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Abstract

A model for constrained computerized adaptive testing is proposed in which the information

in the test at the ability estimate is maximized subject to a large variety of possible constraints

on the contents of the test. At each item-selection step, a full test is first assembled to have

maximum information at the current ability estimate fixing the items previously administered.

Then the item with maximum information is selected from the test. All test assembly is

optimal due to the use of a linear programming model which is automatically updated to

allow for the attributes of the items already administered as well as the new value of the

ability estimator. A simulation study using a pool of 753 items from the LSAT showed that

for adaptive tests of realistic lengths the ability estimator did not suffer any loss of efficiency

from the presence of 433 constraints on the item selection process.
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Constrained Adaptive Testing - 2

A Model for Optimal Constrained Adaptive Testing

The concept of adapting the difficulty of the test to the ability of the individual
examinee is as old as the first intelligence test (Binet & Simon, 1905). In the Binet-Simon

test, the items varied according to age group and the examiner was instructed to infer the next

age group from the responses of the examinee to the previous test items until the true age

group could be identified with sufficient certainty. In doing so, Binet and Simon intuitively

followed the statistical principle that the information provided by test items is maximal if

their difficulty matches the level of ability of the examinee.

Since modern group-based testing was introduced, attempts have been made to

implement this principle of adaptivity in a practical format. One of the first attempts was two-

stage testing--a testing format in which the score on a routing test directs the examinee to one

of a limited number of measurement tests. In the self-scoring flexilevel test, a testing format

proposed by Lord (1980, chap. 8), the examinee scores his/her own responses by scratching

an answer sheet and is instructed to move on to the next item as a function of the correctness

of the response. In Weiss' (1973) computerized stradaptive test, the items in the pool . are

divided into strata of difficulty and ordered according to their discrimination power within

each stratum. The examinee moves to the next item in the higher stratum if his/her response is

correct but to a lower stratum if it is incorrect. For a more extensive description of these early

forms of adaptive testing, see Wainer (1990) or Weiss (1985).

With the advent of powerful personal computers and the acceptance of item response

theory (IRT) as a tool for calibrating item pools, large-scale application of fully computerized

adaptive testing (CAT) has become possible. A well-known procedure in adaptive testing is

maximum-information item selection in combination with maximum-likelihood estimation of

ability. In this paper, it is assumed that the responses to the items in the pool fit the three-

parameter logistic (3-PL) response model

P,(0) Prob{U, = I } cci-(1-0[1+ (1)

where Oa E (-00, 00) is a parameter for the ability of examinee a, and b, E (-00,00) and a, E [0, oo)

are parameters for the difficulty and discrimination power of item i, respectively. For this model

Fisher's information on 0 in item i can be shown to be equal to

I, (0) = aN3,(0)Q,(0), (2)

with (2, (0) =1- P;(0). The maximum-information principle selects the next item to have a
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Constrained Adaptive Testing 3

maximum value for (2) at the current ability estimate. With a modern PC the time needed to

calculate the maximum-likelihood ability estimate and select the item with maximum

information from an item pool of realistic size is hardly noticeable by the examinee.

Paradoxically, now that fully computerized CAT is technically possible the interest

seems to be moving back to earlier forms of adaptive testing. The reason for this unexpected

development lies in the fact that the original conception of CAT focusses entirely on the

statistical aspects of item selection and ability estimation and ignores all other test

specifications typically in use in testing programs. As a consequence, it may lead to testing

programs that:

1. do not guarantee equal composition of tests across examinees, and hence loose

their face validity;

2. excludes the use of item pools with dependencies between the items, for

example, between items that can not be administered in the same test because

one item contains a clue to the solution to another item or between items that

have to be presented in sets because they are linked to a common stimulus;

3. overexposes some items, with the potential danger that the items become

known prematurely to the examinees;

4. do not allow for the possibility of reviewing responses to earlier items--a

feature some programs want to offer to their examinees.

Several solutions to these problems have been proposed. Wainer and Kiely (1987)

suggest adaptive testing from a pool of testlets rather than individual items, designing the

testlets to ensure adequate content coverage in the individual tests. The same goal is

addressed in the proposal by Kingsbury and Zara (1991) who suggest spiraling item selection

along subsets of items in the pool defining relevant content dimensions. Adema (1990) and

Luecht (1995) use optimization techniques to assemble a system of two-stage tests with each

possible route meeting the same set of test specifications. Reese and Schnipke (1996)

combine the ideas of two-stage and testlet-based testing. A probabilistic mechanism to govern

the exposure rates of items in CAT is presented in Sympson and Hetter (1985). Stocking and

Swanson (1993) propose a heuristic for sequential item selection that treats the test

specifications as well as the goal of maximum information as "desirable properties" of the test

and then compromises between them at each item-selection step.

