

Adaptation of the equivalent drawbead
model for elastic plastic material behavior

T.Meinders
 02-09-97

 1

Contents

 2

1. INTRODUCTION.. 4

2. THE SITUATION BEFORE ADAPTION... 5

2.1 CONCLUSION... 6

3. SOLUTION OF THE SPRING BACK PROBLEM ... 7

3.1 THE USE OF THE KEYWORD *ELASTIC .. 7
3.1.1 Conclusion .. 7

3.2 ADAPTION OF THE CONSTRAINT ALGORITHM .. 7
3.2.1 Conclusion .. 9

3.3 IMPLEMENTATION OF A PROCESS WINDOW.. 9
3.3.1 Conclusion .. 11

3.4 A SPECIFIC ELEMENT IS SET IN THE ELASTIC STATE ... 11
3.4.1 Conclusion .. 12

4. CONCLUSIONS... 12

APPENDIX A ... 12

 3

1. Introduction

Drawbeads are used in the deep drawing process to restrain the material flow. The material
flows over the drawbead and due to the bending and unbending process the strain distribution
changes with consequently thinning of the blank.
To simulate a deep drawing process in which drawbeads are used accurately, the drawbeads
have to be modeled. However modeling the exact drawbead geometry requires a large number

 4

of elements due to the small radii of the drawbead. An equivalent drawbead approach is
therefore commonly adapted in finite element codes to overcome the problem of CPU-time
excess.
In the previous years an equivalent drawbead model has been developed and implemented in
the finite element code Dieka which is developed at the University of Twente.
In the first model only the DrawBead Restraining Force (D.B.R.F.) was taken into account.
In the second model also the strain changes were partly implemented, only the plastic
thickness strain was taken into account; the strains in the plane of the blank were not adapted.
This resulted in a numerical loss of material when material traversed the drawbead.
In the third model both the D.B.R.F. and the strain changes were implemented. The
implementation of the drawbead strains was based on a stress algorithm (see internal report
no. WB/TM-1784). However, the results of this model were not satisfactory and the model
only worked for rigid plastic material behavior.
In the fourth model both the D.B.R.F. and the strain changes were implemented, with the
difference that the implementation of the drawbead strains was based on a penalty constrained
method (see internal report no. WB/TM-1784). This model gave good results; however the
model did only work for rigid plastic material behavior.
In the present model the equivalent drawbead algorithm is adapted for elastic plastic material
behavior. This report will describe the trajectory which has lead to the final solution.

2. The situation before adaption

The equivalent drawbead model is tested for 4 different test problems. The principle outlines
of these tests are given in Figure 1. The size of the strip is 100mm*10mm.

Figure 1 Test problems

De prescribed D.B.R.F. amounts 100N/mm for each simulation; de prescribed plastic
thickness strain amounts -0.1 for the strip simulations and -0.2 for the rectangular cup. One
set of simulations is performed in which only the D.B.R.F is prescribed, one set in which only
the strain is prescribed and one set in which both are prescribed. Simulations are performed
for both rigid plastic material behavior (SPIS) and elastic-plastic material behavior (EPIS).
After 60 mm strip translation and after 15 mm deep drawing the following thickness strains
are calculated:

 5

 SPIS EPIS
 force strain frc+str force strain frc+str

LEFTSIDE-UP -0.048 -0.094 -0.155 0.0 crash(24) crash(24)
 # iterations ///////////// 5-7 5-7 /////////////

EQUIDISTANT -0.052 -0.083 -0.137 0.0 crash(23) crash(23)
 # iterations ///////////// 5-6 5-9 /////////////

SAWTOOTH -0.055 -0.076 -0.134 0.0 -0.0691 crash(23)
 # iterations ///////////// 5-6 5-6 ///////////// 5-6

RECT. CUP ///////////// ///////////// -0.107 ///////////// ///////////// crash(31)
 # iterations ///////////// ///////////// 4-6 ///////////// /////////////

Table 1 Simulation results gained with the unadapted equivalent drawbead model

2.1 Conclusion

All simulations in which the EPIS material behavior is used did crash. The cause for the crash
can be explained as follows, using the LEFTSIDE-UP-strip.
The size of the element is 10mm; de step increment is 0.5mm. After 23 steps elements 1 and 2
are still cutting the drawbead. In step 24 the elements 1 and 2 has left the drawbead and now
elements 3 and 4 are cutting the drawbead. As a result the elements 1 and 2 are unloaded and
as a result they will spring back. This spring back of the elements which leave the drawbead
causes the crash of the simulation. The reasons why the crash occurs is illustrated in Figure 2.

