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Abstract

The purpose of this paper is to derive optimal rules for sequential mastery tests. In a sequential

mastery test, the decision is to classify a subject as a master, a nonmaster, or continuing sampling

and administering another random test item. The framework of minimax sequential decision theory

(minimum information approach) is used; that is, optimal rules are obtained by minimizing the

maximum expected losses associated with all possible decision rules at each stage of sampling. The

binomial model is assumed for the probability of a correct response given the true level of

functioning, whereas threshold loss is adopted for the loss function involved. Monotonicity

conditions are derived, that is, conditions sufficient for optimal rules to be in the form of sequential

cutting scores. The paper concludes with a simulation study, in which the minimax sequential

strategy is compared with other procedures that exist for similar classification decisions in the

literature.

Key words: sequential mastery testing, minimax sequential rules, monotonicity conditions,

least favorable prior, binomial distribution, threshold loss.
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Introduction

Well-known examples of fixed-length mastery tests include pass/fail decisions in education,

certification, and successfulness of therapies. The fixed-length mastery problem has been studied

extensively in the literature within the framework of (empirical) Bayesian decision theory (e.g., De

Gruijter & Hambleton, 1984; van der Linden, 1990). In addition, optimal rules for the fixed-length

mastery problem have also been derived within the framework of the minimax strategy (e.g.,

Huynh, 1980; Veldhuijzen, 1982).

In both approaches, the following two basic elements are distinguished: A psychometric

model relating the probability of a correct response to student's (unknown) true level of
functioning, and a loss structure evaluating the total costs and benefits for each possible
combination of decision outcome and true level of functioning. Within the framework of Bayesian

decision theory (e.g., De Groot, 1970; Lehmann, 1959), optimal rules (i.e., Bayes rules) are obtained

by minimizing the posterior expected losses associated with all possible decision outcomes. The

Bayes principle assumes that prior knowledge about student's true level of functioning is available

and can be characterized by a probability distribution called the prior.

Using minimax decision theory (e.g., De Groot, 1970; Lehmann, 1959), optimal rules (i.e.,

minimax rules) are obtained by minimizing the maximum expected losses associated with all

possible decision rules. Decision rules are hereby prescriptions specifying for each possible

observed test score what action has to be taken. In fact, the minimax principle assumes that it is

best to prepare for the worst and to establish the maximum expected loss for each possible decision

rule (e.g., van der Linden, 1981). In other words, the minimax decision rule is a bit conservative

and pessimistic (Coombs, Dawes, & Tversky, 1970).

The test at the end of the treatment does not necessarily have to be a fixed-length mastery

test but might also be a variable-length mastery test. In this case, in addition to the actions declaring

mastery or nonmastery, also the action of continuing sampling and administering another item is

available. Variable-length mastery tests are designed with the goal of maximizing the probability of

making correct classification decisions (i.e., mastery and nonmastery) while at the same time
minimizing test length (Lewis & Sheehan, 1990).

The purpose of this paper is to derive optimal rules for variable-length mastery tests.

Generally, two main types of variable-length mastery tests can be distinguished. First, both the item

selection and stopping rule (i.e., the termination criterion) are adaptive. Student's ability measured

on a latent continuum is estimated after each response, and the next item is selected such that its

difficulty matches student's last ability estimate. Hence, this type of variable-length mastery testing
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assumes that items differ in difficulty, and is denoted by Kingsbury and Weiss (1983) as adaptive
mastery testing (AMT).

In the second type of variable-length mastery testing, the stopping rule only is adaptive but

the item to be administered next is selected random. In the following, this type of variable-length

mastery testing will be denoted as sequential mastery testing (SMT). In the present paper, optimal

rules will be derived for SMT using the framework of minimax sequential decision theory (e.g.,
De Groot, 1970; Lehmann, 1959).

Review of Existing Procedures to Variable-Length Mastery Testing

In this section, earlier solutions to both the adaptive and sequential mastery problem will be briefly

reviewed. First, earlier solutions to AMT will be considered. Next, it will be indicated how SMT

has been dealt with in the literature.

Earlier Solutions to Adaptive Mastery Testing

In adaptive mastery testing, two item response theory (IRT)-based strategies have been primarily

used for selecting the item to be administered next. First, Kingsbury and Weiss (1983) proposed the

item to be administered next is the one that maximizes the amount of (Fisher's) information at

student's last ability estimate.

In the second IRT-based approach, the Bayesian item selection strategy, the item that

minimizes the posterior variance of student's last ability estimate is administered next. In this

approach, a prior distribution about student's ability must be specified. If a normal distribution is

assumed as a prior, an estimate of the posterior distribution of student's last ability, given observed

test score, may be obtained via a procedure called restricted Bayesian updating (Owen, 1975).

Both IRT-based item selection procedures make use of confidence intervals of student's
latent ability for deciding on mastery, nonmastery, or continue sampling. Decisions are made by

determining whether or not the prespecified cut-off point on the latent IRT- metric, separating

masters from nonmasters, falls outside the limits of this confidence interval.

Existing Procedures to the Sequential Mastery Problem

One of the earliest approaches to sequential mastery testing dates back to Ferguson (1969) using

Wald's sequential probability ratio test (SPRT). In Ferguson's approach, the probability of a correct

response given the true level of functioning (i.e., the psychometric model) is modeled as a binomial
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distribution. The choice of this psychometric model assumes that, given the true level of
functioning, each item has the same probability of being correctly answered, or that items are
sampled at random.

As indicated by Ferguson (1969), three elements must be specified in advance in applying

the SPRT-framework to sequential mastery testing. First, two values on the proportion-correct

metric must be specified representing points that correspond to lower and upper limits of true level

of functioning at which a mastery and nonmastery decision will be made, respectively. Also, these

two values mark the boundaries of the small region (i.e., indifference region) where we never can

be sure to take the right classification decision, and, thus, in which sampling will continue.

Second, two levels of error acceptance must be specified, reflecting the relative costs of the false

positive (i.e., Type I) and false negative (i.e., Type II) error types. Intervals can be derived as

functions of these two error rates for which mastery and nonmastery is declared, respectively, and

for which sampling is continued (Wald, 1947). Third, a maximum test length must be specified in

order to classify within a reasonable period of time those students for whom the decision of

declaring mastery or nonmastery is not as clear-cut.

