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Abstract

In this paper, it is shown that various violations of the 2-PL model and the nominal
response model can be evaluated using the Lagrange multiplier test or the equivalent efficient
score test. The tests presented here focus on violation of local stochastic independence and
insufficient capture of the form of the item characteristic curves. Primarily, the tests are item-
oriented diagnostic tools, but taken together, they also serve the purpose of evaluation of global
model fit. A useful feature of Lagrange multiplier statistics is that they are evaluated using
maximum likelihood estimates of the null-model only, that is, the parameters of alternative
models need not be estimated. As numerical examples, an application on real data and some
power studies are presented.

Key words: efficient score test, item response theory, model fit, modification indices,

2-parameter logistic model, nominal response model, Lagrange multiplier test.
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Introduction

Interestingly, evaluation of model fit has a long tradition in the Rasch model (Andersen,
1973, Martin Lof, 1973, 1974, Fischer, 1974, Kelderman, 1984, 1989, Molenaar, 1983, Glas,
1988, 1997, Glas & Verhelst, 1989, 1995) while contributions to the 2-PL model in this respect
‘have been relatively few (Yen, 1981, Mislevy & Bock, 1990, Reiser, 1996, Glas, 1998). One
of the reasons for this situation might be that the Rasch model and its variants have minimal
sufficient statistics, which are very helpful for the derivation of the asymptotic distribution of
the test statisticsv (see, for instance, Glas 1997). On the other hand, the 2-PL model is a more
flexible model, so that the need for evaluation of model fit may be less stringent than in the
case of the more restrictive Rasch model. However, also in the 2-PL model violations may
occur which threaten the validity of the inferences made. In this paper, the focus will be on two
violations: improper modéling of the form of the item characteristic curves (ICC’s) and lack of
local stochastic independence. In many respects, the model tests proposed here can be viewed
as generalizations of two tests for the Rasch mddel: the R,-test for evaluation of the assumption
with respect to the form of the ICC’s and the R»-test for evaluation of the assumption of local
independence (Glas, 1988, 1997, Glas & Verhelst, 1989, 1995).

The procedures proposed here are based on the Lagrange multiplier (LM) statistic
(Aitchison & Silvey, 1958), rather than on likelihood ratio tests and Wald tests. This choice
is made because LM tests only need ML estimates of the parameters of the model of the null-
hypothesis. In the present case the null-model will be the 2-PL model, its generalization to
polytomous data, the nominal response model (NRM, Bock, 1972) and a special case of the
latter model, the generalized partial credit model (GPCM) by Muraki (1992). Generalization
of the approach presented here to the 3-PL model is beyond the scope of the present paper and
will be treated in a subsequent paper. In many instances, the parameters of the model of the
alternative hypothesis will be quite complicated to estimate. But even if this is not the case, the
procedure proposed here has advantages. In the sequel, hypothesis related to specific model
violations will be tested for one item or pair of items at a time. If this was done using a Wald or
likelihood ratio test, this would require computing new estimates for every test. So primarily, the
procedures are meant as item-oriented diagnostic tools, However, below it will also be shown
that the ensemble of the computed statistics can also serve the purpose of a global test of model
fit.
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Preliminaries

Consider items where the possible responses are be coded by the integers 0, 1, 2, 3,
..., m;. Let item i have m; + 1 response categories, indexed g = 0, 1,...,m;. Notice that
dichotomous items are the special case where m; = 1. The response of a person n to an item
i will be represented by a vector &,,; = (Zni0; --s Znig, --+s Tnim; ) WhETe Zn;, is a realization of
the random variable Xn.y; Znig = 1 if the response is in category g and z,;, = 0 if this is not

the case. The probability of scoring in category g of item i is given by

¢ig(0n) = Pr(Xnpiy =16, 0, B;) o exp(aighn — IBig)a M

for g = 0,1, ..., m;, with the usual restriction a;o = 3,; = 0 to identify the model. Defining
¥;4(65) starting from g = 0 may seem a bit awkward here, but below it will prove very
convenient. With the assumption of local independence between item responses, formulation
(1) encompasses the 2-PL model for dichotomous items (Birnbaum, 1972), and the nominal
response model (Bock, 1972, Thissen, 1991) for polytomoué items. When the restriction
@, = goy is imposed, the model is the GPCM by Muraki (1992). _

To introduce the LM tests, first some theory on MML estimation for IRT models
must be summarized. The choice of an ability distribution is not essential to the theory
presented here; it can either be the parametric (see Bock & Aitkin, 1982) or the non- parametric
MML framework (see De Leeuw & Verhelst, 1986, Folimann, 1988). However, to make the
presentation specific, the parametric framework will be assumed, and ability will be normally
distributed with parameters x and o. Further, for reasons of simplicity, it will first be assumed
that all respondents belong to the same population and have responded to the same set of

items. Modern software for the 2-PL model, such as Bilog-MG (Zimowski, Muraki, Mislevy,

& Bock, 1996), also supports multiple populations and incomplete designs. Generalization of

the methods to be presented to these specifications is straightforward and will be sketched in
Section 7. Further, this soﬁware“'also supports Bayes modal estimation (Mislevy, 1986). This
generalization will be discussed in Section 6. ‘
Let g(.; 4, o) be the density of §,.. Since only one population is considered, the model
can be identified introducing the restrictions u.= 0.0 and ¢ = 1.0 and the remaining free
parameters are the vectors of item parameters ¢ and (3. The log-likelihood function of the

parameters £’ = (o, 3’) can be written as

6
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InL(§ X) = ) In Pr(z,;€), ' ©)

where x,, is the response pattern of respondent n and X stands for the data matrix. To derive

the MML estimation equations, it proves convenient to introduce the vector of derivatives

b.(§) = a% In Pr(zn,0n; §) = %{m Pr(z, | bn, &, B) +In g(6n; 1, 7)) (3)
with
Pr(zn | omaaﬁ) = H Hi,/),-g(en)"‘"g . (4)
i g=0

Adopting an identity by Louis (1982, also see, Glas, 1992), the first order derivatives of (2)

with respect to € can be written as

h(E) = 2 InL(£X) =3 Eba(8) | 2a8). )

This identity greatly simplifies the derivation of the likelihood equations. For instance, it can
be easily verified that the elements of b, (§) are given by

bn(@tig) = On(Tnig — d}nig) ©)

and

bﬂ(IBig) = wnig = Znigs (7)
where 1,,;, is a short-hand notation for 144(0n). Combining these two expressions with (5), the
likelihood equations for the item parameters are given by

‘ 7
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> E(BnZnig | Tny £) = Y E(Btnig | Tn, €) (8)

and

Zznig = Z'_E("/}m'g | zn, £) - ®

For LM statistics, also the second order derivatives of the log-likelihood function are

needed. It will prove convenient to define

PInL(gX :
Heo=-T50e ) (10

As with the derivation of the estimation equations, also for the derivation of the matrix of
second order derivatives the theory by Louis (1982) can be used, and it follows that the observed

information matrix, evaluated using MML estimates, is given by

H(E, § =~ YIB(BA(& €) |0, €)= EGn(©bnl€) 20, ], (D

n

where

2 .
Ba(g g = TR e i 8 a2

Notice that the expressions for the second of the two right-hand terms of (11) can be directly
derived from (6) and (7) , the expressions for evaluating B, ( £,£) are found upon taking
derivatives of these two expressions. The exact expressions for (11) can also be found in Glas
(1998).