Figure 2 Stress - strain curve with a correct and an incorrect slope of the spring back

When elements 1 and 2 are unloaded, the residual stress in these elements have to vanish; the
element wants to spring back. However, this spring back goes wrong when the current
equivalent drawbead model is used. In reality the material will spring back along the elastic
slope, E. The correct (elastic) spring back strain is denoted by ∆εtrue, see Figure 2. In the
current model the element springs back with the plastic slope (E-(1-h)Y), resulting in a false
spring back strain ∆εfalse, see Figure 2 which results in a crash. The reason why the false slope
is followed is that in the begin of the new step the element is numerically still in the plastic
state (in the new step only the stress state of the previous step is known), while it must be in
the elastic state.

 6

3. Solution of the spring back problem

To overcome the problems with the incorrect spring back calculation some possibilities are
tried to solve the problem and they will be described in the next subsections.

3.1 The use of the keyword *ELASTIC

The spring back of an element along the elastic slope will occur when the element is in the
elastic state at the begin of an incremental step. In DiekA this can be achieved, using the
keyword *ELASTIC; all elements are set in the elastic state at the begin of the incremental
step. It has to be mentioned that or after each step *ELASTIC has to be set or that *ELASTIC
must be set once and that in subroutine OUTPUT the statement ‘IF (istuur(6).eq.-1)
istuur(6)=0’ must be deleted, since the keyword must act on all incremental steps.

Using this option, all test problems are simulated again, except for the simulations in which
only the force was prescribed. The results of the simulations are listed in Table 2.

 SPIS EPIS
 strain frc+str strain frc+str

LEFTSIDE-UP -0.094 -0.155 -0.087 -0.087
 # iterations 5-7 5-7 12-13 12-13

EQUIDISTANT -0.083 -0.137 -0.079 -0.083
 # iterations 5-6 5-9 18-21 18-21

SAWTOOTH -0.076 -0.134 -0.069 -0.080
 # iterations 5-6 5-6 11-12 18-21

RECT. CUP ///////////// -0.107 ///////////// -0.112
 # iterations ///////////// 4-6 ///////////// >25!

Table 2 Simulation results gained with *ELASTIC

3.1.1 Conclusion

The equivalent drawbead model works when it is used in combination with the keyword
*ELASTIC. However, the convergence behavior for EPIS material behavior is very poor
compared to the SPIS material behavior.

3.2 Adaption of the constraint algorithm

To implement the additional strain in the equivalent drawbead model, an extra stiffness term
and an extra right hand term are added to the finite element equations. It can be possible to
solve the spring back problem by specifically rewriting the right hand side vector, so that it
can be substituted in the left hand side of the equations. Rewriting the constraint equation is
treated in this sub-section.

The situation as depicted in Figure 3 is chosen as starting point.

 7

Figure 3 Node and element side numbering

For the above situation a set of constraint equations is defined:

− + =
− + =




⇒

−
−








 ⋅
















=








∆ ∆ ∆
∆ ∆ ∆

∆
∆
∆

∆
∆

u u l
u u l

u
u
u

l
l

1 2 1

1 3 3

1

2

3

1

3

1 1 0
1 0 1 (1)

The change in length of the element side normal to the drawbead, ∆li can be written as:

∆l
l

n
l

l
du

l
l
du

dui
db i

i

db i

i

db i

i
db=

⋅
=

⋅
≈

⋅
≈ ⋅

ε ε ε
ε

0 0 0

0 (2)

With εdb the prescribed plastic thickness strain, li
0 the initial normal element side length, ni the

number of steps in which the entire element passes the drawbead, li, the current normal
element side length and du the average incremental nodal displacement.
Suppose the average incremental nodal displacement is rewritten as:

du u u u= + +1
3 1 2()∆ ∆ ∆ 3 (3)

