∂ai
|(z;ǎ,b̌), i = 1,· · ·, A, vanishes. By a similar rea-

soning, we even may conclude:


































At most one of the partial derivatives
∂ŵ

′

∂ai
(z; ǎ, b̌), ∂ŵ

′

∂bj
(z; ǎ, b̌), (z; ǎ, b̌) ∈ V, i = 1,· · ·, A, j = 1,· · ·, B − 1,

vanishes, and thus, in case K > 2:

∂ŵ
′

∂ai
(z; ǎ, b̌) 6= 0, ∂ŵ

′

∂bj
(z; ǎ, b̌) 6= 0,

for at least one i ∈ {1,· · ·, A} or j ∈ {1,· · ·, B − 1.}

(21)

The latter conclusion cannot be drawn in case K = 2; however, see the forthcoming Remark
5.8. Note that always K ≥ 2.

Under the assumption that K > 2 : let z1, z2,· · ·, zL be the different critical points for
f = (f(·, ǎ, b̌)) with multiplicities K1,· · ·,KL,K1 ≥ · · · ≥ KL ≥ 1,K1 + · · ·+ KL = K. If
(ǎ, b̌) tends to (ǎ, b̌), then Kl of the K critical points for f(·, ǎ, b̌)(counted by multiplicity)

tend to the Kl-fold saddle zl for N (f)). It follows that, if (ǎ, b̌) is sufficiently close to (ǎ, b̌),
then Kl critical points for f(·, ǎ, b̌)(counted by multiplicity) are situated in, suitably small,
disjunct neighborhoods, say Vl, around zl, l = 1,· · ·, L. We choose (ǎ, b̌) so close to (ǎ, b̌)

that this condition holds. If all the critical points for f , i.e. the saddles of N (f)), are simple,
there is nothing to prove. So, let K1 > 1, thus ŵ

′′

(z1; ǎ, b̌) = 0, i.e. (z1; ǎ, b̌) ∈ Σd ⊂ Σ.

Without loss of generality, we assume (see (21)) that ∂ŵ
′

∂ai
(z1; ǎ, b̌) 6= 0. According to the

Implicit Function Theorem a local parametrization of Σ around (z1; ǎ, b̌) exists, given by:

(z; a1(z, a2,· · ·, aA, b1,· · ·, bB−1), a2,· · ·, aA, b1,· · ·, bB−1),

where a1(z1,a2,· · ·,aA,b1,· · ·,bB−1) = a1. Thus, at (z1; ǎ, b̌) we have:

ŵ
′′

+ [
∂ŵ

′

∂a1
][
∂a1

∂z
(z, a2,· · ·)] = 0.

Since ŵ
′′

(z1; ǎ, b̌) = 0 and ∂ŵ
′

∂ai
(z1; ǎ, b̌) 6= 0, it follows that

∂a1

∂z
(z1, ǎ, b̌) = 0

Note that a1(z, a2,· · ·, aA, b1,· · ·, bB−1), depends complex differentiable on z. So the zeros
for ∂a1

∂z
(z; a2,· · ·, aA, b1,· · ·, bB−1) are isolated. Thus, on a reduced neighborhood of (z1, ǎ, b̌),

say Û , neither ∂a1

∂z
(·) nor ∂ŵ

′

∂a1
vanish. If z tends to z1 , then:

(z; a1(z,a2,· · ·,aA,b1,· · ·,bB−1),a2,· · ·,aA,b1,· · ·,bB−1)

tends to (z1, ǎ, b̌) along Σ, and we cross Û , meeting elements (z, ǎ, b̌) ∈ Σ, such that

{

ŵ
′′

(z, ǎ, b̌) + ∂ŵ
′

∂a1
(z, ǎ, b̌)∂a1

∂z
(z, ǎ, b̌) = 0

∂ŵ
′

∂a1
(z, ǎ, b̌) 6= 0, ∂a1

∂z
(z, ǎ, b̌) 6= 0

Thus,
ŵ

′′

(z, ǎ, b̌) 6= 0.

Hence, we have: (z, ǎ, b̌) ∈ Σnd. So, the K1 critical points for f(·; ǎ, b̌) that approach z1 via
the curve

(z; a1(z,a2,· · ·,aA,b1,· · ·,bB−1),a2,· · ·,aA,b1,· · ·,bB−1)
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are all simple, whereas the critical points for f(·, ǎ, b̌) approaching z2,· · ·, zL are still situated
in respectively V2,· · ·, VL. If K2 > 1, we repeat the above procedure with respect to z2,

etc. In finitely many steps we arrive at a flow N (f |ǎ,b̌) with only simple saddles and (ǎ, b̌)

arbitrary close to (ǎ, b̌).

Remark 5.8. The case A = B = 1( i.e. K = 2).
If K = 2, then the function f has -on T - only one zero and one pole, both of order r;

the corresponding flow N (f)) is referred to as to a nuclear Newton flow. In this case, the
assertion of Lemma 5.7 is also true. In fact, even a stronger result holds:

“ All nuclear Newton flows -of any order r- are conjugate , in particular each of them

has precisely two saddles (simple) and there are no saddle connections”.

Nuclear Newton flows will play an important role in the sequel, but we postpone the dis-
cussion on this subject untill Section 11.

We end up by presenting the (already announced) proof of Theorem 5.6

Proof of Theorem 5.6:
The “density part” of Assertion 1: Let O be an arbitrarily small τ0-neighbourhood of a func-
tion f as in Lemma 5.7. We split up each of the A different zeros for f and the B different
poles for f into ni resp. mj mutually different points, contained in disjoint neighbourhoods
Ui resp. Wj , i = 1,· · ·, A, j = 1,· · ·, B(compare Fig.11). In this way, we obtain 2r different
points, giving rize to an elliptic function of the the form (11), with these points as the r
simple zeros resp. r simple poles in P . We may assume that this function is still situated
in O, see the introduction of the topology τ0 in Section 4. Now, we apply Lemma 5.7 (case
A = B = r,K = 2r) and find in O an elliptic function, of order r with only simple zeros,
poles and critical points. This function is non-degenerate if the corresponding Newton flow
does not exhibit trajectories that connect two of its critical points. If this is the case, none
of the straight lines connecting two critical values for our function, passes through the point
0 ∈ C. If not, then adding an arbitrarily small constant c ∈ C to f does not affect the
position of its critical points, and yields a function -still in10 O- with only simple zeros and
poles. By choosing c suitably, we find a function, renamed f , such that none of the straight
lines connecting critical values (for different critical points) contains 0 ∈ C. So, we have:
f ∈ Ẽr, i.e., Ẽr is dense in Er.

The “if part” of Assertion 2: Let f ∈ Ẽr. Then all equilibria for N (f) are simple, and
thus hyperbolic (cf. Remarks 1.1 and 3.4). Moreover, there are neither saddle-connections
nor closed orbits (compare (4)). Now, the Baggis-Peixoto Theorem for structurally stable

C1-vector fields on compact 2-dimensional manifolds (cf. [32]) yields that N (f) is C1-
structurally stable, and by Corollary 5.4 also τ0-structural stable.

The “only if part” of Assertion 2: Suppose that f /∈ Ẽr, but N (f) in Ñr. Then there is a

τ0-neighbourhood of f , say O, such that for all g ∈ O: N (f) ∼ N (g). Since Ẽr is dense

in Er(already proved), we may assume that g ∈ Ẽr. So, N (g) has precisely r hyperbolic
attractors/repellors and does not admit “saddle connections”. This must also be true for

N (f), in contradiction with f /∈ Ẽr.

The “openess part” of Assertion 1: This a direct consequence of the Assertion 2 (which is
already proved).

10Note that at simple zeros an analytic function is conformal. In case of a pole, use also (6).
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6 Structural stable elliptic Newton flows: Classification

Throughout this section, let f be a non-degenerate elliptic function of order r. Thus the

flow N (f) is structurally stable.
Now, the following definition makes sense (compare Definition 5.5 and Lemma 3.3)

Definition 6.1. The graph G(f), f ∈ Ẽr, on the torus T is given by:

• Vertices are the r zeros for f on T (as attractors for N (f)).

• Edges are the 2r unstable manifolds at the critical points for f on T as N (f)-saddles.

Note that the faces of G(f) are precisely the r basins of repulsion of the poles, say [bj ], j =

1,· · ·, r for f on T (as repellors for N (f)) and will be denoted by Fbj
(f); their boundaries

by ∂Fbj
(f). These boundaries , consisting of unstable manifolds at saddles for N (f), are

subgraphs of G(f).

Analogously, we define the graph11, say G∗(f), on the poles and the stable N (f)-manifolds
at the critical points for f on T .

Lemma 6.2. Both G(f) and G∗(f) are multigraphs12 embedded in T .

Proof. If G(f) would have a loop, the two unstable N (f)-separatrices at some critical point
for f would approach the same zero, say [a], on T . In that case, the zeros (simple!) for f in
the plane, corresponding to [a], will then be approached by two different trajectories (of the
planar version N (f)) with the same value of arg f . This is impossible (cf. the Comment on
Fig.2). The second part of the assertion follows by interchanging the roles of the poles and
zeros for f .

Corollary 6.3. An edge in G(f) or G∗(f) is contained in the boundaries of two different
faces.

Next we introduce a graph on T , denoted G(f) ∧ G∗(f), which may be considered as the
“common refinement of G(f)) and G∗(f)”:

Definition 6.4. The vertices of G(f) ∧ G∗(f) are defined as the zeros, poles and critical

points for f , whereas the edges are the stable and unstable separatrices of N (f) at the
critical points for f .

The faces of G(f)∧G∗(f) are the so-called canonical regions for N (f), i.e. the connected

components of what is left after deleting from T all the N (f)-equilibria and all stable

and unstable manifolds at the saddles of N (f). A priori, the canonical regions of a C1-
structurally stable flow on T ( without closed orbits) are of one of the Types 1,2,3 in Fig.

12 (cf. [33]). However, by Lemma 6.2 the flow N (f)- although structurally stable - cannot
admit canonical regions of Types 2 and 3.

So. we only have to deal with canonical regions of Type 1. Since all zeros, poles and
critical points for f are simple, we find: (see (5) and the Comment on Fig. 2)

Lemma 6.5. In a canonical region of N (f), the angles (anti-clockwise measured) at the
pole and the zero are well-defined, strictly positive and equal.

11G(f) and G∗(f) are geometrical duals; see also Section 7.
12i.e., multiple edges are allowed, but no loops (cf. [16]); note however that the concept of multigraph in

([31]) includes loops.
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: attractor 

: repellor 

: saddle 

Type 1 Type 2 Type 3 

Figure 12: The canonical regions of a structural stable flow on T

Since a face Fbj
(f) is built up from all canonical regions that have [bj ] in common, we find:

Corollary 6.6. All (anti-clockwise measured) angles spanning a sector of Fbj
(f) at the

vertices in its boundary, are non-vanishing and sum up to 2π.

G(f)

G∗(f)

Figure 13: Oriented facial walks on G(f) and G∗(f).

Lemma 6.7. Each subgraph ∂Fbj
(f) is Eulerian13.

Proof. Traverse the set of all canonical regions centered at [bj ] once. In this way we determine
a closed walk, say wbj

, through all the vertices and edges of ∂Fbj
(f) ; see Fig. 13. By

Corollary 6.3, this walk contains each edge of ∂Fbj
(f) only once (since otherwise the two

stable separatrices at the saddle on such an edge must originate from [bj ]). So, wbj
is the

desired Euler trail.

The walk wbj
in the above proof will be referred to as to the facial walk for ∂Fbj

(f).
Analogously, we define the (Eulerian!) facial walks on the boundaries of the G∗(f)-faces(i.e.,

the basins of attraction of the zeros, say [ai], i = 1, · · · , r, for f on T (as attractors for N (f)).

Remark 6.8. Note that in these facial walks the same vertex may occur more than once.
However, by Lemma 6.2, a vertex in a facial walk cannot be adjacent to itself.

13i.e. the graph ∂Fbj
(f) admits a so-called Euler trail: a closed walk that traverses each edge exactly once

and goes through all vertices. We do not distinguish between an Euler trail and its cyclic shift
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We endow (the faces of) G(f) with a coherent orientation as follows:
For each facial walk we demand that the (constant) values of arg f(z) on consecutive edges
form an increasing sequence. This is imposed by the anti-clockwise ordering of the G(f)-
edges around a common vertex, which on its turn induces clockwise orientations of the
G∗(f)-edges incident to a given vertex. This leads to an orientation of (the facial walks on)
G∗(f) which is opposite to the orientation of G(f) as chosen before; see Fig.13. From now,
on we assume that all graphs G(f) and G∗(f), f ∈ Ẽr, are oriented in this way: G(f) always
clockwise; G∗(f) always anti-clockwise.

Lemma 6.9. The (multi)graphs G(f) and G∗(f) are connected and cellularly embedded14.

Proof. We focus on G(f) and follow the treatise [31] closely. Consider the r facial walks wbj

, and put lj = length wbj
. Consider for each wbj

a so-called facial polygon, i.e. a polygon
in the plane with lj sides labelled by the edges of ∂Fbj

(f)(taking the orientation of wbj

into account) , so that each polygon is disjoint from the other polygons. Now we take all
facial polygons. Each G(f)-edge occurs precisely once in two different facial walks and this
determines orientations of the sides of the polygons. By identifying each side with its mate,
we construct (cf. [31]) an orientable, connected surface S , homeomorphic to T , and -in S-
a 2-cell embedded graph, which is -up to an homeomorphism-equal to G(f). In particular,
the graph G(f) is connected and orientable as well. Finally, we note that a 2-cell embedding
is always cellular (cf. [31]).

The abstract directed graph, underlying G(f)∧G∗(f), will be denoted by P(f), where the

directions are induced by the orientations of the (un)stable separatrices at N (f)-saddles.
Each canonical region is represented by a quadruple of directed edges in P(f), and is associ-
ated with precisely one pole, one zero (in opposite position) and two critical points for f on
T . Following Peixoto ([32], [33]), such a quadruple is called a distinguished set (of Type 1).
The graph P(f)), together with the collection of all distinguished sets is denoted by Pd(f).

We say “Pd(f) is realized by the distinguished graph of N (f) on T”.

We need a classical result due to Peixoto (cf. [33]) on structurally, C1-stable vector fields
on 2-dimensional compact manifolds. In the context of our elliptic Newton flows this yields
(together with Corollary 5.4): if f, h ∈ Ẽr, then:

N (f) ∼ N (h) ⇔ Pd(f) ∼ Pd(h). (22)

Here, ∼ in the l.h.s stands for “conjugacy” and ∼ in the r.h.s. for isomorphism between Pd(f)
and Pd(h) (as directed abstract graphs) , preserving the distinguished sets and respecting
the cyclic ordering (induced by the embedding in T ) of the distinguished sets around a
common vertex.

Lemma 6.10. Let N (f) and N (h) be structurally stable (thus f, h ∈ Ẽr), then:

N (f) ∼ N (h) ⇔ G(f) ∼ G(h)(and thus also G∗(f) ∼ G∗(h)),

where ∼ in the r.h.s. stands for equivalency between the graphs (i.e., an isomorphism re-
specting their orientations).

Proof. Apply (22) to N (f) and N (h).

14i.e. each face is homeomorphic to an open disk in R2.
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Graph G( 1
f
) is also well-defined (with as faces Fai

( 1
f
)) and associated with the structurally

stable flow N ( 1
f
) (=−N (f)).

N ( 1
f
) is the dual version of N (f), i.e., N ( 1

f
) is obtained from N (f) by reversing the orien-

tations of the trajectories of the latter flow, thereby changing repellers into attractors and
vice versa.
Clearly, G( 1

f
) and G∗(f) coincide, be it with opposite orientations, i.e., G( 1

f
) = −G∗(f),

where, due to our convention on orientations, G( 1
f
) is clockwise oriented.