Reckase (1983) has proposed an alternative approach to sequential mastery testing within an

SPRT-framework. Unlike Ferguson (1969), Reckase (1983) did not assume that items have equal

characteristics but allowed them to vary in difficulty and discrimination by using an IRT -model

instead of a binomial distribution. Modeling response behavior by an IRT model, as in Reckase's

(1983) model, Spray and Reckase (1996) compared Wald's SPRT procedure also with a maximum

information item selection procedure (Kingsbury and Weiss, 1983).

Recently, Lewis and Sheehan (1990), Sheehan and Lewis (1992), and Smith and Lewis

(1995) have applied Bayesian sequential decision theory (e.g., De Groot, 1970; Lehmann, 1959) to

SMT. In addition to a psychometric model and a loss function, cost of sampling (i.e., cost of

administering one additional item) must be explicitly specified in this approach. Doing so, posterior

expected losses associated with the nonmastery and mastery decisions can now be calculated at

each stage of sampling. As far as the posterior expected loss associated with continue sampling

concerns, this quantity is determined by averaging the posterior expected loss associated with each

of the possible future decision outcomes relative to the probability of observing those outcomes

(i.e., the posterior predictive distributions).

Optimal rules (i.e., Bayesian sequential rules) are now obtained by choosing the action that

minimizes posterior expected loss at each stage of sampling using techniques of dynamic

programming (i.e., backward induction). This technique starts by considering the final stage of

sampling and then works backward to the first stage of sampling. Doing so, as pointed out by
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Lewis and Sheehan (1990), the action chosen at each stage of sampling is optimal with respect to

the entire sequential mastery testing procedure.

Lewis and Sheehan (1990) and Sheehan and Lewis (1992), as in Reckase's approach,

modeled response behavior in the form of a three-parameter logistic (PL) model from IRT. The

number of possible outcomes of future random item administrations, needed in computing the

posterior expected loss associated with the continue sampling option, can become very quick quite

large. Lewis and Sheehan (1990), therefore, made the simplification that the number-correct score

in the 3-PL model is sufficient for calculating the posterior predictive distributions rather than the
entire pattern of item responses.

As an aside, it may be noted that Lewis and Sheehan (1990), Sheehan and Lewis (1992),

and Smith and Lewis (1995) used testlets (i.e., blocks of items) rather than single items.

Vos (1999) also applied the framework of Bayesian sequential decision theory to SMT. As

in Ferguson's (1969) approach, however, the binomial distribution instead of an IRT-model is

considered for modeling response behavior. It is shown that for the binomial distribution, in

combination with the assumption that prior knowledge about student's true level of functioning can

be represented by a beta prior (i.e., its natural conjugate), the number-correct score is sufficient to

calculate the posterior expected losses at future stages of item administrations (Vos, 2000). Unlike

the Lewis and Sheehan (1990) model, therefore, no simplifications are necessary to deal with the

combinatorial problem of the large number of possible decision outcomes of future item
administrations.

Minimax Sequential Decision Theory Applied to SMT

In this section, the framework of minimax sequential decision theory (e.g., De Groot, 1970;

Lehmann, 1959) will be treated in more detail. Also, a rationale is provided for why this approach

should be applied to sequential mastery testing in comparison to other approaches that exist for the

variable-length mastery problem (both of a sequential and adaptive character) in the literature.

Framework of Minimax Sequential Decision Theory

In minimax sequential decision theory, optimal rules (i.e., minimax sequential rules) are found by

minimizing the maximum expected losses associated with all possible decision rules at each stage

of sampling. Analogous to Bayesian sequential decision theory, cost per observation is also
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explicitly been taken into account in this approach. Hence, the maximum expected losses associated
with the mastery and nonmastery decisions can be calculated at each stage of sampling.

Unlike Bayesian sequential decision theory, specification of a prior is not needed in
applying the minimax sequential principle. A minimax sequential rule, however, can be conceived
of as a rule that is based on minimization of posterior expected loss as well (i.e., as a Bayesian
sequential rule), but under the restriction that the prior is the least favorable element of the class of
priors (e.g., Ferguson, 1967). The maximum expected loss associated with the continue sampling

option, therefore, can be computed by averaging the maximum expected losses associated with
each of the possible future decision outcomes relative to the posterior predictive probability of
observing those outcomes. For the prior needed to compute these probabilities, the least favorable
prior is then taken.

Rationale for Applying the Minimax Sequential Principle

As pointed out by Lewis and Sheehan (1990), an IRT-based adaptive item selection rule requires a

pool of content-balanced test items such that its difficulty levels span the full range of ability levels

in the population. These specialized pools are often difficult to construct. Random item selection,

however, requires a pool of parallel items, that is, items from the same difficulty levels. Procedures

for constructing such pools of parallel items are often available. In addition to the reasons of
computational efficiency (i.e., no estimation of student's last ability required) and simplicity,
therefore, Lewis and Sheehan (1990) decided to consider a random rather than adaptive item
selection procedure.

Following the same line of reasoning as in the Lewis and Sheehan (1990) model, in the

present paper also random rather than adaptive item selection is used. To comply with the
requirement of administering the next item randomly from a pool of items from the same difficulty

levels, following Ferguson (1969), the probability of a correct response for given true level of
functioning will be modeled here by a binomial distribution.

For reasons given above, applying an IRT-based adaptive item selection procedure to the

variable-length mastery problem is not considered in this paper. However, one might wonder why

the minimax sequential principle should be preferred above the application of Wald's SPRT-
framework. The main advantage of the minimax sequential strategy as compared to Wald's SPRT-
framework is that cost per observation can explicitly been taken into account. In some real-life
applications of variable-length mastery testing, costs associated with administering additional items
might be quite large.
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Finally, the question can be raised why minimax sequential decision theory should be

preferred above the Bayesian sequential principle. As pointed out by Huynh (1980), the minimax

(sequential) principle is very attractive when the only information is student's observed number-

correct score; that is, no group data of 'comparable' students who will take the same test or prior

information about the individual student is available. The minimax strategy, therefore, is sometimes

also denoted as a minimum information approach (e.g., Veldhuijzen, 1982).