Then equation (1) can be rewritten as follows, using the least squares method:

2
9

2 2
3

1
3

2
3

1
3

2
9

2 2
3

2
9

2
9

2 2
3

1

2

3

3 1 1 1 1
1 3

1

0
0
0

() ()() ()()
()

ε ε ε ε ε
ε ε ε ε

ε ε

db db db db db

db db db db

db db

u
u
u

+ − + − +
− − + −
− − − +
















⋅
















=

















∆
∆
∆

 (4)

It can be seen that it is possible to rewrite the drawbead equation with a right hand side vector
filled with zero’s.

For the successive iterations, equation (5) has to be solved.

− + =
− + =
∆∆ ∆∆ ∆∆
∆∆ ∆∆ ∆∆

u u
u u

1 2

1 3

l
l
1

3
 (5)

 8

In which

∆∆ ∆ ∆ ∆ ∆ ∆ ∆l l l u u u li i i
iter

db i
iter= − ≈ ⋅ + + −ε 1

3 1 2 3() (6)

Analyzing equations (5) and (6), it can be concluded that for the successive iterations the
right hand side vector cannot be rewritten in terms of the left hand side term.

3.2.1 Conclusion

The formulation of the equivalent drawbead model, in which the entire drawbead strain
algorithm is implemented in the left hand side matrix will only work when one iteration is
needed to fulfill the finite element equilibrium. In practice more than one iteration is needed
to satisfy the equilibrium, from which can be concluded that this option is not relevant.

3.3 Implementation of a process window

The spring back problem can be solved by eliminating the influence of the drawbead strain
when an element leaves the drawbead, since no drawbead strain implies no residual stresses
and hence no spring back will occur. A process window will be used to achieve this
elimination.
Two sides of an element cut the drawbead. For each element side the normal element side
length which has not passed the drawbead, li

res, is calculated, see Figure 4. The greatest of
both lengths will serve as the input for the process window.

Figure 4 Element cuts the equivalent drawbead line

The process window will be applied on the prescribed plastic thickness strain. In the current
equivalent drawbead model the prescribed plastic thickness strain per step equals the total
prescribed drawbead strain εdb, divided by the number of steps in which an element passes the
drawbead. In the adapted model the prescribed plastic thickness strain per step is also
influenced by a parabolic process window, see Figure 5.

Figure 5 Parabolic process window

 9

The factor α must be chosen in a way that the total plastic thickness strain does not change,
whether the process window is used or not. Assuming a parabolic function, the factor α can
be determined as follows.

parabola:

boundary
conditions:

f x Ax Bx C

f C
f B

f l A
l

f x
l

x

()

()
' ()

()

()

= + +

= ⋅ ⇒ = ⋅
= ⇒ =

= ⇒ = −
⋅

















⇒ = −
⋅

+ ⋅

2

2

2
20

0 0 0

0

α ε α ε

α ε

α ε
α ε (7)

The length of the element side is denoted as l in equation (7). Factor α can be determined by
integrating the parabola over the element side length l and equate the solution with ε·l.

f x dx
l

x x l l
l l

() = − +






= ≡ ⇒ =∫
αε

αε αε ε α
3 2

3

0 0

2
3

3
2 (8)

The above process window is implemented in DiekA and using this option, the test problems
in which only the plastic thickness strain is prescribed are simulated again. The results of the
simulations are listed in Table 3.

 SPIS EPIS
 strain strain

LEFTSIDE-UP -0.094 -0.071
 # iterations 5-7 5-6

EQUIDISTANT -0.083 -0.068
 # iterations 5-6 5-6

SAWTOOTH -0.076 -0.069
 # iterations 5-6 5-6

RECT. CUP ///////////// crash
 # iterations /////////////

Table 3 Simulation results gained with the process window

The simulation results, using the process window are satisfying for the strip tests. However,
the simulation of the rectangular cup crashed. This crash is induced by the elements which are
located at the end of the drawbead line.