For the 2-PL, the NRM, and the GPCM, the exact expressions for the second order
derivatives are still tractable, but for more complicated models, using (11) may becc;me rather

complicated. A solution to this problem may be using the Fischer information matrix,

8
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H(E €)=Y E®u(§) | 20, E)E®(E) | n, &), (13)

(also, see Mislevy (1986)). Below it will be shown by numerical examples that this

approximation proves satisfactory for computing LM tests.

Lagrange multiplier tests

The principle of the LM test (Aitchison & Silvey, 1958), and ﬂxe equivalent efficient-
score test (Rao, 1947) can be summarized as follows. Consider a null-hypothesis about a model
with parameters ¢,. This model is a special case of a general model with parameters ¢. In
the present, case the special model is derived from the general model by fixing one or more
parameters to known constants. Let ¢, be partitioned as ¢y = (¢, , Do) = (¢}01, c’), where ¢
is the vector of the postulated constants. Let h(¢) be the partial derivatives of the log-likelihood
of the general model, so h(¢) = 61nL(¢) /0¢ . This vector of partial den'vatives gauges the
change of the log-likelihood as a function of local changes in ¢. Let H (¢, @) be defined as
—0%In L(¢)/0¢0¢'. Then the LM statistic is given by '

LM = h(¢y) H (o, bo) ™" h(ebo)- (14)
If this statistic is evaluated using the ML estimate of ¢, and the postulated values of ¢, it
has an asymptotic x?-distribution with degrees of freedom equal to the number of parameters
fixed (Aitchison & Silvey, 1958). An important computational aspect of the procedure is that
at the point of the ML estimates &, the free parémeters have a partial derivative equal to zero.
Therefore, (14) can be computed as
LM(c) = h(cy W th(c) (15)
with’
W = Hy(c,c) — Ha(c,¢p)Hn (o1, Por) H12(o1, ©),

3
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where the partitioning of H (¢, d,) into Haz(e,c), Hal(c, ¢o)s Hu(@or, op)s and
H 15(hy,, c) is according to the partition ¢ = (do;, Poz) = (o1, €)-

Notice that H (¢, , Po,) also plays arole in the Newton-Raphson pfocedure for solving
the estimation equations and in computation of the observed information matrix. So its inverse
will usually by available at the end of the estimation procedure. Further, if the validity of the
model of the null-hypothesis is tested against various alternative models, the computational
work is reduced by the fact that the inverse of H (o1, Po1) is already available and the order
of W is equal to the number of parameters fixed. It is advisable to keep the number of
fixed parameters small to keep the interpretation of the outcome of the fest tractable. This
interpretation is supported by observing that the value of (15) depends on the magnitude of
h(c), that is, on the first order derivatives with respect to the parameters ¢, evaluated in c.
If the absolute values of these derivatives are large, the fixed parameters are bound to change
once they are set free, and the test is significant, that is, the special model is rejected. If the
absolute values of these derivatives are small, the fixed parameters will probably show little
change should they be set free, that is, the values at which these parameters are fixed in the
special model are adequate and the test is not significant.

Besides a test of significance, this approach also provides information with respect to
the direction in which the fixed parameters will change when set free: This is done by computing

a new value of the fixed parameters, say ¢,, by performing one Newton-Raphson step, that is,

oy =c+Wh(c). ' (16)
Below, this new value ¢}, will be called a modification index. The covariance matrix of ¢,
can be approximated by W. Assuming asymptotic normality of the estimates, it can then be
tested whether ¢, significantly differs from ¢, which boils down to performing the Rao (1947)

- .
efficient score test.

Evaluation of the Fit of Item Characteristic Curves

For dichotomous items, Lord (1980, pp.46-49) has pointed out that the expected
number right score 3, 1;;(6) and ability 6 are the same things expressed on different scales of
- measurement. The important difference is that the measurement scale of the expécted_m;mber

right score depends on the test, while the measurement scale of 8 is independent of the items

i0
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in the test. For polytomous items, the situation is more complicated, in fact, Hemker, Sijtsma,
Molenaar and Junker (1996) have shown that the unweighted sum score does not necessarily
have a monotone likelihood ratio in 8. However, usually the unweighted sum score and the
associated estimate of 8 will highly correlate.

The idea of the LM test and modification index presented here will be to partition
the latent ability continuum into a number of segments, and to evaluate whether an item’s ICC
conforms the form predicted by the null-model in each of these segments. However, to be able to
properly define an LM statistic, the actual partitioning will take place on the observed total score
scale rather than on the 6 scale. As already mentioned above, the LM tests and modification
indices developed here focus on specific items. So let the item of interest be labeled i, while
the other items are labeled j = 1,2, ..., —1,i+1, ..., K. Let 2 bea response pattern without

item ¢, and let r(z (')) be the unweighted sum score on this response pattern, that is,

r(@) =Y "> gTnsq - an

i#t g

The possible scores r( ) will be partitioned into S; dlS_]Omt subsets; the index ¢ signifies
that this partition may be different for every item 4. Consider the ordered boundary scores
Y

To < Ty < Ty ey < Ty <yuery < T, With 7o = 0 and 75, = >~ ., m;. Further, define

‘ ) : _ ®
oot = {3 s <or@ <m a

so w(s, zﬁ,’)

) is an indicator function which assumes a value equal to one if the unweighted sum
score of response pattern z% is in score range s. Because a partition of the score range also
induces a partition of the sample of respondents, the term sub-sample will be used to signify
groups of respondents with a sum score in a certain subset of the score range. The choice of the
number of subsets S; and the choice of the boundary scores will be returned to below.

First, the case of the 2-PL and the NRM will be considered, generalization to the
GPCM will be sketched at the end of this section. The essence of the approach is introducing
an alternative model with discrimination parameters aug -+, and 8, + 6igs. Consider a model

@

where the pfobability of scoring in category g of item i, conditional on w(s, Zx"), is given by

"-.\:\
ok
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mgs(en) = P"'(Xnig =1 |"w(s,:z:$f)) =1,0,, i, B;,7:, 6:)

& exp((aig + ,Yigs)en - (IBig + 5ig$))7 (19)

for g = 0,1,...,m;. Under the null-model, that is, the 2-PL model or NRM, ~,,, and Bigs
will be equal to zero. In the alternative model, «y;,, and ;4 are free parameters, which gauge
the deviation of the discrimination and difficulty parameters in the sub-groups from the values
g and §3;,. Some restrictions need to be imposed tolidentify this model. For instance, the
restrictions 7,0, = 8i0s = 0 are imposed in addition to the usual restrictions a;o = B, = 0 to
identify (19) for fixed s.- Further, the complete set of S; prb‘babilities 19 can be identified using
the restrictions 7,55, = 6igs; = 0. Under this parametrization, aq and (3, are the discrimination
and difficulty parameters of item 4 in subgroup S; and Vigs and bigs, s = 1,...,5; — 1 are the
deviations from this baseline in the other subgroups. An alternative to this parametrization will
be considered in the section where a numerical example will be given.

