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Abstract

Recently, Zeng and Kolen (1995) have introduced item response theory (IRT)

observed score (OS) equating of number correct (NC) scores for equating different

forms of a test. In the present paper, IRT-OS-NC equating is adapted to equating

the cut-off scores of examinations. Next, the differences between results obtained

using a Rasch model for polytomously scored items and results obtained via the

nominal response model are evaluated. For both versions of IRT-OS-NC equating

confidence intervals are derived. Finally, two procedures for testing the validity of

the procedure are presented. The methods studied here are exemplified with the

results of equating a number of the examinations in secondary education in the

Netherlands.
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The Design

Although much attention is given to producing equivalent examinations for

secondary education from year to year, research has shown (see the Inspection of

Secondary Education in the Netherlands, 1992) that the difficulty of examinations

and the level of proficiency of the examinees can still fluctuate significantly over

time. Therefore, an equating procedure was developed for setting the cut-off

scores of examinations in such a way that some form of equity could be achieved.

This is done with the following procedure. For all examinations participating in the

procedure, the committee for the examinations in secondary education has chosen

a reference examination where the quality and the difficulty of the items appeared

to be such, that the cut-off score presented a suitable reference point. The cut-off

scores of new examinations are to be equated to this reference point.One of the

main difficulties of equating new examinations is the problem of secrecy:

.ixaminations cannot be made public until they are administered to the examinees.

Another problem is that the examinations have no overlapping items. These

problems are overcome by sampling linking groups form another stream of

secondary education. These linking groups respond to items from the old and the

new examination directly after the new examination has been administered. As an

example, consider the design of Figure 1. This figure is a symbolic representation

of an item administration design in form of a persons by items matrix; the shaded

areas represent a combination of persons and items were data are available, the

blank areas are unobserved.

6
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Insert Figure 1 about here

It can be seen that five linking groups were used and the design is such that the

linking groups cover all items of the two examinations. The proficiency level of the

linking groups and the examination populations need not be equivalent; below a

marginal maximum likelihood (MML) estimation procedure will be used where

every group in the design has its own ability distribution. On the other hand, the

responses of the linking groups must fit the same IRT model as the responses of

the examination groups. For instance, if the linking groups do not seriously

respond to the items administered, equating the two examinations via these linking

groups would be seriously threatened. Therefore, much attention is given to the

procedure for collecting the data of the linking groups, in fact, the tests are

presented to these testees as school tests with consequences for their final marks.

Further, a testing procedure will be proposed below that focusses on the quality of

the responses of the linking groups. The examinations considered here consist of

both dichotomously and polytomously scores items. Two IRT models for

performing IRT-OS-NC equating will be considered: a generalization of the Rasch

model to polytomously scored items known as the generalized partial credit model

(GPCM, Wilson & Masters, 1993), and the nominal response model (NRM, Bock,

1972), which can be seen as a generalization of the two-parameter logistic model

(2-pl, Birnbaum, 1968) to polytomously scored items. The reasons for considering

these two models are several. First, the estimation procedure of the Rasch model

is quick and numerically robust. Quickness is essential in the present application

because the advice concerning the new cut-off score must be given as rapidly as

7
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possible. The speed of the estimation procedure originates from the existence of

minimal sufficient statistics for the parameters, which makes it possible to estimate

the parameters on a high aggregation level of the data (see, for instance, Glas &

Verhelst, 1989). Estimation of the parameters of the NRM, on the other hand,

needs evaluation of all response patterns in every iteration step of the MML

estimation procedure (see, for instance, Bock & Aitkin, 1982, or Mislevy & Bock,

1990). This results in substantially longer computing times. Further, in some

instances the nominal response model suffers from identification problems, which

are then solved by introducing priors on the parameters (Mislevy, 1986), which

further burdens the computational task. For the Rasch model, such identification

problems have not been reported. On the other hand, the NRM is more flexible, so

model fit should be less a problem than with the Rasch model. Given these

considerations, one of the problems studied below will be the extent to which both

models produce comparable results.

The IRT Models

The design sketched above is formalized by introducing item administration

variables

dbi = {
0 if this is not the case.

1 if item i is present in test b,
(1)

for i = 1,...,/ and b = 1,...,B. Let item i have mi-F1 response categories indexed

= 0,1,...,mi, m 1> 0. The response to the item will be represented by an

(m11) -dimensional vector x = where xq is defined



1 if the respionse is in category
Xj =

0 if this is not the case.

A respondent taking test b receives a score

ubiwin

Observed Score Equating

7

(2)

(3)

for r(b) = 0,1,...,Rb, where Rb is the maximum score that can be obtained on

test b. The score weights wij are defined by the content experts developing the

examinations. One of the motivations for introducing these score weights is that

some of the examinations consist of multiple choice items, where only one of the

alternatives is correct and open ended questions, where the response is given an

integer score. Introducing score weights opens up the possibility of differentially

weighting the various items in the test. Given these scoring rules, two approaches

of modelling the responses are studied, the first one is an approach where the

respondent's score is the minimal sufficient statistic for ability and a model where

this is not the case.