It is the purpose of the present paper to propose a new form of constrained CAT. The

procedure starts with the on-line assembly of a full test that meets all of the specifications and

has maximum information at an initial estimate of the ability of the examinee. The assembly

of the test is optimal due to the use of a linear programming (LP) model of the test
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Constrained Adaptive Testing - 4

specifications. The first item to be administered is selected from this test according to the

maximum-information principle. At each next step, the LP model is updated to allow for the

values of the attributes of the items already administered, and the remaining part of the test is

reassembled to have maximum information at the new ability estimate. The approach

improves on conventional multi-stage or testlet-based adaptive testing designs in that there is

no need to assemble fixed subtests or testlets in advance. All test assembly is on line to ensure

maximum information at the current ability estimate. At the same time, unlike conventional

CAT, item selection automatically satisfies the test specifications. The idea to base CAT on a

process of reassembling full tests was developed independently by Cordova (1996). The

approach is an alternative to the sequential heuristic proposed by Stocking and Swanson

(1993); it is more rigorously based on the ideas developed for the application of linear

programming (LP) to optimal test assembly, does guarantee that all of the test specifications

are met, and has the explicit objective of maximum information in the test. A discusSion of

the precise differences between existing approaches and the present approach to constrained

adaptive testing is postponed until the latter has been presented in more detail.

In the remaining part of the paper, constrained adaptive test assembly is first

conceptualized as an adaptive solution to an LP model for test assembly. An example of a

model is given and possible implementations are discussed. For two different

implementations, the statistical properties of the ability estimator are compared in a

simulation study using an existing item pool for the Law School Admission Test (LSAT).

General Model of Constrained Test Assembly

The concept underlying the following sections is that the process of test assembly can

be characterized as an instance of constrained optimization. Formally, each constrained

optimization problem has: (1) an objective function defined on the decision variables of the

problem which is maximized or minimized; and (2) a series of constraints on the possible

values of the decision variables which together define a feasible solution to the problem. In

test assembly, for example, the objective may be to match the test information function to a

target and the constraints may require that prespecified numbers of items be selected from

certain content categories. If the objective function and constraints are linear in the decision

variables, the problem belongs to the domain of linear programming (LP), which has a large

body of algorithms and heuristics to solve its problems. A large variety of conventional test

assembly problems have been shown to lend themselves to modeling as an LP problem with

0-1 decision variables. Some relevant references are: Adema (1992a, 1992b), Adema,

Boekkooi-Timminga and van der Linden (1991), Adema and van der Linden (1989),

Amstrong and Jones (1992), Amstrong, Jones and Wu (1992), Boekkooi-Timminga (1987,
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Constrained Adaptive Testing - 5

1990), Theunissen (1985, 1986), Timminga and Adema (1995, 1996), van der Linden (1994;

to appear), van der Linden and Boekkooi- Timminga (1988), and van der Linden and Luecht

(1996).

An important distinction in test assembly is the one between constraints on categorical

and quantitative attributes of test items. Categorical attributes introduce a partitioning of the

item pool with different subsets of items corresponding to different levels of the attribute.

Some examples of categorical attributes are: item content, cognitive level, item format, and

gender orientation. A quantitative attribute is a parameter or coefficient with possibly

different numerical values for each item. Examples of this type of attribute are: item p-value,

expected response time, and item exposure rate. Constraints may also be needed to guarantee

that items linked to the same stimulus are administered as sets. In addition, these stimuli

themselves may involve constraints on categorical (e.g., content classification) or quantitative

attributes (e.g., word count).

The problem of constrained CAT can now be represented as a series of updates of the

following optimizatiOn problem:

maximize information at current ability estimate (2)

subject to possible constraint(s) on the

length of the test;

number of item sets in the test;

number(s) of items per item set;

categorical item attributes;

quantitative item attributes;

dependencies between items in sets;

categorical item set attributes;

quantitative item set attributes.

In addition, a few technical constraints may be necessary to solve the optimization problem.

The following section gives an example of an LP formulation of this verbally stated problem.