The probability of a response pattern x,, is given by

P'r(:z:n | 0n7a713$7i$6i) =
PT(:Dm; | 'LU(S, mg)):emah 31‘7 7i76i)Pr(mg) I emaaﬁ) =

™mi zigu(sxt ™ z;
ng=0 Hs nt:gs'(e‘n) igt(sxn )H];éq, Hh:JO ¢]h(0n) ]h7 ’ (20)

where x,,; stands for the response on item ¢. Derivation of the LM test proceeds as follows.
Let n,,,(6) be abbreviated 7,,,,. For respondents n with a sum score in category s, that is,

w(s, z¥) = 1, it holds that

bn (7igs) =0n (znig - nnigs) . (2 1 )

i2
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bn(éigs) = nm'gs — Znig; (22)

so the elements of the vectors of first order derivatives h(+;) and h(6;) are given by

I8

Z E(bﬂ(’)’igs) | Tn, £77i76i) . (23)
n|w(sx )) =1
and
3" E(ba(bigs) | ®n, £,%:: 6. 24)

nlw(sx)=1

Notice that from inspection of (22) and (24), it follows that the h(8,4,) is the difference of the
observed number of persons of sub-sample s scoring in category g of item i, and its expected
value. A the test for the simultaneous hypothesis 7v;,, = 0 and 6,4 = 0, fors = 1, , Si—1
and ¢ = 1,..,m;, can be based on a statistic LM (-, 6,), which is defined by (15) with
P, = ¢ = (v}, 6;). When LM(~;,6,) is evaluated using MML estimates of the null-model,
that is, with MML estimates of £ and with ; =0, and §; =0, LM (-y;, §,) has a asymptotic x3-
distribution with 2m;(S; — 1) degrees of freedom. It is also possible to define separate tests for
the hypothesis v;,, =0, fors=1,..,5;—landg =1,...,m, and the hypothesis 8,4, = 0, for
s=1,..,5;—1land g = 1,...,m;. The first test, say LM (,), can be based on the-first order
derivatives h(v;). This statistic LM(;) has an asymptotic x*-distribution with m;(S; — 1)
'degrees of freedom. In the same manner, a test based on a statistic LM (-y;) can be defined for
the hypothesis bigs =0, fors=1,..,5 —land g = 1, ..., m;, which also has an asymptotic
distribution with m;(S; — 1) degrees of freedom.

Insert Table 1 about here

The exact expressions for the matrices of second order derivatives needed for
evaluating (15) in the present case are found as follows. In the previous section, it was shown
that the observed information matrix for the null-model, H11(¢g;, @0;) » With ¢y, = £ can

EKC 13
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be derived using (11). This identity can also be used for deriving Hs,(c, ¢) and Hy (¢, dpy),
with ¢ - (7i, 6;). In Table 1, expressions are given for Bn(¢,, ), where ¢, is equal to
Yigss Vi Oigs» OF Sins, and @, is equal t0 Yigs, Vings Sigss Oinsy Qigy Qin, Byg, OF By It is
easily verified that elements By, (7V;gs; Vint)> Bn(bigs Yine) A0d By (6545, 6:ne) are equal to zero
if s # t. Further, if i # j, Bu(Vigs»Vjns) = 0, Bn(8igs,6ns) = 0 and B (Vigs: 8jns) = 0.
The expression for Ha(c, ¢) can now be derived applying (11). For instance, the elements
E(Ba(Vigss Yins) | s &,7:i,6:) and E(ba(Vigs)on(Vins) | n, €,7v:, 6:) must be summed over
all respondents with w(s, &, ) = 1. The expressions for Hy; (¢, ¢, ) are computed in a similar
manner.

Similar tests can also be derived for the GPCM (Muraki, 1992). In this model, every
item 4 has but one discrimination parameter c;. Therefore, the shape of the ICC’s are evaluated
introducing a; + 7,, and B;, + 6y and testing the null- hypotheses v,, = 0, ;s = 0, or
both y,, = 0 and 6;ps = 0, fors = 1,...,5; —1and g = 1, ...,m;. Again, these tests can be
based on statistics LM (~,) , LM(8;) and LM (v, 6;) , which have S; — 1, m;(S; — 1) and
(m; +1)(S; — 1) degrees of freedom, respectively. Since the GPCM is derived from the NRM
by introducing the linear restrictions o;; = ga; , the matrix H (g, g, ) for the GPCM can
derived from the equivalent matrix for the NRM by pre- and post- multiplying the latter with
the matrix of these linear restrictions and its transpose, respectively. ‘

The definitions of H (¢, c) and Hy; (e, ¢y, ) are changed accordingly.

Evaluation of Local Stochastic Independence

Evaluation of local independence will be based on alternative models which are
generaliiations of models proposed by Kelderman (1984) and Jannarone (1986) in the
framework of the Rasch model. To grasp the flavor of these models, they will be presented
here for dichotomous items first. Let item ¢ and item j be two items where the responses are

dependent. Consider a model given by

PT( Zi, Ty | 97ai7ajaﬂi’:6j7'yij76ij) o8

exp[z;(0s0 — B;) + xj(ajg - :Bj) + Z:x; (’Yijg - 5ij)] ) (25)
) where z; and z; take the values O or 1. In Table 2, the probabilities of the combinations of

ERIC | 14
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z; and x; are cross-tabulated. From inspection of this table, it can be seen that ~;; and §;; are
parameters modeling the association between the two items. First consider a model without 7;,
which is the 2-PL model version of the Kelderman (1984) model.

Insert Table 2 about here

In this model §;; represents the addition the item difficulty parameters 3; and 3; to account for
the probability of a simultaneous correct response to the two items. In the generalization of the
Jannarone (1986) model to the 2-PL model, besides an additional location parameter §;;, also
an additional discrimination parameter v;; is addéd. This parameter accounts for interaction
between the probability of a simultaneous correct response to the two items and the ability
dimension 6.