Similarly: G(f) = −G∗( 1
f
). Note that, in general, N (f) and N ( 1

f
) are not conjugate. In the

special case where N (f) ∼ N ( 1
f
) we call N (f) self dual, and we have:

N (f) ∼ N (
1

f
) ⇔ G(f) ∼ G(

1

f
) (thus also G∗(f) ∼ G∗(

1

f
)).

Given an arbitrary pair of functions f, h ∈ Ẽr, we consider the two pairs of graphs (G(f),G∗(f))
and (G(h),G∗(h)). Concerning the equivalency ∼ between these graphs there are precisely
two -a priori- different combinations possible:

1. G(f) ∼ G(h), and thus also G∗(f) ∼ G∗(h).

2. G(f) ∼ −G∗(h), and thus also −G∗(f) ∼ G(h)

Applying Lemma 6.10 and using G(f) = −G∗( 1
f
), G(h) = −G∗( 1

h
), we find:

In Case 1: N (f) ∼ N (h) and also N ( 1
f
) ∼ N ( 1

h
).

In Case 2: N (f) ∼ N ( 1
h
) and also N ( 1

f
) ∼ N (h).

We summarize the above observations as follows:

Theorem 6.11. (Classification of structurally stable elliptic Newton flows by graphs.)

For f ∈ Ẽr, the phase portrait of the flow N (f) is -up to conjugacy and duality- completely
determined by the graph G(f) (and also by G∗(f)(= −G( 1

f
))).

Remark 6.12. (On self-duality)

G(f)∼G(
1

f
) ∧ G(f)∼G(h) ⇔ G(f)∼G(

1

f
) ∧ G(h)∼G(

1

h
) ⇔ N (f) ∼ N (

1

f
) ∼ N (h) ∼ N (

1

h
)

Corollary 6.13. Any two structurally stable 2nd order elliptic Newton flows are conjugate.

Proof. Let N (f), f ∈ Ẽ2, be chosen arbitrarily. By Corollary 6.3, the two faces of G(f) share
their boundaries. So, the common facial walk wf of these faces is built up from the four
G(f)-edges and the two G(f)-vertices (each appearing twice but not consecutive!). Hence,
compare the construction in the proof of Lemma 6.9 and see Fig. 14, G(f) is determined by

the positively oriented walk wf . The same holds for any other flow N (h) with facial walk

wh, h ∈ Ẽ2. Apparently, we have wf ∼ wh and thus G(f) ∼ G(h). In particular, put h = 1
f
,

see again Fig.14, we find G(f)∼G( 1
f
). Now, the assertion follows from Remark 6.12.

Remark 6.14. For basically the same proof of Corollary 6.13 , see [10] and also Remark 9.3.

Remark 6.15. The flow N (sn), in the non-rectangular case (cf. Fig.9 ) exhibits an example
of a 2nd order structurally stable elliptic Newton flow. By Corollary 6.13, this is the only
possibility (up to conjugacy) for a flow in Ñ2 . Note that the flow in Fig.10 (rectangular
case!) is not structurally stable (because of the saddle connections).
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[ai] ≡ G(f)-vertices, i = 1, 2

[bi] ≡ G∗(f)-vertices, i = 1, 2

[σk] ≡ G(f)- and G∗(f)-edges, k = 1, · · · , 4

Figure 14: The graphs G(f) and G∗(f), f ∈ Ẽ2.

We proceed by introducing flows that are closely related to N (f), N (f) and N (f): the
so-called rotated Newton flows,

Definition 6.16. For f ∈ Er, let N ⊥(f) be a dynamical system of the type

dz

dt
=

−if(z)

f ′(z)
.

Apparently, N ⊥(f)(= iN (f)) is a complex analytic vector field outside the set C(f) of
critical points for f . Proceeding as in Section 1 [in particular, the transition (2) → (3)],

we turn N ⊥(f) into a smooth system on the whole plane, say N
⊥

(f), with -on C\C(f)-

the same phase portrait as N ⊥(f). The function f , being elliptic, the system N
⊥

(f) can

be interpreted as a smooth flow on T and as such it will be referred to as to N
⊥

(f), in
particular: (cf. Sections 3, 4)

N
⊥

(f) is smooth, and N
⊥

(
1

f
) = −N

⊥

(f)

Lemma 6.17. Let z⊥(t) be the (maximal) N ⊥(f)-trajectory through a non-equilibrium ž =
z⊥(0) , then:

1. f(z⊥(t)) = e−itf(ž)[thus |f(z⊥(t))|= constant (6= 0)].

2. A zero or pole for f is a center for N ⊥(f)[thus also for N
⊥

(f), N
⊥

(f)].

3. A k-fold critical point for f is a k-fold saddle for N
⊥

(f) [thus also for N
⊥

(f)].

Proof. Assertions 1., 3. are proved as in Section 1. Note that outside N(f) ∪ P (f) the flow
N ⊥(f) can be considered as the Newton flow for h(z) = exp(i log(f(z))).
For Assertion 2. : let z0 be a zero or pole for f with multiplicity k, thus an isolated zero for
N ⊥(f). In a neighborhood of z0, system N ⊥(f) is linearly approximated by:

dz

dt
=

−i(z − z0)

k
.

Thus z0 is a non-degenerate equilibrium for N ⊥(f) with characteristic roots ± i
k
. By the

first assertion in the lemma, a regular integral curve through a point ž close to z0, but 6= z0,

25



cannot end up at, or leave from z0. Hence, this point is neither a focus, nor a centro-focus
for N ⊥(f) (cf. [2]) and must be a center for N ⊥(f).

In view of the above Assertion 1., a closed orbit for N
⊥

(f) cannot be a limit cycle, and
-by 2.- a separatrix z⊥(t) leaving a saddle σ1, must approach a saddle σ2. Moreover, this
separatrix cannot connect σ1 to itself (i.e. σ1 6= σ2). In fact, let σ1 = σ2. This would lead
to (cf. (5)):

lim
t↓0

arg h(z⊥(t)) = arg h(σ1) and also lim
t↑0

arg h(z⊥(t)) = arg h(σ1),

which is impossible, see Fig. 15 and the Comment on Fig. 2.

!!!

Figure 15: No “self-connected” N
⊥

(h)-saddles ; σ1 is 2-fold.

Note that -when introducing rotated Newton flows- no restrictions were laid upon the

function f . But now, we return to the case of non-degenerate functions f . Then N
⊥

(f) has
2r simple saddles (corresponding to the critical points for f) with altogether 4r separatrices,
connecting different saddles. So, we may introduce:

Definition 6.18. The graph G⊥(f), f ∈ Ěr, on the torus T is given by:

• Vertices are the 2r critical points for f (as saddles for N
⊥

(f)) on T .

• Edges are the 4r separatrices at the critical points for f (as N
⊥

(f)-saddles) on T .

Since all zeros and poles for f are centers for N
⊥

(f), each G⊥(f)-face contains only one
zero or one pole for f . Moreover, the graph G⊥(f) is cellularly embedded. Hence, the graph
G⊥(f) has 2r faces.

Let c be an arbitrary, strictly positive real number and put Lc = {z | |f(z)| = c}.

Lemma 6.19. Then there holds:

(1) The level set Lc is a regular curve in R2 (i.e., grad |f(z)| 6= 0 for all z ∈ Lc) if and
only if Lc contains no critical points for f .

(2) The graph G⊥(f), f ∈ Ěr, is connected. In particular, f(z) admits the same absolute
value at all critical points z.

Proof. (1): Use the Cauchy-Riemann equations.
(2): Apply Euler’s theorem.
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We orient the edges of G⊥(f) according to their orientation as N
⊥

(f)-trajectories. Let
Ai and Bj be open subsets of C, corresponding to the (open) faces of G⊥(f) that are
determined by the zero ai, respectively the pole bj , for f . Hence, the boundaries of Ai

are anti-clockwise oriented, but those of Bj clockwise. Since N
⊥

( 1
f
) = −N

⊥

(f) we have:

reversing the orientations in G⊥(f) turns this graph into G⊥( 1
f
) and thus, by Lemma 6.19

(2): |f(z)| = 1 on G⊥(f). See Fig. 16 for (parts of) the graphs G⊥(f), G(f), G∗(f) and

G⊥( 1
f
), G( 1

f
), G∗( 1

f
). A canonical N (f)region, with [ai],[bj ] in opposite position, and the

saddles σ, σ′ consecutive w.r.t. the orientation of Ai(or Bj), will be denoted by Rij(σ, σ
′)

and is contained in Fai
( 1

f
) ∩ Fbj

(f). Note that, in general, this intersection contains more

canonical regions of type Rij(·, ·). But even so, these regions are separated by canonical
regions, not of this type; compare Remark 6.8. In view of (5) and Lemmas 6.17 (1): Under

f the net of N (f)- and N (f)⊥-trajectories on Rij(σ, σ
′) is homeomorphically mapped onto

a polar net in a sector of the u+ iv-plane (u=Re(f), v=Im(f)), namely

si,j(σ, σ
′) = {(u, v) | 0 < u2 + v2 < ∞, argf(σ) < arctan(

v

u
) < argf(σ′)}.

Analogously, 1
f

maps the net of N (f)- and N (f)⊥-trajectories on Rji(σ, σ
′) onto a polar

net in a sector of the U + iV -plane (U=Re( 1
f
), V=Im( 1

f
)), namely

Si,j(σ, σ
′) = {(U, V ) | 0 < U2 + V 2 < ∞,−argf(σ) < arctan(

V

U
) < −argf(σ′)}.

So, the polar nets on si,j(σ, σ
′) and Si,j(σ, σ

′) correspond under the inversion15:

U =
u

u2 + v2
, V =

v

u2 + v2
.

Next we turn to the relationship between Newton flows and steady streams.

!

◦ − G(f)
− G∗(f)
− G⊥(f)

◦ − G( 1
f
)

− G∗( 1
f
)

− G⊥( 1
f
)

Figure 16: The graphs G(·), G∗(·) and G⊥(·) for f and 1
f

in Ẽr.

15 Here we use that in a canonical region the angles at the zero and the pole are equal.
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Remark 6.20. Newton flows as steady streams.
For f ∈ Ěr, we consider the planar steady stream ([27]) with complex potential w(z) =

− log f(z) , potential function Φ(x, y) = − log |f(z)| and stream function ψ(x, y) = − argf(z),
where x = Re(z), y = Im(z). Then the equipotential lines are given by − log |f(z)| = con-
stant, the stream lines by − argf(z) = constant and the velocity field V (z)(= gradΦ) by
the complex conjugate of w′(z), i.e.

V (z) =
|w′(z)|2
w′(z)

=
−|w′(z)|2f(z)

f ′(z)
(= |w′(z)|2N (f)).

Moreover, the zeros (poles) for f are just the sinks (sources) of strength 1, whereas the
critical points for f are the 1-fold stagnation points of the stream, compare also Section 5.
So, the “orthogonal net of the stream- and equipotential-lines” of the planar steady stream

is a combination of the phase portraits of N (f) and N ⊥
(f), see Fig. 17.

!

N (f)

N ⊥(f)

Figure 17: The steady stream w(z) = − log f(z), f ∈ Ěr.

Hence we may interprete the pair (N (f), N
⊥

(f)) as a toroidal desingularized version of
our planar steady stream. Finally, we clarify the “steady stream character” of the struc-
turally stable elliptic Newton flows from the point of view of the Riemann surface T .
Firstly, we note that the polar net on open (! ) sectors as si,j(σ, σ

′) and Si,j(σ, σ
′) are just

the stream and equipotential lines of the steady stream with complex potential − log(u+iv),
resp. − log(U + iV ). In particular , these stream and equipotential lines exhibit the phase
portraits of resp. the flows N (u+ iv)(= −(u+ iv)), N (u+ iv)⊥(= −i(u+ iv)), resp. N (U +
iV )(= −(U + iV )), N (U + iV )⊥(= −i(U + iV )) on si,j(σ, σ

′) and Si,j(σ, σ
′) respectively.

Now the collection

{Fai
(
1

f
)\[ai], Fbj

(f)\[bj ]; i, j = 1, · · · r}

exhibits a covering of Ť with open neighborhoods. Apparently, only in the case of pairs
(Fai

( 1
f
)\[ai], Fbj

(f)\[bj ]) a non-empty intersection is possible. Even so, the intersection

Fai
(
1

f
)\[ai] ∩ Fbj

(f)\[bj ]

consists of the disjoint union of sets of the type Rij(·, ·), say R1
ij , · · · , Rs

ij . (Note that [ai]
occurs in wbj

as many times as [bj ] occurs in wai
). This turns our covering into an atlas

for Ť with smooth (even complex analytic) coordinate transformations, induced by the
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inversion (u+ iv)) ↔ (1/(u+ iv)) = U + iV . With aid of this atlas, we may interprete N (f)

and N
⊥

(f) on each canonical region as the pull back of the most simple16 planar flows
N (u + iv),N ⊥(u + iv), and N (U + iV ),N ⊥(U + iV ) on the various sectors si,j(·, ·) and

Si,j(·, ·) respectively. Glueing the canonical regions Rij(·, ·) along the N (f)-trajectories in
their common boundaries, we obtain the restrictions to Ť of our original (rotated) Newton
flows. In particular, the flows N (u + iv)(= −(u + iv)) and N (U + iV )(= −(U + iV )) lead
to an analytic function on Ť , namely the restriction f |Ť , with as isolated singularities the
zeros, poles and critical points for f . By continuous extension to this singularities, we find

the original flows N (f) and N
⊥

(f). For an illustration, see Fig. 18, 19.
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Figure 18: The canonical regions Rij , and the sectors si,j(σ, σ
′) and Si,j(σ, σ

′).

16On the sectors si,j(σ, σ′) resp. Si,j(σ, σ′) the flows N (u + iv), resp. N (U + iV ) are North-South flows,
cf. Section 2.
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r kst = Rk
ij , k = 1, 2, 3. r kst = f(Rk

ij).

r kst = Rk
ij , k = 1, 2, 3. r kst = 1

f
(Rk

ij).
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e: u+ iv-plane

e: U + iV -plane

Figure 19: Fai
( 1

f
)\[ai] ∩ Fbj

(f)\[bj ] and its images under f and 1
f

(s = 3).
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7 Newton graphs

Throughout this section, the graph G is a cellular embedding in T , seen as a compact, ori-
entable, Hausdorff topological space, of an abstract multigraph G with r vertices, 2r edges
(r ≥ 2); r =order G.

The forthcoming analysis strongly relies on some concepts from classical graph theory on
surfaces, which- in order to fix terminology-will be briefly reviewed17:

7.1. Cellularity; geometric duals

Since G is cellularly embedded, we may consider (cf. [31]) the rotation system Π for G:

Π = {πv |all vertices v in G},

where the local rotation πv at v is the cyclic permutation of the edges incident with v such
that πv(e) is the successor of e in the anti-clockwise ordering around v.

If e(= v′v′′) stands for an edge, with end vertices v′ and v′′, we define a Π-walk (facial
walk18), say w, on G as follows:

The face traversal procedure.

Consider an edge e1 = (v1v2) and the closed walk19 w = v1e1v2e2v3 · · · vkekv1, which is de-
termined by the requirement that, for i = 1, · · · , ℓ, we have πvi+1

(ei) = ei+1, where eℓ+1 = e1
and ℓ is minimal.

Apparently, such “minimal” ℓ exists since G is finite. Note that each edge occurs either
once in two different Π-walks, or twice (with opposites orientations) in only one Π-walk; in
particular, the first edge in the same direction which is repeated when traversing w, is e1.
As in the proof of Lemma 6.9, these Π-walks can be used to construct (patching the facial
polygons along identically labelled sides) an orientable(!) surface S and in S, a so-called 2-
cell embedded graph with faces determined by the facial polygons. Since there are precisely
r facial walks, S is homeomorphic to T and the 2-cell embedded graph is isomorphic to G.
By the Heffter-Edmonds-Ringel rotation principle, the graph G is uniquely determined up
to homeomorphism by its rotation system. We say: G is generated by Π.
From now on, we suppress the role of the underlying abstract graph G and will not distin-
guish between the vertices of G and those of G. Occasionally, G will be referred to as to the
pair (G, Π). The G-faces (as well as the corresponding facial polygons) are denoted by Fj ;
their boundaries (as well as the corresponding Π-walks) by ∂Fj , j = 1, · · · , r. We denote the
sets of all vertices, edges and faces of G by V (G), E(G) and F (G) respectively.

