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1 Introduction

A flow line is a tandem system of machines separated by buffers through
which a stream of items/customers flows from one machine to the next. Flow
lines are frequently encountered in manufacturing systems and other indus-
trial processes, as well as in some computer and communication applications.
A typical flow line is depicted in Figure 1.
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Figure 1: A flow line with three machines and two buffers.

The design of a flow line involves the dimensioning of its buffers in order
to keep the probability of overflow sufficiently low. Therefore, the study of
backlogs in such systems is of particular interest. Among the factors that
determine the backlog behaviour are the processing speed and reliability of
each machine, as well as the size of the associated buffer. Two performance
measures are of particular interest: the probability of a buffer overflow during
a “busy cycle”, and the stationary distribution of the content of a buffer. A
comprehensive survey on flow lines may be found in [6]. Given the abundance
of different flow lines, we remark that our model deals with a continuous
flow line (i.e., the flow of products is modeled as a fluid flow) with unreliable
machines (i.e., the machines are subject to service interruptions).

An exact analysis of flow lines is often not possible. Analytical results,
mostly on stationary distributions, exist only for the most elementary sys-
tems. The 2-machine 1-buffer case (2-stage flow line) has been examined in
[18], where the stationary distribution of the buffer content was found. For
the 3-machine 2-buffer flow line with identical machines and (finite) buffers
the joint stationary distribution of the buffers was found in [5]. Although in
[9] more general 3-machine 2-buffer flow lines were considered, exact results
were found only for a number of special cases which could be directly related
to 2-stage flow lines. The fact that 3-stage flow lines are essentially more dif-
ficult to solve than 2-stage flow lines was demonstrated in [10], where a fluid
tandem queue with on-off input was analyzed. This is basically a 3-stage flow
line with one unreliable machine at the front of the line and two subsequent
reliable machines. The joint stationary distribution of the content of the two
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buffers was expressed in terms of integrals of modified Bessel functions.
An alternative approach to study flow lines is simulation. However, since

backlog is typically a rare event, standard simulation is very inefficient, i.e.,
excessively long simulation time is required to achieve an acceptable rela-
tive accuracy. Importance sampling has been used successfully to speed up
simulations involving rare events. However, this involves determining an
appropriate change of measure to be used in the importance sampling simu-
lations. In relatively simple queueing and fluid flow systems, such a change of
measure may be obtained from an asymptotic large deviation analysis (see,
for example, [4] and [13]). In [11], a large deviation analysis for the study of
backlogs in a fluid flow line with unreliable machines is considered. The re-
sults will be used in the present paper to speed up simulations of backlogs in
a flow line using an importance sampling procedure. Preliminary empirical
results demonstrate the validity and effectiveness of our approach.

The remainder of this paper is organized as follows. In Section 2 we intro-
duce the model. We will restrict ourselves to the most simple (3-stage) flow
line for which no exact results exist. In Section 3 we briefly review the theory
on fluid queues; in particular we recall the importance sampling procedure
for such queueing systems. The main contribution of this paper is in Sec-
tion 4, where we propose a method to efficiently simulate a 3-stage flow line,
using the analogy between fluid queues and flow lines. In Section 5 we give
a flow line example to show how the IS change of measure is derived in prac-
tice. In Section 6 we briefly discuss the uniformization approach and issues
related to the implementation of importance sampling. And, in Section 7
we perform a simulation study of the flow line example using this change of
measure. Finally, in Section 8 we give some conclusions and directions for
further research.

2 The Model

We consider a continuous flow line with three machines and two buffers, as
in Figure 1. Each machine is subject to failures and repairs. The life and
repair times have exponential distributions and are all independent of each
other. We denote the corresponding failure and repair rates by λi and µi,
respectively, i = 1, 2, 3. Each machine i has a specific machine speed νi,
which is the maximum rate at which products can be processed. Finally, the
capacities of the two buffers are given by C1 and C2, respectively. When a
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buffer has reached its capacity any excess input stream of products is lost.