If group data of 'comparable' students or prior information about the individual student is

available, however, it is better to use this information. Hence, in this situation it is better to use

Bayesian instead of minimax sequential decision theory. Even if information in the form of group

data of 'comparable' students or prior information about the individual student is available, it is

sometimes too difficult a job to accomplish to express this information into a prior distribution

(Veldhuijzen, 1982). In these circumstances, the minimax sequential procedure may also be more
appropriate.

Some Necessary Notations

Following Ferguson (1969), a sequential mastery test is supposed to have a maximum length of n

(n 1). Let the observed item response at each stage of sampling k (1 5 k n) for a randomly

sampled student be denoted by a discrete random variable Xk, with realization xk. The observed

response variables X1,...,Xk are assumed to be independent and identically distributed for each

value of k (1 k 5_ n), and take the values 0 and 1 for respectively correct and incorrect responses

to the k-th item. Furthermore, let the observed number-correct score be denoted by a discrete

random variable Sk = X1 +...+ Xk (1 k n), with realization sk = +...+ xk (0 5 sk 5_ k).

Student's true level of functioning is unknown due to measurement and sampling error. All

that is known is his/her observed number-correct score from a small sample of test items. In other

words, the mastery test is not a perfect indicator of student's true performance. Therefore, let

student's true level of functioning be denoted by a continuous random variable T on the latent

proportion-correct metric, with realization t E [0,1).

Assuming X1 = x 1,...,Xk = Xk has been observed, the two basic elements of minimax

sequential decision making discussed earlier can now be formulated as follows: A psychometric

model f(sk I t) relating observed number-correct score sk to student's true level of functioning t at

each stage of sampling k (1 5. k 5_ n), and a loss function describing the loss 1(ai(xi,...,xk),t) incurred
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when action ai(xi,...,xk) is taken for the student whose true level of functioning is t. The actions

nonmastery, mastery, and continue sampling will be denoted as a0(xl,...,xk), al(x ,...,xk), and
a2(x ,...,xk), respectively.

Finally, a criterion level tc (0 5 tc 5 1) on the true level of functioning scale T can be

identified. A student is considered a true nonmaster and true master if his/her true level of
functioning t is smaller or larger than tc, respectively. The criterion level must be specified in

advance by the decision-maker using methods of standard setting (e.g., Angoff, 1971).

Threshold Loss

As in Lewis and Sheehan (1990), here the well-known threshold loss function is adopted as the loss

structure involved. The choice of this loss function implies that the "seriousness" of all possible

consequences of the decisions can be summarized by possibly different constants, one for each of

the possible decision outcomes.

For the sequential mastery problem, a threshold loss function can be formulated as a natural

extension of the one for the fixed-length mastery problem at each stage of sampling k (1 5 k 5 n) as

follows (see also Lewis & Sheehan, 1990):

Table 1. Table for threshold loss function at stage k (1 k n) of sampling.

True Level

Action
T 5_ tc T > t,

ao(x1, ..., xk) ke 101 + ke

al(xl, , xk) 110 + ke ke

The value e represents the costs of administering one random item. For the sake of
simplicity, following Lewis and Sheehan (1990), these costs are assumed to be equal for each

decision outcome as well as for each sampling occasion. Applying an admissible positive linear

transformation (e.g., Luce & Raiffa, 1957), and assuming the losses 100 and III associated with the

correct decision outcomes are equal and take the smallest values, the threshold loss function in

Table 1 was resealed in such a way that loo and 111 were equal to zero. Hence, the losses 101 and l 0

must take positive values.
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Note that no losses need to be specified in Table 1 for the continue sampling action

(a2(xl,...,xk)). This is because the maximum expected loss associated with the continue sampling

option is computed at each stage of sampling as a weighted average of the maximum expected

losses associated with the classification decisions (i.e., mastery/nonmastery) of future item

administrations with weights equal to the probabilities of observing those outcomes.

The ratio 110/101 is denoted as the loss ratio R, and refers to the relative losses for declaring

mastery to a student whose true level of functioning is below t, (i.e., false positive) and declaring

nonmastery to a student whose true level of functioning exceeds tc (i.e., false negative).

The loss parameters (i = 1,2; i # j) associated with the incorrect decisions have to be

empirically assessed, for which several methods have been proposed in the literature. Most texts on

decision theory, however, propose lottery methods (e.g., Luce & Raiffa, 1957) for assessing loss

functions empirically. In general, the consequences of each pair of actions and true level of
functioning are scaled in these methods by looking at the most and least preferred outcomes.

An obvious disadvantage of the threshold loss function is that; as can be seen from Table 1,

it assumes constant loss for students to the left or to the right of tc, no matter how large their

distance from tc. In practice, however, errors in classification are sometimes considered to be more

serious, the further a student is from the criterion level tc. For instance, a student who is declared

nonmaster with true level of functioning just above tc gives the same loss as a misclassified true

nonmaster with true level of functioning far above tc. It seems more realistic to suppose that for

misclassified true nonmasters the loss is a strictly inceasing function of t. Moreover, the threshold

loss function shows a "threshold" at the point tc, and this discontinuity also seems unrealistic in

many cases. In the neighborhood of this point, the losses for correct and incorrect decisions should

change smoothly rather than abruptly (van der Linden, 1981).

To overcome these shortcomings, van der Linden and Mellenbergh (1977) proposed a

continuous loss function for the fixed-length mastery problem which is a linear function of student's

true level of functioning (see also Huynh, 1980; van der Linden & Vos, 1996; Vos, 1997a, 1997b,

2000). Although a linear loss function is probably more appropriate for the sequential mastery

problem, following Lewis and Sheehan (1990), in the present paper a threshold loss function is

adopted for reasons of simplicity and computational efficiency.

Another reason for using threshold rather than linear loss is that a linear loss function may

be more appropriate in the neighborhood of t, indeed but that the further away from t,, however, the

losses can be assumed to take more and more the same constant values again.
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Psychometric Model

As earlier remarked, here the well-known binomial model will be adopted for specifying the

statistical relation between the observed number-correct score sk and student's true level of
functioning t. Its distribution f(sk I t) at stage k of sampling (1 S k 5_ n) can be written as follows:

f(sk It) =

(
k
Sk

Sk t)k-sk (1)

If each response is independent of the other, and if the examinee's probability of a correct

answer remains constant, the probability function of sk, given the true level of functioning t, is

given by Equation 1 (Wilcox, 1981). The binomial model assumes that the test given to each

student is a random sample of items drawn from a large item pool (Wilcox, 1981). Therefore, for

each subject a new random sample of items must be drawn in practical applications of the

sequential mastery problem.