The embedding of G into the orientable surface T induces an anti-clockwise orientation
on the edges around each vertex v. In the sequel we assume that the local rotations πv are
endowed with this orientation (so that the inverse permutation π−1

v are clockwise).

Given a cellularly embedded toroidal (G, Π), the abstract graph G∗ is defined as follows:

• The r vertices {v∗} are represented by the Π-walks in G,

17 Again we follow the treatise [31] closely. Note however, that in [31] a multigraph may exhibit loops,
whereas in our case this possibility for G is ruled out.

18Compare the facial walk wbj
in Section 6.

19We shall not distinguish between w and its cyclic shifts.
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• Two vertices are connected by an edge e∗ iff the representing Π-walks share an edge e.

Hence, between the G-edges and G∗-edges, there is a bijective correspondence: e ↔ e∗.
In particular, G∗ has 2r edges, and an edge e∗ is a loop20 iff e shows up twice in a Π-walk of G.

The graph G∗ admits a 2-cell embedding in T : the (geometric) dual (G∗, Π∗). In fact,
if the vertex v∗ in (G∗, Π∗) is represented21 by the Π-walk (e1 − · · · − el), then the cyclic
permutation on the G∗-edges incident with v∗, say π∗

v∗ , is defined by π∗
v∗ = (e∗

1 − · · · − e∗
l ).

Each Π∗-walk of length ℓ corresponds to precisely one G-vertex of degree ℓ: compare Fig.
13, where G = G(f) and G∗=G∗(f). Note that the anti-clockwise orientation of the local
rotation systems πv induces a clockwise orientation on the Π-walk (e1 − · · · − el) and thus
a clockwise orientation on π∗

v∗ . All together it follows that (G∗, Π∗)
∗
=(G, Π).

Finally, we note that two cellularly embedded graphs in T are isomorphic, then also their
duals.

7.2. The E(Euler)-property

In contradistinction to the case of facial walks in G(f), f ∈ Ẽr, see Lemma 6.7, a Π-walk in
G is-in general- not an Euler-trail. So, we need an additional condition:

Definition 7.1. (G, Π) has the E(Euler)-property if every Π-walk is Eulerian.

For an example of a second order graph (G, Π) that has the E-property, see Fig. 20-(i).
This it not so for the third order graphs (G, Π) in Fig. 20-(ii), (iii), whereas the graph in Fig.
20 (iv) does not even fulfil the initial conditions laid upon G (because there are 3 vertices
and only 5 edges ). Note, however, that also in the latter case the Euler Characteristic
vanishes, so that this multigraph is toroidal as well.
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Figure 20: Four multigraphs, cellularly embedded in T

20 In contradistinction to our assumption on G, the graph G∗ may admit loops.
21 We say: v∗ is “’located’ in the G-face, determined by the Π-walk (e1 − · · · − el).
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Lemma 7.2. If (G, Π) has the E-property, then this is also true for (G∗, Π∗).

Proof. Recall that the conditions “E-property holds for G” and “non-occurrence of loops in
G∗” are equivalent and apply (G∗)∗=G.

From now, on we assume that both G and G∗ are multigraphs and fulfil the E-property. In
particular, each edge in these graphs is adjacent to two different faces.

Let v be an arbitrary vertex in G, contained in the boundary ∂F of a face F and e1ve2 a
subwalk of the Π-walk wF . The different edges e1, e2 are consecutive w.r.t. the (clockwise)
orientation of wF . The facial local sector of F at v, spanned by the ordered pair (e1, e2), is
referred to as to a F -sector at v. Note that if v occurs more than once in wF , two F -sectors
at v cannot share an edge (because in that case the common edge would show up twice in
wF ). Hence, F -sectors at v must be separated by facial sectors at v that do not belong to
F . So, if e1ve2 and e

′

1ve
′

2 are subwalks of wF , spanning two facial F -sectors at v, then e1,
e2, e

′

1 and e
′

2 must be different. Thus each vertex in ∂F has even degree.
Apparently, the number of all facial sectors at v equals the degree of v, and in G there

are altogether δ1 + · · · + δr(= 4r) facial sectors, where the δi’s stand for the degrees of the
vertices in G.

Similarly, there are δ∗
1 + · · · + δ∗

r (= 4r) facial sectors in G∗ with the δ∗
j ’s the degrees of the

G∗-vertices.

We write F = Fv∗ , where v∗ is the G∗-vertex defined by F . So, wF = wFv∗
. Analogously,

F ∗
v stands for the G∗-face determined by v. Then e∗

2v
∗e∗

1 is a subwalk of wF ∗

v
and the dif-

ferent edges e∗
1, e

∗
2 are consecutive w.r.t. the anti-clockwise orientation of this facial walk.

We say that the Fv∗ -sector at v, spanned by the pair (e1, e2) and the F ∗
v at v∗ spanned by

(e∗
1, e

∗
2) are in opposite position; see Fig. 21. Altogether there are 4r of such (ordered) pairs

of G-, G∗-vertices. Note that if v occurs p times in wFv∗
, then v∗ shows up also p times in wF ∗

v
.
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Figure 21: Pairs of facial sectors in opposite position.

The next step is to introduce the analogon of the common refinement G(f) ∧ G∗(f).

To this aim:
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Definition 7.3. The abstract graph P(G) is given as follows:

• There are 4r vertices (on three levels) represented by:

- the G-vertices [Level-1],

- the pairs s = (e, e∗), e ∈ E(G), e∗ ∈ E(G∗) [Level-2],

- the G∗-vertices [Level-3].

• There are 8r edges:

- a vertex on Level-2, represented by (e, e∗) is connected to two different vertices

on Level-1, namely the G-vertices incident with e, and to two different vertices on

Level-3, namely the G∗-vertices incident with e∗.

- vertices on Level-1 are not connected with vertices on Level-3.

P(G)-vertices on the Levels-1, -3 are denoted as the corresponding G−,G∗−vertices. The
graph P(G) is directed by the convention: vertices on Level-1 (resp. Level-3) are the end-
(resp. begin-)points of its edges.

We claim the existence of a cellular embedding of P(G) in T , denoted G ∧ G∗, with faces
determined by the 4r pairs of facial sectors in opposite position. In order to verify this
claim, consider an arbitrary pair of such sectors, given by the subwalks e1ve2 and e∗

1v
∗e∗

2

with sℓ = (eℓ, e
∗
ℓ ), ℓ = 1, 2; compare Fig.21. We specify local rotation systems on P(G) at

v and v∗ by πv and π∗
v∗ respectively. The rotation systems at s1 and s2 are given by the

cyclic permutations (s1v, s1v
∗
1 , s1v1, s1v

∗), respectively (s2v, s2v
∗, s2v2, s2v

∗
2), where vℓ and

v∗
ℓ stand for the vertices incident with eℓ and e∗

ℓ that are different from respectively v and
v∗, ℓ = 1, 2. The resulting rotation system for P(G) is called (Π,Π∗). Now starting from vs2
we find the (Π,Π∗)-walk (vs2, s2v

∗, v∗s1, s1v).
This yields a cellular embedding of (P(G), (Π,Π∗)) into a surface homeomorphic to T

(because the alternating sum of the numbers of vertices, edges and (Π,Π∗)-walks in P(G)
vanishes). This embedding is denoted by G∧G∗, and can be viewed as the common refinement
of G and G∗. Each face in G ∧G∗ is represented by a quadruple of directed edges in P(G) and
is associated with exactly one vertex on Level 1, one vertex on Level 3 (in opposite position)
and two vertices on Level 2. Moreover, each G-face (G∗-face) is built up from the sets of all
G ∧ G∗-faces centered at a G∗-vertex (G-vertex), ordered in accordance with the orientation
of G (G∗). This observation turns the abstract graph P(G) into a distinguished graph Pd(G)
with only distinguished sets of Type 1 (in the sense of [33]).
Following Peixoto, the distinguished graph Pd(G) is realizable as the distinguished graph of
a C1-structurally stable vector field, say22 X (G) on T , with:

• as hyperbolic attractors (repellors): the G-vertices (G∗-vertices),

• as 1-fold saddles: the other G ∧ G∗-vertices,

• as stable (unstable) manifolds at the saddles: the G ∧ G∗-edges with as begin point a
G∗-vertex (as end point a G-vertex).

• as canonical regions (of Type 1): the faces of G ∧ G∗.

Note that X (G) exhibits no “saddle connections”, no closed orbits and thus no limit cycles.

22Since G∗ is determined by G, we occasionally refer to G as to the distinguished graph of X (G).
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In order to specify the roles of G and G∗, we occasionally write X (G) = XG∧G∗ .

Again, due to Peixoto’s classification result ([33]) on structural stability, we have23:
If H is another connected multigraph of order r, cellularly embedded in T that fulfils the E-
property, then:

XG∧G∗ ∼ XH∧H∗ ⇔ G ∼ H,
where, as in Section 6, in the left hand side ∼ stands for conjugacy and in the right hand
side for an equivalency (i.e., isomorphism between graphs respecting their orientations24).
The flow X (G∗) is the dual version of X (G), i.e., X (G∗) is obtained from X (G) by reversing
the orientations of the trajectories of the latter flow, thereby changing repellors into attrac-
tors and vice versa. Apparently, the dual version of X (G∗) is X (G).

Now, put H = G∗ and thus G = H∗, then we find:

X (G) ∼ X (G∗) ⇔ G ∼ G∗.

The above observation can be paraphrased as:

Lemma 7.4. X (G) is self dual (i.e., XG ∼ XG∗) iff G is self dual (i.e., G ∼ G∗).

Lemma 7.5. Put

δ(G) = {δi = deg(vi), vi ∈ V (G), i = 1, · · · , r} and

δ∗(G) := {δ∗
j = deg(v∗

j ), v∗
j ∈ V (G∗), j = 1, · · · , r}.

Then:
G ∼ G∗ ⇔ δ(G) = δ∗(G)(= δ(G∗)).

Proof. Note that the δi’s, together with the claim “clockwise” (“anti-clockwise”) fix the
local rotations of G and G∗. Now the Heffter-Edmonds-Ringel rotation principle together
with (G∗)∗ = G proves the assertion.

From Lemmata 7.4 and 7.5 it follows:

Corollary 7.6. There holds: X (G) ∼ X (G∗) ⇔ δ(G) = δ∗(G).

7.3 The A(Angle)-property

Recall that V (G) = {v1, · · · , vr} and δi = deg(vi). The δi anti-clockwise ordered edges,
incident with the vertex vi are denoted ei(k), ei(δi+1) = ei(1), k = 1, · · · , δi. Note that all
these edges are different (because G is a multigraph). Since T is locally homeomorphic to
an open disk, it is always possible to re-draw G, thereby respecting Π such that the anti-
clockwise measured angles at vi between ei(k) and ei(k+1), say 2πωi(k), are strictly positive
and sum up to 2π. The resulting graph is again denoted by G. Since G is a multigraph, we
have altogether 4r(= δ1 + · · · + δr) “angles” ωi(k). The set of all these angles is A(G). The
subset of all angles between edges that are consecutive edges in the Π-walk wFj

that span a
Fj-sector, is called the set of angles of Fj and will be denoted by a(Fj). Finally, for fixed i,
the set of all “angles” ωi(k), k = 1, . . . , δi, is the “set a(vi) of angles at vi”.
Now, we introduce:

23In fact: XG∧G∗ ∼ XH∧H∗ ⇔ Pd(G) ∼ Pd(H), where ∼ is defined as in (22).
24 More precisely: if Π and Π

′

are rotation systems for G resp. H, then either π
′

ϕ(v)
= πv for all v ∈ V (G),

or π
′

ϕ(v)
= π−1

v for all v ∈ V (G), where ϕ is a homeomorphism on T with ϕ(G) = H. In the first case we

call ϕ orientation-preserving and in the second case orientation-reversing.
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Definition 7.7. G has the A(Angle)-property if -possibly under a suitable local re-drawing-
the angles in A(G) can be chosen such that:

A1 : ωi(k) > 0 for all ωi(k) ∈ A(G).

A2 :
∑

a(vi)
ωi(k) = 1, for all i = 1,· · ·, r.

A3 :
∑

a(Fj)
ωi(k) = 1, for all j = 1,· · ·, r.

Note that Conditions A1 and A2 can always be fulfilled; the crucial claim is Condition A3.
Moreover, the sets of angles at the vertices v of G that fulfil the conditions A1 and A2, fix
the anti-clockwise oriented local rotations πv. Hence, G is determined by these angles.

Let J be an arbitrary non empty subset of {1, . . . , r}. The subgraph of G generated by
all vertices and edges in the faces Fj , j ∈ J, is denoted by G(J). An interior vertex of G(J)
is a vertex of G that is only incident with G-faces labelled by J , whereas a vertex of G(J) is
called exterior if it is incident with both a face labelled by J and a face not labelled by J .
The sets of all interior, respectively all exterior vertices in G(J) are denoted by IntG(J) and
ExtG(J) respectively. If J = {1, . . . , r}, then |IntG(J)| = |J | = |V (G(J))| = |V (G)|(= r),
where as usual |.| stands for cardinality.

We have:

Lemma 7.8. Assume that G fulfils the A-property. Then:

|IntG(J)| < |J | < |V (G(J))|, for all J , ∅ 6= J ( {1,· · ·, r} (23)

Proof. By Definition 7.7
∑

j∈J

∑

a(Fj)

ωi(k) = |J |.

The contribution of any interior vertex of G(J) to the sum in the left-hand side of this
equation is equal to 1, whereas each exterior vertex contributes with a number that is
strictly between 0 and 1. Hence, we are done if- for the subsets J under consideration- we
can prove that ExtG(J) 6= ∅. So, assume ExtG(J) is empty, thus IntG(J) 6= ∅. Let JC be the
complement of J in {1, . . . , r}. Thus ∅ 6= JC ( {1, . . . , r} and ExtG(JC)(=ExtG(J)) = ∅.
Hence, we also have IntG(JC) 6= ∅. Now, the connectedness of G yields a contradiction.

Remark 7.9. If G has the A-property, then: l.h.s. of (23) ⇔ r.h.s. of (23), so that one of
these equalities is redundant.

Lemma 7.10. If G fulfils |J | < |V (G(J))| for all J , ∅ 6=J( {1,· · ·, r} (cf. (23)), then:

Any assignment of an arbitrary vertex vi0 to any face Fj0 adjacent to vi0 ,

can be extended to a bijection T : V (G) → F (G), with v ∈ V (∂T (v)) and (24)

T (vi0) = Fj0 , i.e., the assignment vi0 7→ Fj0 can be extended to a transversal

of the vertex sets V (∂Fj), j = 1, · · · , r.

Proof. Consider the vertex set V (∂Fj) of ∂Fj . Put for j ∈ {1,· · ·, r}, pj = 1, if j 6=
j0, and pj0 = 0. For all non empty subsets J of {1, . . . , r}(i.e. including J = {1, . . . , r}), we
have

|V (G(J))\{vi0}| ≥
∑

j∈J

pj ,
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According to a slight generalization of Hall’s theorem on distinct representatives(cf. [30]),
these inequalities are necessary and sufficient for the existence of pairwise disjoint sets
X1,· · ·, Xr, such that

Xj ⊂ V (∂Fj)\{vi0} , with |Xj | = pj , j = 1,· · ·, r.

Hence, the singletons(!) Xj , j ∈ {1,· · ·, r}, j 6= j0, together with vi0 yield the existence of
the desired transversal T .

Now, let us re-label the angles of G by xλ, with λ = 1,· · ·, 4r(= ∑r
i=1 deg(vi)). We associate

with G a 2r×4r-matrix M(G) with coefficients mℓλ:

mℓλ =











1, if ℓ = 1,· · ·, r, and xλ is an angle at vℓ, i.e. xλ in a(vℓ);

1, if ℓ = r + 1,· · ·, 2r, and xλ is an angle in a(Fℓ−r);

0, otherwise.