With respect to the first approach, Andersen (1977) has shown that adopting

the assumption that r is a minimal sufficient statistic for a unidimensional ability

parameter theta, local stochastic independence and some technical assumptions,

results in a model where the probability of a response in category j, j=0,...,mi,

of item i is given by

exp(we -130
P(Xii = 110,13 i,w = wile)

Eg L 0 exp(wige-oig)

where = (130,...,0#,...,13imi is a vector of item parameters and

9
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= (wo,...,wiy,...,wimr) is a vector of scoring weights. The item parameter of the

zero response category 130 is set equal to zero to identify the model. The model

is also known as the generalized partial credit model (Wilson & Masters, 1993). If

the weights are 0, 1, 2, 3,..., mi ) and a re-parametrization

= f3ig,j 1,...,m1 is applied, it can be easily verified that (4)

specializes to the well-known partial credit model (Masters, 1982); if, further, mi is

set equal to 1, the well-known Rasch model (Rasch, 1960, 1961) follows.

Notice that in the parametrization of (4), it is possible to have an item with, say

mi = 2 , and score weights 1, 2, 3 }, that is, the zero score cannot be obtained

on this item. For practical purposes, such as not having to down-code data in case

of an unobserved zero category, and for communication of results to the

practitioner, this may be quite convenient and all theory to be presented below

applies to the general parametrization of (4). However, it must be stressed that

subtracting a weight equal wo from all category weights within the item, such that

wo itself will be transformed to zero, will not alter the likelihood equations. With
m.

this alteration the denominator of (4) will equal 1 + Eg
= 1

exp(wige-134), while

the nominator of the probability of scoring in the zero category will equal one.

The paradigm that the scoring rule must be equivalent with the sufficient

statistic for ability is abandoned by replacing these weights in (4) by unknown item

parameters alpha Jill that must be estimated. In the framework of dichotomous

items this approach results in the two-parameter logistic model (2-pl) by Bimbaum

(1968). The nominal response model by Bock (1972) can be viewed as a

generalization of the 2-pl to polytomous items. This model can be derived from (4)

by replacing wi by a i, a = and setting ao equal to zero

to identify the model.

10
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As already mentioned above, a marginal maximum likelihood (MML)estimation

procedure will be used where every group in the design isassumed to be sampled

from a specific ability distribution, so, for instance, the data in the design depicted

in Figure 1 are evaluated using seven ability distributions, that is, one distribution

for the reference group, one for the examinees of the first examination, and five for

the linking groups. Let the ability parameters of the respondents of test b have a

normal distribution with density g(0 gb,ab). Then the probability of observing a

response pattern x(b) as a function of the item parameters of test b, say a b andt3 b

and the population parameters lib and ab is given by

p(b)Iab bl-tbab) = icx(b) = fp(x(b) 19,a bi3 b)g(e tii"ab)ofe. (5)

MML estimation boils down to maximizing the loglikelihood

L(a43,p,a) = Eb(b) n In_x(b),_rcx(b), (6)

with respect to all item parameters a and 13 and all population parameters p

and a ; the second summation runs over the set of all possible response patterns
_lb)of test b and nx

(b)
is the number of respondents with response pattern r . Of

course, due to the large number of possible response patterns, these counts will

usually be either equal to zero or one. The important point here is that with the

present procedure all item and population parameters are simultaneously

estimated on a common scale (Bock & Aitkin, 1982, Mislevy & Bock, 1990, Glas &

Verhelst, 1989), so the procedure of estimating parameters for each test form

separately and subsequently combining these estimates to derive a common scale

(Kolen & Brennan, 1995, Chapter 6) is not necessary here.

11
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The Equating Procedure

Once the data have been gathered and the IRT model has been estimated,the

next step in the equating procedure is estimating the frequency distributions

performing equipercentile equating. Consider the example of Table 1. The example

concerns a reference examination and a new examination of 50 score points. The

second and fourth column concern the cumulative relative frequency distributions

of the reference and new examination produced by the 'populations actually

administered these two tests. These two distributions could be either the actually

observed distributions or their expected values, this will be commented upon later.

In the third column an estimate of the cumulative score distribution of the

reference population on the new examination is given;This estimate is computed

as follows.

Insert Table 1 about here

Let b be the reference examination and let b* be the new examination. The

proportion of respondents in the reference population obtainjng a score r(b*) on
(b*)

the new examination, say Pr , is estimated by its expected value, that is, as

the expected proportion of respondents of a population characterized by population

parameters p.b andcrb obtaining a score r(b*) on a test characterized by item

parameters a
b
,

b
andp . Using (5), this expectation is given by

*)
E(P

(br

ab *,pb*,!-Liyab) = fl#(1)*) I 0,a ,13 *)g(0 glyab)de . (7)
b* b

1 2
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Of course, it is also possible to calculate the expected value of the proportion of

respondents of the reference population obtaining a score r(b) on the reference

test, say P 0, using (7) with b* substituted by b.

Returning to Table 1, the third columns contains the cumulative distribution of

respondents of the response population on the new examination as computed by

(7). The cut-off score for the new examination is set in such a way that the

expected percentage of respondents failing the new examination in the reference

population is approximately equal to the percentage of examinees in the reference

population failing the reference examination. In the example of Table 1, the cut-off

score of the reference examination was 24; as a result 21.0% failed the exam. If

this percentage is held constant for the reference population, the new cut-off score

should be 18. Obviously, the new examination is more difficult, which is also

reflected in the mean score of the two examination displayed at the bottom of the

table. The old and the new cut-off scores are marked with a straight line in the first

column. It can be seen that the percentage of students in the new population

failing the new examination is 15.8%. This suggests that the new population is

more proficient than the reference population, also this is reflected in the

difference between the mean scores of the two populations if the examination is

held constant. An interesting aspect of the procedure is that the cut-off scores of

the two examinations could also have been equated conditional on the new

population. Further, the actual observed distributions could be replaced by their

expected values. These two topics will be returned to in the sequel.