Sufficient Conditions for Minimax Sequential Rules to be Monotone

Linking up with common practice in mastery testing, minimax sequential rules in this paper are

assumed to have monotone forms. As a result, decision rules can be defined on the number-correct

score metric in the form of sequential cutting scores. The restriction to monotone rules, however, is

correct only if it can be proven that for any nonmonotone rule for the problem at hand there is a

monotone rule with at least the same value on the criterion of optimality used (Ferguson, 1967,

p.55). Using a minimax sequential rule, as noted before, the minimum of the maximum expected

losses associated with all possible decision rules is taken as the criterion of optimality at each stage

of sampling.

As noted before, the maximum expected loss for continuing sampling is hereby determined

by averaging the maximum expected loss associated with each of the possible future decision

outcomes relative to the probability of observing those outcomes. Therefore, it follows immediately

that the conditions sufficient for setting cutting scores for the fixed-length mastery problem are also

sufficient for the sequential mastery problem at each stage of sampling.
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Generally, conditions sufficient for setting cutting scores for the fixed-length mastery

problem are given in Ferguson (1967). First, f(sk It) must have a monotone likelihood ratio (MLR);

that is, it is required that for any t1 > t2, the likelihood ratio f(sk I tI)/f(sk I t2) is a nondecreasing

function of sk. MLR implies that the higher the observed number-correct score, the more likely it

will be that the true level of functioning is high too. Second, the condition of monotonic loss must

hold; that is, there must be an ordering of the actions such that for each pair of adjacent actions the

loss functions possess at most one point of intersection.

The binomial density function belongs to the monotone likelihood ratio family (Ferguson,

1967, Chap. 5). Furthermore, by choosing 100 = = 0 and assuming positive values for 101 and 110,

it follows immediately that the condition of monotonic loss is also satisfied at each stage of
sampling k (1 k n).

Optimizing Rules for the Sequential Mastery Problem

In this section, it will be shown how optimal rules for SMT can be derived using the framework of

minimax sequential decision theory. Doing so, given an observed item response vector (xi,...,xk)

(1 _5 k n), first the minimax principle will be applied to the fixed-length mastery problem by

determining which of the maximum expected losses associated with the two classification actions

ao(xi,...,x0 or ai(xl,...,xk) is the smallest. Next, applying the minimax sequential principle, decision

rules for SMT are derived at each stage of sampling k (1 5 k n) by comparing this quantity with

the maximum expected loss associated with action a2(xl,...,xk) (i.e., continuing sampling).

Applying the Minimax Principle to the Fixed-Length Mastery Problem

Given X1 = xi ,...,Xk = xk (1 5 k n), as noted before, the minimax decision rule for the fixed-length

mastery problem can be found by minimizing the maximum expected losses associated with the

two classification actions ao(xi,...,xk) and a1(x1,,xk).

Let y = 0,1,...,k represent all possible values the number-correct score sk can take after

having observed k item responses (1 k n), assuming the conditions of monotonicity are

satisfied, it then can easily be verified from Table 1 that mastery (al(x 1,...,xk)) is declared when the

number-correct score sk is such that



k

sup (lio + ke)
t5tc y=sk

k

sup (ke)
y=sk

sk --1(

k Y(1 t)kY + sup (ke) k
v

y
(1 t)ky <

II t>tc y=0

sk

tY(1t)kY + sup (110 + ke)
k Y(1_oky,

t>tc y=0 Y
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(2)

and that nonmastery (ao(xi,...,xk)) is declared otherwise. Since the cumulative binomial distribution

function is decreasing in t, it follows that the inequality in (2) can be written as:

k / sk 1(

(110 +ke) k (1 tc)" +(ke) k )c' (1 tc)kY <
y=sk y=0

k / sk
(3)

(ke)
Y=sk

C'(1 tc)kY +(110 + ke)
y=0

k ok-Y.

Rearranging terms, it follows that mastery is declared when the number-correct score sk is such
that:

k /
k

\ /

y=sk
0tc)" (4)

where R denotes the loss ratio (i.e., R = 110/101). If the inequality in (4) is not satisfied, nonmastery is

declared.

Computation of Minimax Sequential Rules

Let dk(xi,...,xk) denote the action ao(xI,...,xk) or al(xl,...,xk) (1 k 5 n) yielding the minimum of the

maximum expected losses associated with these two classification actions, and let the maximum

expected loss associated with this minimum be denoted as Vk(xi,...,xk). These notations can also be

generalized to the situation that no observations have been taken yet; that is, do(xo) denotes the

action ao(x0) or al(x0) which yields the smallest of the maximum expected losses associated with

these two actions, and Vo(xo) denotes the smallest maximum expected loss associated with do(xo).
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From the foregoing it then follows that minimax sequential rules for the sequential mastery
problem can be found by using the following backward induction computational scheme:

First, the minimax sequential rule at the final stage of sampling n is computed. Since the

continue sampling option is not available at this stage of sampling, it follows immediately that the

minimax sequential rule is gfven by dn(xl,...,x); its associated maximum expected loss is given by
Vn(xi,...,xn).

Subsequently, the minimax sequential rule at the next to last stage of sampling (n-1) is

computed by comparing Vn_1(xl,...,xn.1) with the maximum expected loss associated with action

a2(xi,...xn-i) (i.e., continuing sampling). As noted before, the maximum expected loss associated

with taking one more observation, given X1 = xi,...,Xn-i = xn_i, is computed by averaging the

maximum expected losses associated with each of the possible future decision outcomes at the final

stage n relative to the probability of observing those outcomes (i.e., backward induction).

Let P(Xn = xn I xi,...,xn_i) denote the distribution of Xn, given the observed item response

vector (xl,...,xn_i), then, the maximum expected loss associated with taking one more observation

after (n-1) observations have been taken, E[Vn(xi,...,xn_i,Xn) xi,...,xn-i], is computed as follows:

xn =1

E[Vn(xi,...,xn_I,Xn) = I vn(x ,...,xn)*P(X,, = xn I xl,...,xn_i)
xn=0

(5)

Generally, P(Xk = xk I xi,...,xk.1) is called the posterior predictive distribution of Xk at stage (k-1)

of sampling (1 S k 5_ n). It will be indicated later on how this distribution can be computed.