Apparently, G has the A-property if and only if the following system of 2r equations and 4r
inequalities has a solution:

{

[M(G) | −1].(x | 1)T = (0, ..., 0)T

xλ > 0, λ = 1,· · ·, 4r (25)

Here, [M(G) | −1] stands for the matrix M(G) augmented with a (4r + 1)-st column, each
of its elements being equal to −1, and (x | 1) = (x1, ..., x4r, 1).

Basically due to Stiemkes theorem (cf. [26]), System (25) has a solution iff System (26)
below has no solution for which at least one of the inequalities is strict:





M(G)T

− − −−
−1· · ·− 1



 .ZT ≥ (0,· · ·, 0)T , with Z = (z1, · · · , zi, · · · , zr, · · · , zr+j , · · · , z2r) (26)

Here,




M(G)T

− − −−
−1· · ·−1





stands for the matrix M(G)T augmented with a (4r + 1)-st row, all its coefficients being
equal to −1. For i, j ∈ {1, · · · , r}, the pair (i, j) is called associated, notation (i, j) ∈ O, if
vi and Fj share an angle.

Obviously, System (26) is equivalent with

{

zi + zr+j ≥ 0, for all (i, j) ∈ O
∑2r

ℓ=1 zℓ ≤ 0
(27)

But now we are in the position to apply Lemma 7.10:

Lemma 7.11. Consider a graph G , not necessarily an E-graph. Then we have

G has the A-property ⇔ |J | < |V (G(J))| for all J, ∅ 6= J ( {1,· · ·, r}.
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Proof. “⇒” See Lemma 7.8.
“⇐”. Suppose that Z = (z1,· · ·, z2r) is a solution of System (27) for which at least one of
the inequalities is not strict. We lead this assumption to a contradiction.

Consider an associated pair (i0, j0). So, the vertex vi0 and the face Fj0 have an angle
in common. Extend by Lemma 7.10, the assignment vi0 7→ Fj0 to a transversal T as
in (24) and define τ(i) by Fτ(i) = T (vi). This means that vi and Fτ(i) share an angle,
thus (i, τ(i)) ∈ O; in particular (i0, τ(i0)) = (i0, j0) ∈ O. Since Z fulfills (27), we have:
zi + zr+τ(i) ≥ 0, i = 1, · · · , r, and moreover (use that T is bijective) also

r
∑

i=1

(zi + zr+τ(i)) =
∑

ℓ=1,...,2r

zℓ ≤ 0.

Hence, zi + zr+τ(i) = 0, i = 1, · · · , r. In particular, zi0 + zr+j0 = 0. Since the associated pair
(i0, j0) was chosen arbitrarily, we have zi + zr+j = 0, for every combination (i, j) ∈ O. This
contradicts our assumption on Z. It follows that System (27) does not have a solution for
which at least one of the inequalities is strict. Thus System (25) does admit a solution, i.e.
(G, Π) has the A-property.

Corollary 7.12. Let G be a graph as in Lemma 7.11. Then there holds:

G has the A-property ⇔ Condition (24) holds for G.

Proof. ⇒ See Lemmas 7.8, 7.10.
⇐ Follows from the (⇐ part) of the proof of Lemma 7.11.

The (equivalent) conditions “|J | < |V (G(J))| for all J , ∅ 6= J ( {1,· · ·, r}” and (24) will
be referred to as to the H(Hall)-condition; see also Section 13.2.

As it is easily verified, the graphs G in Fig. 20(i), (ii) fulfil the H-condition, but G in Fig.
20(iii) not. Hence, by Lemma 7.11, or Corollary 7.12, the graphs G in Fig. 20(i), (ii) have
the A-property, but this it not so for the graph in Fig. 20(iii).

7.4 Newton graphs

Definition 7.13. Cellularly embedded toroidal graphs that fulfil both the A-and the E-
properties are called Newton graphs.

Lemma 7.14. If (G, Π) is a Newton graph, then this is also true for (G∗, Π∗).

Proof. In view of Lemma 7.2, we only have to show that (G∗, Π∗) has the A-property. Let
v∗
0 be a G∗-vertex and consider an assignment v∗

0 7→ F ∗
v0

, where F ∗
v0

is a G∗-face adjacent to
v∗
0 corresponding with the G-vertex v0. So the pair (v0, v

∗
0) is in opposite position, and v0

is adjacent to the G∗-face Fv∗

0
. By assumption, G fulfills the A-property. So, we can extend

(by Corollary 7.12) the assignment v0 7→ Fv∗

0
to a transversal of the vertex sets of G (i.e.,

to pairs (vi, v
∗
i ) in opposite position such that all vi and v∗

i are different), and thus to a
transversal v∗

i → F ∗
vi

of the vertex sets of G∗-faces (extending v∗
0 7→ Fv∗

0
). Now, application

of Corollary 7.12 yields the assertion.

The above result is easily verified by a geometric argument. Consider -under the assumption
that the A-and E-properties hold for G- the graph G ∧ G∗ on T and proceed in two steps:
(see Fig. 22 )
Step 1: Re-draw G ∧ G∗ locally around the vertices of G (solid lines) such that the angles in
A(G) fulfil the Conditions A1-A3 (in Definition 7.7).
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Step 2: Due to Condition A3 for G, we may re-draw G ∧ G∗ locally around the vertices of
G∗ (dotted lines) such that the A(G)- and A(G∗)-angles of facial sectors in opposite position
are equal.

We conclude that also G∗ has the A-property, and find as a by-product:

Lemma 7.15. If G is a Newton graph, we may assume -possibly after a suitable local re-
drawing- that in each face of G ∧ G∗ the angles at the G-and G∗-vertices are equal (and
non-vanishing).

!or G
or G∗

Figure 22: (G, Π) and its dual (G∗, Π∗); partial

From Corollary 6.6 and Lemma 6.7 it follows:

Corollary 7.16. G(f) and G∗(f), f ∈ Ẽr, are Newton graphs.

In the forthcoming section we prove that in a certain sense the reverse is also true.

We end up this section with a lemma that we will use in the sequel:

Lemma 7.17. Let G be of order r = 2 or 3. Then: If r = 2, the A-property always holds,
whereas in Case r = 3 the E-property implies the A-property.

Proof. Let J be an arbitrary non empty, proper subset of {1, · · · , r}.
Case r = 2: Note that |J | = 1, thus |V (G(J)| > 1 (because G has no loops). So we have:
|V (G(J)| > |J |, i.e., the H-condition holds, and Lemma 7.11 yields the assertion.
Case r = 3:
If |J | = 1, then |V (G(J)| > 1(because G has no loops), thus |V (G(J)| > |J |.
If |J | = 2, then |Jc| = 1 and |V (G(Jc)| ≥ 2 (since G has no loops). Moreover, by the E-
property, each edge must be adjacent to at least two faces. This implies: IntG(Jc) = ∅. Thus
|ExtG(J)| = |ExtG(Jc)| = |V (G(Jc)| ≥ 2 and |V (G(J)| = |ExtG(J)| + |IntG(J)|. Distinguish
now between two cases:

• IntG(J) 6= ∅, then |V (G(J)| > |J |.
• IntG(J) = ∅, then the three vertices of G must be exterior vertices for G(J), thus also

|V (G(J)| > |J |. Hence, |V (G(J)| > |J | holds for all J under consideration, and Lemma
7.11 yields the assertion.

Remark 7.18. In contradistinction to the A-property, the E-property does not hold for all
second order multigraphs G ; compare Fig. 23 (i), where the dual G∗ admits a loop. From
Fig. 23 (ii), it follows that Lemma 7.17 is not true in the case that r = 4. From Fig. 20 (ii)
we learn that the A-property does not imply the E-property, even if r = 3.
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Figure 23: Two graphs G.

8 The representation of a Newton graph by a struc-
turally stable Newton flow.

In this section we prove that the reverse of Corollary 7.16 is also true.

Theorem 8.1. Any Newton graph G of order r can be realized - up to equivalency - as the
graph G(f), f ∈ Ẽr.

Proof. Based on several steps, see the end of this section.

Starting point is an arbitrary Newton graph G. We apply the results of Section 7. Let
X (G) be a C1-structurally stable vector field on T without limit cycles, determined - up to
conjugacy - by G ∧ G∗, thus by the distinguished graph G. (cf. Footnote 22)

The flow X (G) is gradient like, i.e. up to conjugacy equal to a gradient flow (with respect
to a C1-Riemannian metric R on T ). This can be seen as follows:
An arbitrary equilibrium, say x, of the (structurally stable!) flow X (G) is of hyperbolic
type, i.e. the derivative DxX (G) has eigenvalues λ1(x), λ2(x) with non-vanishing real parts,
cf. [32]. By the Theorem of Grobman-Hartman (cf. [17]) we have: (use also Theorem 8.1.8,
Remark 8.1.10 in [21]): On a suitable y-coordinate neighborhood [with y=(y1, y2)

T ] of x,
the phase portrait of X (G) is conjugate with the phase portrait around y= 0 of one of the
flows given by:

y′ = −
(

λ1 0
0 λ2

)

y, y(0) = 0, with either λ1 = λ2 = 1, or λ1 = λ2 = −1 or λ1 = −λ2 = 1,

corresponding to the cases where y= 0 stands for respectively a stable star node, an unstable
star node and an orthogonal saddle; see Fig. 24.

Applying a flow box argument (“cutting” and “pasting” of local phase portraits), we
find that X (G) is conjugate with a structurally stable smooth flow on T again denoted
by X (G) with as equilibria: 2r star nodes (r of them being stable, the other r unstable)
and 2r orthogonal saddles. The underlying “distinguished” graph is denoted - again - by
G. It follows that the angle between two G-edges (i.e. unstable separatrices at saddles for
X (G) incident with the same G-vertex (i.e. a stable star node for X (G)), may assumed to
be well-defined and nonvanishing.

We adopt the notations/conventions as introduced in the preambule to Definition 7.7
(Angle Property). In particular, let the G-vertex vi stand for a stable node of X (G). In
Fig. 25-(a) we present a picture of X (G) w.r.t. the y-coordinates around 0 (= vi). Here
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Stable star node 

!! = !! = 1 

Unstable star node 

!! = !! = −1 

Orthogonal saddle 

!! = −!! = 1 

Figure 24: The possible local phase portraits of X (G) around y= 0.

the bold lines stand for G-edges, and the thin lines for other X (G)-trajectories on a small
disk D around y= 0. Note that the angles ωi(k) in this figure fulfil the conditions A1, A2

in Definition 7.7. In Fig. 25-(b), we consider a similar configuration of X (G)-trajectories
on D, approaching vi, with as only additional condition that the tuples (ei(1), · · · , ei(δi))
and (e′

i(1), · · · , e′
i(δi)

) are equally ordered. Consider the oriented arcs arc(i(k), i(k + 1)) and

arc
′

(i(k), i(k + 1)) in the boundary ∂D of D, determined by respectively the consecutive
pairs (ei(k), ei(k+1)) and (e′

i(k), e
′
i(k+1)). Under suitable shrinking/stretching, these arcs can

be identified. This yields an orientation preserving homeomorphism ψ from ∂D onto itself.
It is easily proved that ψ can be extended to a homeomorphism Ψ : D → D mapping the
X (G)-trajectories in Fig. 25-(a) onto those in Fig. 25-(b). This procedure will be referred
to as a local re-drawing (around vi).

With the aid of local re-drawings, together with a “cut” and “paste” construction, the
pair (X (G),G) can be changed into an equivalent structurally stable flow (again denoted
X (G)) and an equivalent distinguished graph (again denoted G), with pictures as Fig. 25-
(b) instead of Fig. 25-(a). We conclude that the angles ωi(k) in Fig. 25-(a) may be altered
arbitrarily (provided that the Conditions A1, A2 in Definition 7.7 persist) without changing
the topological types of X (G) and G.

Note that any toroidal graph, equivalent with a Newton graph (such as the original graph
G), is also a Newton graph (cf. Defintion 7.1 and Lemma 7.11). Moreover, not only G, but
also G∗ is Newtonian (cf. Lemma 7.14). Hence, compare (the proof of ) Lemma 7.15, with
the aid of local re-drawings around the vertices of G and G∗, together with a “cut and past
construction”, it is easily shown that:

In each face of G ∧ G∗ (= canonical X (G)-region), the angles at the G- and G∗-vertex

(= a stable, respectively unstable, star node of X (G)) are equal and non-vanishing.

With respect to the various local y-coordinate systems around the X (G)-equilibria , we
define the 4r functions hi, h

∗
i , h

∗∗
j , i = 1, · · · , r, j = 1, · · · , 2r, as follows:

hi(y) =
1

2
(y2

1 + y2
2), in case of stable nodes at y = 0 representing the r vertices vi of G,

h∗
i (y) = −

1

2
(y2

1 + y2
2), in case of unstable nodes at y = 0 representing the r vertices v∗

i of G∗,

h∗∗
j (y) =

1

2
(y2

1 − y2
2) in case of saddles at y = 0 represented the 2r edges ej of G.

Note that each function exhibits a non-degenerate critical point at y = 0. Moreover,
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Figure 25: Local phase portraits of X (G) around a stable star node before and after local
redrawing.

on a y-coordinate neighborhood N around an equilibrium of X (G), the vector field X (G) is
the negative gradient vector field [w.r.t. the standard Riemannian structure on N ] of the
associated function. Apparently, the flow X (G), being structurally stable on T (without
limit cycles), together with the functions hi, h

∗
i and h∗∗

j , fulfils the Requirements (1)-(4) laid
upon Theorem B in [35]. So, applying this theorem we may conclude that there is a function
h on T such that:

1. The critical points of h coincide with the equilibria of X (G) and h coincides with the
functions hi, h

∗
i , h

∗∗
j plus a constant in some neighborhood of each critical point.

2. Dh(x) · X (G)|x < 0 outside the critical point set Crit(h) of h.

3. The function h is self indexing, i.e. the value of h in a critical point β equals the Morse
index of β (= #(negative eigenvalues of D2h(β)). Thus: h(β) = 0(= 2), in case of a
stable (unstable) node and h(β) = 1 in case of a saddle.

As a corollary, we have (cf. Theorem 8.2.8 in [21], and [35]), there is a variable (Riemannian)
metric R(·) on T , such that:

gradRh = X (G),

where gradRh is a vector field on T of the form: (w.r.t. local coordinates x for T )

gradRh(x) = −R−1(x)DTh(x).

Here R(x) is a symmetric, positive definite 2 × 2-matrix, with coefficients depending in a
C1-fashion on x. Note that the direction of gradRh is uniquely determined by the above
transversality Condition 2., whereas on the neighborhoods N around the X (G)-equilibria,
the matrices R(·) are just the 2 × 2-unit matrix I2. Moreover, gradRh(x) 6= 0, if and only if
x is outside the set Crit(h) (= set of X (G)-equilibria).

For x /∈ Crit(h), let grad⊥
R(x)h(x) 6= 0, be a vector R-orthogonal to gradR(x)h(x), i.e.

(grad⊥
R(x)h(x))T .R(x).(−R−1(x).DTh(x))[= −Dh(x).grad⊥

R(x)h(x)] = 0. (28)

Let x0 be a point in the level set Lc = {x ∈ T | h(x) = c; c = constant}. Then we have
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• Assume x0 /∈ Crit(h), thus Lc is, locally around x0, a regular curve. By (28) this local
curve is R-orthogonal to the trajectory of X (G) (= gradRh) through x0.

• If x0 ∈ Crit(h), then x0 is either an isolated point, surrounded by closed regular
curves Lc, c 6= 0, 2 (in the case where x0 is a X (G)-node), or a ramification point at
the intersection of two (orthogonal) components of L1 (in case of a X (G)-saddle). This
follows from the fact that on the neighborhoods N around the equilibria of X (G), the
Riemannian metric R is just the standard one.

