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Modification Indices for the 2-PL
and the Nominal Response Model

Cees A.W. Glas



Abstract

In this paper, it is shown that various violations of the 2-PL model and the nominal

response model can be evaluated using the Lagrange multiplier test or the equivalent efficient

score test. The tests presented here focus on violation of local stochastic independence and

insufficient capture of the form of the item characteristic curves. Primarily, the tests are item-

oriented diagnostic tools, but taken together, they also serve the purpose of evaluation of global

model fit. A useful feature of Lagrange multiplier statistics is that they are evaluated using

maximum likelihood estimates of the null-model only, that is, the parameters of alternative

models need not be estimated. As numerical examples, an application on real data and some

power studies are presented.

Key words: efficient score test, item response theory, model fit, modification indices,

2-parameter logistic model, nominal response model, Lagrange multiplier test.
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Introduction

Interestingly, evaluation of model fit has a long tradition in the Rasch model (Andersen,

1973, Martin Leif, 1973, 1974, Fischer, 1974, Kelderman, 1984, 1989, Molenaar, 1983, Glas,

1988, 1997, Glas & Verhelst, 1989, 1995) while contributions to the 2-PL model in this respect

have been relatively few (Yen, 1981, Mislevy & Bock, 1990, Reiser, 1996, Glas, 1998). One

of the reasons for this situation might be that the Rasch model and its variants have minimal

sufficient statistics, which are very helpful for the derivation of the asymptotic distribution of

the test statistics (see, for instance, Glas 1997). On the other hand, the 2-PL model is a more

flexible model, so that the need for evaluation of model fit may be less stringent than in the

case of the more restrictive Rasch model. However, also in the 2-PL model violations may

occur which threaten the validity of the inferences made. In this paper, the focus will be on two

violations: improper modeling of the form of the item characteristic curves (ICC's) and lack of

local stochastic independence. In many respects, the model tests proposed here can be viewed

as generalizations of two tests for the Rasch model: the R1-test for evaluation of the assumption

with respect to the form of the ICC's and the R2-test for evaluation of the assumption of local

independence (Glas, 1988, 1997, Glas & Verhelst, 1989, 1995).

The procedures proposed here are based on the Lagrange multiplier (LM) statistic

(Aitchison & Silvey, 1958), rather than on likelihood ratio tests and Wald tests. This choice

is made because LM tests only need ML estimates of the parameters of the model of the null-

hypothesis. In the present case the null-model will be the 2-PL model, its generalization to

polytomous data, the nominal response model (NRM, Bock, 1972) and a special case of the

latter model, the generalized partial credit model (GPCM) by Muraki (1992). Generalization

of the approach presented here to the 3-PL model is beyond the scope of the present paper and

will be treated in a subsequent paper. In many instances, the parameters of the model of the

alternative hypothesis will be quite complicated to estimate. But even if this is not the case, the

procedure proposed here has advantages. In the sequel, hypothesis related to specific model

violations will be tested for one item or pair of items at a time. If this was done using a Wald or

likelihood ratio test, this would require computing new estimates for every test. So primarily, the

procedures are meant as item-oriented diagnostic tools, However, below it will also be shown

that the ensemble of the computed statistics can also serve the purpose of a global test of model

fit.
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Preliminaries

Consider items where the possible responses are be coded by the integers 0, 1, 2, 3,

Let item i have mi + 1 response categories, indexed g = 0, 1, ..., mi. Notice that

dichotomous items are the special case where mi = 1. The response of a person n to an item

i will be represented by a vector x',j = (xnio, xnig , xni.,), where x,-,29 is a realization of

the random variable Xnig; xnig = 1 if the response is in category g and xn.,9 = 0 if this is not

the case. The probability of scoring in category g of item i is given by

Oig(On) = Pr(Xnig =1 I en, ai, 0i) a exP(ctigen Oig), (1)

for g = 0, 1, ..., me, with the usual restriction at() = i3z0 = 0 to identify the model. Defining

0,9(0n) starting from g = 0 may seem a bit awkward here, but below it will prove very

convenient. With the assumption of local independence between item responses, formulation

(1) encompasses the 2-PL model for dichotomous items (Birnbaum, 1972), and the nominal

response model (Bock, 1972, Thissen, 1991) for polytomous items. When the restriction

aig = ga, is imposed, the model is the GPCM by Muraki (1992).

To introduce the LM tests, first some theory on MML estimation for IRT models

must be summarized. The choice of an ability distribution is not essential to the theory

presented here; it can either be the parametric (see Bock & Aitkin, 1982) or the non- parametric

MML framework (see De Leeuw & Verhelst, 1986, Follmann, 1988). However, to make the

presentation specific, the parametric framework will be assumed, and ability will be normally

distributed with parameters p and a. Further, for reasons of simplicity, it will first be assumed

that all respondents belong to the same population and have responded to the same set of

items. Modem software for the 2-PL model, such as Bilog-MG (Zimowski, Muraki, Mislevy,

& Bock, 1996), also supports multiple populations and incomplete designs. Generalization of

the methods to be presented to these specifications is straightforward and will be sketched in

Section 7. Further, this software also supports Bayes modal estimation (Mislevy, 1986). This

generalization will be discussed in Section 6.