Given XI = xl,...,Xn-i = xn.i, the minimax sequential rule at stage (n-1) of sampling is now

given by: Take one more observation if E[Vn(x I xi,...,xn_I] is smaller than

Vn_1(x ,...,xn_i), and take action dn.i(x ,...,xn_i) otherwise.

To compute the maximum expected loss associated with the continue sampling option, it is

convenient to introduce the risk at each stage of sampling k (1 k S n), which will be denoted as

Rk(xl,...,xk). Let the risk at stage n of sampling be defined as Vaxi,...,xn). Then, generally, the risk

at stage (k-1), given X1 = xi,...,Xk-i = xk_i, is computed inductively as a function of the risk at stage

k(1 _c k n) as follows:

Rk_i 1,...,Xk-1 min Vk- I (X 1, ,Xk- I ), E[Rk((1,...,Xk- I ,Xk) I X I , tXk-1]

16

(6)
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The maximum expected loss associated with taking one more observation after (n-2)
observations, E[Rn_1(xi,...,x_2,Xn_i) I xi,...,xn-2], can then be computed as the expected risk at stage

(n-1) as follows:

xn_i=i

E[Rn_1(xl,...,x,..2,Xn_i) I x = Rn_01,...,xn_1)*P(Xn_i =xn_i I xl,...,xn_2) (7)

Given XI = = xn.2, the minimax sequential rule at stage (n-2) of sampling is now

given by: Take one more observation if EjRn_1(x 1- --5Xn-29Xn-I) I X I , ,Xn-2] is smaller than
Vn_2(x1,...,x,,-2); otherwise, action dn_2(xi,...,xn_2) is taken.

Following the same computational backward scheme as in determining the minimax

sequential rules at stages (n-1) and (n-2), the minimax sequential rules at stages (n-3),...,1,0 are

computed. The minimax sequential rule at stage 0 denotes the decision whether or not to take at
least one observation.

Computation of Posterior Predictive Probabilities

As can be seen from (5) and (7), the posterior predictive distribution P(Xk = xk I xi,...,xk_i) is

needed for computing the maximum expected loss associated with taking one more observation at

stage (k-1) of sampling (1 S k n). From Bayes' theorem, it follows that:

P(Xk = Xk I X ,...,Xk-I) = P(X1 = X ,...,Xk =- Xk)/P(X1 = X j ,...,Xk. = Xk-I) (8)

For the binomial distribution as the psychometric model involved and assuming the beta

distribution B(cc,13) as prior with parameters a and p (a, (3> 0), it is known (e.g., Keats & Lord,

1962) that the unconditional distribution of (Xi,...,Xk) is equal to:

P(X1 = xj,...,Xk = xk) = [1-(a+13)r(a+sk)r(01-k-sk)1/[r(a)r(3)F(a+(3+k)l, (9)

where F is the usual gamma function. From (8)-(9) it then follows that the posterior predictive

distribution of Xk, given X1 = xi,...,Xk = Xk, can be written as:
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P(Xk = Xk I xi,...,xk_i) = [r(a+sk)r(( 3+k-sk)f(a+( 3+k-1)]/U-(a+sk-i)ra31-k-l-sk.i)f(a-1-13+k)]. (10)

Using the well-known identity r(j +1) = jr(j) and the fact that sk = sk_i and sk = sk_i+1 for

xk = 0 and 1, respectively, it follows from (10) that:

P(Xk = Xk = a+sk_ia+ +k 1)
{(I3 +kl sk_i)I(a+ +k-1)

( )I( p
if xk = 0
if xk =1.

Determination of the Least Favorable Prior

To be able to compute the posterior predictive distribution P(Xk = xk I xl,...,xk-1), the form of the

assumed beta prior B(a,(3) must be specified more specifically, that is, the numerical values of its

parameters a and 13 (a,(3 > 0) must be determined (1 k S n). In the present paper the least

favorable prior will be taken for B(a,13), with 13 = 1 and a sufficiently small. It should be noted,

however, that other forms of the beta prior (e.g., the uniform prior with a = (3 = ) might also be

considered in computing the posterior predictive distribution.

Let Ip(r, s) denote the incomplete beta function with parameters r and s (r,s > 0). It has been

known for some time that

n (

x px 0 --1:011-3( =Ip(m,n m+1). (12)
X =M

Hence, the inequality in (4) can be written as:

Itc (sk, k-sk+1) 5 1/(1+R). (13)

Within the framework of Bayesian decision theory, given X1 = xl,...,Xk = Xk, it can easily be

verified from Table 1 that mastery is declared for the fixed-length mastery problem if number-

correct score sk (0 sk 5_ k) is such that

(lio +ke)P(T _5 tc I sk) + (ke)P(T > tc I sk) < (ke)P(T 5_ t, I sk) + (100-ke)P(T > to I sk), (14)
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and that nonmastery is declared otherwise. Rearranging terms, it can easily be verified from (14)
that mastery is declared if

P(T to I sk) 1/(1+R), (15)

and that nonmastery is declared otherwise.

Assuming a beta prior, it follows from an application of Bayes' theorem that under the

assumed binomial model from (1), the posterior distribution of T will be a member of the beta
family again (the conjugacy property, see, e.g., Lehmann, 1959). In fact, if the beta function

B(a, (3) with parameters a and p (a, (3 > 0) is chosen as the prior distribution and student's

observed number-correct score is sk from a test of length k (1 5_ k n), then the posterior

distribution of T is It(a+sk, k-sk+(3).

Hence, assuming a beta prior, it follows from (15) that mastery is declared if:

Itc (oc+sk, k-sk+(3) 5_ 1/(1+R), (16)

and that nonmastery is declared otherwise.

Comparing (13) and (16) with each other, it can be seen that the least favorable prior for the

minimax solution is given by a beta prior B(a,(3) with a sufficiently small and 13 = 1. It should be

noted that the parameter a > 0 can not be chosen equal to zero, because otherwise the prior

distribution for T should be improper; that is, the prior does not integrate to 1 but to infinity.