Example

To present the example, the following definitions are needed: The items in the pool

are indexed by i=1 ..... I. In addition, the pool is assumed to consists of item sets, Vi, j=1,...,J,

each of which may have a different number of items. For each item a decision variable xi is

used which takes the value 1 if the item is included in the test and the value 0 otherwise.

3



Constrained Adaptive Testing - 6

Likewise, a second decision variable zi is used to decide whether (z1=1) or not (zj=0) item set

j is included in the test. In addition, the exemplary attributes in Table 1 are used.

Table 1

Exemplary Item and Item Set Attributes

Attribute Value

Cognitive Level of Item

Expected Response Time for Item

Frequency of Previous Item Usage

Content of Item Set

Reading Comprehension (CI); Analytic

Reasoning (C2); Logical Reasoning (C3)

riE (0,00)

f,E{0,1,...}

Humanities (Si); Social Sciences (S2)

The following example of the test assembly problem is given:

maximize ± (6)x,

subject to

Ex, =n,

E Zi = m,

E x < n(j")z , j=1,...,J,
ieVi

E xi
iEVi

E h=1, 2, 3,
ieCe

E xi ni;), h=1, 2, 3,
ieCe

(maximum information at O )

(test length)

(number of item sets)

(number of items in item set j)

(number of items in item set j)

(number of items per cognitive level)

(number of items per cognitive level)

9
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E ri xi < r(")
1=1

fi xi 5_ 01), i=1,...,I,

E z, 14") , g=1, 2
ics,

E z, > , g=1, 2
jcSg

X31 + X32 + X33 + X34

28 + 29 + 210 5- I

xi = 0, 1, i=1,...,I,

z. = 0, 1, j=1,...,J.
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(response time available) (19)

(maximum item exposure) (20)

(number of item sets per content category) (21)

(number of item sets per content category) (22)

(mutually exclusive items) (23)

(mutually exclusive item sets) (24)

(domain of decision variables) (25)

(domain of decision variables) (26)

The right-hand side coefficients in the constraints are bounds on numbers of items (n) or item

sets (m). Upper and lower bounds are denoted by a corresponding superscript. Note that some

of the constraints are formulated using the decision variables for the items (xi) and others

using the variables for the item sets (zi). The constraints in (15)-(16) have both types of

variables to ensure that individual items in sets are chosen if and only if a sufficient number

from their sets are chosen. It is evident that the model only has a solution if the numbers in

the right-hand side coefficients are chosen consistently and the pool has enough items to

satisfy these numbers. These conditions are assumed to be met in a deliberately designed

CAT program.

The model in (12)-(26) is equivalent to the maximin model for test assembly (van der

Linden and Boekkooi-Timminga, 1989), with the exception that it does not maximize the

information in the test proportionally at a number of 0 values but at an estimate of 0 for a

single examinee. A review of the constraints available to model a large variety of test
specifications is given in the same paper.

Models for test assembly as in (12)-(26) can be solved for an optimal test (=set of

values for the decision variables) using a standard software package for LP or a choice from

the algorithms and heuristics offered in the test assembly package ConTEST (Timminga, van

der Linden & Schweizer, 1996). For test assembly models with the special structure of a

_it_ ti
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network-flow problem, efficient algorithms are possible (Amstrong, Jones & Wu, 1992).

Typically, the use of each of these algorithms is preceded by some form of preprocessing of

the model or the item pool; for example, a solution of a model with a constraint as in (19) is

generally obtained quicker if all items with fi>f(u) are first removed from the pool.

The next section discusses how to implement models as in (12)-(26) in a CAT
program.

Adaptive Implementation of the Model

It is assumed that the test stops as soon as n items are administered. Other stopping

rules are possible but this rule is believed to enhance the face validity of the test. Adaptive

implementation of the model in (12)-(26) involves the on-line execution of the following

steps for each examinee:

Step 1: Initialize the model;

Step 2: Assemble an initial test according to the model;

Step 3: Administer the item with maximum information at the ability estimate;

Step 4: Update the model;

Step 5: Reassemble the remaining part of the test putting the items not administered

back into the pool;

Step 6: Repeat Steps 3-6 until n items have been administered.

The algorithm is adaptive because of Step 4. The update of the model in this step

involves both an update of 6 in the objective function in (12) and an update to allow for the

attributes of the item administered. The only thing needed to perform the latter is to insert a

constraint into the model that sets the decision variable of this item equal to 1. For example, if

Item 22 is selected, the constraint x22=1 is inserted.