Remark 1 Notice that the actual production speed of a machine i at a cer-
tain time may be lower than νi. Consider for example the following situation.
Assume ν1 > ν2 > ν3. Suppose machine 1 has failed and machines 2 and 3
are working. If the second buffer is not empty, machine 3 works at rate ν3. If
the second buffer is empty but the first buffer is not, then machine 3 works
at rate ν2. The machine does not process any products when both buffers
are empty.

The state of the system at time t is determined by the state of each
machine and the content of each buffer. Let Mi(t) be the state of machine i
at time t, i = 1, 2, 3 (Working = 1, Failed = 0) and let Zi(t) be the content
of buffer i at time t, i = 1, 2. Also define M(t) = (M1(t),M2(t),M3(t)) and
Z(t) = (Z1(t), Z2(t)).

Obviously, the stochastic process (M(t),Z(t)) is regenerative. A regen-
eration point is recognized when all buffers are empty, all machines are op-
erational, and the input Markov modulating process (into the first buffer)
enters a specified state. We assume that the process is stable, by which we
mean that the expected length of a regeneration cycle is finite. In this case
(M(t),Z(t)) converges in distribution to some random vector (M,Z). The
distribution of this vector is a major importance measure for the backlog
behaviour of the system. However, our main concern will be the estimation
of overflow probabilities of the second1 buffer.

For a given buffer in the flow line, define a regeneration overflow proba-
bility as the probability that, starting from a regeneration point, the buffer
content exceeds a given threshold before returning to level 0. We are primar-
ily interested in the regeneration overflow probability of the second buffer.
Large deviation results in [11] are used to derive an optimal change of mea-
sure, which we implement in an importance sampling procedure to efficiently
estimate this rare event probability.

1The overflow behaviour of the first buffer is well known from the theory of 2-stage
flow lines.
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3 Efficient simulation of fluid queues

In this section we briefly review the theory on fluid queues. These systems
are closely related to flow lines. In fact, we may view a flow line as a tandem
system of fluid queues which are subject to service interruptions.

A fluid queue is a queueing system in which a reservoir is filled and
depleted at rates which vary according to the current state of a regulating
Markov chain. More precisely, let (X(t)) be a continuous-time Markov chain
with a finite state space, say E := {1, . . . ,m}. This chain regulates the buffer
content in such a way that net input rate is ri whenever state i ∈ E is visited,
provided that the buffer is non-empty. A fluid queue is therefore defined by
two quantities: the generator (Q-matrix), Q = (qij) say, of (X(t)) and the
set {ri} of net input rates. It will be convenient to assemble the ri’s in a
diagonal matrix R := Diag(r1, . . . , rm).
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Figure 2: A fluid queue consists of a buffer and a regulating Markov chain.

In principle, the joint stationary distribution of the Markov chain and
the content of the fluid reservoir can be determined analytically, see e.g.,
[1] and [16]. Overflow probabilities may be established in the same way.
However, if the state space is large, then the numerical calculations needed to
determine the overflow probabilities become rather involved2 and simulation
becomes a valid option. However, since overflow is typically a rare event,
efficient simulation requires the use of an appropriate change of measure in
an importance sampling procedure.

2Basically, all the eigenvalues of the matrix R−1Q have to be calculated.
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The following procedure establishes the optimal change of measure. De-
tails can be found in Section 17 of [3], Chapter 3 of [13] or [15].

Firstly, determine the pair (α,w), satisfying the eigenvalue equation

Qw = αRw,

with α the largest negative eigenvalue. Then, define a new Q-matrix Q∗ =
(q∗ij) by putting

q∗ij = qij
wj
wi
, i 6= j,

where wi is the ith element of w. Q∗ is called the conjugate Q-matrix of
the fluid queue. The interpretation of Q∗ is roughly the following: during an
overflow period of the buffer, the driving Markov chain behaves like a chain
with generator Q∗ instead of Q. We now perform the simulation with Q∗

instead of Q, and weigh the simulated events by the corresponding likelihood
ratios. For example, if during a simulation run the driving chain has visited
consecutively the states i0, i1, . . . , in with sojourn times s0, s1, . . . , sn, then
the likelihood ratio of such a run is given by∏n−1

k=0 qikik+1
e−

∑n
k=0 qi si∏n−1

k=0 q
∗
ikik+1

e−
∑n

k=0 q
∗
i si
,

where qi =
∑

j 6=i qij and q∗i =
∑

j 6=i q
∗
ij.