Simulation of Different Strategies for Variable-Length Mastery Testing

In a Monte Carlo simulation the minimax sequential strategy will be compared with other existing

approaches to both sequential and adaptive mastery testing. More specifically, four variable-length

mastery testing strategies described in detail in Kingsbury and Weiss (1983) (see also, Weiss &
Kingsbury, 1984) will be used here as a comparison in terms of average test length (i.e., the number

of items that must be administered before a mastery/nonmastery decision is made), correspondence

between the simulated students' true mastery states and their estimated mastery states as indexed by

the phi correlations, and phi correlations as a function of test length.
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Description of the Testing Strategies Used for Comparison

The first comparison will be made with a conventional fixed-length test (CT) in which student

performance was recorded as proportion of correct answers (CT/PC). The student was declared a

master for answering 60% or more items correctly after completion of the test, whereas nonmastery

was declared otherwise.

In order to determine whether the scoring method possibly accounts for differences between

a Bayesian-scored AMT algorithm and the CT/PC procedure, the second comparison will be made

with a conventional test where item responses were converted by Owen's Bayesian scoring

procedure (CT/B) to a latent ability on an IRT- metric, assuming a standard normal prior N(0,1).

Mastery was declared if the final posterior estimate of student's latent ability was higher than the

prespecified cut-off point on the latent IRT-metric corresponding to 60% correct; otherwise

nonmastery was declared. The cut-off point on the latent IRT-metric was hereby determined by

transforming the proportion-correct of 0.6 through the use of the test response function (TRF), that

is, the mean of the item response functions for all items in the pool.

The third comparison will be made with Wald's SPRT procedure. The limits of the
indifference region in which sampling will continue were set at proportion-correct values of 0.5 and

0.7, whereas values of Type I and Type II error rates were each set equal to 0.1. For those students

who could not be classified as either a master or nonmaster before the item pool was exhausted, a

classification decision was made in the same way as in the CT/PC procedure, using a mastery

proportion-correct value of 0.6.

The fourth comparison will be made with an AMT strategy using a maximum information

item selection strategy with a symmetric Bayesian confidence interval of 90% and using Owen's

Bayesian scoring algorithm for a point estimation of student's latent ability on an IRT-metric. Like

in the CT/B procedure, a standard normal prior N(0,1) was assumed for the Bayesian scoring of the

adaptive test. Also, like in the CT/B procedure, the prespecified cut-off points on the latent IRT-

metric (i.e., the mastery levels) in each of the 100-item pools corresponding to 60% correct were

determined from the TRF.

In order to make a fair comparison of the minimax sequential strategy with the four
strategies described above, the criterion level tc was set equal to 0.6. Furthermore, the losses 101 and

110 associated with the incorrect classification decisions were assumed to be equal corresponding to

the assumption of equal error rates in Wald's SPRT procedure. On a scale in which one unit

corresponded to the cost of administering one item (i.e., e = 1), loi and 110 were each set equal to

200 reflecting the fact that costs for administering another random item were assumed to be rather
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small relative to the costs associated with incorrect decisions. Finally, the parameter a of the beta

distribution B(a,l) as least favorable prior was set equal to 10-9.

Using the backward induction computational scheme discussed earlier, for given maximum

test length n (n ?_ 1), a computer program called MINIMAX was developed to determine the

appropriate action (i.e., nonmastery, mastery, continue sampling) for the minimax sequential

strategy at each stage of sampling k (1 k n) for different number-correct score sk (0 sk k).

The recurrent relation k +1 k iny +1 y combination with n n
0 =1, was hereby used

for computing the binomial coefficients in (4). A copy of the program MINIMAX is available from

the author upon request.

Item Pools

In the simulation study by Kingsbury and Weiss (1983), the simulations were conducted using four

100-item pools generated to reflect different types of item pools.

Pool 1 (uniform pool). consisted of items that were perfect replications of each other. More

specifically, each item had discrimination a of 1, difficulty b of 0, and lower asymptote c (pseudo-

guessing level) of 0.2. This item pool reflected the SPRT procedure's assumption that all items have

equal difficulty. As noted before, this assumption also reflects the choice of the binomial

distribution for modeling response behavior in the minimax sequential procedure.

Pool 2 (b-variable pool) varied from the uniform pool only in that the difficulties b differed

across a range of values and reflected the one-parameter IRT model.

Pool 3 (a- and b-variable pool) varied from the b-variable pool only in that the

discriminations a differed across a range of values and was designed to simulate the two-parameter

IRT model.

Pool 4 (a-, b-, and c-variable pool) varied from the a- and b-variable pool only in that the

lower asymptotes c were allowed to spread across a range of values and simulated the three-

parameter IRT model.

For a more detailed description of the four different item pools, refer to Kingsbury and
Weiss (1983).

Test Lengths

Conventional tests (CTs) of three different lengths (10, 25, and 50 items) were randomly drawn

from each of the four item pools. Doing so, the 10-item test served as the first portion of the 25-

.21
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item test and the 25-item test in turn served as the first portion of the 50-item test. These 12 CTs
served as subpools from which the SPRT, AMT, and minimax sequential procedures drew items
during the simulations.

It is important to notice that this random sampling from a larger domain of items implies

that the binomial model assumed in both Wald's SPRT and the minimax sequential procedure

holds. Thus, not only for the uniform pool but also for the b-variable, a- and b-variable, and a-, b-,

and c-variable pool, the assumed binomial model holds in these two testing strategies.

Item Response Generation

Item responses for 500 simulated students, drawn from a N(0,1) distribution, were generated for

each item in each of the four item pools. For known ability ofthe simulated student and given item

parameters, first the probability of a correct answer was calculated using the three-parameter

logistic model. Next, this probability was compared with a random number drawn from a uniform

distribution in the range from 0 to 1. The item administered to the simulated student was scored

correct and incorrect if this randomly selected number was less and greater than the probability of a

correct answer, respectively.

Furthermore, a simulated student was supposed to be a "true" master if his/her ability used

to generate the item responses was higher than a prespecified cut-off point on the N(0,1) ability

metric. Since a value of 0.6 on the proportion-correct metric of each of the four item pools
corresponded after conversion with a value of 0 on the N(0,1) ability metric, the cut-off point on the

N(0,1) ability metric was set equal to 0.