This approach to modeling dependence between item responses can be generalized
further to polytomous iters by adding the appropriate number of rows and columns to the
cross-tabulation of Table 2 and adding the parameters needed to model the additional row and

column effects. As a result, the model for a simultaneous response to item ¢ and item j becomes

Cm'gjh = P"'(Xﬂig =1L Xun=1 | eﬂiai)ﬁi,ajaﬁjy7ijy6ij)

o expl(aighn — Big) + (ajnbn — Bin) + (Vigjnn — Bigin))s (26)

where v, = 8igjn = 0, if either g = Oor h = 0. The probability of a response pattern changes
- from (4) to

mi My s
PT(mn I eny a, ﬁv ‘Yij) 6ij) = H H :;;j;xh H Hd]ill’lcc . (27)
=0 h=0 14,5 k=0

LM tests and modification indices for assessing lack of local dependence can be based on
derivatives of the log-likelihood with respect t0 7,y and 6;g;a, evaluated under the null-model
where «,,;, = 0 and 6,55, = 0. Finding these derivatives, denoted h(v,;) and h(6;;), again

proceeds using expression (5). So inserting

id
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bﬂ(’)’igjh) = eﬂ(xﬂigzﬂjh - Cnigjh) (28)

and

bn(éigjh) = Cm‘gjh — ZnigTnjh (29)

into (5) produces the desired expressions. Notice fhat the h(6ig;n) is the difference
between observing simultaneous responses » . ZnigZn;n and its expected value Yon E(Crigin |
@n,&, 745, 8i;). In the same manner, the expression for h(7;;,) is the difference between
> TnigZninE(Bn | Tay & Vij, 65) and 37, E(Crigjnn | Tny €, 7ij» 6is)-

A test for the composite null-hypothesis digjr = 0, and 7,5, = 0, forg = 1,...,m;
and h = 1,...,m;, can be based on LM (vy,;, 6;), which is defined by (15) with by = =
(¥ijs 62}.). When this statistic is evaluated using MML estimates of the null-model, it has an
asymptotic x>- distribution with 2m;m; degrees of freedom.

The matrix of weights W defined in (15), can again be found using (11). Therefore,
ekpressions for B, (¢, ¢) a.ré needed, where ¢, and ¢, are 7,,;, and O;gsx Or a parameter of
the null-model. The neéded expressions are tabulated in Table 3, they easily follow from taking
derivatives of (28) and (29).

Insert Table 3 about here

As in the previous section, also hc_:re special tests can defined for the hypothesis
Yigin = 0,9=1,...,m;and h =1, womj,and 85 =0,g = 1,...;m;and h = 1,...,m;. These
tests, denoted LM (+y,;) and LM (8;;) are defined by (15) withc = ~;; and ¢ = 6y, respectively.
They both have m;m; degrees of freedom. Analogous to the previous section, tests for the
GPCM can be defined as special cases of tests for the NRM. These tests, demoted LM (v;;),
LM(6;;) and LM ('y,-j, 6;;) have one, m,-ni,- and 2m;m; degrees of freedom, respectively.

Modification Indices in a Bayes Modal Framework

It is well-known that item parameter estimates in the 2-PL model (and the 3-PL model,

i6
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which is beyond the séope of the present paper) are sometimes hard to obtain, because the
parameters are poorly determined by the available data, in the sense that in the region of the
ability scale where the respondents are located, the ICC’s can be appropriately described by
a large number of sets of item parameter values. To obtain "reasonable” and finite estimates,
Mislevy (1986) considers a number of Bayesian approaches, entailing the introduction of prior
distributions on the parameters. In the present section, it will be shown how the LM tests and
modification indices presented above can accommodate these assumptions. In particular, two
approaches will be studied, in the first approach the prior distribution is fixed, in the second
approach, often labeled an empirical Bayes approach, the parameters of the prior distribution
are estimated along with the other parameters. Let p( £ | m) be the prior density of the &,
¢' = (o, 3), characterized by parameters 7, which in turn follow a density p(n). In a Bayes
model framework, parameters estimates are computed by maximizing the posterior density of
¢ , which is proportional to In L( &; X) + Inp( £ | ) + Inp(n).

First, the prior distribution of £ will be considered known. Let d( &) = dlnp(§ |
n)/0 € and D( €, &) = —8%Inp( & | n)/0 £ &' The first order derivatives of the posterior
with respect to &, say h*( £), are given by h*( &) = h( &) + d( &), where h( £) is defined
in (5), and the Bayes modal estimates are found ui)on solving h*( €) = 0. The opposite of
the second order derivatives of the posterior with respect to &, say H*( £,£), are given by
H*(¢,8) = H(E,¢) + D(&, €), where H( €,£) is defined in (10). Substituting H™( &, &)
for H,,( £,€) in the above LM statistics defines the comparable statistics for a Bayes modal
framework with a fixed prior.

In an empirical Bayes framework, the parameters 7), are estimated. Consider the
definitions of Section 3. The parameter vector ¢, was partitioned (01, Pp2)- In the present
context, ¢, is the concatenation (£',m') and ¢y, can be ; , 6; , or their concatenation, or
7.; » 6i; or their concatenation, all depending on the hypothesis considered. The first order
derivatives of the posterior distribution are given by h*(¢,) = 81n L( §; X)/0¢g +0Inp( £ |
1)/8¢, + 81n p(n)/d¢,, which will be written as

h*(¢y) = h(¢,) + d(¢g) + g(¢). So empirical Bayes modal estimation entails
Solving " ( £) =0and h* (1) =0, thatis, h"( £) = h( £)+d( £)=0and h*(n) = d(n)+g(n)
=0.

The opposite matrix of second order derivatives will be partitioned

H;ii(6,8) Hy&n)  HpE dn)
H*(¢g, o) = Hi}(n,&) Hiummn)  Hi(mdy) |-
' H§1(¢027 §) Hj (D025 ) H§2(¢02: ¢02)
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Let H(o, ¢o) = -3 1In L( &; X) /0.0, D(¢y, #o) = —-0%Inp( & | m)/0¢, ¢, and
Gy, dy) = —0%Inp(n)/0¢0¢,. Then the opposite matrix of second order derivatives

becomes

Hy;(§,6)+ D(,§) D(¢,m) Hi,(8, dp2)
H* (¢, po) = D(n,§) D(n,n) +G(n,m) 0
;l(¢027 6) 0 H;2(¢02’ ¢02)

- Réplacing H(¢,, ¢,) in the above statistics by H™ (¢, @) gives the definitions the equivalent
statistics for the empirical Bayes modal framework. In the numerical examples given below, _
for dichotomous items, a fixed normal prior on the logarithm of «; with parameters 4, Oma
will be used. For the empirical Bayes example, the natural conjugate prior for the normal
distribution will be used, which is normal for y,, , given o1, and inverted Wishart for oima

(Ando & Kaufman, 1965). For details on this procedure one is referred to Mislevy (1986).