So, we may subdivide the level sets Lc into the disjunct union of maximal regular curves
(to be referred to as to the level lines Lc) and single points (in Crit(h)). Let x(t),x(0) /∈
Crit(h) be a trajectory for X (G) (= gradRh). Since R−1(x) is a symmetric, positive definite
matrix:

d

dt
h(x(t))|t=0 = Dh(x(0)).x′(0) = Dh(x(0)).(−R−1(x(0))).DTh(x(0))) < 0 (29)

So, h(x(t)) decreases when t increases, and by the self indexing Condition 3: 0 ≤ h(x) ≤ 2
, all x ∈ T . By (29), when travelling along the boundary of an open canonical X (G)-

region[=G ∧ G∗-face], say Rij in Fig. 26, the functional values of h vary strictly from 2
(at the unstable node v∗

j ) via 1 (at a saddle σ1 or σ2) to 0 (at the stable node vi). From

this it follows -use also the transversality Condition 2 - that a level line Lc , entering Rij

through the boundary ∂Rij between vi and σ1 [thus 0 < c < 1], must leave this region

through ∂Rij between vi and σ2 . Also: if Lc enters Rij through ∂Rij between v∗
j and

σ1 [thus 1 < c < 2], then it leaves Rij through ∂Rij between v∗
j and σ2. By the same

argumentation: the saddles σ1 and σ2 are connected by a level line L1. Considering unions
of all G ∧ G∗-faces incident with the same vertex representing a stable (unstable) attractor
of X (G), we find: the level sets Lc, c 6= 0, 1 or 2, are closed smooth regular curves, either
contractable to a stable attractor [in case 0 < c < 1], or to an unstable attractor [in case
1 < c < 2] . Altogether, a level line Lc is either a closed curve, or it connects two different
X (G)-saddles. Hence, the following definition makes sense: (compare also Definition 6.18)

! ! !!

! ! !!

! ! !!

! ! !!

! ! !!

!!!

!!!

!!
!
!

!! !

trajectory of X (G) = gradRh

level line Lc, c > 0

Figure 26: The canonical X (G)-region Rij .

Definition 8.2. The graph G⊥ on the torus T is given by:

• Vertices are the 2r saddles for X (G) on T .

• Edges are the 4r level lines L1 connecting different saddles of X (G).
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Apparently, G⊥ is cellularly embedded, and by Euler’s theorem this graph is connected
(since there are 2r faces, determined by the stable and unstable nodes of X (G)). So, the
function h admits the same value on (the edges and vertices of) G⊥, whereas by the self
indexing Condition 3 - we know that this value equals 1. Thus, the embedded graph G⊥

as a point set in T is just the level set L1. This leads to Fig. 27, where we present the
graphs G, G∗ and G⊥, together with some more level lines Lc. We endow the level lines
Lc, 0 < c < 1 (the level lines Lc, 1 < c < 2 ) with the anti-clockwise (clock-wise) orientation.
Doing so, we can turn G⊥ into a oriented graph; see Fig. 27.

We fix the vector field grad⊥
R(x)h(x) by demanding that it has the same length as

gradRh(x) (w.r.t. the norm, induced by R(x)) and is oriented according to the orienta-
tion of the level line Lc through x, see Fig. 26. So, by (28), we may interpret the net of
X (G)-trajectories and level lines Lc, as the R-orthogonal net of trajectories for the vector
fields gradRh and grad⊥

Rh. The switch from X (G) to X (G∗) (=−X (G)) causes the reverse
of the orientations in this net. So, for the open canonical regions of X (G) and X (G∗), we

have Rij = R
∗

ji (as point sets). However, the role of vi and v∗
j , and of σ1 and σ2 (w.r.t. the

orientations of the trajectories) is exchanged. see Fig. 28, where the equal angles at vi and

v∗
j in Rij and R

∗

ji are denoted by α.
Reasoning as in the case of the function h for X (G), we find a self indexing smooth function,
say g, for X (G∗) with the following property:

“When traveling along the boundary of R
∗

ji , the functional values of g vary strictly from 2
(at the unstable node vi) via 1 (at a saddle σ1 or σ2) to 0 (at the stable node v∗

j ).”

Consider an arbitrary X (G)-trajectory, say γ∆, in Rij , approachng vi under a positive
angle ∆ with the G-edge (=X (G)-trajectory) viσ1; see Fig. 28. The set of all such trajectories
is parametrized by the values of ∆ in the interval (0, α) and the functional values of h (or

g) on Rij . We map γ∆ onto the half ray r(x) exp(i∆), x ∈ γ∆, where

r(x) = h(x), if x is on γ∆ between vi and p (=intersection γ∆ ∩ L1),

r(x) =
1

g(x)
, if x is on γ∆ between p and v∗

j .

In this way, the R-orthogonal net of trajectories for X (G) (=gradRh) and grad⊥
Rh on Rij

can be homeomorphically mapped onto the polar net on the open sector , say s(Rij), in the

complex plane as in Fig. 29-(a). Here 0 corresponds to vi, and σ
′

1, σ
′

2 (both situated on the
unit circle) are related to respectively σ1 and σ2.

Similarly, the trajectory γ∗
∆∗ in R

∗

ji can be mapped onto the half ray 1
r(x) exp(i∆∗), x ∈

γ∗
∆∗ , where ∆∗ is the angle at v∗

j between this trajectory and the G∗-edge v∗
jσ1, see Fig.

28, where ∆∗ = ∆ (apart from orientation). Hence, the R-orthogonal net of trajectories for

X (G∗) (=−gradRh) and −grad⊥
Rh on R

∗

ji can be homeomorphically mapped onto the polar

net on the sector, obtained from s(Rij) by reflection in the real axis. We call this sector

S(R
∗

ji). Here 0 corresponds to v∗
j , and (σ∗

1)′, (σ∗
2)′ (both situated on the unit circle) are

related to respectively σ1 and σ2. Reversing the orientations of the polar net in the latter
section, we obtain a polar net, oriented as the X (G) (=gradRh) and grad⊥

Rh-trajectories on

Rij . Endowed with this polar net we rename S(R
∗

ji) as S(Rij). Apparently, the polar nets

on s(Rij) and S(Rij) correspond under the inversion z → 1
z
. Compare Fig. 29-(a),(b). In

the same way, we map a neighbouring region Rij′ as in Fig. 28, homeomorphically onto the

sector s(Rij′) in Fig. 29-(a) and also onto S(Rij′) in Fig. 29-(c). Repeating this procedure
we are able to map all canonical regions of X (G) onto (the closures of) sectors of the types
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s(·) and S(·) in such a way that together they cover -for each value of i and j a copy of the
complex plane. (Compare also Fig. 18 and 19).

In analogy with Remark 6.20 , we consider the reduced torus Ť = T\{G ∧ G∗-vertices,
and on Ť the covering by open neighborhoods

{F ∗
vi

\vi, Fv∗

j
\v∗

j }, i, j = 1. · · · , r,

, where F ∗
vi

and Fv∗

j
stand for the basins of X (G) for respectively vi and v∗

j . Again, only

intersections of the type (F ∗
vi

\vi) ∩ (Fv∗

j
\v∗

j ) are possibly non-empty. Even so, such an

intersection consists of the disjoint union of regions of the type Rij , say R
1

ij , · · · ,R
s

ij , s is
the amount of vertices vi(vertices v∗

j ) in the Π-walks of Fv∗

j
(of F ∗

vi
). Note that at vi, (resp.

v∗
j ) these regions R

k

ij , are endowed with the anti-clockwise (clockwise) cyclic orientation,
and are separated by regions not of this type; compare Remark 6.8 and Section 7.2.

Now, we proceed as in Remark 6.20: The open covering of Ť provides this manifold with
a complex analytic structure, exhibiting coordinate transfomations

s(R
k

ij) ↔ S(R
k

ij), i, j = 1. · · · , r,

induced by the inversion z → 1
z
. We pull back the restrictions of the function z (resp. 1

z
)

on the various sectors s(R
k

ij), resp. S(R
k

ij) to Ť . By glueing all canonical regions for X (G)
along the trajectories in their common boundaries, we construct a complex analytic function
on Ť . Continuous extension to T , yields a meromorphic function, say f on T , with r simple
zeros (poles) at vi (v∗

j ) and 2r simple saddles at σ1, · · · , σ2r. Since N (z) = −z;N ( 1
z
) = − 1

z
,

we find X (G) = N (f), thus G = G(f). This proves Lemma 8.1.

!! ! !!
∗
!

!!

!∗!

!!(= !!)!

stable star node of  !!(!)!

unstable star node of  !!(!)!

orthogonal saddle of  !!(!)!

!! , ! ≠ 0, 1, 2!

!!!" !

Figure 27: The graphs G ∧ G∗, G⊥ and some level sets for h.

We combine this result together with results obtained in the preceding sections as follows:
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Theorem 8.3. Up to conjugacy (∼) between flows and equivalency (∼) between graphs, the
structurally stable Newton flows of r-th order are 1-1 represented by the Newton graphs of
order r.

Proof. Follows from Corollary 7.16 , Lemma 8.1 and Lemma 6.10.

�� 

��∗ ��′∗  �′
 

�′
 � �′

 

� 
�′

 

� ��′  �∆ 

∆∗ = ∆  

∆ 

�� 

��∗ 

�′
 

�′
 � 

� 

�∆∗∗  

∆∗
 

� ��  � ∗�� 
Figure 28: Rij and R

∗

ij
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9 Classification of Newton graphs of order 3

Let G(= (G,Π)) be an arbitrary Newton graph of order r, and G∗(= (G∗,Π∗)) a geometrical
dual of G. [Thus G∗ is also a Newton graph of order r (cf. Lemma 7.14)]. The vertices
and faces of G are denoted by vi, respectively by Fr+i. The G∗-vertex “located” in Fr+i

is denoted by v∗
r+i, and the G∗-face that “contains” vi by F ∗

i , i = 1,· · ·, r. In forthcoming
figures, the vertices G and G∗ will be indicated by their indices in combination with the
symbols ◦ and • respectively, i.e. vi ↔ ◦i, and v∗

r+i ↔ •r+i. This induces an indexation of
the faces of G and G∗ as follows: Fr+i ↔ •r+i and F ∗

i ↔ ◦i.
We consider the common refinement G∧G∗ of G and G∗, and the abstract, directed graph

P(G) underlying G ∧ G∗. This graph25 has vertices on three levels (cf. Subsection 7.2):
Level 1: The vertices vi of G.
Level 2: The “intersections” sk of the pair (e, e∗) of G- and G∗-edges, k = 1,· · ·, 2r.
Level 3: The vertices v∗

r+i of G∗.

By construction of the graph G ∧G∗, each sk has degree 4 (two connections with vertices

25Note that if the Newton graphs G and G
′

are equivalent, then P(G) ∼ P(G
′

). On the other hand

equivalency between P(G) and P(G
′

) does not imply G ∼ G
′

. In fact, as an additional (sufficient) condition,

corresponding vertices of P(G) and P(G
′

) should exhibit coherently oriented rotation systems.
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on Level 1 and two connections with vertices on Level 3), whereas the vertices on Level 1
and 3 are not connected. As in Subsection 7.2 we put δi = deg(vi) and δ∗

i = deg(v∗
r+i). We

have then:

Lemma 9.1. The following relatons hold:

1 < δi ≤ 2r, 1 < δ∗
i ≤ 2r,

r
∑

i=1

δi =

r
∑

i=1

δ∗
i = 4r.

and moreover,

No sk is connected by two edges to the same vi or the same v∗
r+i.

Proof. Follows directly from the E-property, applied to the multigraphs G and G∗.

Recall that δ(= δ(G)) = (δ1, · · · , δr) and δ∗(= δ∗(G)) = (δ∗
1 , · · · , δ

∗
r ). Also δ(G∗) = δ∗(G)

and δ∗(G∗) = δ(G).

From now on, let G be a 3rd order Newton graph. We adapt the notations: the G-vertices
will be denoted by a, b, c, d, e, f , and the corresponding G∗-vertices by a∗, b∗, c∗, d∗, e∗, f∗.

Our aim is to give a complete classification (up to equivalency) of all graphs G. We
emphasize that, since r = 3, the E-property already implies that G is a Newton graph (cf.
Lemma 7.17).

We distinguish between the following three possibilities with respect to the boundaries
(or Π-walks) of G-faces :

Case 1: The boundary of one of the G-faces, say ∂F4, has six edges, i.e. δ∗
4 = 6 .

Case 2: The boundary of one of the G-faces, say ∂F4, has five edges, i.e. δ∗
4 = 5.

Case 3: Each boundary of the faces in G and G∗ has four edges, i.e. δ = δ∗ = (4, 4, 4).

By Lemma 9.1 the Cases 1, 2 and 3 are mutually exclusive and cover all possibilities.
First we should check wether there exist graphs G that fulfil the conditions in the above
cases, and, even so, to what extend G is determined by these conditions.

Ad Case 1: Because of the E-property, and since there are no loops, it is necessary for the
existence of G that the Π-walk wF4

of a possible face F4 fulfils one of the following conditions:

Subcase 1.1 : Traversing wF4
once, each vertex appears precisely twice.

Subcase 1.2 : Traversing wF4
once, there is one vertex (say v1) appearing three times, one

(say v2) appearing twice, and one (say v3) showing up only once.

The (clockwise oriented)“Π-polygon” for ∂F4 has six sides, labelled a, b, · · · , f and six “cor-
ner points”, labelled by the vertices v1, v2, v3 (repetitions necessary). Identifying points
related to the same G-vertex, brings us back to wF4

. Note that the cyclic permutations of
the edges in wF4

that are incident with the same vertex are oriented anti-clockwise (compare
the conventions in Section 7).

In Subcase 1.1 there are precisely two different -up to relabeling- possibilities for wF4

according to the schemes: (see Fig. 30)

wF4
: v1av2bv3cv1dv2ev3fv1av2 (30)

48



 

� � 

 

� � 

  

� � 

� 

 

� � 

  

� � 

 

� � 

� � 

 

� � 

  � 

� 

 

� 

� 

  

� � 

 

� � � � � � 

� � 

� � � � 

� 

according to Scheme (30)  �  according to Scheme (31)  ��  
Figure 30: The two possibilities for wF4

in Subcase 1.1.

or
wF4

: v1av2bv3cv2dv1ev3fv1av2. (31)

First, we focus on wF4
given by Scheme (30), see Fig. 30(i). In the (anti-clockwise)

cyclic permutation of the wF4
-edges, incident with the same vertex, these edges occur in

pairs, determining a (positively oriented) sector of F4. From Subsection 7.2 we know that
two F4-sectors at the same vi are separated by facial sectors (at vi) not belonging to F4

(cf. Fig. 30(i)). Since, moreover, the graph we are looking for, admits altogether twelve
facial sectors, the cyclic permutation of the edges at vi are as indicated in Fig. 30(i) and
constitute a rotation system that -upto equivalency and relabeling- determines the graph,
say G, uniquely.

With the aid of the rotation system in Fig. 30(i) and applying the face traversal procedure,
as sketched in Subsection 7.1, we find the closed walks v2av1cv3ev2av1 and v2dv1fv3bv2dv1
defining the two other G-faces, say F5, resp. F6. (Note that each edge occurs twice in different
walks, but with opposite orientation). Glueing together the facial polygons corresponding
to F4, F5 and F6, according to equally labeled sides and corner points, gives rise to the plane
representations of G in Fig.31-Scheme (30).

From Fig. 31(i) it follows that the rotation system for G∗ is as depicted in Fig. 32. With
the aid of this figure we find, again by the face traversal procedure, the following closed
subwalks in G∗: v∗

4a
∗v∗

5c
∗v∗

4d
∗v∗

6f
∗v∗

4a
∗, v∗

4b
∗v∗

6d
∗v∗

4e
∗v∗

5a
∗v∗

4b
∗ and v∗

4f
∗v∗

6b
∗v∗

4c
∗v∗

5e
∗v∗

4f
∗,

defining the G∗-faces F ∗
1 , F ∗

2 , F ∗
3 respectively. (Note that each edge occurs twice in different

walks, but with opposite orientation). Glueing together the facial polygons corresponding
to these faces according to equally labeled sides and corner points, yields the plane repre-
sentations of G∗ in Fig. 31-Scheme (30).