4 Efficient simulation of a flow line

In this section we establish the optimal change of measure that is to be
used in the efficient simulation of the flow line of Figure 1. To simplify the
analysis somewhat, we only consider flow lines with 3 machines and 2 buffers
in which the last machine is perfect (cannot fail). Without loss of generality,
we assume that ν1 > ν2 > ν3 and the flow into Machine 1 is continuous at a
fixed rate higher than ν1.

The key observation to make is that the second buffer may be viewed
as the reservoir of a fluid queue that is regulated by the Markov process
(X(t)) := (M1(t),M2(t), Z1(t)) (notice that M3(t) = 1). This driving process
has a non-denumerable state space, so the theory of the previous section
cannot be directly applied. However, we may reason analogously. For details
we refer to [11].
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The Markov process (X(t)) is completely specified by its infinitesimal
generator, Q say. Q is an operator which operates on vector-valued functions
h = (h00, h01, h10, h11)

T , where the hij : R → R are differentiable functions
of x, the content of the first buffer. We have in particular,

(Qh)(x) = Qh(x) +


(B0h)(0), x = 0,
(Bh)(x), 0 < x < C1,
(BC1h)(C1), x = C1,

(1)

where Q = (qij,kl) is the Q-matrix3 of (M1(t),M2(t)),

B0 =


0 0 0 0
0 0 0 0
0 0 ν1

d
dx

0
0 0 0 (ν1 − ν2) d

dx

 ,

B =


0 0 0 0
0 −ν2 d

dx
0 0

0 0 ν1
d
dx

0
0 0 0 (ν1 − ν2) d

dx


and

BC1 =


0 0 0 0
0 −ν2 d

dx
0 0

0 0 0 0
0 0 0 0


The net input rate matrix R of the previous section is also replaced by

an operator, namely R, with

(Rh)(x) =

{
R0 h(0), x = 0,
Rh(x), x > 0,

where

R0 = Diag (−ν3,−ν3,−ν3, ν1 − ν3)
R = Diag (−ν3, ν2 − ν3,−ν3, ν2 − ν3).

3The order on the state space of (M1(t),M2(t)) is lexicographic: 00,01,10,11.
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By analogy with the previous section we determine the optimal change of
measure of the flow line via the following procedure. (Empirical results sup-
port our claim of optimality, however, a formal proof is yet to be established.)
Firstly, determine the pair (α,w), satisfying the eigenvalue equation

Qw(x) = αRw(x), 0 ≤ x ≤ C1, (2)

where α is the largest negative eigenvalue. Next, define the conjugate tran-
sition rates as

q∗ij,kl(x) = qij,kl
wkl(x)

wij(x)
, i, j, k, l ∈ {0, 1}, (3)

where wij(x) is the ij-th element of w(x). Now perform the simulation with
q∗ij,kl(x) instead of qij,kl, and weigh the simulated events by the corresponding
likelihood ratio.

Notice that the conjugate rates depend on x. The interpretation is that
in the conjugate flow line (that is, during an overflow period of the second
buffer) the failure and repair rates depend on the content of the first buffer.

Two questions remain. How to find the dominant eigenvalue α and the
corresponding function w, and how to update the likelihood ratio. These
issues are perhaps easiest to address in an example.

5 Flow line example

Consider the flow line of Figure 1 with the following parameters. λ1 = 5,
λ2 = 2, µ1 = 1, µ2 = 1, ν1 = 3, ν2 = 2, ν3 = 1. The third machine is
perfectly reliable. The buffer capacities are C1 = 1 and C2 =∞.

Notice that with any pair (α,w) satisfying (2), the pair (α, cw), where
c is a constant, satisfies the eigenvalue equation as well. We may therefore
normalize w such that w00(0) = 1. Also, we define κ := w01(0).