Note that when reassembling the remaining part of the test in Step 5, the items not yet

administered are put back into the pool. Hence, the newly assembled part of the test is always

at least as good as the old part but most likely better since the ability estimate has been

updated. Also, if a feasible solution to the model exists for the initial test, the problem of

reassembling later parts of the test remains feasible.

In Table 2 the algorithm is illustrated for a 5-item test. The items in the upper triangle

are the items already administered. The items in the lower triangle form the part of the test

reassembled using the updated model (Step 5). The bold numbers in this triangle are the items

selected according to the maximum-information principle. Note that bold numbers are moved

to the upper triangle in the next column of the table.
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Table 2

Example of a 5-item constrained adaptive test

Selection

of Item #1 #2 #3 #4 #5

39 39 39 39

13 14 14 14

27 8 41 41

28 14 22 22

39 41 37 22

41 49 41 37 6

Note. Numbers in upper triangle are items already administered. Italic numbers in lower

triangle are items in the reassembled part of the test. Bold numbers are items selected

according to the maximum-information principle.

Possible initializations of the model.

How the model should be initialized in Step 1 has not yet been explained. An obvious

way to do so is to choose a plausible value for 6 based on knowledge of the ability
distribution of the population of examinees and to choose the values for the bounds in the

constraints on the basis of the test specifications. A more sophisticated initialization of 6 is to

choose a value based on prior information on the values of relevant background variables for the

examinee. A method for estimating 0 directly from background variables is presented in van

der Linden (submitted). An alternative is to choose a prior value for 6 and administer a short

CAT as a pretest, ignoring the constraints in the model. The suggestions is based on the

observation that the presence of large numbers of constraints in the test assembly models may

slow down the convergence of the ability estimator. Therefore, it may be advantageous to relax

the algorithm first and impose the constraints on the item selection process when the ability

estimator has had some time to stabilize. Stabilization has been shown to be remarkably quick

for a Bayesian alternative to the maximum-information principle of item selection known as the

Maximum Predicted Posterior Expected Information Criterion (van der Linden, 1996). If the

constraints are introduced at a later moment in the test, the decision variables of the items

already administered have to be fixed at 1. Of course, to keep the original model feasible, the

pretest can not be longer than the smallest upper bound in the right-hand sides of the constraints

on item numbers in the model.

12
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Item Sets and Item Review

The presence of items sets in the pool entails no special measures as long as the

structure of the pool has been modeled correctly by constraints such as those in (14)-(15),

(21)-(22), and (24) in the exemplary model. If an item set is chosen, an optimal number of

items in the set between the given bounds is also chosen. Normally, item sets are to be

administered intact. If so, Step 4 and 5 in the algorithm are postponed until the last item in the

set has been administered. In the (unlikely) case that the items need not be administered as an

intact set, the procedure can just be continued and the algorithm automatically selects the

right number of items from the set at optimal moments.

If the examinees are given the opportunity to review their responses within blocks of

items, the only possible consequence is a revision of the ability estimate if some of the

responses are changed. Thus, when moving to a next block, 6 may have to be revised but the

set of constraints in the model need not be updated.

Statistical Properties of the Ability Estimator

To study the effect of constraints in the adaptive item selection process on the ability

estimator for a realistic adaptive testing program, a simulation study was run using a pool of

753 items from the LSAT. The pool consisted of three different sections, which are labeled

here as SA, SB, and IA. All items were calibrated using the 3-PL model given in (1). The

length of the adaptive test was set equal to n=50, with the following distribution of items

across sections: SA: 12 items; SB: 14 items; and IA: 24 items. Large numbers of linear

constraints were imposed on the item selection process to deal with the item-set structure of

the pool as well as existing specifications with respect to item (sub)types, types of stimuli in

item sets, gender and minority orientation of the stimuli, answer key distributions, and words

counts. The numbers of decision variables and constraints in the model for the complete test

as well as its three sections are given in Table 3.

Table 3

Numbers of items, item sets, decision variables, and constraints in the model

Level #Items #Item Sets #Variables #Constraints

Test 753 3 804 433

SA 208 24 232 179

SB 240 24 264 218

IA 305 0 305 30

13
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Figure 1. Estimated MSE functions of the
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IA, SA, SB; dotted line: constrained CAT,

in the order SA, SB, IA).
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The following three different conditions were simulated:

1. Constrained CAT, with sections in the order IA, SA, SB;

2. Constrained CAT, with sections in the order SA, SB, IA;

3. Unconstrained CAT.

Because Section IA was least severely constrained, a comparison between the results for the

first two conditions shows the effect of imposing the majority of the constraints after the

ability estimator is stabilized. The comparison between the first two and the last condition

shows the effect of the 433 constraints on the ability estimator.