Results of the Monte Carlo Simulation

In this section, the results of the Monte Carlo simulations will be compared for the different

variable-length mastery testing strategies in terms of average test length, correspondence with true

mastery status, and correspondence as a function of test length.

Test Length

Table 2 shows the number of items required by each of the variable-length mastery testing

strategies before a mastery/nonmastery decision can be made. The minimax sequential testing
strategy is hereby denoted as MM.

As can be seen from Table 2, the MM strategy resulted in considerably test length
reductions for each combination of item pool and maximum test length (MTL). Table 2 also shows
that, except for the a-, b-, and c-variable pool by the SPRT strategy at the 50-item MTL level, the
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variable pool, a- and b-variable pool, and a-, b-, and c-variable pool, these percentages in test length

reduction were (25%; 44%; 61%), (41%; 57%; 68%), and (28%; 50%; 65%), respectively. Hence,

under the MM strategy, the greatest reductions in test length were achieved by the a- and b-variable

pool and uniform pool.

Table 3. Phi Correlations between Observed Mastery State and True Mastery State for Each Mastery Testing Strategy,

Using Each Type of Item Pool, at Three Maximum Test Lengths

Item pool and

testing strategy

Maximum test length

10 25 50

Uniform pool

CT/PC 0.771 0.837 0.875

CT/B 0.706 0.803 0.863

AMT 0.775 0.840 0.871

SPRT 0.771 0.837 0.867

MM

b-variable pool

0.557 0.715 0.617

CT/PC 0.541 0.667 0.783

CT/B 0.533 0.714 0.791

AMT 0.615 0.715 0.828

SPRT 0.541 0.656 0.704

MM

a- and b-variable pool

0.508 0.677 0.659

CT/PC 0.626 0.719 0.771

CT/B 0.638 0.763 0.788

AMT 0.638 0.756 0.778

SPRT 0.626 0.698 0.720

MM

a-, b-, and c-variable pool

0.635 0.669 0.709

CT/PC 0.290 0.670 0.735

CT/B 0.485 0.741 0.804
AMT 0.470 0.733 0.787
SPRT 0.290 0.592 0.571

MM 0.672 0.799 0.807

BEST COPY AVAILABLE
23
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MM procedure resulted in a greater reduction of test lengths than the conventional, AMT, and

SPRT strategies for each item pool at all MTL levels. Finally, like under the other strategies, it can

Table 2. Mean Number of Items Administered to Each Simulee for Four Mastery Testing

Strategies Using Each Item_Pool, at Three Maximum Test Lengths

Item pool and

testing strategy

Maximum test length

10 25 50

Uniform pool

Conventional 10.00 25.00 50.00

AMT 9.03 15,99 23.00

SPRT 8.75 13.12 15.39

MM

b-variable pool

6.41 11.47 14.49

Conventional 10.00 25.00 50.00

AMT 9.43 18.09 27.17

SPRT 9.62 16.79 21.41

MM

a- and b-variable pool

7.55 14.08 19.48

Conventional 10.00 25.00 50.00

AMT 8.55 15.78 24.07

SPRT 9.41 15.78 18.55

MM

a-, b-, and c-variable pool

5.86 10.86 15.96

Conventional 10.00 25.00 50.00

AMT 8.73 16.35 23.39

SPRT 8.62 13.42 15.70

MM 7.18 12.61 17.27

be inferred from Table 2 that for each item pool the reduction in test length increased under the

MM strategy as the MTL increased. For the uniform pool, the test length was reduced by 36%,

54%, and 71% for the 10-item MTL, 25-item MTL, and 50-item MTL, respectively. For the b-
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Correspondence with True Mastery Status

Table 3 shows phi correlations between true mastery status and estimated mastery status by each of

the testing procedures for each MTL level and pool type. These phi correlations (i.e.,

correspondence coefficients) can be considered as an indicator of the quality/validity of the

mastery/nonmastery decisions, and are denoted by Weiss and Kingsbury (1984) as classification

validity indicators.

As can be seen from Table 3, the MM strategy resulted only for the a-, b-, and c-variable pool in

higher phi correlations than the other four testing strategies at all MTL levels. In particular, for the

10-item MTL the phi correlations were considerably higher. For both the b-variable and a- and b-

variable pool, the other four testing strategies generally yielded somewhat higher phi correlations.

For the uniform pool, however, the other four testing strategies yielded considerably higher phi
correlations.

Furthermore, Table 3 shows that the phi correlations for both the 25-item and 50-item MTL

were higher than for the 10-item MTL by each pool type under the MM strategy. For both the a-

and b-variable pool and a-, b-, and c-variable pool, under the MM strategy, the 50-item MTL

yielded higher phi correlations than the 25-item MTL, whereas the opposite did hold for both the

uniform and b-variable pool.

Correspondence as a Function of Test Length

Kingsbury and Weiss (1983) depicted graphically the phi correlation as a function of the average

number of items administered by each testing strategy for each item pool (see also Weiss and

Kingsbury, 1984). From these graphs conclusions were derived concerning which testing strategy

was most efficient. A testing strategy was hereby said to be most efficient if it results in the

combination of highest phi correlation and shortest test length.

As is immediately clear from Tables 2 and 3, the MM strategy was the most efficient of all

testing procedures for the (realistic) a-, b-, and c-variable pool, since it yielded generally both the

highest phi correlations and shortest average test length at each MTL level. Although the SPRT

strategy required at the 50-item MTL level, on the average, somewhat fewer items for reaching a

mastery/nonmastery decision than the MM strategy (i.e., 15.70 versus 17.27), however, the phi

correlation for the SPRT strategy was much lower compared to the MM strategy (i.e., 0.571 versus

0.807). For an average test length of 15.70 (interpolating from the data in Tables 2 and 3), the MM

strategy would result in a phi correlation of 0.804.
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For the a- and b-variable pool, as can been from Tables 2 and 3, the MM strategy yielded

shorter mean test lengths than all other strategies, whereas the phi correlations were generally

somewhat lower at each MTL level. The MM strategy resulted in a phi correlation of 0.709 at a

mean test length of 15.96 (the longest mean test length observed at the 50-item MTL level).