13
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Results of the Equating Procedure

In the examination campaign of 1995, the cut-off scores of eight examinations

where equated to the cut-off scores of older examinations, the topics of the

examinations are listed under the heading "Topic° of Table 2. There are seven

examinations in language comprehension and one in music. The examinations are

administered at two levels, topics labeled "D" in Table 2 are at MAVO-D-level,

topics labeled "H" are at HAVO-level. The reference examinations were originally

administered between 1989 and 1993. All examinations consist of dichotomous

selected response items, except the examination for Dutch language

comprehension, which has both selected and constructed response formats. The

selected response items where dichotomous, but a correct response was given

two score points, on the constructed response items two to six points could be

obtained; the total number of score points for both the reference and the new

examination was 90.

Insert Table 2 about here

The examination data consisted of samples of candidates from the complete

examination populations, the sample sizes are shown in the columns 4 and 8 of

Table 2. The means -and standard deviations of the observed frequency

distributions of the examinations are shown in the columns 5, 6, 8 and 9. For.each

design there were 5 linking groups, every linking group made approximately the

same number of items and all items were used in the link. The total numbers of

respondents in the linking groups are shown in the last column of Table 2.

14
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Insert Table 3 about here

In Table 3, the results of the equating procedure are given for the version of the

procedure where all distributions are estimated by their expected values. For each

topic, four possible cut-off points are evaluated, r(b) = 20, 25, 30, 35 for

examinations with 50 score points and r(b) = 45, 55, 65, 75 for the examination

with 90 score points, these scores are listed in the column labeled r(b). As

mentioned above, the associated scores on the new test could be computed using

either the reference or the new population, these scores on the new test will be

denoted OR(r(0) and0Mrls b ,)), respectively. The results obtained via the reference

population are listed in the columns 3 to 5, the results obtained via the new

population are listed in columns 6 to 8. The third column contains the scores

R(r(b)) computed using the GPCM, in the next column the resulting scores are

given as they are obtained using the NRM. Column 5 contains the difference

between these two sets of scores. For convenience, the surp of these absolute

values of these differences is given at the bottom line of the table. The following

two columns give the scores 4)Mr(b)), that is, the scores on the new test

computed via the new population, in column 8 the difference between these two

scores are given. Finally, the differences in results obtained using either the

reference or new population, OR(r(1)))-(1)Mr(0) are shown in column 9 for the'

GPCM and column 10 for the NRM, respectively. Two conclusions can be drawn

from this table. First, the GPCM and the NRM do produce different results, but

these differences are not spectacular: the sum of the absolute values of the

differences given at the bottom of the table are 13 and 11 score points over all

I 5
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examinations and equated scores, and the absolute difference is never more than

two score points. The second conclusion is that using either the reference or new

population for determining the difference between the examination makes little

difference, at the bottom of the table it is shown that the sum of the absolute

values of the differences are 0 and 4 score points.

This last result depreciated when the expected distributions of the two

examinations were replaced with the actual observed distributions. This can be

seen in Table 4. Column 3 contains the differences between the scores OR(P)

as computed .using the GPCM and the NRM, respectively. In column 4 the a

comparable result is displayed for the scores ON(P). Comparing these two
1 1 2 1 2

columns labeled coR-2coR and o)N-coN with the columns labeled OR-OR and
1 2

ON-ON in Table 3, it can be seen that using observed or expected scores makes

little difference if the two models are contrasted. The columns 5 and 6 contain

information analogous to the information in the two last columns of Table 3, so the

entries are the difference between the computed scores on the new test using

either the reference or new population, the differences of column 5 concern the

GPCM, the next column concerns the NRM. At the bottom line it can be seen that

the sum of absolute differences is clearly increased. The reason is that the

expected distribution can be seen as a smoothed version of the observed

distribution. In other words, the results of the first procedure are more

parsimonious because it is based on four model-conform expected distributions,

while the latter procedure uses more irregular observed 'distributions. This is further

confirmed by the results of

16
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Insert Table 4 about here

the last four columns of the table. Here the differences between the scores

computed using the observed and expected distribution are listed for the GPCM

and NRM applied using the reference and new population, respectively. Though

the absolute difference is never greater than two score points, the occurrence of

differences is such, that their absolute sums range from 9 to 22. So summing up,

using expected distributions for all combinations of tests and populations resulted

in a more parsimonious results, mainly due to the fact that expected distributions

are smoother than the observed distributions from which they emanate. Further,

the GPCM and NRM produce quite similar results.