Multiple Populations and Incomplete Designs

Above, for reasons of simplicity, it was assumed that all respondents were drawn from
the same population and responded to the same set of items. Generalization to a situation where
this is not the case proceeds as follows. Firstly, it will be assumed that @ populations have
normal ability distributions indexed by ¢, and 0, , ¢ = 1, ..., Q. Further, g(n) is the population
to which respondent 7 belongs. To identify the model, the first ability distribution will be fixed
to standard normal, and the definition of the vector of free model parameters £ is now extended
to & = (o, B, g, 02, ..., g, 0q). Secondly, a missing data indicator z, will be introduced.
This vector has elements z; equal to one if a response of person n to item i is observed, and
zero otherwise. In the present context, it will be assumed that the ignorability principle by
~ Rubin (1976) holds, that is, the missing data indicator does not depend on the unobserved -
responses. As a consequence, parameters can be estimated using a likelihood function or a
posterior distribution that is conditional on the value of the missing data indicator. Therefore,

(4) and (5) now become

0
bn(E) = 'a—E[lnPr(wn l zn;9n1a1 ﬁ) +1ng(9n;ﬂq(n)10'q(n))]

0
= &-[E S Trigznig I Yniy + 10.9(6n; bg(ry, Tamy)] - (30)
g
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The likelihood equations for the population parameters are derived upon observing that

b (kgmy) = (O — Hotm)) Ty G1)

b‘n(UQ(‘n)) = —Uq_(il) + (0n - /‘Lq(n))zaq_(i)y (32)

Again using (5), first order derivatives can be derived, and estimation equations are given by

1
Mo = W E6, | Tn, 2n, &) . (33)
7 nin(q)=q
and
1
ol = — B(6% | %n, Zn, &) — 12, (34)
7 nin(q)=g

where N, is the number of respondents in the sample of population q. First order derivatives for
item parameters are derived from (8) and (9) by replacing the summations in these equations
by summations over respondents n with z,; equal to one, that is, the estimation equation for the
parameters of item 7 only depends persons who have actually responded to item 4. In the same
manner, expressions for first order derivatives can be derived for item parameters of alternative
models and for second order derivatives of item parameters.

Imputing these generalized definitions of h(¢) and H (&, ¢) into the definitions of
the tests for local independence, LM (v;;, 6:;), LM (7;;) and LM (6y;) , results in the statistics
which can also be applied in the framework of multiple populations and incomplete designs.
For the tests for the shape of the ICC’s, LM (v;, 6;) , LM (~;) and LM ($;), some additional
provisions need to be made. This has to do with the fact that the definition of the alternative
model depends on the fespondents sum scores r(a:Sf)), which, in turn, depend on the partial

response patterns . However, when every person responds to a unique set of items, setting
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boundary scores for partitioning the score éontinuum becomes quite difficult, because the
rationale of the procedure is that respondents grouped together should be approximately located
in the same region of the latent ability space. Choosing boundary scores related to the proportion
of correct responses is very crude, because the proportion of correct scores not only depends
on the persons’ ability, but also on the difficulty of the items. Partitioning the latent ability
continuum and then deriving boundary scores for the respondents is extremely laborious and
completely undermines the philosophy of the approach. Therefore, application of these statistics
must be confined to designs were the sample of respondents is split up into a number of groups
of respondents who were administered the same set of items. The sets of items are often called
booklets. Then, for every booklet, boundary scores are set in such a way that resulting score
ranges roughly reflect comparable ability levels across booklets. This approach is the same as
the approach of the comparable S;-test for the Rasch model (Glas & Verhelst, 1995).

A Numerical Example

The aim of this section is to give an example of the use of LM tests and modification
indices using real data. The data are a completely random sample of the data emanating from the
central national examinations in secondary education in the Netherlands in 1995. The items used
are from a test concerning reading comprehension in English. To keep the presentation compact,
only the first 10 items of this examination will be used. However, the results did prove typical for
the complete examination. In Table 4, an overview of the data and the MML estimates are given.
The secdnd and third column, labeled "p-value" and "rit" contain the observed proportion correct
scores for the items and the item-test correlations. The frequency distribution of the respondents
unweighted sum scores is dfsplayed in the last column. The remaining columns contain MML
estimates of the parameters and estimates of their standard errors. The columns labeled "Se*(.)"
contain standard errors computed using the observed information matrix, given by (11), the
columns labeled "S e(.)" contain standard errors computed using the Fischer information matrix,

given by (13). It can be seen that these two estimates of the standard errors are very close indeed.

Insert Table 4 about here

Next, for these 10 items, LM statistics were computed, an overview is given in Table
5. In this example, for every item, the scoreArange was divided into four sections. There are

several considerations peftaining to the choice of the number of subsets S; of the score range
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and the choice of the boundary scores. Generally speaking, the number of score groups will
depend on the number of items and the number of respondents available. Inspection of (22)
and (24) reveals that, for polytomous items, the first order derivatives h(8;) are the difference
between the number of persons obtaining an unweighted sum score in category s and scoring

in category g of item 4, > Oy x,l;g and its expected value.

n|w(s,Xn

Insert Table 5 about here

For dichotomous items, this boils down to the diﬁ'erence between the number of persons in s
making the item correct and its expeeted value. Therefore, it may be a good strategy to form
the subgroups in such a way that the observed and expected frequeneies are not to low; WMCh
can be supported by setting the boundary scores in such a way that the numbers of respondents
in each subgroup are comparable. As a side line, it must be mentioned that the fact that the
magnitude of h(6;) depends on a difference between observed and expected frequencies will
be helpful in assessing the severity of the model violations. Due to a large sample size, §; may
differ significantly from zero, yet the severity of the violation in terms of a difference between
the observed and expected frequencies may be insignificant from a practical point of view.

The columns labeled "LM*(.)" contain values for LM statistics computed using exact
expressions for the matrix of second order derivatives. Since four subgroups were formed,
LM*(~,,8;) has 6 degrees of freedom and LM*(v,) and LM*(6;) both have 3 degrees of
freedom. To keep the presentation concise, association between items was evaluated for
consecutive items only, the results are displayed in the second panel of Table 5. Here,
LM*(v,;, 6:;) has 2 degrees of freedom and LM *(v;;) and LM*(6;;) both have one degree
of freedom. Finally, the columns of Table 5 labeled "LM(6;;)" and "LM (6;)" contain LM
statistics computed using the Fischer information matrix. Inspection shows that the values of
these statistics are very close to the values obtained using the exact expressions for the second
order derivatives. This result was typical for all analyses made in this numerical example.
Therefore, in this section no further comparisons between the two approaches will be presented.

Although the primary aim of the tests presented here is to serve as itemn-oriented
diagnostic tools, they also serve the purpose of evaluation of global model fit, especially if
the number of items is large. Consider the ten significance probabilities of the LM (v, 8,)
test displayed in the third column of Table 5. Under the null-model, that is, under the 2-PL

model; these ten significance probabilities should have an approximate uniform distribution.
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Of course, this is only an approximation, because these 10 statistics are dependent. For reasons
of dependence, one should not combine the significance probabilities of the LM (v;;, 6:5)- ,
the LM*(v,;)- and LM*(6;;)-statistics, because the dependence between these three statistics
is too prominent. This can, for instance, be verified by inspection of Table 5. The same line of
argument also applies to the three tests focussed at dependence between the items. Although
the requirement of independence is also not fulfilled within one LM test replicated over items,
here the dependence is far less prominent, and a fair approximation to the uniform distribution
favors the model. On the other hand, a majority of low significance probabilities is indicative
for global model violation. If, for instance, a significance level of 10% is used, a percentage of

significant tests that greatly exceeds 10% is an indication of poor global model fit.