For every α, (2) represents a set of linear (differential) equations. The
reader may verify that (2) is equivalent to the following:

w10(0) = 2− α− κ,
w11(0) = −2 + (3− α)κ.

w00(x) =
w01(x) + w10(x)

2− α
, 0 ≤ x ≤ 1,

8



and, for 0 < x < 1,w01(x)
w10(x)
w11(x)

′ =
−−4+α+α

2

2(−2+α)
1

2−α
1
2

5
3(−2+α)

7−8α+α2

3(2−α) −1
3

−5 −2 7 + α


w01(x)
w10(x)
w11(x)

 , (4)

and finally,

5w00(1)− 6w10(1) + w11(1) = −αw10(1)

5w01(1) + 2w10(1)− 7w11(1) = αw11(1).

Thus, w(1) is completely determined by κ and α; and these parameters
can be found through the last two boundary conditions above.

We find4 α = −3.804641626 and κ = 2.380068999. The 3 × 3-matrix in
(4) has one real eigenvalue γ = 3.64901980591212 and two complex conjugate
eigenvalues ζ ± i ξ, with ζ = 1.5510113201772 and ξ = 1.11014777688726. It
follows that the functions wij (defined in (2)) are of the form

wij(x) = aij eγ x + eζ x(bij cos(ξ x) + cij sin(ξ x)), i, j ∈ {0, 1}.

The numerical values of the constants are given in Table 1.

ij aij bij cij
00 0.00954550304762745 0.990454496952373 0.733972796830568
01 – 0.0171811232870073 2.39725012189389 4.86407474791687
10 0.0725893476197914 3.35198327992163 – 0.603625698973658
11 – 0.130654877438759 14.3261714584643 4.38408359695598

Table 1: The constants for wij(x).

The conjugate intensities now follow from (3), and are depicted in Fig-
ure 3. Notice that in the conjugate system the machine and repair rates
depend on the state of the machines and the content of the first buffer.

4All constants in this section have been rounded off.
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Figure 3: Conjugate transition rates as functions of the buffer content, x.

6 Uniformization and implementation issues

In Section 4 the optimal conjugate transition rates (to be used in importance
sampling) are given as continuous functions of the content of the first buffer.
That is, according to this change of measure, the failure and repair rates
of machines are no longer constants but functions of the content of the first
buffer. This suggests a suitable implementation of importance sampling using
uniformization [14]. In this section we give a brief review of uniformization
as a method for sampling from non-homogeneous Poisson processes. We also
consider some implementation details in relation to our flow line problem.

Uniformization is a simple technique for sampling (i.e., simulating) the
times of certain stochastic processes including non-homogeneous Poisson pro-
cesses, renewal processes, or Markovian processes in continuous time on ei-
ther discrete or continuous state spaces (see, for example, [7], [8], [12] and
[17]). We describe it in the case of a non-homogeneous Poisson process. Let
(λ(t), t ≥ 0) denote the intensity rate function of a non-homogeneous Pois-
son process (N(t), t ≥ 0) and assume that λ(t) ≤ β for some finite constant
β. Let Tn denote the time of the n-th event in a time homogeneous Poisson
process (Nβ(t), t ≥ 0) with a constant rate β. Then Tn is included (accepted)
as an event in (N(t)) with probability λ(Tn)/β, otherwise the point is not
included (rejected). Rejected events are sometimes called pseudo events.
Renewal processes can be simulated using uniformization as described above
provided λ(t) is the hazard rate of the inter-event time distribution at time
t. Uniformization can be generalized to cases in which the process being
thinned is not a time homogeneous Poisson process (see [12]). For exam-
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ple, at time Tn−1, we can let Tn = Tn−1 + En, where En has an exponential
distribution with rate βn. The point Tn is then accepted with probability
λ(Tn)/βn. This requires only that λ(t) ≤ βn for all t ≥ Tn−1.