Some Computational Considerations

Computing expected distributions defined by (7) involves summing over the set of

all possible response patterns x(b) of some test b. Dropping the indices

b andb*, for the GPCM, (7) can be written as

E(Pr I 13 , g,a) = Ex exp( -0)fexp(18)P0(8,r3 )08 I II,a)de

= 7(/;13)c(r,13,11,0) (8)

where P0(0,13) is the probability of a zero response pattern as a function of ability, y(r, 13)
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is a combinatorial function of all response patterns resulting in r and (r,f1,11,a) is

a function which does not depend on response patterns but only on r . In the

framework of the Rasch model and its generalizations, combinatorial functions and

their computation have been extensively studied (Fischer, 1974, Verhelst, Glas &

van der Sluis, 1981, Verhelst & Veldhuijzen, 1991, Liou, 1994) and they can be

evaluated fast and accurate. The function c(1,1341,a) contains an integration over

a normal distribution which can be evaluated using Gauss-Hermite quadrature

(Abramowitz & Stegun, 1970). Applications of Gaussian quadrature in IRT are

numerous (Bock & Aitkin, 1981, Mislevy & Bock, 1990, Zeng & Kolen, 1995), but it

must be pointed out that for the integrals evaluated here the number of quadrature

points must be large to obtain acceptable numerical precision (Verhelst &

Verstralen, personal communication). In the examples of this paper, the number of

quadrature points was set equal to 180.

For the NRM, expression (7) can be written as

Ex fexpOe(a0 -13 )P0(0,a,13)g(0111,a)de =

fEx exp( -Y8 (0))P0(0,a,f3 )g(0 I ti,a)a0,

(9)

where P0(0,a,p) is the probability of a zero response pattern as a function of

ability and 8 (0) = (a0-43). An important difference between (8) and (9) is that in

the former expression a factor depending on response patterns can be placed

before the integration sign, while this is not possible in (9).

One way to compute (9) is to introduce combinatorial functions

y(r,S (0)) = Ex exp( -x18 (0)) which are defined conditionally on 0, so that' (8)



generalizes to

E(PrI ,13,11,a) = fy(r,8(0))P0(e,a,13)9(0111,a)de
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Computing (10) boils down to evaluating the combinatorial functions in every,

quadrature point. However, as was mentioned above, the number of quadrature

points needed is quite large, so this approach is quite time consuming. As an

alternative, (10) can be evaluated using a Monte Carlo procedure, where response

patterns are generated using the relevant item and population parameters to

approximate the distribution of sum scores on a test for a certain population. Also

this approach requires a substantial amount of computer time. For the examples in

the present paper both methods are used; details on the relative merits of the two

procedures are beyond the scope of the present paper.

Confidence Intervals

When the practitioner is confronted with the need to adjust the cut-off score of

some examination, the first question that comes to mind is about the reliability of

the estimated new cut-off score. In this section, two methods for computing

confidence intervals for all relevant estimates will be considered: the delta method

and the bootstrap method. The delta method (see, for instance, Bishop, Fienberg

& Holland, 1975) will be described first. This method is based on the fact that if

A. 4. has an asymptotic normal distribution with mean 0 and covariance matrix

E x, and f is a differentiable real-valued function, then f(x)40.0 has an

asymptotic normal distribution with mean 0 and covariance matrix

9
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f otax)Exotaxy (11)

In the present case, all inferences, such as the expected cumulative score

distributions and the mean and variance of the expected score distributions, are

based on (7), which, in turn, is a function of estimated item- and population

parameters. Therefore, first the standard errors of (7) will be derived. Let X, be a

vector of all item and population parameters and AA.) will be a vector of one or

more expected score distributions. So, in general fR) will have elements

E(PrI a,r3 41,a). Consider the GFCM. To derive an expression for the derivative of

(8) with respect to an item parameter, notice that

ay(r,13) _ _exp(-pij)'y(r-M3 (1)), (12)
pu

where y(r-j,13(0) is a combinatorial function over all possible response patterns on

.the test without item i resulting in score r-j, so this is a function of all item

parameters minus the parameters of item i (see, for instance, Fischer, 1974,

Liou, 1994, Verhelst & Glas, 1995). Further,

aPo(0,13)
7 IN'EVO(e913)1

apu

and so

E(3r10,11,0)

-exp( -pij)y(r-j,[3 (4)c(r43 ,g,a) +

y(r,13)1yrii13)exp(r0)P0(9,13 )g(8 I g,a)de

= E(PrijI13,11,0)+E(PrI13 ,11-,CY)E(VjP3) r,13,11.0)

20

(13)

(14)
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here E(Priyl 3 4i,a) is the expected proportion of respondents scoring in category

j of item i and obtaining a sum score r . The derivatives of (8) with respect to

the population parameters are given by

aE(PrI13,1-1,a) *NI

and

aqprI134t, )_y(o)f

exp(r9)P0(0,13 )9(0iii,a)de

(9-4)2 -02
y 3

a
exp(tO)P0(13,13)g(0 11.1,a)d0 .

(15)

(16)

The covariance matrix of the score distribution can now be computed using (14),

(15) and (16) as expressions for avax; the expression for the covariance matrix

of the parameter estimates I x for the GPCM are given by Glas (1997, also see

Glas & Verhelst, 1989).