 10

Figure 6 Part of the rectangular cup

To formulate the constraint algorithm for an element two sides of the element must cut the
drawbead. When only one element side cuts the drawbead, this element is treated as non-
cutting. This situation is illustrated in Figure 6, at step n the gray element cuts the drawbead
with two element sides; at step n+1 the gray element cuts the drawbead with only one element
side. This implies that the constraint algorithm acts on the gray element at step n; at step n+1
the element is treated as non-cutting; the gray element is fully unloaded while the process
window does not have a zero value (de element side length normal to the drawbead line is not
zero) and subsequently the element will spring back inaccurate.

3.3.1 Conclusion

The adaption of the equivalent drawbead model with a process window works satisfactory for
elements which are not situated at the end of the drawbead. Due to the process window these
elements do not have an prescribed thickness strain when these elements leave the drawbead.
The problem child of this method is the element which is situated at the near end of the
drawbead. When initially this element cuts the drawbead line with two element sides, this
elements is treated as cutting; a plastic thickness strain is prescribed. When after several steps
the element cuts the drawbead with only one side, the element is treated as non-cutting
immediately, while the prescribed plastic thickness strain is not decreased to zero. As a result
the simulation will crash due to false spring back behavior. The subroutines which contains
the code for the process window are printed in Appendix A.

3.4 A specific element is set in the elastic state

This procedure is very similar to the method in which the keyword *ELASTIC is used. The
keyword *ELASTIC put all elements of the mesh in the elastic state at the begin of a step.
However it is expected that it is sufficient to set the elements which leave the drawbead in the
elastic state only.

The above process window is implemented in DiekA and using this option, the test problems
in which only the plastic thickness strain is prescribed are simulated again. The prescribed
strain and force functions are adapted (maximum force and strain after 5mm instead of 0mm)
in the simulation of the rectangular cup to avoid a crash. The results of this simulation are
registered after 80mm deep drawing. The results of all simulations are listed in Table 4.

 SPIS EPIS

 11

 strain frc+str strain frc+str
LEFTSIDE-UP -0.094 -0.155 -0.087 -0.087

 # iterations 5-7 5-7 4 4
EQUIDISTANT -0.083 -0.137 -0.065 -0.071

 # iterations 5-6 5-9 3-4 3-4
SAWTOOTH -0.076 -0.134 -0.059 -0.059

 # iterations 5-6 5-6 3-4 3-4
RECT. CUP ///////////// -0. ///////////// -0.168

 # iterations ///////////// 4-6 ///////////// 2-5

Table 4 Simulation results when a specific element is set in the elastic state

It has to be mentioned that the latter method is sensitive for the step size. The LEFTSIDE-UP
strip test is simulated with a step size of 0.5mm; the simulations of the EQUIDISTANT en
SAWTOOTH strip crashed when this step size was used; for these tests a step size of 0.25mm
is used.

3.4.1 Conclusion

The results of the simulations are satisfying. However, it should be realized that the step size
as well as the initial slope of the drawbead characteristics may not be to large, otherwise the
simulation will crash nearly certain.

4. Conclusions

The method in which a specific element is set in the elastic state when it leaves the drawbead,
is implemented in DiekA. The gained simulation results of products with elastic plastic
material behavior are satisfying. However the incremental step size may not be to large
otherwise the simulation will crash. The simulation will also crash when the slope of the
drawbead characteristic is chosen to steep.

Appendix A

 12

 SUBROUTINE DBINC(knp,coknp,displ,knvrs,stepn,iril,irlst,vl1n,
 * ellood,elinit,idbsnp,imelem,nout,DISOLD,
 * veclen,dugem)

C--
C Determination of the increment 'stepn'. The prescribed drawbead
C strain is divided by this increment in routine ELPSC3
C
C created by T.Meinders
C--

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 CHARACTER*8 SUBROU
 LOGICAL CRDUMP