If we start from a Π-walk for F4, according to the Scheme (31), we find (by the same
argumentation as above) plane representations for G and G∗; see Fig. 31-Scheme (31).
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s: G s: Gs: G∗ s: G∗

according to Scheme (30)

δ(G) = (4, 4, 4)
δ(G∗) = (6, 3, 3)

according to Scheme (31)

δ(G) = (4, 4, 4)
δ(G∗) = (6, 4, 2)

Figure 31: The two possible plane representations for G, G∗ in Subcase 1.1.
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Figure 32: The rotation systems for G∗, according to Scheme (30).

Note that in all graphs in Fig. 31 the anti-clockwise (clockwise) orientation of the cyclic
permutations of edges incident with the same vertex induces a clockwise (anti-clockwise)
orientation of the faces.

In Subcase 1.2 there is precisely one -up to relabeling- possibility for wF4
according to the

scheme:

wF4
: v1av2bv1cv2dv1ev3fv1a. (32)

In this case however, there are three pairs of G-edges at v1 determining (positively measured)
sectors of F4. So, reasoning as in Subcase 1.1, there are two possibilities for the (anti
clockwise) cyclic permutations of the G-edges at v1 (and thus also two different rotation
systems; see Fig. 33).

Starting from Fig. 33-(i) and applying the face traversal procedure, we find the facial
walks v1fv3ev1bv2cv1f and v1av2dv1a , which together with Scheme (32) define the faces F5,
F6 and F4 respectively. Reasoning as in Subcase 1.1, we arrive at the plane realizations of G
and G∗ as depicted in Fig. 34-(i). In the case of Fig. 33-(ii) the facial walks v1dv2av1bv2cv1d
and v1ev3fv1e, together with Scheme (32), define the faces F5, F6 and F4 respectively.
Reasoning as in Subcase 1.1, we obtain the plane representations for G and G∗ as depicted
in Fig. 34-(ii).

Note that-in accordance with Lemma 7.5-both graphs G in Fig. 34 are self dual, but-by
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Figure 33: The two possible rotation systems in Subcase 1.2.

inspection of their rotation systems-not equivalent.

Ad Case 2: Because the Π-walk of F4 has no loops and consists of an Euler trail on the five
edges of G, there is only one- up to relabeling - possibility for wF4

(see Fig. 35-(i)):

wF4
: v1av3bv2cv1dv2ev1a.

In contradistinction with the previous Case 1, now there is one edge, namely f , that is not
contained in wF4

. By Lemma 9.1, this edge must connect either v1 to v2 (f : v1 ↔ v2), or
v1 to v3 (f : v1 ↔ v3), or v2 to v3 (f : v2 ↔ v3); compare Fig. 35-(ii) where we show the
part of P(G) that is determined by ∂F4. We focus on the first two sub cases.
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G G∗

δ(G) = (6, 4, 2) = δ(G∗)

(i)

G G∗

δ(G) = (6, 4, 2) = δ(G∗)

(ii)

Figure 34: The two possible plane representations for G, G∗ in Subcase 1.2.

Taking into account the various positions of f with respect to local sectors of F4 at v1 and
v2 (when f : v1 ↔ v2), respectively v1 and v3 (when f : v1 ↔ v3), we find four respectively
two possibilities for the rotation systems; see Fig. 36. The Subcases f : v1 ↔ v3 and
f : v2 ↔ v3 are not basically different26. So, we may neglect the case f : v2 ↔ v3. Reasoning
as in Case 1, the rotation systems in Fig. 36 yield the possible planar representations of
G and G∗; see Fig. 37. Note that- by inspection of their rotation systems -all graphs G in
this figure are different under orientation preserving equivalencies, whereas only in the cases
of Fig. 37(iii) and (iv) these graphs are equal w.r.t. an orientation reversing equivalency
(apply the relabeling introduced in Footnote 26). Apparently, the graphs G and G∗ (and
thus also G∗ and G) in Fig. 37(i), resp. Fig. 37(v) are equal (under an orientaten preserving
equivalency). The graphs G in Fig. 37 (ii)-(iv),(vi) are self-dual (compare Corollary 7.6).
Ad Case 3: Without loss of generality, there are a priori two possibilities for the Π-walks
of an arbitrary face, say F4; see Fig. 38(i) and (ii). By Lemma 9.1 and by inspection of
the corresponding partial graph P(G), the first possibility is ruled out. So, we focus on Fig.
38(ii). Recall that two facial sectors at the same vertex vi are separated by facial sectors
(at vi) not belonging to F4 and that in the actual case we have δ=δ∗ =(4, 4, 4). So, we find

26 Relabeling v1 ↔ v2, a ↔ b and c ↔ e, transforms the two configurations in Fig.36(v) and (vi) into
configurations that generate (anti-clockwise oriented) rotation systems describing the case f : v2 ↔ v3.

52



� 

 � � 

 

�  
 

� 

 

� � 

 

� � 

� 

� 

� 

� 

   

� � � � � � 

   

��4  �  

ℙ �    partial   ��  

Figure 35: The Π-walk for F4 in Case 2.

the rotation systems and the distribution of “local facial sectors” as depicted in Fig. 38(ii),
where the roles of both e, f and F5, F6 may be interchanged. Now, by the face traversal
procedure we find:

Apart from relabeling and equivalency, there is only one (self dual) graph possible, Fig. 39.
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Figure 36: The possible rotation systems for G in Case 2.

Theorem 8.3, together with the above analysis of the 3rd order Newton graphs yields:
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Figure 37: The graphs G and G∗ in Case 2.

Theorem 9.2. Apart from conjugacy and duality , there are precisely nine possibilities for
the 3rd order structurally stable Elliptic Newton flows. These possibilities are characterized
by the Newton graphs in Fig. 40.
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Figure 38: Apriori possibilities for wF4
in Case 3.
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n: δ(G) = (4, 4, 4) = δ(G∗)

Figure 39: The only possible graphs G and G∗ in Case 3.

Remark 9.3. The Case r = 2.
By similar (even easier) arguments as used in the above Case r = 3, it can be proved that
-up to conjugacy-there is only one (self-dual) possibility for the 2nd order Newton graphs;
see Fig.41 (Note that in view of the E-property both facial walks of such graphs have length
4, whereas because of Lemma 7.17 the role of the A-property is not relevant). Together with
Theorem 8.3 this yields a proof of Corollary 6.13.
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Figure 40: The nine graphs characterizing the flows N (f), f ∈ Ẽ3.
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Figure 41: The 2nd order Newton graphs.
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10 Pseudo Newton graphs

Throughout this section, let (Gr,Π) be a Newton graph of order r, i.e. a connected multi-
graph, cellularly embedded in T , with r vertices, 2r edges and r faces (r ≥ 2) that fulfils both
the A- and E-property. We adopt the notations as introduced in Section 7, but occasionally
write - if no confusion is possible - Gr instead of (Gr,Π).

Due to the E-property, we know that an arbitrary edge of Gr is contained in precisely two
different faces. If we delete such an edge from Gr and merge the involved faces F1, F2 into a
new face, say F1,2, we obtain a toroidal connected multigraph (again cellularly embedded)
with r vertices, 2r − 1 edges and r − 1 faces: F1,2, F3, · · · , Fr.
If r = 2, then this graph has only one face.
If r > 2, put J = {1, 2}, thus ∅ 6= J ( {1,· · ·, r}. Then, we know, by the A-property (cf.
Lemma 7.8 (proof)), that Ext(G(J)) 6= ∅. Let v be an exterior vertex of G(J). If all edges
incident with v, are adjacent only to F1 or F2, then v must be an interior vertex of G(J).
This is in contradiction with our assumption on v. So, the boundary ∂F1,2 contains an edge
belonging to another face than F1 or F2 , say F3. Delete this edge and obtain the “merged
face” F1,2,3.
If r = 3, the result is a graph with only one face.

If r > 3, put J = {1, 2, 3}. By the same reasoning as used in the case r = 3, it can be
shown that ∂F1,2,3 contains an edge belonging to another face than F1, F2 or F3, say F4 .
And so on. In this way, we obtain - in r−1 steps - a connected multigraph, say Ǧr , with r
vertices, r + 1 edges and only one face.

Obviously, Ǧr contains vertices of degree ≥ 2. Let us assume that there exists a vertex for
Ǧr, say v, with deg(v)=1. If we delete this vertex from Ǧr, together with the edge incident
with v, we obtain a graph with (r− 1) vertices, r edges and one face. If this graph contains
also a vertex of degree 1, we proceed successively. The process stops after L steps, resulting
into a (connected, cellularly embedded) multigraph, say Ĝρ. This graph admits ρ = r−L
vertices (each of degree ≥ 2), ρ+ 1 edges and one face.

Apparently27 we have: L < r−1 and thus 2 ≤ ρ ≤ r. In particular:
if r = 2, then ρ = 2 and L = 0.
if r = 3, then ρ = 3 and L = 0, or ρ = 2 and L = 1; see also Fig.42.

From Remark 9.3 it follows that G2 is unique (up to equivalency); see also Fig. 41. From
the forthcoming Corollary 10.2 it follows that also Ǧ2 is unique. However, a graph Ǧr, r > 2,
is not uniquely determined by Gr, as will be clear from Fig. 42, where G3 is a Newton graph
(cf. Section 9, Subcase 1.2 and Fig. 34(i)).

Lemma 10.1. For the graphs Ĝρ we have:
Either

(a1) Two vertices are of degree 3, and all other vertices of degree 2,

or

(a2) One vertex is of degree 4, and all other vertices of degree 2.

(b) There is a closed, clockwise oriented facial walk, say w, of length 2(ρ + 1) such that,
traversing w, each vertex v shows up precisely deg(v) times.

The walk w is divided into subwalks W1, W2, · · · , connecting vertices of degree > 2 that
contain (apart from these begin- and endpoints) only-if any- vertices of degree 2.

27Assume L = r − 1.Then Ĝρ, ρ = 1, would be a connected subgraph of G, with two edges and one vertex;
this contradicts the fact that G has no loops. Compare the forthcoming Definition 10.5.
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(c1) If e1e2 · · · es is a walk of type Wi, then this also holds for its inverse

W−1
i := e−1

s · · · e−1
2 e−1

1 ,

where e and e−1 stand for the same edge, but with opposite orientation.

(c2) Wi and W−1
i are not consecutive in w.

(c3) In Case (a1), there are precisely 6 subwalks of type Wi, each of them connecting dif-
ferent vertices (of degree 3). In fact w is of the form:

w = W1W2W3W
−1
1 W−1

2 W−1
3 .

(c4) In Case (a2), there are precisely 4 subwalks of type Wi , each of them being closed and
containing at least one vertex of degree 2. In fact w is of the form:

w = W1W2W
−1
1 W−1

2 .

Proof. ad (a): Each edge of Ĝρ contributes precisely twice to the set {deg(v), v ∈ V (Ĝρ)}.
It follows:

∑

all Ĝρ-vertices v

deg(v) = 2(ρ+ 1). (33)

Put ki =♯{vertices of degree i}, i = 1, 2, 3, · · · . Then (33) yields:

2k2+3k3+4k4+5k5+· · · = 2(k2+k3+k4+k5+· · ·+1)(= 2(ρ+ 1)).

Thus, either k2 = ρ−2, k3 = 2, ki = 0 if i 6= 2, 3, or k2 = ρ−1, k4 = 1, ki = 0 if i 6= 2, 4.
ad (b): The geometrical dual (Ĝρ)

∗ of Ĝρ has only one vertex, say v∗. So, all edges of

(Ĝρ)
∗ are loops. Hence, in the facial walk w of Ĝρ that defines v∗, each edge shows up

precisely twice (with opposite orientation). Thus w has length 2(ρ+ 1). Traversing w, each
facial sector of Ĝρ is encountered once and -at a vertex v- there are deg(v) many of such
sectors.

ad (c): Let e1ve2 be a subwalk of w with deg(v) = 2. Both e−1
1 and e−1

2 occur precisely
once in w, and e−1

2 ve−1
1 is a subwalk of w. This yields statement (c1). If the subwalk

W = e1e2 · · · es and its inverse are consecutive, then either e−1
1 v1e1, or esvse

−1
s are subwalks

of the facial walk w of Ĝρ, where v1 resp. vs is the begin-(end)point of e1 resp. es. This

is impossible, because e1, e
−1
1 and also es, e

−1
s are the same (up to orientation) and Ĝρ has

no loops. Hence, the assertion in (c2) holds. Note that if an edge e occurs in W , then the
only subwalk of this type where e (or more precisely e−1) shows up is W−1. From this
observation, together with (c1) and (c2), it follows that:

• In Case a1: w is of the form W1W2W3W
−1
1 W−1

2 W−1
3 ; see Fig. 43-a1. In fact, if one

of these subwalks, say W1, would have equal begin- and endpoint, this vertex is also
begin- and endpoint for W−1

1 , which is impossible, see (a1) and (b). This yields (c3).

• In Case a2: w is of the form W1W2W
−1
1 W−1

2 ; see Fig. 43-a2. In fact, the four
components are closed (because of (a2)) subwalks and must contain at least one vertex
of degree 2 (since otherwise Ĝρ would have a loop).

An analysis of its rotation system learns that Ĝρ is determined by its facial walk w, and
thus also by the subwalks W1W2W3 (in Case a1) or W1W2 (in Case a2). In fact, only the
length of the subwalks Wi matters.
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Figure 43: The graphs Ĝρ

Corollary 10.2. The graphs Ĝ2 and Ĝ3 can be described as follows:

• By Lemma 10.1 it follows that Ĝ2 does not have a vertex of degree 4. So, Ĝ2 is of the
form as depicted in Fig. 43-a1, where each subwalk Wi admits only one edge. Hence,
there is-up to equivalency- only one possibility for Ĝ2. Compare also Fig. 41.

• It is easily verified that -in Fig. 44- each graph (on solid and dotted edges) is a Newton
graph. In fact, verification of the E-property is sufficient (cf. Lemma 7.17). Hence, in
case ρ = 3, both alternatives in Lemma 10.1-(a) occur. An analysis of their rotation
systems learns that the three graphs with only solid edges in Fig. 44-(i) − (iii) are
equivalent, but not equivalent with the graph on solid edges in Fig. 44-(iv). In a
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similar way it can be proved that the graphs in Fig. 44 expose all possibilities(up to
equivalency) for Ĝ3.

Remark 10.3. Pseudo Newton graphs
The graphs such as Ǧρ and Ĝρ, obtained from Gr by deleting edges and vertices in the way
prescribed above, are -although derived from Newton graphs- not Newton graphs themselves.
Therefore, they will be referred to as to pseudo Newton graphs. Replacing (in the inverse
order) into Ĝρ, ρ = r − L, the edges and vertices that we have deleted from Gr, we regain
subsequently Ǧr and Gr. The following property is obvious:
“Each Newton graph Gr admits pseudo Newton graphs of the form Ǧ·, Ĝ·”.

Remark 10.4. If we delete from Ĝρ an arbitrary edge, the resulting graph remains connected,
but the alternating sum of vertices, edges and face equals +1. Thus one obtains a graph
that is not cellularly embedded.
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Figure 44: All possible graphs Ĝ3

Definition 10.5. A Nuclear Newton graph is a cellularly embedded graph in T with one
vertex and two edges.

Apparently a Nuclear Newton graph is connected and admits one face and two loops. In
particular such a graph has a trivial rotation system. Hence, all nuclear Newton graphs
are topologically equivalent and -exposing the same structure as the Pseudo Newton graphs
Ĝρ- will be denoted by Ĝ1. Note that a Nuclear Newton graph fulfils the A-property (but

certainly not the E-property). Consequently, a graph of the type Ĝ1 is neither a Newton
graph, nor equivalent with a graph G(f), f ∈ Ěr. Nevertheless, Nuclear Newton graphs will
play an important role because, in a certain sense, they “generate” all structurally stable
Newton flows. This will be explained in Section 12.
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11 The nuclear elliptic Newton flow

Throughout this section, let f be an elliptic function of order r ≥ 2 with -viewed to as to
a function on T = T (Λ(ω1, ω2)) - only one zero and one pole, both of order r. Our aim is
to derive the result on the corresponding (so-called nuclear) Newton flow that was already
announced in Remark 5.8.