Insert Table 6 about here

The next interesting question is whether the results of Table 5 are much different in
a Bayes model framework. Two analyses were made, one analysis where the discrimination
parameters are assumed to be drawn from a known log-normal distribution, and an empirical
Bayes analysis where the conjugate prior is introduced to this log-normal distribution. In the
first case, the parameters of the log-normal distribution are fixed to x),., = .0 and o1, =.0.5.
The reason here is that these are the default values in Bilog-MG (Zimowski, Muraki, Mislevy,
& Bock, R.D., 1996), which will probably be the software mostly used by practitioners. Above,
it was already mentioned that the conjugate prior for the normal distribution is normal for p,.,
given o1, and inverted Wishart for 01, (Ando & Kaufman, 19‘65) Using the'terminology of
Mislevy (1986), for this last distribution the parameters m = 5and b = 1 were chosen. The
results of computation of the LM statistics are shown in Table 6. Generally, the pattern of
significant indices remains the same. For instance, using a 10% significance level, for all three
analyses, item 7 has a significant LM (v;, 6;) and LM(§;). In the same manner, the item pair
3 and 4 has a significant LM('yij,'&-J-) and LM(v,;) and LM (6;;)-test in all three analyses.
However, sometimes the pattern changes. For instance, the significant LM (v,, 6;)-test for item
3 disappears in the Bayesian analyses and a significant LM (v,;, 8,;)-test for the item pair 2 and
3 appears in the empirical Bayes analysis. It must be mentioned that such changes occurred less

when the number of items in the analys‘is was higher.

Insert Figure 1 about here
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Insert Table 7 about here

In Section 3, it was sketched that using (16) an estimate of a freed fixed parameter
can be computed by performing one Newton-Raphson step. Standard errors of these one-step
estimates can be computed using the diagonal elements of W. In Section 4, the alternative
model was identified by imposing 7;,5, = 0igs; = 0. Therefore, for s = 1,...,8; — 1
, the parameters -,,, and 6ig, can be viewed as the deviations from the discrimination and
difficulty parameter of group S;, respectively. However, in practice it proves more elegant
to have confidence intervals for ail S; score levels. Therefore, the MML estimates of a;, and
B;, will be imputed in the alternative model as a fixed constants, so that the parameters -y,
and 6,,, can be viewed as the deviations from these estimates for all groups s = 1,..., S;.
This alternative parametrization entails that, for the computation of LM tests and modification
indices, the elements of h(€) and H (£, &) associated with a;, and 3;, should be removed.
Because this is just a simple reparametrization of the alternative model, this operation does not
alter the outcome of the LM test. .

In Table 7, one-step estimates are computed for the first two items, the results are
displayed under the heading "Modification Indices" in Table 7. Assuming asymptotic normality
of these estimates, they can be transformed into standardized normal indices. An example
using the two items of Table 7 is shown in Figure 1. The circles signify standardized one-step
estimates of +,, the triangles the standardized one-step estimates of 6;. Using these displays,
the locus of miss-fit can be identified at a glace. For instance, the lack of fit of the second
item is mainly due to the low score level. Of course, an interesting question is how much the
freed parameters will change if new MML estimates are computed, both for the parameters of
the initial 2-PL model and the parameters of interest. In Table 7, these estimates are displayed
under the heading "Parameter Estimates". It can be seen that these estimates are little different
from the estimates under the heading "Modification Indices". The parameters of item 2 in group
4 seem an exception, but this appearant effect vanishes when the estimates are standardized by
their standard error. The fact that new MML estimates were computed for all parameters in
the model supports computing a likelihood ratio test. The log-likelihood of the original model
equaled -12028.783, the model with additional parameters for item 1 resulted in -12027.109,
the model with ad_ditional parameters for item 2 resulted in -12023.459. So, the LR-test for
the first item has a value 3.338 (df=6, p=0.764), the test for the second item has a value
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10.648 (df=6, p=0.100). This is in accordance with the other results, the first item seems
to fit, the second might be called a borderline case. The strategy used here may serve as a
prototype: first, compute LM tests and modification indices, which can be done quickly without
additional estimation, then perform additional estimation for items where model fit appears to

be troublesome, and, finally, relax the model in cases of serious violations.

A Power Study

In this section, an unassuming power study will be presented. It will in no way
be exhaustive, because that would need a systematic variation of sample size, test length,
parameter values and model violations which is far beyond the scope of this paper. The main
purpose of the study was to geta general idea of the power of the LM tests. The arrangement
of the study reported is quite arbitrary. However, the results are not significantly different
from some other simulation studies that ware carried out. The sample size was equal to 1000
respondents, 9 dichotomous items were used. The discrimination parameters ; were equal to
(.5,.5,.5,1,1,1,1.5,1.5,1.5). The difficulties 6; were (-1,0,1,-1,0,1,-1,0,1). The ability distribution
was standard normal. The first collection of studies was focussed on the tests for the shape of

the ICC’s, the second collection of studies was focussed on the tests for local independence.

Insert Table 8 about here

The resuits of the first collection of studies are reported in Table 8. In these studies, the
ICC of item 5 was contaminated by introducing parameters v;, and bisy 8 = 1, ..., 4. First, values
were set for some parameter ~,, and é;., these values are shown in the third and fourth column
of Table 8 under the labels "v,," and "6;.". Using these values, two patterns of violations were
created, (i, Yiz Vi3> Via> 6i1, Biz, i3, ia) Was equal to (—Viu, Vies Vies —Vins —Oin; biny —is,
6.) in the first version, and equal to (v;, » —Vix; —Viss Yie> Oiny —0in, 8is, —6:.) in the second
version. For an example, consider Table 8, where every row corresponds to a simulation study.
Consider study 18. In the second column it can be seen that this study has the second pattern
of violations, the third and fourth column display that ~,, = 0.50 and 6;, = 0.50, so here (7,1,
Yias Viz» Via» Oi1, 6i2, Oi3, 8ia) Was equal to (—0.50, 0.50, 0.50, —0.50, —0.50, 0.50, —0.50, 0.50) .
Using this setup, 100 replications were made for every row in Table 8 , for every replication 1000
response patterns were generated, MML estimates were computed and LM (v;, 6:)-, LM ()
and LM (6;)-tests were performed_ using a 10% significance level. The proportion of significant
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tests is displayed in the last six columns of Table 8, the tests in the columns labeled LM*(.)
were computed using the observed information matrix, the tests in the columns labeled LM(.).
were computed using the Fischer information matrix. The first row of Table 8 corresponds
to the null-model, that is, to the 2-PL model, and it can be seen that the proportion of tests
significant at 10% is approximately equal to 0.10, which is as it should be. Further, it can be
seen that the proportions of significant tests are monotone increasing in v;, and é;., which is
“also in accordance with the purpose of the tests. However, an intéresting feature of the results is
that all tests are sensitive to all violations, for instance, LM (,) is both sensitive to a violation
¥;. = 0 and 6;, # 0, and-a violation ;, # 0 and §;, = 0. In fact, the power of LM(é;) to a
violation 7;, # 0 and §;. = 0 is greater than the power of LM (7;) . So it must be concluded
that attribution of the outcome of the test to specific parameters. will be quite difficult. This
result must be attributed to the high correlation between estimates of the item discrimination
" and item difficulty parameters, so the reason for the poor discriminative power of the tests
must be attributed to the properties of the 2- PL model, and not to the properties of the tests.
Summing up, the tests must be used as caution indices, and one must not expect to be able to

trace significant results back either the item discrimination or difficulty parameters.