 COMMON /DUMP/ CRDUMP
 COMMON /DRWBD/ RDRWB(10,3),EDRWB(10,14),FDRWB(10,14),
 * XDRWB(10,5,6),NDRWB(10,3),IDRWB,MXDRW
 COMMON /ELIMS/ MKNPEL,MVRPEL,MVRPN,MIP,MELEM,MIPH,MIPV,MLG
 COMMON /INOUT/ IR, IW, ITTY
 COMMON /METSYS/ NVRSYS,IBA,LSYSM
 COMMON /NODES/ NKNP,MKNP
 COMMON /ROUTIN/ SUBROU
 COMMON /PTYD/ TIME,DTIME,ISTEP,NSTEPS,ITER,ICONV,DTIMET,DTIME0,
 * ITEREN,IALI30,DTIOLD,TIMFAC

 dimension KNP(3),COKNP(3,NKNP),DISPL(NVRSYS),KNVRS(NKNP,MVRPN)
 dimension d(3),du(3),dukb(3),dukp(3),cokp(3),
 * dun(3),dul(3),dull(3),ellood(3),elzyde(3),
 * vkb(3),vkbn(3),vl1(3),vl1n(3),vlb(3),vlh(3),
 * elinit(melem,3),idbsnp(melem),DISOLD(nvrsys)
 dimension glob(3,3),dbglob(2,2),dbcknp(2,3)

 SUBROU = 'DBINC'
 IF (crdump) write(itty,*) subrou

 call nulr(ellood,3,1)
 call nulr(dull,3,1)
 call nulr(veclen,3,1)
 itel = 0

 DO 100 izd=1,3
C Determine node and neighbour-node for each element side izd
 IF (izd.eq.1) THEN
 kp = knp(1)
 kb = knp(2)
 ELSE IF (izd.eq.2) THEN
 kp = knp(2)
 kb = knp(3)
 ELSE IF (izd.eq.3) THEN
 kp = knp(3)
 kb = knp(1)
 ENDIF

C determination of the intersection point between an element side
C and a drawbead line
 CALL DBCUT(d,vl1,vlh,vlb,vkb,cokp,dukp,dukb,kp,kb,coknp,
 * displ,knvrs,iril,irlst,1,DISOLD)

C average displacement vector
 DO 150 i=1,3
 du(i) = 0.5*(dukp(i)+dukb(i))
 150 CONTINUE

C 'du' can be almost zero at the beginning of a simulation. In
C that case no 'stepn' is calculated.
 IF ((DABS(du(1)) .gt. 0.1d-08) .OR.

 13

 * (DABS(du(2)) .gt. 0.1d-08)) THEN
 itel = itel + 1

C create some normalised vectors
C vkbn(izd) : normalised element side vector
C dun(izd) : normalised displacement vector
C vl1n : normalised drawbead vector
 elzyde(izd) = 0.d0
 dul(izd) = 0.d0
 vl1l = 0.d0
 DO 160 i=1,3
 elzyde(izd) = elzyde(izd) + vkb(i)*vkb(i)
 dul(izd) = dul(izd) + du(i)*du(i)
 vl1l = vl1l + vl1(i)*vl1(i)
 160 CONTINUE
 elzyde(izd) = sqrt(elzyde(izd))
 dul(izd) = sqrt(dul(izd))
 vl1l = sqrt(vl1l)
 DO 170 i=1,3
 vkbn(i) = vkb(i)/elzyde(izd)
 dun(i) = du(i)/dul(izd)
 vl1n(i) = vl1(i)/vl1l
 170 CONTINUE

C calculate the perpendicular values with respect to the draw-
C bead vector.'hoek' is the cos of the angle between vl1 and vkb
C 'hk' is the cos of the angle between vl1 and du
 CALL DOTPRO(hoek,vl1n,vkbn,3)
 IF (hoek.lt.0.d0) hoek = -hoek
 CALL DOTPRO(hk,vl1n,dun,3)
 IF (hk.lt.0.d0) hk = -hk

 ellood(izd) = elzyde(izd)*SQRT((1 - hoek*hoek))
 dull(izd) = dul(izd)*SQRT((1-hk*hk))