As in Section 4, let us consider the flow line with 3 machines and two
buffers in which the third machine is perfectly reliable. The transition rate
matrix Q = (qij,kl) is the generator matrix of (M1(t),M2(t)), where i, j, k, l ∈
{0, 1}. Let qij =

∑
kl 6=ij qij,kl, i.e., qij is the total transition rate in state ij.

Uniformization can be used in flow line simulation as follows. Choose a
constant uniformization rate β, such that β > maxi,j∈{0,1}{qij}. Generate the
times between uniformization events from an exponential distribution with
a mean β−1. In state ij (i, j ∈ {0, 1}), a uniformization event is accepted as
a real transition to state kl 6= ij with probability qij,kl/β. It follows that the
uniformization event is rejected (i.e., it is a pseudo event) with probability
(1−

∑
kl 6=ij qij,kl/β) = (1− qij/β).

First, let us consider standard simulation to estimate the regeneration
overflow probability p for the second buffer (as defined in Section 2). Gener-
ate n sample paths ωi, i = 1, 2, ..., n, each starting with a pure regeneration
(all machines are operational and all buffers are empty) and ending with the
content of the second buffer hitting overflow (a rare event) or hitting zero (a
typical event), whichever occurs first. For each sample path ωi, evaluate the
indicator function Ii = I(ωi), with I(ω) = 1, if the sample path ω includes
a buffer overflow, otherwise, I(ω) = 0. An unbiased estimator for p is given
by p̂ = 1

n

∑n
i=1 Ii. The relative error of this estimator is given by

RE(p̂) =

√
VAR(p̂)

E(p̂)
=

√
1− p
np

.

It follows that RE(p̂)→∞ as p→ 0, which explains why standard simulation
is not efficient for estimating very small values of p.

With importance sampling, the conjugate transition rates q∗ij,kl(x) (as
determined from (3)) are used instead of qij,kl to generate n samples of
I(ω)L(ω), where L(ω) is the likelihood ratio associated with a sample path
ω. An unbiased estimator of p is given by p̂ = 1

n

∑n
i=1 IiLi. For the above

(optimal) change of measure, given by q∗ij,kl(x), i, j, k, l ∈ {0, 1}, it can be
shown that the relative error of this estimator remains bounded as p→ 0.

At the beginning of a sample path (pure regeneration), the likelihood ratio
L is set to one, and importance sampling is turned on. The likelihood ratio
is updated with each uniformization (real or pseudo) event in that sample
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path as follows. In state ij, if an event is accepted as a transition to state
kl 6= ij, then

L := L× qij,kl
q∗ij,kl(x)

.

Otherwise, if the event is rejected (pseudo event), then

L := L× (1− qij/β)

(1− q∗ij(x)/β)
,

where qij and q∗ij(x) are the total transition rates out of state ij in the original
and the conjugate matrices, Q and Q∗, respectively. Importance sampling
is turned off at the occurrence of either an overflow or an empty (second)
buffer, whichever occurs first.

There is a considerable freedom in choosing the uniformization rate β,
provided it is higher than the maximum total transition rate in the current
state, according to both the original and the conjugate transition matrices,
Q and Q∗, respectively. (Note that, with importance sampling, the total
transition rate in a given state changes with the content of the first buffer.)
An appropriate uniformization rate should be low enough to limit excessive
generation of pseudo events, yet high enough to yield less noisy estimates
of the likelihood ratio. Experiments have shown that a good choice of the
uniformization rate is 5 to 10 times the maximum total transition rate in
the current state. The uniformization rate can also be set independent of
the state, provided it is sufficiently high; however, this may lead to excessive
generation of pseudo events in states with low total transition rates.

7 Simulation results

In this section we perform a number of simulation experiments to demon-
strate the validity of our approach. In particular, we use importance sampling
to estimate the probability of overflow of the second buffer in the 3-stage flow
line (described in Section 5) for several overflow levels, k. The optimal change
of measure used in the IS method is a continuous function of the content of
the first buffer, x (see (3) ), which follows directly from the constants in
Table 1. Using an implementation based on uniformization (as described in
the previous section) we compare standard simulation (SS) with importance
sampling (IS) simulation. In each simulation run, we collect a fixed number
of observations, each starting with a “pure” regeneration (all machines are
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operational and all buffers are empty) and ending with the second buffer
either reaching overflow or getting empty, whichever occurs first.