The covariance matrix for the cumulative score distribution, say c, can now

be derived from the covariance matrix for the score distribution / f by noticing that

the latter is a linear function F of the former, and Z c is derived by pre-multiplying Z f by F

and post-multiplying it by F. For instance, the covariance matrix of two cumulative

distributions of two tests with 2 score points each is given by

00000`
1 1 o o o o
1 1 1 o o o
o o o 1 o o
o o o 1 1 o

o o o 1 1 1,

If

(i 1 1 o o o'
o 1 1 o o o
o o 1 o o o
o o o 1 1 1

o o o o 1 1

00000l

(17)
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Also confidence intervals for the estimates of the mean and the variance of the

score distributions can be computed in this way, for instance, the estimate for the

mean is based on the linear combination

Er rE(P rif3,11,a), (18)

and its standard error can be computed by pre-multiplying Z f by the row vector (

0,1,...,r,...,R ) and post-multiplying it by the transpose of this row vector. The

expected second central moment and the variance of the score distribution can be

computed in a similar vain. The derivation for the NRM is a straightforward

generalization of the procedure for the GPCM. So the equivalent of (12) is now

given by

a7(r'ö (8)) 0exp(ap pij)y(r -j, 8 ((e)
accil

and

(19)

_ _exp(aip -130,y(r-j,8 (8)(1)) (20)
ar3#

and the equivalent of (13) is

aPo(8,a,13)

accil

and

aP0(0,a,ri)

apu

exiiii0)P0(9,a,13) (21)

wile)P0(0,a,13).

22

(22)
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These expressions can be used for deriving the first order derivatives of (10) with

respect to the item parameters. The first order derivatives of (10) with respect to

the population parameters resemble (15) and (16), except that the combinatorial

function is defined locally on ability as in (10) and should be placed after the

integration sign. Again, the delta method can be used for computing confidence

intervals for one or more expected score distributions by combining these

expressions for the first order derivatives with the expressions for the asymptotic

covariance matrix derived by Glas (1997).

As an alternative for the delta method, the bootstrap method (Efron, 1979,

Efron & Gong, 1983) will be considered. The bootstrapping method proceeds by

repeated re-sampling with replacement from the original data. The sample size of

these re-samples is the same as the size of the original sample and the probability

of being sampled is the same for all response patterns in the original sample. By

estimating the model parameters on every re-sample the standard error of the

estimator can be evaluated. For the present application standard errors for the

estimated frequency distributions under the GPCM and the NRM were computed

using both the bootstrap and the delta method. To avoid cumbersome tables, only

the results of a subset from an actual data set will be used, the data consist of 10

items from the English language proficiency examination on Havo-level in 1992

and 10 items from the 1995 examination. Score distributions were computed on

these two examinations for the 1995 population. Because only one linking group

made the items studied here, the design was curtailed to the two examination

populations with 2039 and 2003 candidates, respectively, and one linking group

consisting of 175 candidates. In Table 5 an example of one of the estimated score

distributions is shown, the example concerns an estimate of the distribution of the

1995 population on the 1992 test using the GPCM.
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Insert Table 5 about here

The columns two and three contain the estimated score distribution and the

cumulative distribution, the next two columns contain their standard errors

estimated applying the delta method, respectively. Next, the bootstrapped

estimates of these four estimates are given. Finally, in the two bottom lines of the

table the mean, the standard deviation and their respective standard errors are

given. The bootstrapped estimates were computed using 400 replications. It can

be seen that the bootstrapped estimates of the standard errors are generally

smaller than the ones computed using the delta method. This result is typically for

all analyses that were carried out. Because the number of parameters estimated in.

the NRM is larger than the number of parameters estimated in the GPCM, the

standard errors in the NRM are slightly smaller: for instance, the standard irror of

the mean computed using the delta method dropped from .15 to .12. Other

estimates showed a comparable tendency. For both models and both estimation

procedures, the computed standard errors dropped dramatically when the score

distribution was estimated on the test the candidates actually made. For instance

the standard error of the mean using the delta method was computed as .05, so

markedly smaller than the standard error for the mean of the test not actually

made by the candidates. This also held for the estimates of the score distribution,

for instance the standard error of the estimate of the proportion of candidates with

score 5 dropped from 1.03 to .25. Of course, this is as expected, since the data

provide more information on the test made than on the test that was not made.
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The final remark of this section concerns the practical implications of these

results. Firstly, the estimates issued from the delta method are generally more

conservative, so they must be preferred over the bootstrapped estimates. For the

GPCM computing bootstrapped estimates offers little problems because the

estimation procedure is both fast and robust. For the NRM this is less the case, in

fact, repeated parameter estimation may be quite prohibitive for very large tests.

However, for the NRM also the delta method seems to be running into trouble

every once in a while, but in thee cases replacing the observed information matrix

by the expected information matrix usually solves the problem. Summing up, the

delta method must be preferred.

Evaluating Model Fit

In this last section a procedure for evaluating model fit in the framework of

IRT-OS-NC equating will be discussed. Of 'course, there are many possible

sources of model violations, and many test statistics have been proposed for

evaluating model fit, which are quite relevant in the present context (see,

Andersen, 1973, Martin Lot 1973, Glas, 1988, 1997, Glas & Verhelst, 1989, 1995,

Molenaar, 1983, and Mislevy & Bock, 1990). Besides the model violations covered

by these statistics, in the present application there is one special violation that

deserves special attention: the question whether the data from the linking groups

are suited for performing the equating of the examinations. Therefore, the focus of

the present section will be on the stability of the estimated score distributions if

different linking groups are used. The idea is to cross-validate the procedure using

independent replications sampled from the original data. This is accomplished by
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partitioning the data of both examinations into G data sets. To every one of these

data sets, the data of one or more linking groups are added, but the data sets will

have no linking groups in common. So summing up, each data set consists of a

sample from the data of both the examinations and of one ore more linking groups.