C The element lengths of the 1th iteration are stored in elinit
C and will be used in the procedure DBCONS in a way that in the
C whole step the element is treated as cutting.
 if ((iter.eq.0).and.(nout.eq.0)) then
 IF ((d(1).ge.0.d0).AND.(d(1).le.1.d0) .AND.
 * (d(3).ge.0.d0).AND.(d(3).le.1.d0)) THEN
C this element side intersects the drawbead line
 elinit(imelem,izd) = ellood(izd)
 ENDIF
 endif

 determination of intersection point of drwb and element side
C IF ((d(1).ge.0.d0).AND.(d(1).le.1.d0) .AND.
 (d(3).ge.0.d0).AND.(d(3).le.1.d0)) THEN
C determination of rotation matrix which rotates the global co-ordinates
C into drawbead coord. The origin of the axis is equal to
C the begin of the drawbead
 call nulr(glob,3,3)
 glob(1,1) = 1.d0
 glob(2,2) = 1.d0
 glob(3,3) = 1.d0
 call drbrot(dbglob,vl1n,glob)
C rotate cokp and vkb to the drawbead co-ordinates
 DO 300 I = 1,2
 ckprot(I) = dbglob(I,1)*(cokp(1)-vlb(1)) +
 * dbglob(I,2)*(cokp(2)-vlb(2))
 vkbrot(I) = DABS(dbglob(I,1)*vkb(1) + dbglob(I,2)*vkb(2)
 durot(I) = dbglob(I,1)*du(1) + dbglob(I,2)*du(2)
 300 CONTINUE

C determine length of the element side which has not yet passed the drawbead
 IF (durot(1).ge.0.0d0) THEN
 IF (ckprot(1).ge.0.0d0) THEN

 14

 veclen(izd) = -ckprot(1) + vkbrot(1)
 ELSE
 veclen(izd) = -ckprot(1)
 ENDIF
 ELSE
 IF (ckprot(1).ge.0.0d0) THEN
 veclen(izd) = ckprot(1)
 ELSE

 veclen(izd) = ckprot(1) + vkbrot(1)
 ENDIF
 ENDIF

 ENDIF

 ENDIF

 100 CONTINUE

 IF (itel.gt.0) THEN

C determination of rotation matrix which rotates the global coor-
C dinates into drawbead coord. The origin of the axis is equal to
C the begin point of the drawbead
 call nulr(glob,3,3)
 glob(1,1) = 1.d0
 glob(2,2) = 1.d0
 glob(3,3) = 1.d0
 call drbrot(dbglob,vl1n,glob)
 do 200 i = 1,2
 dbcknp(i,1) = dbglob(i,1)*(coknp(1,knp(1))-vlb(1)) +
 * dbglob(i,2)*(coknp(2,knp(1))-vlb(2))
 dbcknp(i,2) = dbglob(i,1)*(coknp(1,knp(2))-vlb(1)) +
 * dbglob(i,2)*(coknp(2,knp(2))-vlb(2))
 dbcknp(i,3) = dbglob(i,1)*(coknp(1,knp(3))-vlb(1)) +
 * dbglob(i,2)*(coknp(2,knp(3))-vlb(2))
 200 continue

C determination whether the independent node (see DBCONS) lies
C left(0) or right(1) of the drawbead
 if ((iter.eq.0).and.(nout.eq.0)) then
 IF (elinit(imelem,1).ne.0.d0) THEN
 if (elinit(imelem,2).ne.0.d0) then
C node 2 is independent
 IF (dbcknp(1,2).gt.0.d0) idbsnp(imelem) = 1
 else if (elinit(imelem,3).ne.0.d0) then
C node 1 is independent
 IF (dbcknp(1,1).gt.0.d0) idbsnp(imelem) = 1
 endif
 ELSE
C node 3 is independent
 IF (dbcknp(1,3).gt.0.d0) idbsnp(imelem) = 1
 ENDIF
 endif