Insert Table 9 about here

Table 9 contains the results of a comparable study to the power of LM (y,;,6:;)
LM(v,;) and LM(6;;). Again, the number of items is 9 and the number of respondents is 1000.
" Also the parameters of the 2- PL model were the same as in the previous study. In Table 9, every
row of the table corresponds to a study. Association between items was induced by introducing
additional parameters 7;; and 6, in the second and third column it can be seen that one half of
the studies the concerns association between item 1 and 5, the other half concerns association
between item 5 and 8. The values of v,; and §;; are displayed in the next two columns. For
every study, 100 replications were made and the proportion of LM tests significant at the 10%
level was computed. The results are given in the last 6 rows of Table 9. As above, the tests in
the columns labeled LM*(.) were computed using the observed information matrix, the tests
in the columns labeled LM (.) were computed using the Fischer information matrix. Contrary
to the above studies, the tests prove more discriminative with respect t6 the specific violation
* imposed. So LM (7;;) has substantial power for a violation v;;-= 0 and 6;; # 0, , while the
power of LM (,;) is low. Analogously, for a violation 7y;; # 0and 6;; = O the oppos{te applies.
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Discussion

In the present article, _it was shown that LM tests and modification indices are a
practical and useful tool for evaluation of model fit. Their practicality is a result of the
circumstance that most of the ingredients needed are availabie at the end of the estimation
procedure, so very little additional computations have to be made. They are usefulness because
they are item oriented diagnostic tools, which give an indication of the source of model
violations. Potentially, they offer the possibility of directed model relaxation to obtain sufficient
model fit. On the other hand, the discriminative power of the approach must not be exaggerated.
For instance, if the model is grossly violated, a sum score r(mff )) on a partial response vector z)
may no longer be a valid indication of ability, so that the underpinning of the LM (~y;)-, LM (6;)-
and LM (=y;, 8;)-test becomes unrealistic. Further, the discriminative power of the tests is, of
course, also limited by the characteristics of the model, for instance, the power study made
apparent that the well-known dependence between ¢y, g = 1,...,m; and ﬂ,-;, g=1..,m;
obstructed the attribution of model violations to either set of parameters. An advantageous
aspect of some of the statistics is that they are based on a difference between observed ‘and
expected frequencies, so the importance of a significant model test can be assessed in a
+ framework that is directly related to observed data. The approach presented here can obviously
be extended in several directions. The firstextension is tailoring the approach to the 3-PL model.
Further, the model can also be extended to encompass models with multidimensional ability
distributions. Finally, in many structural models on ability parameters, the item parameters
estimates issued from a calibration phase are imputed into the structural model as known
constants. Also evaluation of the validity of these imputed constants when confronted with
the new data seems.another proﬁﬂsing area where LM statistics and modification indices might
be useful. |
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6t‘gs _9n ¢niga¢m'hs 9n¢m'gs(1 - ¢m‘g:) ¢m’ga¢m‘hs _¢nig:(1 — ¢m‘gs)




Table 2
Cross-tabulation of Probabilities

Pr(zi, z; | @i, aj, Bi, B, Yij» 6ij) &

;= 0 Ty = 1
z; =0 1 exp(aif — Bi)
z; = 1 || exp(a;0 = F) | exp((ei + & + ;)0 — Bi — Bi +6ij)
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Table 3

Expressions for Bn (¢4, ¢s) for the parameters of item ¢

Yin Yig [ big

Yigih =02 Cnigin(l — Cnigin) 0% CniginCnikji B0nCnigin(1 — Cnigin) —Bn CniginCnikjt
Yikjt 82CnikjiCnigin =02 Cnirji(1 = Cnikji) ~0nCnikjiCnigin BnCnikjt(1 = Cnikji)
Sigin 0 nigin(1 — Cnigin) —BnCniginnikii —Cnigin(1 = Cnigin) CniginCnikji

Sikji —OnCnikjiCnigin 0nCnikit(1 — Cnirir) CnikjtCnigih —Cnikji(1 = Cnikjt)
al‘g _972,<nigjh(1 - EICm‘gjl) —972,<nikjl(1 - Eh Cm‘kjl) 9n<m‘gjh(1 - 21 Cnigjl) 9n<nigjh(1 - Eh Cm‘gjh)
ik 02 Cnigin i Cnikjt 82Cnikj1 2op Cnikjn) —BnCnigin 2y Cnikjt —B0nCnikjt 2p Cnikin)
Big BnCnigin(l — 21 Cnigit) OnSnirjr(1 ~ 2onCnigin)  —Cnigin(1— 21 nigjl) —Cnikji(1 = 2onCnigihn)
Bik —0,Cnigin D1 Cnikji ~OnCnikji D p Cnikin Cnigin 21 Cnikji Cnikjt 2on Cnikjn
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Table 4
Data Summary and MML parameter estimation of 10 Examination Items
Number of observations = 2039

item p-value it o B;  Se(a;) Se’(B;) Se(ai) Se(f;i) score frequency

0 2

1 .40 36 .30 .40 071 .047 071 .047 1 7
2 .86 41 128 -231 176 .145 .169 138 2 23
3 87 37 95 -2.16 132 .105 132 105 3 92
4 .49 41 .50 .06 075 .047 077 .047 4 175
5 .81 39 7 -1.59 .103 .074 .106 075 5 314
6 R 42 59  -32 078 .049 081 .049 6 380
7 .66 39 583 -7 .080 .051 .082 .051 7 425
"8 - .63 47 85 -6l .097 .055 .100 .056 8 333
9 62 40 49 -52 .078 .049 .079 .049 9 224
10 .56 43 63 -25 .083 .049 .083 .049 10 64
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Table 5
LM modification indices for 10 Examination Items

ttem LM< (y:6) p LM (W) p LM'(&) p LM(%)

1 3.26 .18 .87 83 1.36 .72 1.41

2 11.93 .06 12.64 .01 248 .48 2.58

3 13.29 .04 5.48 .14 75 .86 1.41

4 2.88 .82 1.12 a7 .45 .93 .46

5 4.43 .62 2.29 .52 1.02 .80 .90

6 7.47 28 2.47 48 4.29 .23 5.00

7 11.62 .07 4.30 .23 9.20 .03 9.70

8 7.31 .29 3.63 .30 1.53 .67 1.52

9 11.10 .09 5.51 .14 6.10 11 6.30

10 9.15 17 6.56 .09 3.76 .29 4.23

ftemi item) LM (v;0;) p_ LM'(nj) p  LM'(6) p LM(5;)