Adaptive tests were simulated for 0 =-2.0,-1.5,...,2.0, and the procedure was replicated

100 times for each 9 value. Ability was estimated using the EAP estimator with a uniform prior

distribution. The initial ability estimate was set equal to 0. At each step the LP model was

solved using the First Acceptable Integer Solution Algorithm (Adema, 1992b; Timminga, van

der Linden & Schweizer, 1996, sect. 6.6). This heuristic is based on the following adaptation of

the branch-and-bound method. Let zu be the value of the objective function in the solution to

the relaxed model. This value is as an upper bound to the solution of the model with 0-1

variables. The branch-and-bound search is stopped as soon as the current solution is larger

than hizu, with hi<1 but large enough to guarantee a satisactory result. In addition, following

Crowder, Johnson, and Padberg (1983), the optimal reduced costs in the relaxed solution are

used to fix some of the nonbasic variables. Let di be the costs associated with nonbasic

variable xi. Then, if xi=0 in the relaxed solution and zip-h2zip<di, h2<1, the variable is fixed

to 0. Likewise, xi is fixed to 1 if xi=1 in this solution and zit-h2zLp<4 For the LP models in

the present example, the best setting found was h1=.90 and h2=.91. Parameter h2 has to be set

larger than hi, but if it is set too high, overconstraining may occur. In manual test assembly,

the heuristic is then rerun with a lower value for this parameter. In the current framework of

adaptive testing, however, it was decided not to reassemble the test and to select the next item

simply from the last test assembled. The effect of this measure, which was applied for 4.06%

of all items selected in this study, is possibly less than optimal item selection and hence

underestimation of the efficiency of the ability estimator. The results from the comparison

between the mean-squared error (MSE) of the ability estimator in the constrained and

unconstrained adaptive modes presented below is therefore expected to be slightly

conservative with respect to the former.

15
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All runs were made on a PC with Pentium/133MHz processor. The CPU times needed

to select an item in the constrained mode, that is, to update 6, reassemble the test, and select

an item with maximum information from it, were all within 1-2 secs. These figures show that

the approach proposed in this paper is practically feasible for item pools and test specifications

such as those used in this example.

The MSE functions of the EAP ability estimator after n=10, 20, 30, 40, and 50 are

presented in Figures 1. For n=10, the functions for Condition I (constrained CAT, with order:

IA, SA, SB) and Condition 3 (unconstrained CAT) show about equal results for all values of

0 . The function for Condition 2 reveals relatively poor performance for the CAT version with a

more severely constrained section at the beginning of the test. However, the effect is already

small when 20 items are administered, and for more than 30 items the results for the three

conditions are identical for all practical purposes. The bias functions in Figure 2 show the same

pattern. Note that in both figures the results for the lower end

of the 0 scale tend to be somewhat poorer than those for the upper end. This difference in

performance is likely to be due to underrepresentation of some categories of items at the lower

end of the scale in the item pool.

Discussion

As already observed, other adaptive testing formats that can be used to deal with

constraints on test contents are multi-stage and testlet-based adaptive testing. In multi-stage

testing, the content of the test is adapted only at the end of previously determined stages. In

addition, at each stage only a limited number of options is available each designed to be

optimal for a previously selected ability level. In contrast, the present format adapts the

content of the test to the updated ability estimate after each new item, selects the remaining

part of the test from all options feasible for the item pool, and guarantees maximum

information. Test let-based adaptive testing offers more flexibility than multi-stage testing but

in principle the same differences hold. In the Stocking and Swanson (1993) approach, all test

specifications and the objective of maximal information are combined into a weighted

objective function. Next, the items are selected from the pool to optimize this function in a

sequential mode. Applying the approach to the empirical example in this paper, weights

would have to be specified to reflect the desirability of each of the 433 constraints in the

model. As a consequence of this complexity, unpredictable violations of the constraints as

well as the principle of maximum information may occur. The approach in this paper,

however, requires all constraints to be met. In addition, it is not based on sequential selection

of single items but at each step selects all remaining items simultaneously to have maximum

information at the ability estimate.

17
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