C The maximum element side length divided by the maximum
C displacement is equal to the stepsize 'stepn'
 if ((ellood(1).ge.ellood(2)).and.
 * (ellood(1).ge.ellood(3))) then
 elgem = ellood(1)
 else if ((ellood(2).ge.ellood(1)).and.
 * (ellood(2).ge.ellood(3))) then
 elgem = ellood(2)
 else if ((ellood(3).ge.ellood(1)).and.
 * (ellood(3).ge.ellood(2))) then
 elgem = ellood(3)
 endif

 if ((dull(1).ge.dull(2)).and.(dull(1).ge.dull(3))) then
 dugem = dull(1)
 else if ((dull(2).ge.dull(1)).and.(dull(2).ge.dull(3))) then
 dugem = dull(2)
 else if ((dull(3).ge.dull(1)).and.(dull(3).ge.dull(2))) then
 dugem = dull(3)
 endif

 15

C Dit is om ervoor te zorgen dat dat veclen in de eerste iteratie zodanig
C wordt aangepast, dat veclen tijdens de gehele stap ongeveer gelijk blijft.
 DO 500 I = 1,3
 IF ((iter.eq.0).AND.(veclen(I).ne.0.d0) THEN
 veclen(I) = veclen(I) - DABS(dugem)
 ENDIF
 500 CONTINUE

C During an iteration an element can flow out of the drawbead.
C As a result elgem and dugem stays zero.
 if ((elgem.eq.0.d0).or.(dugem.eq.0.d0)) then
 stepn = -1.d0
 else
 stepn = elgem/dugem
 endif

 ELSE
C 'du' is almost zero
 stepn = -1.d0
 ENDIF

C It must be checked whether 1 or 2 elementsides cut the drawbead:
C 2 sides : o.k.
C 1 side : leads to problems in contraint equations.
 IF (((elinit(imelem,1).eq.0.d0).and.(elinit(imelem,2).eq.0.d0))
 *.or.((elinit(imelem,1).eq.0.d0).and.(elinit(imelem,3).eq.0.d0))
 *.or.((elinit(imelem,2).eq.0.d0).and.(elinit(imelem,3).eq.0.d0)))
 * stepn = -1.d0

 END

SUBROUTINE DBCONS(dbmatr,dbrlid,LSKVEC,NVRPEL,NVRKN,ellood,
 * stepn,iril,elinit,idbsnp,imelem,trlvtr,veclen,dugem)

C***
C in deze procedure worden de matrices opgesteld behorende bij de
C constraint betrekkingen, nodig om trekrilrek te verdisconteren

 16

C gemaakt door: Timo Meinders
C***

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 COMMON /DRWBD/ RDRWB(10,3),EDRWB(10,14),FDRWB(10,14),
 * XDRWB(10,5,6),NDRWB(10,3),IDRWB,MXDRW
 COMMON /ELIMS/ MKNPEL,MVRPEL,MVRPN,MIP,MELEM,MIPH,MIPV,MLG
 COMMON /PTYD/ TIME,DTIME,ISTEP,NSTEPS,ITER,ICONV,DTIMET,DTIME0,
 * ITEREN,IALI30,DTIOLD,TIMFAC
 COMMON /STUUR/ ISTUUR(23),JSTUUR

 DIMENSION dbmat(18,18),conmat(3,3),dbrlid(18),
 * ellood(3),hulp(2,3),dbmatr(171),elinit(melem,3),
 * idbsnp(melem),trlvtr(3),glob(3,3),dbglob(2,2)

 CALL NULR(dbmatr,171,1)
 CALL NULR(dbmat,18,18)
 CALL NULR(dbrlid,18,1)
 CALL NULR(hulp,2,3)
 CALL NULR(glob,3,3)

C bepalen van de rotatiematrix 'dbglob' tussen het globale assenstelsel en het trekrilassenstelsel
 glob(1,1) = 1.d0
 glob(2,2) = 1.d0
 glob(3,3) = 1.d0
 call drbrot(dbglob,trlvtr,glob)

C bepalen van een 'teken' dat afhangt van het rechts/links liggen
C van de trekril. Rechts = idbsnp() = 1.
 if (idbsnp(imelem).eq.1) then
 sign = 1.0
 else
 sign = -1.0
 endif

C hieronder worden de constraint vergelijkingen bepaald voor een
C specifieke trekril-ligging. De coefficienten worden in de matrix
C 'hulp' geplaatst.