When studying -up to conjugacy- the nuclear flow N (f), we may assume (cf. Theorem
4.6) that ω1 = 1, ω2(= τ) = i, thus Λ = Λ1,i. In particular, the period pair (ω1, ω2) = (1, i)
is reduced. Adopting the notations as used in Section 4 and in the proof of Lemma 5.7, we

represent [f ] (and thus N (f)), by the Λ-classes [a1], [b1] , where a1 resp. b1 stands for the
zero, resp. pole, for f , situated in the period parallelogram P (= P1,i). Due to (15), (16) we
have:

b1 = a1 +
λ0

r
, b

′

1 = b1−λ0.

We may assume that a1,b1 are not on the boundary ∂P of P . Since the period pair
(1, i)(= (ω1, ω2)) is reduced, the images under f of the P -sides γ1 and γ2 are closed Jordan
curves (cf. Fig. 11 and use the explicit formula for λ0 as presented in Section 5). From this,
we find that the winding numbers η(f(γ1)) and η(f(γ2)) can -a priori- only take the values
-1, 0 or +1. The combination (η(f(γ1)), η(f(γ2))) = (0, 0) is impossible (because a1 6= b1).
The remaining combinations lead, for each value of r = 2, 3, · · · , to eight different values for
b1 each of which giving rise, together with a1, to eight pairs of classes mod Λ that fulfil (9),
determining flows in Nr(Λ), cf. Fig. 45. Since any two pairs of these classes are related by
a unimodular transformation on the periods of Λ, possibly in combination with a transition
of the type Λ → Λα = αΛ, the corresponding flows are equivalent (cf. the proofs of Lemmas

3.1 and 4.3) and will be denoted by N (f |a1
). So, we may focus on one specific pair, say

a1,b1 = a1 + 1+i
r

, and thus b
′

1 = b1−(1 + i).

−1 + !

2
!

!
2
! ! 1 + !

2
!

1 − !

2
!

−1 − !

2
!

1
2
! !

− !
2
! !

− 1
2
! ! (= !!)!

Figure 45: Eight pairs (a1,b1) determining the same nuclear flows; a1 = 0, r = 2.

Now, let z0 be arbitrary in P . The translation z 7→ z+z0 −a1 turns N (f |a1
) into an

equivalent flow, with only one attractor (z0) and one repellor: the nuclear flow N (f |z0
) on

T . It follows:

Lemma 11.1. All nuclear elliptic Newton flows of the same order are mutually conjugate.
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So, in order to study the phase portraits of these flows, it is enough to select an arbitrary
a in P and some b (related to a by (9)). We choose a = 0 and b = 1+i

r
, thus b

′

= 1+i
r

−(1+i)

and rename f |a as f . With this choice, the saddles for N (f) correspond (cf. Section 5) to
the zeros for:

−
d

dz
[log σr(z − a)/σr−1(z − b)σ(z − b

′

)]

= −rζ(z) + (r − 1)ζ(z −
1 + i

r
) + ζ(z −

1 + i

r
+ 1 + i)

(Note that this is an elliptic function with in P two simple poles, namely: 0, 1+i
r

, thus also
two zeros in P ). Apart from the periodicity w.r.t. the square P , the phase portrait of
N (f), is also symmetric under reflection in the line l through 0 and 1 + i. So, there are two
possibilities for the position of these two saddles in P : (cf. Fig. 46)

1. situated on the the line l;

2. not on l, but symmetric w.r.t. to this line; in particular they are different (thus simple)
and will be denoted by σ1, σ2.

� + � 

 

� = � + + ��  

ℓ 

�  

� =   

�  

Figure 46: Zero (◦) , pole (•) and critical points (+) for f in P (= P1,i)

A careful analysis of how the zeros (sinks) and poles (sources) for f contribute separately
to the velocity field of the steady stream corresponding to the flow N (f), learns that the
first possibility does not occur. So, we may assume that only the possibility as depicted in
Fig. 46 holds. In the sequel, we use the following facts concerning N (f):

(I) periodicity with respect to 1 and i;

(II) invariancy under reflection in the line l;

(III) at a zero (pole) for f -both of order r- each value of arg(f) appears r times on equally
distributed incoming (outgoing) N (f)-trajectories (cf. the comment on Fig. 2).

From (II), it follows that l is build up of trajectories connecting the zeros and poles for
f on l (cf. Fig. 46). In particular, the l-segments, determined by 0 and 1+i

r
, and by 1+i

r
,

and (1 + i) are N (f)-trajectories, connecting the pole 1+i
r

with the zeros 0 and (1 + i). By
(5), we may arrange the argument function arg on C such, that on the l-segment between
1+i
r

and 1+ i , we have arg(f) = 0, and thus -by (III)- arg(f) = π on the l-segment between

0 and 1+i
r

. A moment of reflection learns that at least one N (f)-tracjetory, say Γ1 , leaving

from the pole 1+i
r

tends to a N (f)-saddle, say s1. Then -by (II)- the image of Γ1 under the

reflection in l, say Γ
′

1, connects 1+i
r

to a saddle s2(6= s1 mod Λ). Now, from (I) and (II)
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it follows that s1 and s2 are situated in P . So, we may assume that s1 = σ1, s2 = σ2. In
particular there are no saddle connections. Again by (I), (II) it is easily seen that -in the
situation of Fig. 47- the unstable N (f)-manifold through σ1, connects the zeros i and 1+ i,
whereas the unstable manifold through σ2 connects 1 with 1 + i. Altogether, this results

into a fairly complete impression of the phase portrait of N (f), and thus of N (f):

Corollary 11.2. The phase portrait of a nuclear Newton flow of order r is-up to topological
equivalency as depicted in Fig. 47. In particular, there are two simple saddles, and no
saddle connections.

Compare Lemma 5.7 and in particular Remark 5.8.
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Figure 47: Phase portrait of nuclear Newton flow (P = P1,i)

Remark 11.3. : (Canonical form of the phase portrait of the nuclear Newton flow).
Due to the fundamental property (5), and using (III), it is possible to derive explicit expres-
sions (in terms of the order r) for the angles α and β in Fig. 47. We find:

α =
1

4r
, β =

2r − 3

4r
(34)

This enables us to present pictures -up to conjugacy- of N (f), r = 2, 3, 4,· · · (cf. Fig. 48).
These pictures are realistic, if Λ = Λ1,i,a = 0,b = 1+i

r
. Note that if r=2, the phase portrait

of N (f) is equivalent to N (℘), in the lemniscate case , where ℘ = ℘|Λ and Λ = Λ1,i (cf. [1]).

Fig.48 suggests that nuclear Newton flows of different order are conjugate (which -from
a steady stream point of view- is rather plausible). In order to give a formal proof, we need
one more definition:

Let f be -as before- an elliptic function of order r with on T only one zero and only one
pole (and thus two simple critical points). Then:

Definition 11.4. H(f) is the graph on T with as vertex, edges and face respectively:

(i) the zero for f on T (as an attractor for N (f)),

(ii) the unstable manifolds for N (f) at the critical points for f on T (as N (f)-saddles),
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! = 2! ! = 3! ! = 4!

Figure 48: The canonical nuclear Newton flows; r = 2, 3, 4.

(iii) the basin of repulsion for N (f) of the pole for f on T (as a repellor for N (f)).

H(f) is a pseudo graph (loops and multiple edges permitted) and will be referred to as

the nuclear Newton graph for the nuclear flow N (f). By Lemma 11.1, different functions f
(of the same order r) give rise to equivalent graphs H(f). Thus, we may speak of the pseudo
Newton graph for the nuclear flow of order r, denoted by Hr. So, H(f) ∼ H( 1

f
) ∼ Hr. In

accordance with Sections 6 and 7, we oriented Hr clockwise, and thus H∗
r anti-clockwise.

The common refinement Hr ∧ H∗
r (∼ H(f) ∧ H(f)∗) is defined in the same way as Gr ∧ G∗

r

(∼ G(f)∧G(f)∗). In view of (34) the conditions A1−A3 in Definition 7.7 do also hold for Hr.
In particular, the graph Hr is of the same type as the nuclear Newton graph Ĝ1, compare
the comment on Definition 10.5.

If [a] and [b] are the classes mod Λ that represent respectively the zero and pole for f on
T (and a, b are chosen in P ), we introduce:

Ψa(z) =

√

∑

ω∈Λ

|z − a− ω|−(4r−4); Ψb(z) =

√

∑

ω∈Λ

|z − b− ω|−(4r−4), (35)

where the summation takes place over all points in lattice Λ.
We define the planar flow N (f) by:

dz

dt
= −Ψa(z)Ψb(z)(1 + |f(z)|4)−1f ′(z)f(z) (36)

Lemma 11.5. The flow N (f) is smooth on C and exhibits the same phase portrait as N (f).
In particular, there are no saddle connections. However, its attractors (at zeros for f) and
its repellors (at the poles for f) are all generic, i.e. of the hyperbolic type.

Proof. Since r ≥ 2 (thus 4r − 4 ≥ 4) , series of the type as under the square root in (35)
are uniform convergent in each compact subset of C\(Λω1−a,ω2−a ∪ Λω1−b,ω2−b) From this,
together with the smoothness of N (f) on C, it follows that N (f) is smooth outside the
union of Λω1−a,ω2−a and Λω1−b,ω2−b. Special attention should be paid to the lattice points.
Here the smoothness of N (f) as well as the genericity of its attractors and repellors follows
by a careful (but straightforward) analysis of the local behaviour of this vector field around
these points, as well as the fact that these points are either a zero, or a pole of order r for
f . Since outside their equilibria N (f) and N (f) are equal -up to a strictly positive factor-
their portraits coincide.

Theorem 11.6. All flows N (f) are mutually conjugate.
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Proof. By Lemma 11.5, a flow N (f) of any order is structurally stable as a C1-vector field
on T (cf.[32]). So, we may consider the distinguished graph of such a flow. Such a graph is
defined as the abstract, directed graph underlying H(f) ∧ H( 1

f
) (∼ Hr ∧ H∗

r), together with

its four canonical regions (distinguished sets of Type 1); compare also Section 6. Application
of (22) yields the assertion (cf. [33]).

From Lemmata 11.1, 11.5 and Theorem 11.6 it follows:

Corollary 11.7. Any two nuclear Newton flows (of arbitrary order) are conjugate.
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Figure 49: The nuclear Newton graph H(℘3+i,2+i) on the torus T (= T1,i).

We end up with a comment on the nuclear Newton graph H(fω1,ω2
), where the pair

(ω1, ω2) is related to (1, i) by the unimodular transformation

M =

(

p1 q1
p2 q2

)

, p1q2 − p2q1 = +1.

The above condition implies that (p1, p2) and (q1, q2) are co-prime, and

ω1 = p1 + p2i, ω2 = q1 + q2i.

Our aim is to describe H(fω1,ω2
) as a graph on the canonical torus T (= T1,i). In view of

Lemma 3.1, the two edges of H(fω1,ω2
) are closed Jordan curves on T , corresponding to

the unstable manifolds of N (fω1,ω2
)) at the two critical points for f that are situated in

the period parallelogram Pω1,ω2
. These unstable manifolds connect a with a+ p1 + p2i, and

a + q1 + q2i respectively. Hence, one of the H(fω1,ω2
)-edges wraps p1-times around T in

the ω1-direction and p2-times around T in the ω2-direction, whereas the other edge wraps
q1-times around this torus in the ω1-direction respectively q2-times in the ω2-direction. See
also Fig. 49, where we have chosen for f the Weierstrass ℘-function (lemniscate case), i.e.
r = 2, a = 0 and ω1 = 3 + i, ω2 = 2 + i. Compare also Fig. 48, case r = 2.

12 Representation of pseudo Newton graphs

In this section we discuss the connection between pseudo Newton graphs and Newton flows.
In order not to blow up the size of this study, we focus - after a short introduction - on the
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Figure 50: The three different graphs Ǧ3.

Cases r = 2 and 3. Note however, that even from these simplest cases the main idea of our
approach becomes already clear.

We consider functions f ∈ Er with r simple zeros and one pole of order r. (Such functions
exist in view of (9) and (16)). The set of all these functions is denoted by Er and will be
endowed with the relative topology induced by the topology τ0 on Er. In view of Lemma
5.7 (case A = r,B = 1) a sufficiently, but arbitrarily small neighborhood in Er of f contains
a function, say g, with r simple zeros, (r + 1) simple critical points and only one pole (of
order r). Reasoning as in the the proof of Theorem 5.6 (density part of Assertion 1) we even

may assume that the corresponding flow N (g) does not exhibit saddle connections. Hence,
the set E0

r, of all such functions g is open and dense in Er.
From now on, let g be in E0

r. Then, the graph on T with as vertices the r zeros for g,

as edges the r+ 1 unstable manifolds for N (g)) at the critical points for g, and as only face

the basin of repulsion for N (g) at the pole for g, is well-defined. This (connected!) graph
will be denoted by Ǧ(g).

By means of a suitably chosen damping factor, we may view the flows N (g), g ∈ E0
r, to

as to structural stable (compare the proofs of Lemma 11.5 and Theorem 11.6). We consider

the distinguished graph of N (g). Since there is only one pole for g (i.e., a repellor for N (g)),
all distinguished sets (of either Type1 or Type 3) are centered at this repellor. From this, it
is easily derived that Ǧ(g) is cellularly embedded (compare the proof of Lemma 6.9). Each
edge of the dual Ǧ∗(g) is a loop (because g has only one pole). So, each unstable manifold

of N (g) appears twice as an edge in the facial walk wg for the face of Ǧ(g), be it with
opposite orientations. So, altogether, this facial walk admits 2(r + 1) edges. Note that the
distinguished sets of Type 3 correspond only to Ǧ(g)-vertices (i.e., zeros for g) of degree 1,
whereas all other vertices give rise to sets of Type 1.

Lemma 12.1. For each g ∈ E0
r, the graph Ǧ(g) is of type Ǧr.

Proof. (only for r = 2, 3)
First we note that, due to the construction in Section 10, there is only one possibility for
Ǧ2 = Ĝ2 (see Fig. 43 a1, where δ1 = δ2 = 3, L = 0 and the subwalks Wi admit only one
edge). For Ǧ3 there are three possibilities (see Fig. 50, where the values of δi discriminate
between these types).
r = 2 : The facial walk wg admits six edges and two vertices (repetition necessary). If one of
these vertices has degree 1, four of the edges in wg must be incident with the other vertex.
This is impossible since wg has no loops (because the zeros for g are simple). So, each vertex
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has degree > 2. Now, the assertion follows as in the proof of Lemma 10.1 (compare also
Corollary 10.2).
r = 3 : The facial walk wg admits eight edges and three vertices (repetition necessary).

• If all vertices are of degree > 2, then Ǧ(g) is of the types as depicted in Fig. 50-(b),
(c) [Ǧ(g) = Ǧ3 = Ĝ3]; compare the proof of Lemma 10.1 and Fig. 44.

• If only one of these vertices, say v, has degree 1, we distinguish between two subcases:

(i) Deleting v together with the edge, incident with v, results into a new graph with
only one face and a facial walk admitting three edges and two vertices of degree
> 2 (repetition necessary). By Corollary 10.2 it follows that the latter graph
equals Ĝ2 , and thus the original graph Ǧ(g) is as depicted in Fig. 50-(a).

(ii) Deleting v, together with the edge incident with v, results into a new graph with
a vertex of degree 1. If we delete also this vertex together with the adjacent edge,
we obtain a new graph with only one face and a facial walk admitting two edges
and one vertex (of degree > 2). Since all zeros for g are simple this is not possible.