In this way, the equating procedure can be carried out in G independent samples.

The stability of the procedure will be evaluated in two ways: firstly by computing

equivalent scores as was done above and evaluating whether the two equating

functions produce similar results, and, secondly, by performing a Wald test. The

Wald test will be explained first.

Glas and Verhelst (1995) have pointed out that in the framework of IRT, the

Wald test (Wald, 1943) can be used for testing whether some IRT model holds in

meaningful subgroups of the sample of respondents. In this section, the Wald test

will be used to evaluate the null hypothesis that the expected score distributions on

which the equating procedure is based are constant over subgroups against the

alternative that they are not. This principle applies to G sub-groups, but only the

case of two subgroups will be elaborated here, the generalization to more

subgroups is straightforward. Let the model parameters for the g-th subgroup be

denoted X. g = 1,2. These parameters are estimated in the two subgroups

separately. Above a vector f(X) with elements E(P ria,f3 ,g,a) for one or more

score distributions was defined. Here this definition will be altered in the sense that

for every distribution at least one proportion P r will be deleted. In the sequel it will

become clear that this has to do with the restriction that the proportions Pr sum to

one, i.e. Er Pr. 1 , which results in covariance matrices of incomplete rank.

In the examples below, more scores will deleted because their expected

proportions are either zero or very small, for data emanating from examinations

this especially happens in the low score regions. Let fg (Xg ) be one or more
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distributions computed via group G . Further, let X = (X1',X2'y and consider the

difference

h(X) = f1(AI) f2(7.2), (23)

that is, h(X) is the difference between one or more score distributions computed

using independent samples of examination candidates and different and

independent linking groups. Under the null hypothesis h(X) = 0 , that is, in the

population the score distributions are equal. Since the responses of the two

subgroups are independent, it follows that the variance-covariance matrix of the

ML estimator of (f1(X1)' ,f2R 2)') is given by

0 \
fi

fl ,f2 0
(24)

f2

where the matrices , g = 1,2 are computed using (11). For this application,

the Wald test statistic is given by the quadratic form

W = h(X.)1E f 1E f2] -1 hR);

if W is evaluated using ML-estimates, under mild regularity assumptions, it is

asymptotically chi-square distributed with degrees of freedom equal to the number

of elements of h(k) (Wald, 1943).
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Insert Table 6 about here

Some results of the test are given in Table 6. The tests pertain to estimated score

distributions on the reference examination. To test the stability of the score

distribution, the samples of respondents of the examinations were divided into four

subgroups of approximately equal sample size. Next, four data sets were

assembled, each one consisting of the data of one linking group, the data of one

of the four subgroups from the reference examination and the data of one of the

four subgroups from the new examination. So the design for these four new data

sets is similar to the design depicted in Figure 1, except that in the prevailing case

only one linking group is present. In this way four data sets were constructed, for

each data set the item- and population parameters of the GPCM were estimated,

all relevant distributions were estimated by computing their expected values and

the equating procedure- was conducted. Finally, four Wald statistics were

computed. Consider Table 6. The first column concerns the hypothesis that there

is no difference between the estimated distributions of the reference population on

the reference examination in the setup where the first linking group provided the

link and the setup where this link was forged by the second linking group. The next

column pertains to a similar hypothesis concerning the third and fourth linking

group. The last two columns contain the result for a similar hypothesis concerning

the estimated distributions of the new population on the reference examination. For

all six examination topics, the score distribution considered ranged from 21 to 40,

that is, 20 of the 50 possible score points were considered. This results in four

Wald statistics with 20 degrees of freedom each, realizations with a significance
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probability less than 0.01 are marked with a double asterisk. It can be seen that

model fit is not overwhelmingly good: 12 out of 24 tests are significant at the 0.01

level. However, there seem to be differences between the various topics, for

instance, French at HAVO-level seems to fit quite well. This was corroborated

further by a procedure were equivalent scores were computed for a partition of the

data into five different sub-samples, each one with its own linking group. Consider

Table 7. For six topics four scores on the reference test were considered. For each

of the five sub-samples, these four scores were equated to scores on the new

examination via the reference population.

Insert Table 7 about here

In the columns labeled "Ll" to °L5", tfte resulting scores on the new test are

shown. These new scores seem to fluctuate quite a bit, but it must be kept in mind

that every one of these scores was computed using only a fifth of the original

sample size, so the precision has suffered considerably. In the column labeled

°Total", the sum of the absolute differences between all pairs of new scores is

displayed. Since there are five new scores for every original score, there are ten

such pairs. So, for instance, the mean absolute difference between the new scores

associated with the original score 20 on the D-level examination in German is 4.8

score points. An interesting question in this context is how this result must be

interpreted given the small sample sizes in the sub-groups. To shed some light on

this question, the following procedure was followed. For every examination, new

data sets were generated using the parameter estimates obtained on the original
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complete data sets, that is, the data sets described in Table 2. So these new

generated data sets conformed the null-hypothesis of the GPCM. Next, for every

data set, the procedure of equating the two examinations via the reference

population in the five sub-samples was conducted. For every examination this

procedure was replicated 100 times. In this manner, the distribution of the sum of

the absolute differences of new scores under the null-hypothesis that the GPCM

(with true parameters as estimated) holds, could be approximated and the

approximated significance probability of the realization using the real data could be

determined. The mean sum of absolute differences over the 100 replications and

the significance probability of the real data realization are given in the, last two

columns of Table 7. It can be seen that the overall model fit is not very good,

however, also here French at HAVO-level stands out as well fitting, while also

German at HAVO-level shows acceptable model fit.