 IF (elinit(imelem,1).ne.0.0) THEN
 el1tot = ellood(1)
 el1ini = elinit(imelem,1)
 el1len = veclen(1)
 if (elinit(imelem,2).ne.0.0) then
 hulp(1,1) = -sign
 hulp(1,2) = sign
 hulp(2,2) = sign
 hulp(2,3) = -sign
 el2tot = ellood(2)
 el2ini = elinit(imelem,2)
 el2len = veclen(2)
 else if (elinit(imelem,3).ne.0.0) then
 hulp(1,1) = sign
 hulp(1,2) = -sign
 hulp(2,1) = sign
 hulp(2,3) = -sign
 el2tot = ellood(3)
 el2ini = elinit(imelem,3)
 el2len = veclen(3)
 endif
 ELSE
 hulp(1,2) = -sign
 hulp(1,3) = sign
 hulp(2,1) = -sign
 hulp(2,3) = sign
 el1tot = ellood(2)
 el2tot = ellood(3)
 el1ini = elinit(imelem,2)
 el2ini = elinit(imelem,3)
 el1len = veclen(2)
 el2len = veclen(3)
 ENDIF

 17

C op grond van kleinste kwadraten methode wordt symmetrische matrix
C bepaald,'conmat'. Dit is de toegevoegde stijfheidsmatrix
 CALL TMULT(conmat,hulp,hulp,3,2,3)

C matrix 'conmat' opblazen tot 18*18-matrix,'dbmat'
 DO 100 i = 1,3
 do 200 j = 1,3
 dbmat(i*NVRKN-(NVRKN-1),j*NVRKN-(NVRKN-1)) = conmat(i,j)
 dbmat(i*NVRKN-(NVRKN-2),j*NVRKN-(NVRKN-2)) = conmat(i,j)
 200 continue
 100 CONTINUE

C determine maximum element length side which must pass the drawbead
 elmax = el1len
 IF (el2len.gt.elmax) elmax = el2len
C process window
 elini = el1ini
 IF (el2ini.gt.elini) elini = el2ini
 epres = -1.5*rdrwb(iril,2)*(elini-elmax)*(elini-elmax)/(elini*elini) +
 * 1.5*rdrwb(iril,2)
 IF (elmax.lt.dugem) epres = 0.0

C bepalen van de delta l
 IF (stepn.gt.0.d0) THEN
C dl1init = (el1ini*rdrwb(iril,2))/stepn
C dl2init = (el2ini*rdrwb(iril,2))/stepn
 dl1init = (el1ini*epres)/stepn
 dl2init = (el2ini*epres)/stepn
 dl1iter = el1tot - el1ini
 dl2iter = el2tot - el2ini
 if (iter.eq.0) then
 dl1 = dl1init
 dl2 = dl2init
 else
 dl1 = (dl1init - dl1iter)
 dl2 = (dl2init - dl2iter)
 endif
 ELSE
 dl1 = 0.d0
 dl2 = 0.d0
 ENDIF

C opstellen rechterlid
 do 250 i = 1,3
 dbrlid(i*NVRKN-(NVRKN-1))=(hulp(1,i)*dl1+hulp(2,i)*dl2)
 * *dbglob(1,1)
 dbrlid(i*NVRKN-(NVRKN-2))=(hulp(1,i)*dl1+hulp(2,i)*dl2)
 * *dbglob(1,2)
 250 continue

 scal = 100000.0
 CALL MULTSC(dbmat,scal,18*18)
 CALL MULTSC(dbrlid,scal,18)

C om de matrix dbmat op te tellen bij de element stijfheidsmatrix
C moet deze in vectorvorm geschreven worden. Alleen de bovendrie-
C hoek wordt hierbij opgeslagen

 do 300 j = 1,NVRPEL
 do 400 i = 1,j
 itel = ((j-1)*j)/2 + i
 dbmatr(itel) = dbmat(i,j)
 400 continue
 300 continue

 END

 18

	Introduction
	The situation before adaption
	Conclusion

	Solution of the spring back problem
	The use of the keyword *ELASTIC
	Conclusion

	Adaption of the constraint algorithm
	Conclusion

	Implementation of a process window
	Conclusion

	A specific element is set in the elastic state
	Conclusion

	Conclusions