• If (at least) two of these vertices have degree 1, the same argument as used in Subcase
(ii) leads to a contradiction.

Also the converse of Lemma 12.1 is true:

Lemma 12.2. Each graph of the type Ǧr, can be represented as a graph Ǧ(g) with g in E0
r.

Proof. (only for r = 2, 3)

r = 2 : A direct consequence of the existence of flows N (g), g ∈ E0
r, and Lemma 12.1.

r = 3 : Consider the 3rd order nuclear Newton flow N (f) as introduced in Section 11 (cf.
Fig. 47 and 48-(b)). The idea is:

To split off from the 3rd order zero for f a simple zero (v1) “Step 1”, and thereupon,
to split up the remaining double zero (v

′

1) into two simple ones (v2, v3) “Step 2”, in such a
way that by an appropriate strategy, the resulting functions give rise to Newton flows with
associated graphs, determining each of the three possible types Ǧ3 in Fig. 50 .
Ad Step 1 : We perturb the original function f into an elliptic function g with one simple

(v1) and one double (v
′

1 ) zero (close to each other), and one third order pole w, fulfilling

Relation (15) and (16) (thus close to the pole of f). The original flow N (f) perturbs into

a flow N (g) with v1 and v
′

1 as attractors and w1 as repellor. When v1 tends to v
′

1, the

perturbed function g will tend to f , and thus the perturbed flow N (g) to N (f), cf. Lemma
5.1. In particular, when the splitted zeros are sufficiently close to each other and the circle
C1 that encloses an open disk D1 with center v

′

1, is chosen sufficiently small, C1 is a global

boundary (cf.[21]) for the perturbed flow N (g). It follows that, apart from the equilibria v1

and v
′

1 (both of Poincaré index 1) the flow N (g) exhibits on D1 one other equilibrium (with
index −1): a simple saddle c (compare Section 1 and [15]). From this, it follows (cf. Relation

(5)) that the phase portrait of N (g) around v1 and v
′

1 is as sketched in Fig. 51-(a). On the
(compact!) complement T\D1 this flow has one repellor (w1) and two saddles. The repellor
may be considered as hyperbolic (compare Lemma 11.5), whereas the saddles are distinct

and thus simple (because N (f) has two simple saddles, say σ1, σ2, depending continuously

on v1 and v
′

1). Hence, the restriction of N (g) to T\D1 is ε-structurally stable (cf. [32]).
So, we may conclude that, if v1 (chosen sufficiently close to v

′

1) turns around v
′

1, the phase
portraits outside D1 of the perturbed flows undergo a change that is negligible in the sense
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of the C1-topology. Therefore, we denote the equilibria of N (g) on T\D1 by w, σ1, σ2 (i.e.,
without reference to v1). We move v1 around a small circle, centered at v

′

1 and focus on
two positions (I, II) of v1, specified by the choice of the angle α at v

′

1 together with the
corresponding arc γ(≈ 2α

3 ) in C1. In fact, we choose α = 1
8 (position I), or α = 3

8 (position

II). See Fig. 52, where we sketched some trajectories of the phase portraits of N (g) on D1.
(Note that γ ≈ 2

3α because v
′

1 is a double zero, and w1 a triple pole for g). Compare also
Fig. 47 and formula (34) for r = 3. Similarly, the (approximate) values of the angles at v1
and v

′

1 as well as the values of the arcs of C1, associated with these angles can be explained.
See Fig. 52.
Ad Step 2 : We proceed as in Step 1. Splitting v

′

1 into v2 and v3 (sufficiently close to each

other) yields a perturbed elliptic function h, and thus a perturbed flow N (h). Consider a
circle C2, centered at the mid-point of v2 and v3, that encloses an open disk D2 containing

these points. If we choose C2 sufficiently small, it is a global boundary of N (h). Reasoning

as in Step 1, we find out that N (h) has on D2 two simple attractors (v2 , v3 ) and one simple

saddle: d (close to the mid point of v2 and v3; compare Fig. 51-(b)). Moreover, as for N (g)

in Step 1, the flow N (h) is ε-structurally stable outside D2. So, we may conclude that, if
v2 and v3 turn (in diametrical position) around their mid-point, the phase portraits outside
D2 of the perturbed flows undergo a change that is negligible in the sense of C1-topology.

Therefore, we denote the equilibria of N (h) on T\D2 by v1, w1, c, σ1, and σ2 (i.e., without
reference to v2 and v3).

Finally, for v1 in the position of Fig. 52-(I) we choose the pair (v2,v3) as in Fig. 53-I; and
for v1 in the position of Fig. 52-(II), we distinguish between two possibilities: Fig. 53-IIa
or Fig. 53-IIb. Note that, with these choices of v1, v2, v3 each of the obtained functions
has three simple zeros and one triple pole. Moreover, the four saddles are simple and not
connected, whereas the three zeros are simple as well. So the graph of the associated Newton
flow is well defined and has only one face, four edges and three vertices. Recall that the
various values of δi(= δ(vi)) discriminate between the three possibilities for the graphs of
type Ǧ3). Now inspection of Fig. 53 yields the assertion.

Up till now, we paid attention to pseudo Newton graphs with only one face (i.e., of type
Ǧ. or Ĝ.). If r = 2, these are the only possibillities.
If r = 3, there are also pseudo Newton graphs (denoted by G) with two faces and angles
summing up to 2 or 1. When the boundaries of any pair of the original G3-faces have a
subwalk in common, these walks have length 1 or 2. (Use the A-property and compare Fig.
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Figure 52: Two phase portraits for N (g)) on D1

!

!!!!!!

!!!

!!!

1!

2!

3!

!!!

!!!

!!!

!!

!!
!!! !!!

!!!

!!!

1!

2!

3!

!!!

!!!

!!

!!

!!! !!!

!!!

!!! 1!

2!

3!
!!!

!!!

!!

!!

1 8!
!

1

4
!
!

!: deg !! = 1; !deg !! = 4; !deg !! = 3! !!": deg !! = deg !! = 2; !deg !! = 4! !!": deg !! = 2; !deg !! = deg !! = 3!

Figure 53: Three phase portraits for N (h)) on D2

70



40). So, when two G3-faces are merged, the resulting G-face admits either only vertices of
degree > 2 or one vertex of degree 1. From now on, we focus on the Newton graphs as
exposured in Fig. 40 (i),(iv) [since all other Newton graphs (in this figure) can be dealt with
in the same way, there is no loss of generality]. Then the two G-faces under consideration
are F7 (:= F4,5) and F6; see Fig. 54 (in comparison with Fig. 40 (i),(iv)).

We consider the common refinement G ∧G∗ of G and its dual G∗. Either all distinguished
sets are of Type 1, or there is precisely one distinguished set of Type 3.28 Argueing as
in Subsection 7.2, we claim that G ∧ G∗ determines a structurally stable torodial flow, say
X (G), with as equilibria: stable and unstable proper nodes (corresponding to the G- resp.
G∗-vertices) and orthogonal saddles (corresponding to the pairs (e, e∗) of G- and G∗-edges).
Now, we proceed as in Section 8 and assure - by the aid of local redrawings -that at the G-
and G∗-vertices of a distinguished set in F6 the angles are equal, whereas in case of F7 the
angle at the G∗-vertex equals half the angle at the G-vertex, see Fig. 54. By Theorem B in
[35] we find - as in Section 8 - a self indexing function h on T , such that

gradR(h) = X (G),

where R(·) is a Riemannian metric on T , that coincides on neighborhoods of the X (G)-

equilibria with the standard metric. As in Section 8, we introduce a flow grad⊥
R(h), which

is R-orthogonal to X (G) and has centers (resp. orthogonal saddles) at the nodes (resp. the

saddles) of X (G). The associated graph G⊥ on the saddles of grad⊥
R(h) is connected and

cellularly embedded. Because of the occurrence of a Type 3-distinguished set, G∗ may admit
a loop. Moreover, there are ten (= 4r − 2; r = 3) open canonical regions for X (G) and also

for the dual X (G∗) (=−X (G)), with various appearances : Ri6(·, ·), Ri7(·, ·), R37(·, ·) resp.

R
∗

6i, R
∗

7i, R
∗

73, compare Fig. 54, 55. Here - and in the sequel - we restrict ourselves to the
two special cases in Fig.54 (that are representative for all other possibilities). Note that

equally labelled regions, like Ri6 and R
∗

6i, coincide as point sets.
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Figure 54: The graphs G ( —), G∗ ( - - -) and G⊥ ( · · · ).

With aid of the function h and the analogue function g (w.r.t. X (G∗)), the R-orthonormal

net of X (G)- and grad⊥
R(h)-trajectories on X (G)- regions is mapped (homeomorpically and

respecting orientations) onto the polar net of sectors in the u+ iv-plane, resp. U+ iV -plane,
spanned by an angle α resp. −α (in case j = 6), or − 1

2α(in case j = 7) at 0 [:=stable node
vi, resp. unstable node v∗

6 or v∗
7 ].

28The E-property holds not always for F7: Only if there is a G-vertex of degree 1, the dual G∗ admits a
contractible loop (corresponding with the edge adjacent to this vertex); all other G∗-loops- if there are any-
are non-contractible.
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Figure 55: The various appearances of the canonical regions of X (G).

These sectors are denoted by si,j , and Si,j j = 6, 7. See Fig. 56 in comparison with Fig.
55. Next, we consider the reduced torus Ť = T\{G ∧ G∗-vertices} with as atlas

{F ∗
vi

\vi, Fv∗

j
\v∗

j | i = 1, 2, 3, j = 6, 7}.

This atlas provides Ť with a complex analytic structure, exhibiting coordinate transfoma-

tions between Rij as a subset of F ∗
vi

\vi and Rij as a subset of Fv∗

j
\v∗

j , induced by the
analytic bijections:

si,j ↔ Si,j : u+iv ↔ U+iV = (u+iv)−1, if j = 6, and u+iv ↔ U+iV = (u+iv)− 1
2 , if j = 7.

If we pull back N (u + iv) (=−(u + iv)), N
⊥

(u + iv) (=−i(u + iv)) on si,j and NU + iV )

(=−(U + iV )), N
⊥

(U + iV ) (=−i(U + iV )) on Si,j , to Rij ,we obtain analytic vector fields

(functions) on Rij . By glueing together all these functions along the trajectories in the
common boundaries of the canonical regions of X (G), we find a complex analytic function
on Ť , and by continuous extension a meromorphic function, say f , on T with poles of order
1 and 2, corresponding to the faces F6 and F7 respectively, with three simple zeros that
correspond to the G-vertices, and with five (=2r − 1; r = 3) simple critical points. The net

of X (G)- and grad⊥
R(h)-trajectories is just the net of N (f)- and N

⊥

(f)-trajectories, i.e. a
steady stream with one source of strength 2, one source of strength 1 , three sinks of strength
1, and five simple stagnation points.

More generally, we claim:

Conjecture: (Compare Remark 10.3)

Let r and r′ be integers such that: 2 6 r, 1 < r′ < r, and let G
r,r′

be a Pseudo Newton

graph with r vertices, one face with angles summing up to r′, and r − r′ faces with angles
summing up to 1. Then, the graph G

r,r′
, represents a meromorphic function on T with r

simple zeros, r − r′ + 1 poles (one of order r′, the others of order 1) and 2r − r′ simple
critical points Also: graph G

r,r′
determines a steady stream on T with r sinks of strength 1,

r− r′ +1 sources (one of strength r′, the others of strength 1) and 2r− r′ simple stagnation
points. Moreover, using techniques as exhibited in Case r = 3, the nuclear Newton flow
of order r generates - by splitting up (bifurcating) degenerate zeros/poles and constructing
pseudo Newton graphs- all structurally stable Newton flows of order r.
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13 Final remarks

13.1 Rational versus elliptic Newton flows.

Our study is inspired by the analogy between rational and elliptic functions. We raised
the question whether, and -if yes - to what extent, this analogy persists in terms of the
corresponding Newton flows (on resp. the Riemann sphere S2 and the torus T ). An af-
firmative answer to this question is given by comparing the characterization, genericity,
classification and representation aspects of rational Newton flows (see Theorem 2.1) with
their counterparts as described in Theorem 5.6 (1)-(2), Theorem 6.11 and Theorem 8.3.

More in particular, the above analogy becomes manifest when we look at the special
case of balanced rational Newton flows of order r > 1. By these, we mean structurally stable

flows of the form N ( pn

qm
), with pn, qm two co-prime polynomials of degrees respectively

n,m, |n−m| 6 1, r = max{n,m}. Such flows admit 2r star nodes (r stable and r unstable)
together with 2r − 2 orthogonal saddles. [Note that at z = ∞ (north pole) there is an
unstable node if n = m + 1, a stable node if m = n + 1, and a saddle if m = n]. Due
to the duality property (5), the transition pn

qm
↔ qm

pn
causes the reverse of orientations of

the trajectories of N ( pn

qm
) and N ( qm

pn
). So, these flows are conjugate and without loss of

generality, we assume n > m. Now, the sphere graph G( pn

qm
) for N ( pn

qm
) can be defined

(in strict analogy with Definition 6.1) as a connected, cellularly embedded multigraph on r
vertices, 2r−2 edges and r faces; apparently, also: G( qm

pn
) = G∗( pn

qm
) holds. As in the elliptic

case, it can be proved that G( pn

qm
) fulfils both the E- and the A-property. (However, in this

special case it is found that the later property already implies the first one). Subsequently,
it is shown that any cellularly embedded multigraph in S2 with r vertices, 2r− 2 edges and
r faces, admits the A-property iff certain (Hall) inequalities are satisfied. Altogether, this
leads to a concept of Newton graph that is formally the same as the concept of Newton
graph in Definition 7.13. In particular, classification and representation results, similar to
Theorem 6.11 and Theorem 8.3, are derived (cf. [23 ], [24]).

We conclude that there is a striking analogy between the sets of balanced Newton flows
and elliptic Newton flows, both of order r, r > 2. (Note that an elliptic Newton flow of order
1 is not defined, whereas a balanced Newton flow of order 1 is just the north-south flow (cf.
Fig. 7 and 8, with n = 1).

Finally, we note that - as in the elliptic case - for lower values of r a list of all possible (up
to conjugacy) balanced Newton flows, represented by their graphs, is available. For example,
see Fig. 57, where the pictures of the graphs Gr(

pn

qm
) and G∗

r(
pn

qm
), r = 2, 3, suggest that the

conditions A1, A2, A3, in Definition 7.7 are indeed fulfilled. The proof that these graphs
are the only possibilities, based on the Representation Theorem for rational Newton graphs
(compare [23] and arguments as used in Section 9), is omitted.

13.2 Complexity aspects

We indicate the existence of a “good” (i.e., polynomial) algorithm deciding whether a given
cellularly embedded torodial graph Gr is a Newton graph or not. To this aim, we check both
the E- and A-property.

E-property: Use that the graphs (facial walks) ∂Fj are Eulerian iff all vertices have even
degree.
A-property: Let B be a finite bipartite graph with bipartition (X,Y ), and denote for any
subset S in X the neighbour set in Y by N(S). We consider the so called Strong Hall
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Property (cf. [12]):
|S| < |N(S)|, for all nonempty S ⊂ X. (37)

For each bipartite graph, obtained from (B,X, Y ) by adding one vertex (p) to X and one
edge which joins p to an Y -vertex, we also consider the Hall property (cf. [11]):

|Š| 6 |N(Š)|, for all subsets Š of X ∪ {p}. (38)

It is easily shown that (37) and (38) are equivalent, and thus: Because the verification of
(38) is possible in polynomial time (cf. [11]), this is also true for (37). Now, we select an
arbitrary Gr-face Fj , say Fr , and specify (B,X, Y ) by X = {F1, · · · , Fr−1}. Y = V (Gr),
where adjacency is defined by inclusion. The inequalities in the right hand side of Lemma
7.11 take the form (37) for all non-empty J in {1, · · · , r − 1}, and considering all possible
choices for Fj , we are done.
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