Conclusions

In the present paper, the technique of IRT-OS-NC equating introduced by Zeng

and Kolen (1995) was adapted to a situation were both differences in proficiency

level of various populations of respondents and differences between the difficulty

of measurement instruments are meaningful and important variables that have to

be accounted for. Further, methods for computing standard errors and eValuating

the appropriateness of the equating method were suggested. The feasibility of the

procedure in a practical situation was shown using an application in a real

examination situation. In the present application, the differences between the

results obtained by the GPCM and the NRM were not very striking. However, the
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present study did not include systematic simulations of other conceivable testing

arrangements, so there is no evidence that this result also holds for other

applications. Overall model fit was not very satisfactory, only one of the

examination topics fitted well, while a second topic fitted acceptably. Therefore,

further research must be done on adapting IRT-OS-NC equating to

multi-dimensional IRT models, such as the mufti-dimensional Rasch model bY Glas

(1992) and by Adams and Wilson (1995) and the Testfact model by Bock, Gibbons

and Muraki (1985). Finally, it must be stressed that equity of testing is only relative

in case that the scoring rule of the test is different from the sufficient statistic for

ability or from some other IRT-based measure of ability, both derived from the IRT

model that fits the data. Generally, scoring a test using IRT-based statistics or

measures is to be preferred above adopting a scoring rule and then using

IRT-OS-NC equating for rendering the scores comparable. However, the scoring

rule is often beyond the control of the psychometrician, and in these cases

IRT-OS-NC equating selves an important purpose.
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Table 1. Cumulative Percentages of the Reference
and New Population on the Reference and
New Examination

Population Reference New

Examination Ref. New New Ref.

Score
Cum. Cum. Cum. Cum.
Perc. Perc. Perc. Perc.

16 2.4 13.5 7.3 .3
17 3.9 14.7 10.3 .6
18 4.8 19.8 15.8 1.5
19 7.5 22.5 19.1 2.1
20 9.9 24.3 27.3 4.5
21 12.3 29.3 34.5 8.2
22 14.7 31.4 39.1 10.6
23 17.7 38.0 44.5 14.2
24 21.0 42.2 50.9 16.9
25 23.7 48.5 56.1 23.2
26 28.7 54.2 63.3 27.2

Mean 28.8 24.6 25.6 29.6
Std. 9.1 9.3 8.9 8.6

BESTCONAVAURIE 35



T
a
b
l
e
 
2
.