Let p be the probability that the content of the second buffer reaches the
overflow level k, say, before hitting 0, starting with M1(0) = M2(0) = 1 and
Z1(0) = Z2(0) = 0.

In order to appropriately set the uniformization level β, a number of pre-
liminary IS simulation runs are performed, in which the relative error RE(p̂)
is determined for increasing values of β (see Table 2). Each simulation run is
based on 104 observations. In Table 2, we see that initially the relative error
RE(p̂) decreases sharply with an increase in β. Improvement in accuracy
quickly levels off with further increase in β. A uniformization level β > 70
yields a relative error close to the (asymptotic) minimum. However, an “op-
timal” β may be determined such that β × (RE(p̂))2 is minimal; this yields
β = 80 (i.e., about eight times the maximum total transition rate in any
state of the original and conjugate processes.) A uniformization level higher
than β = 80 is not efficient, since it increases the simulation time without
significantly improving the accuracy. Among other factors, the “optimal”
uniformization rate depends on the (conjugate) hazard rate functions, which
are used in importance sampling.

β RE(p̂) (×10−2)
10 27.6
20 5.29
30 3.81
40 3.31
50 2.65
60 2.75
70 2.35
80 2.14
90 2.08

100 2.07

Table 2: Relative error RE(p̂) for increasing values of β.

In Table 3 we list the estimates p̂ of p, using standard simulation and im-
portance sampling, for various overflow levels k. For each estimate the half-
width of the 95%-confidence interval is included, expressed as a percentage of
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the estimate. All estimates are based on 106 observations, with a uniformiza-
tion level β = 80. The results in Table 3 demonstrate a significant reduction
of variance when using importance sampling, compared with standard sim-
ulation (for k = 4, no overflow events were observed with SS). Note that SS
could be implemented more efficiently without uniformization; however, also
in this case, experimental results show that IS (with uniformization) yields
significant variance reduction for overflow levels as low as k = 2.

Notice also that the relative error increases slightly (at a linear rate) with
the overflow level k. Numerical experiments (not reported here) suggest that
such dependence does not occur when we use a sufficiently large β. Finally,
it is interesting to note that

p ≈ 0.7 eαk,

for large k, where α = −3.804641626, as determined in Section 5.

k p̂ (SS) p̂ (IS)
1 1.53× 10−2 ± 1.32% 1.515× 10−2 ± 0.32%
2 3.58× 10−4 ± 8.69% 3.529× 10−4 ± 0.37%
3 6.00× 10−6 ± 78.0% 7.809× 10−6 ± 0.43%
4 —– 1.739× 10−7 ± 0.48%

Table 3: Estimates of overflow probabilities using standard simulation (SS)
and importance sampling (IS).

8 Conclusions and further research

The backlog behaviour of a given buffer in a flow line with unreliable machines
can be studied by viewing the buffer as a reservoir of a fluid queue driven
by a Markov process. This modulating process depends on the state of
the succeeding machine as well as all the preceding machine-buffer pairs. In
general, this modulating process has a non-denumerable state space, with the
number of continuous state variables equal to the number of the preceding
buffers in the flow line.

Given a Markov-modulated characterization of its input, the backlog be-
haviour of a given buffer can be studied using large deviation results in an
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importance sampling procedure. It is shown that the optimal change of mea-
sure is not fixed between discrete events (such as machine failure and repair
events), but it must be varied continuously depending on the levels of all the
preceding buffers. This suggests a suitable implementation of importance
sampling using uniformization.

For a model with three machines and two buffers, empirical results demon-
strate the validity and the effectiveness of the approach proposed in this pa-
per. Further research is needed to investigate the feasibility of this and/or
other approaches for flow lines consisting of more than two buffer-machine
pairs. Also, an extension of the approach to non-Markovian failure/repair
machine behaviour is of practical interest.
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