1 . 2 4.25 12 3.39 .07 .62 .43 .64
2 3 .46 .80 44 .51 .41 .52 41
3 4 18.91 .00 4.93 .03 19.73 .00 18.69
4 5 .85 .65 .80 37 31 .58 31
5 6 1.89 .39 1.74 19 .18 .67 .18
6 7 .89 .64 .35 .55 27 .61 - .26
7 8 3.85 .15 3.59 .06 .16 .69 .16
8 9 4.64 .10 91 .34 2.40 .12 2.22
9 10 2.41 .30 1.73 19 .24 .62 23
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Table 6
LM modification indices in a Bayesian Framework

Statistics Computed Using Fixed Prior

item LM(y6) p_ LM(%) p LM() P

1 4.99 .55 2.45 .48 1.97 .58
2 11.83 .07 6.78 .08 2.56 A7
3 4.94 .55 3.58 31 1.28 73
4 1.63 95 .64 .89 .64 .89
) 3.31 17 2.23 .53 1.14 a7
6 8.37 21 2.66 .45 5.12 .16
7 11.88 .06 5.54 .14 10.82 .01
8 5.30 51 2.60 .46 1.58 .66
9 11.73 .07 6.09 11 7.21 07
0 9.91 13 6.25 .10 4.70 .20
itemi item) LM(y;,65) p  LM(yij) p LM(;) p
1 2 1.59 45 .20 .66 1.57 .21
2 3 .30 .86 27 .60 11 .74
3 4 18.49 .00 7.61 .01 17.78 .00
4 5 2.06 .36 2.03 15 13 72
5 6 .58 .75 53 .46 27 .61
6 7 .09 .96 .01 92 .08 a7
7 8 1.85 .40 1.79 18 38 .54
8 9 2.04 .36 .18 67 1.50 .22
9 10 . .42 81 31 .58 .06 .81
Statistics Computed Using Emperical Prior
item LM(%,6) p  LM(w) p LM(&) p
1 15.22 .02 4.55 21 2.24 .52
2 8.47 21 7.26 .06 3.90 27
3 8.25 22 4.86 18 1.49 .68
4 1.21 98 41 .94 .67 .88
5 4.08 .67 1.15 .76 1.26 .74
6 7.68 .26 2.32 .51 5.27 15
7 11.59 .07 4.50 21 10.67 .01
8 6.79 .34 1.31 73 1.37 71
9 11.31 .08 4.89 18 7.52 .06
10 9.50 .15 4.68 .20 4.80 19
item i mj LM(y;.5;) p  LM(y;) p  LM(&;) p
1 2 1.33 .51 .01 .93 1.01 .32
2 3 11.37 .00 48 49 .94 33
3 4 17.20 .00 5.75 .02 16.81 .00
4 5 1.55 46 1.49 22 .04 .84
5 6 .98 .61 91 .34 > 44 b1
6 7 .09 .96 .00 98 .08 .78
7 8 2.65 27 2.62 11 32 .57
8 9 2.52 28 .55 46 1.44 23
9 0 .70 .70 .58 .45 .05 .83
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Table 7
Modification Indices and Parameter Estimation

Modification Indices Parameter Estimates
item group i 6is se(ris)  se(i)  vis b se(vis)  se(bin)
1 1 -.169 129 197 152 -.159 124 .193 153

2 .013 -.039 .669 .099 .013 -.039 .665 .099
3 230 190 .894 .357 243 .198 .955 .407
4 -413  -.432 534 468  -.408 -.424 .516 .447
2 1 -.625 642 301 290  -.557 555 .225 .198
2 412 -405 1.865 .721 .588 -510 2.148 1.110
3 -.272 187 1.889 254  -.274 182 1.387 211
4 1909 -.345 3.432 .870 .391 -.542  3.860 .399
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Table 8

100 Replications per Study

study pattern  7i» 6. LM (7,6) LM(%.,6) LM (y) LM(v) LM*(&) LM(%)
0 0 .00 .00 .10 .09 11 .10 .10 .10
1 1 .10 .00 .16 .06 ..13 13 .11 .10
2 25 .00 .29 .36 17 23 .32 .33
3 50 .00 74 77 .00 .56 .80 .81
4 2 .10 .00 .29 13 17 17 13 .09
5 .25 .00 .30 .19 .25 17 .30 .26
6 .50 .00 .76 72 63 .52 .84 .76
7 1 .00 .10 23 22 25 21 .25 24
8 00 25 78 78 .52 .58 76 81.
9 .00 .50 1.00 1.00 1.00 1.00 1.00 1.00
10 2 .00 .10 31 23 25 .23 .32 .26
11 00 .25 .85 .82 .78 .75 .88 .86
12 .00 .50 1.00 1.00 97 .97 1.00 1.00
13 1 .10 .10 .32 .39 27 .28 .34 37
14 25 .25 .97 97 84 .89 .99 .99
15 .50 .50 1.00 1.00 .99 99 - 1.00 1.00
16 2 10 .10 .40 37 .34 .30 47 44
17 256 .25 .95 .96 .93 .90 1.00 .99
18 50 .50 1.00 1.00 1.00 1.00 1.00 1.00
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Table 9
Study of the Power of the Test for Association between items
100 Replications per Study

study itemi item] 7; 6; LM (vj.bij) LM(vij6i) LM (vi;) LM(%;) LM°(8;) LM(;)
. . .09 .08 .08 11 12

0 0 0 00 .00 09

1 1 5 05 .00 .10 10 10 .10 13 14
2 10 .00 13 14 13 13 .14 14
3 25 .00 24 22 22 21 .10 .10
4 50 .00 55 57 68 69 11 11
5 5 8 05 .00 15 16 13 12 .07 .08
6 10 .00 12 15 17 15 12 12
7 25 .00 21 18 19 18 13 13
8 50 .00 .36 38 46 47 15 15
9 1 5 00 .05 13 15 .06 13 14 15
10 00 .10 13 15 10 11 17 16
11 00 25 35 39 13 12 49 49
12 .00 .50 92 92 13 13 96 .96
13 5 8 00 .05 13 16 .06 .06 17 .19
14 00 .10 17 21 14 . 4 22 21
15 00 .25 35 38 .09 .10 38 42
16 00 .50 .90 91 14 15 93 94
13 1 5 .05 .05 11 11 11 12 .09 .10
13 d0 .10 12 13 13 14 15 17
14 25 .25 57 58 40 .39 59 .60
15 50 .50 97 97 .90 .90 93 .93
16 5 8 .05 .05 11 11 .07 07 11 13
16 10 .10 17 17 10 11 15 15
17 25 25 4l 41 17 18 44 A7
18 50 .50 87 87 51 54 83 84
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Figure 1. Graphic Display of the Efficient Score Test for Two Items.
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