D
a
t
a
 
O
v
e
r
v
i
e
w

T
o
p
i
c

S
c
o
r
e

P
o
i
n
t
s

R
e
f
e
r
e
n
c
e

R
N

M
e
a
n

S
t
d

N
e
w
 
E
x
a
m
i
n
a
t
i
o
n

R
N

M
e
a
n

S
t
d

L
i
n
k

G
e
r
m
a
n
 
D

5
0

5
0

2
1
1
5

3
1
.
7
2

6
.
9
2

5
0

2
0
2
1

3
4
.
0
0

6
.
2
8

1
0
3
3

G
e
r
m
a
n
 
H

5
0

5
0

2
1
2
9

3
4
.
5
1

5
.
5
9

5
0

2
0
1
5

3
2
.
0
8

6
.
2
7

6
0
7

E
n
g
l
i
s
h
 
D

5
0

5
0

1
6
9
3

3
5
.
1
4

6
.
9
1

5
0

2
0
1
0

3
4
.
7
4

6
.
8
7

1
1
3
7

E
n
g
l
i
s
h
 
H

5
0

5
0

2
0
3
9

3
2
.
3
2

7
.
4
5

5
0

2
0
0
3

3
4
.
4
5

7
.
2
3

8
7
3

F
r
e
n
c
h
 
D

5
0

5
0

1
6
6
6

3
3
.
1
8

7
.
3
9

5
0

2
0
9
7

3
2
.
2
8

7
.
2
3

1
0
3
7

F
r
e
n
c
h
 
H

5
0

5
0

2
1
4
4

3
5
.
7
2

6
.
8
0

5
0

2
1
3
8

3
4
.
0
2

7
.
2
1

4
2
8

D
u
t
c
h
 
D

9
0

3
9

1
5
7
2

5
6
.
1
7

1
2
.
0
5

4
4

2
2
6
6

5
9
.
0
1

9
.
8
2

7
0
1

M
u
s
i
c
 
D

5
0

5
0

3
3
5

3
0
.
2
5

6
.
4
3

5
0

3
7
0

3
4
.
5
4

6
.
3
8

3
8
7

6



Observed Score Equating

35

Table 3. Results of the Equation Procedure

Topic itm
2 10R 4)Ft-°r4 10N 02N Ci-02N (1)2 2R -0N

German D 20 24 25 -1 24 24 0 0 1

25 29 30 -1 29 29 0 0 '1
30 34 34 0 34 34 0 0 0

35 38 38 0 38 38 0 0 0

German H 20 18 19 -1 18 19 -1 0 0

25 24 24 0 24 24 0 0 0

30 29 29 0 29 29 0 0 0

35 34 34 0 34 34 0 0 0

English D 20 19 21 -2 19 21 -2 0 0

25 24 26 -2 24 26 -2 0 0

30 30 30 0 30 30 0 0 0

35 35 35 0 35 35 0 0 0

English H 20 21 21 0 21 21 0 0 0

25 26 26 0 26 26 0 0 0

30 31 31 0 31 31 0 0 0

35 36 36 0 36 36 0 0 0

French D 20 21 22 -1 21 22 -1 0 0

25 26 26 0 26 26 0 0 0

30 31 31 0 31 31 0 0 0

35 36 37 -1 36 36 0 0 1

French H 20 19 19 0 19 19 0 0 0

25 24 24 0 24 24 0 0 0

30 28 29 -1 28 29 -1 0 0

35 34 34 0 34 34 0 0 0

Dutch D 45 47 47 0 47 47 0 0 0

55 56 56 0 56 55 1 0 1

65 65 64 1 65 64 1 0 0

75 74 73 1 74 73 1 0 0

Music D 20 23 23 0 23 23 0 0 0

25 28 28 0 28 28 0 0 0

30 33 33 0 33 33 0 0 0

35 38 37 1 38 37 1 0 0

Abs. sum 13 11 0 4
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Table 4. Differences between Equation Functions

Topic 0)-04 4-04 04-04 colic* (02R-4 , (0;,-4 04-44,

German D

German H

English D

English H

French D

French H

Dutch D

Music D

20 0 0 -1 -1 0 -1 1 1
25 -1 0 0 1 0 0 0 0
30 0 0 1 1 0 0 -1 -1
35 -1 0 0 1 0 1 0 0
20 1 -1 -1 -3 0 -2 1 1
25 0 0 -1 -1 -1 -1 0 0

30 0 0 0. 0 0 0 0 0
35 -1 0 0 1 0 1 0 0

20 0 -2 0 -2 0 -2 0 0

25 -1 -2 0 -1 0 -1 0 0

30 -1 0 0 1 0 1 0 0

35 0 0 0 0 0 0 0 0

20 1 0 -1 -2 -1 -2 0 0

25 0 0 0 0 0 0 0, 0
30 0 1 1 2 1 1 0 -1
35 0 0 0 0 0 0 0 0
20 0 -1 -1 -2 0 -1 1 1
25 0 0 0 0 0 0 0 0
30 -1 1 0 2 0 1 0 -1
35 0 0 1 1 1 0 0 0
20 0 . 0 -2 -2 -1 -1 1 1
25 0 0 -1 -1 -1 -1 0 0
30 0 0 1 1 1 0 0 -1
35 0 0 1 1 0 0 -1 -1
45 0 0 0 0 0 0 0 0
55 -1 1 -1 1 -1 0 0 0

65 1 1 0 0 0 0 0 0
75 2 1 1 0 1 0 0 0
20 1 0 -2 -3 -1 -2 1 1

25 0 0 1 1 1 1 0 0

30 0 0 2 2 1 1 -1 -1
35 0 0 1 1 /- 0 1 -1 0

Abs. sum 13 11 20 35 12 22 9 10
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Table 6. Results of the Wald Test for Stability of
Estimated Score Distributions

population
Linking Groups
Topic

reference new
1 vs 2 3 vs 4 1 vs 2 3 vs 4

German D 97.9** 12.0 202.3** 180.0**
German H 156.5** 16.8 8.1 232.7**
English D 24.6 8.9 460.1** 19.5
English H 52.9** 8.1 239.8** 4.1
French D 120.3** 100.4** 547.6** 158.2**
French H 4.5 15.6 21.7 10.8
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Table 7. Stability of Equating Functions in Sub-samples

Topic r') Ll L2 L3 L4 L5 Total Expct p-value

German D

German H

English D

English H

French D

French H

20 16 23 21 15 14 48 15.5 .00
25 20 28 27 21 19 50 14.5 .00
30 26 32 32 27 24 44 13.1 .00
35 31 37 37 33 29 44 11.4 .00
20 16 19 17 21 17 24 15.2 .10
25 22 24 22 26 22 20 12.4 .15
30 27 29 27 31 28 20 10.3 .05
35 33 34 32 36 33 18 9.5 .10
20 20 26 18 19 20 34 14.1 .00
25 24 31 23 24 25 34 12.5 .00
30 29 35 28 29 30 30 10.3 .00
35 34 39 33 34 34 24 8.8 .00
20 21 26 19 18 23 40 12.8 .00
25 26 31 24 23 28 40 12.0 .00
30 31 36 29 28 32 38 10.0 .00
35 36 40 34 33 37 34 9.2 .00
20 18 13 19 16 23 46 13.2 .00
25 24 18 24 20 27 44 13.7 .00
30 29 22 29 25 32 48 13.4 .00
35 35 28 34 29 36 44 12.7 .00
20 21 20 18 18 19 16 16.0 .55
25 26 25 23 24 24 14 15.4 ,75
30 31 30 29 29 29 10 12.8 .85
35 36 35 34 34 34 10 10.7 .70
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Figure Captions

Figure 1. Test Administration Design.
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