Interpolating data from Tables 2 and 3, it can easily be verified that the SPRT procedure would

need to administer approximately 18 items to achieve this same phi correlation of 0.709, the AMT

procedure would need about 13 items, the CT/B procedure would need about 19 items, and the

CT/PC procedure would need about 23 items. Hence, for the a- and b-variable pool, the SMT

procedure was most efficient as compared to the SPRT, CT/PC, and CT/B strategies. Compared to

the AMT procedure, however, the MM procedure was somewhat less efficient.

For the b-variable pool, Tables 2 and 3 show that at the longest mean test length observed

for the MM procedure (i.e., 19.48 at the 50-item MTL level), this strategy resulted in a phi

correlation of 0.659. Interpolating data from Tables 2 and 3, it follows that the SPRT procedure

would need to administer approximately 17 items to achieve this same phi correlation of 0.659, the

AMT procedure would need about 13 items, the CT/B procedure would need about 21 items, and

the CT/PC procedure would need about 24 items. Hence, for the b-variable pool, it can be
concluded that the MM procedure was considerably more efficient than the CT/PC procedure and

somewhat more efficient than the CT/B procedure. On the other hand, however, the MM procedure

was somewhat less efficient than the SPRT procedure and considerably less efficient than the AMT

procedure.

Finally, it can be inferred from Tables 2 and 3 that the MM strategy resulted for the uniform

pool in a phi correlation of 0.617 at the longest mean test length observed (i.e., 14.49 at the 50-item

MTL level). It follows immediately from Tables 2 and 3 that each of the four other testing

strategies would need to administer less than 10 items to achieve this same phi correlation of 0.617.

Hence, for the (unrealistic) uniform pool, it can be concluded that the MM procedure is

considerably less efficient than the four other testing strategies.
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Discussion

Optimal rules for the sequential mastery problem (nonmastery, mastery, and continuing sampling)

were derived using the framework of minimax sequential decision theory. The binomial

distribution was assumed for modeling response behavior, whereas threshold loss was adopted for

the loss function involved. The least favorable prior, used in the present paper for computing the

posterior predictive distribution, turned out to be the beta distribution with parameter a sufficiently

small and parameter [3 equal to 1.

In a Monte Carlo simulation, the minimax sequential procedure (MM) was compared with

other procedures that exist for both sequential and adaptive mastery testing in the literature.

Maximum test length (MTL) varied from 10 to 50 items, and different types of item pools were

considered by changing the values of the item parameters.

The results of the simulation study indicated that, compared to the other testing strategies

examined in the literature, the MM strategy was most efficient (i.e., combination of highest phi

correlation between true and estimated mastery status and shortest average test length) for item

pools reflecting the (realistic) 3 PL-model at each MTL level. Also, except for the AMT strategy,

the MM strategy turned out to be most efficient for item pools reflecting the 2 PL-model at each

MTL level. For item pools reflecting the 1 PL-model, the MM strategy appeared to be more

efficient than the two conventional fixed-length methods (i.e., employing proportion correct and a

Bayesian scoring method for making mastery/nonmastery decisions) but less efficient than both the

AMT and SPRT procedure at each MTL level. For the (unrealistic) uniform item pools, however, it

turned out that the MM strategy was less efficient than the other testing strategies at each MTL
level.

It is important to notice, however, that the MM strategy is especially appropriate when costs

of testing can be assumed to be quite large. For instance, when testlets rather than single items are

considered. Also, the MM strategy might be appropriate in psychodiagnostic. Suppose that a new

treatment must be tested on patients suffering from some mental health problem. Each time after

having exposed a patient to the new treatment, it is desired to make a decision concerning the

effectiveness/ineffectiveness of the new treatment or testing another patient. In such clinical

situations, costs of testing generally are quite large and the MM approach might be considered as an

alternative to other testing strategies, such as SPRT, AMT, or fixed-length mastery tests.

An issue that still deserves some attention is why in the present paper, somewhat counter to

the current trend in applied measurement, a random rather than IRT-based adaptive item selection
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procedure is preferred. As noted before, IRT-based item selection strategies assume that a
calibrated pool of items exists which differ in their particular characteristics (i.e., levels of difficulty

and discrimination). For random item selection strategies, such as Wald's SPRT procedure and the

MM procedure advocated in this paper, however, the existence of a pool of parallel items only is

required. Such pools of parallel items often are easier to construct than pools of items, which do

differ in their IRT characteristics.

It should be noted that even with a pool of items that do differ in their IRT characteristics,

as indicated already in the Monte Carlo simulation, the binomial distribution assumed in Wald's

SPRT procedure and the MM approach still can be employed for modeling response behavior if

items are randomly sampled from a larger pool of items.

In case a calibrated pool of items does exist, however, an IRT-based adaptive strategy that

selects items for administration based on their particular characteristics is preferred rather than to

randomly select items from a pool. A promising approach, in which the strong point of the minimax

and Bayesian sequential procedures, that is, taking cost per observation explicitly into account, is

combined with an IRT-based adaptive item selection strategy might be the following. The item to

be administered next is the one that maximizes information or minimizes posterior variance at

student's last ability estimate on an IRT-metric. At each stage of sampling, the action declaring

mastery, declaring nonmastery, or continue sampling is then chosen which minimizes the posterior

or maximum expected losses associated with all possible decision rules.

Two final notes are appropriate. First, the least favorable prior was taken in the present

paper for computing the posterior predictive probabilities needed in calculating the maximum

expected loss associated with the continuing sampling option. Doing so, the MM procedure can

actually be considered as a Bayesian sequential strategy with the least favorable prior taken as a

prior. It should be emphasized, however, that, in principle, the MM procedure may be employed

with any other prior (e.g., the uniform prior) than the least favorable prior.

Second, following the same line of reasoning as in the present paper, the optimal rules

derived here can easily be generalized to the situation where three or more mutually exclusive

classification categories can be distinguished. In Weiss and Kingsbury (1984), it is indicated how

the AMT procedure can be employed in the context of allocating students to more than two grade

classes (i.e., adaptive grading test). Spray (1993) has shown how a generalization of Wald's SPRT

procedure (i.e., Armitage's (1950) combination procedure) can be applied to multiple categories,

whereas Bayesian sequential decision theory is applied in Vos (2000) to SMT in case the three

classification actions declaring nonmastery, partial mastery, and mastery are open to the decision-

maker (see also Smith and Lewis, 1995).
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