Let g(.; a) be the density of O. Since only one population is considered, the model

can be identified introducing the restrictions p = 0.0 and a = 1.0 and the remaining free

parameters are the vectors of item parameters a and /3. The log-likelihood function of the

parameters = (a',,3') can be written as

6
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(2)

where xn is the response pattern of respondent n and X stands for the data matrix. To derive

the MML estimation equations, it proves convenient to introduce the vector of derivatives

with

a
bn(t) =

a
ln Pr(xn, On; t) a

Pr (x I On, a, [3) + ln g(On; a)]

rni

(3)

Pr(xn On, cc, i3) = HH (on)x-9 . (4)
i g=0

Adopting an identity by Louis (1982, also see, Glas, 1992), the first order derivatives of (2)

with respect to can be written as

ah(t) = In L( t; X) = EE(b7,(t) I xn, t) (5)

This identity greatly simplifies the derivation of the likelihood equations. For instance, it can

be easily verified that the elements of bn (t) are given by

and

bn(Ctig) = On(Xnig *nig)

bn(I ig) = *nig Xnig I

(6)

(7)

where qpnig is a short-hand notation for 0,9(07,.). Combining these two expressions with (5), the

likelihood equations for the item parameters are given by

7
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EE09x,, I xn, = EE(eno,., xn, (8)

Ex,, = E.Econig I xn, (9)
n n

For LM statistics, also the second order derivatives of the log-likelihood function are

needed. It will prove convenient to clef=

021n L(C X)
-MCC = ave (10)

As with the derivation of the estimation equations, also for the derivation of the matrix of

second order derivatives the theory by Louis (1982) can be used, and it follows that the observed

information matrix, evaluated using MML estimates, is given by

where

H( = E[E(Bnc t, xn, E(bncono I xn,

B.(
a2 pr(x, on; )

C a e (12)

Notice that the expressions for the second of the two right-hand terms of (11) can be directly

derived from (6) and (7) , the expressions for evaluating Bn( 6) are found upon taking

derivatives of these two expressions. The exact expressions for (11) can also be found in Glas

(1998).

For the 2-PL, the NRM, and the GPCM, the exact expressions for the second order

derivatives are still tractable, but for more complicated models, using (11) may become rather

complicated. A solution to this problem may be using the Fischer information matrix,

8
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H( E E(bnW I xn, )E(t),,W I xn, (13)

(also, see Mislevy (1986)). Below it will be shown by numerical examples that this

approximation proves satisfactory for computing LM tests.

Lagrange multiplier tests

The principle of the LM test (Aitchison & Silvey, 1958), and the equivalent efficient-

score test (Rao, 1947) can be summarized as follows. Consider anull-hypothesis about a model

with parameters ch. This model is a special case of a general model with parameters 4 . In

the present, case the special model is derived from the general model by fixing one or more

parameters to known constants. Let ch be partitioned as 44 = 002) = c'), where c

is the vector of the postulated constants. Let h(0) be the partial derivatives of the log-likelihood

of the general model, so h(4)) = 5In L(0)00 . This vector of partial derivatives gauges the

change of the log-likelihood as a function of local changes in 4). Let H(ck, 4)) be defined as

52 In 1.,(0)00(p' . Then the LM statistic is given by

LM = h(410YH(4>0,00)-111(00)- (14)

If this statistic is evaluated using the ML estimate of Om and the postulated values of c, it

has an asymptotic x2-distribution with degrees of freedom equal to the number of parameters

fixed (Aitchison & Silvey, 1958). An important computational aspect of the procedure is that

at the point of the ML estimates 4, 01 the free parameters have a partial derivative equal to zero.

Therefore, (14) can be computed as

with

L M (c) = h(c)147 h(c) (15)

W = H 2 2 (C , c) H C11 10 ao (21,C, r 01, 11 12 joi c),

9



Modification indices 7

where the partitioning of H(00, 00) into H22 (C, C), H21 (C) 401), H11 (iP017 ii)01), and

H12(ikoi, c) is according to the partition 44, = *I, 42) = c').

Notice that H ( oi, 66oi,1 also plays a role in the Newton-Raphson procedure for solving

the estimation equations and in computation of the observed information matrix. So its inverse

will usually by available at the end of the estimation procedure. Further, if the validity of the

model of the null-hypothesis is tested against various alternative models, the computational

work is reduced by the fact that the inverse of H(C1)01, col) is already available and the order

of W is equal to the number of parameters fixed. It is advisable to keep the number of

fixed parameters small to keep the interpretation of the outcome of the test tractable. This

interpretation is supported by observing that the value of (15) depends on the magnitude of

h(c) , that is, on the first order derivatives with respect to the parameters Om evaluated in c.

If the absolute values of these derivatives are large, the fixed parameters are bound to change

once they are set free, and the test is significant, that is, the special model is rejected. If the

absolute values of these derivatives are small, the fixed parameters will probably show little

change should they be set free, that is, the values at which these parameters are fixed in the

special model are adequate and the test is not significant.

Besides a test of significance, this approach also provides information with respect to

the direction in which the fixed parameters will change when set free. This is done by computing

a new value of the fixed parameters, say 442, by performing one Newton-Raphson step, that is,

c/42 = c + 147-1h(c) . (16)

Below, this new value 442, will be called a modification index. The covariance matrix of cg2

can be approximated by W. Assuming asymptotic normality of the estimates, it can then be

tested whether 442 significantly differs from c, which boils down to performing the Rao (1947)

efficient score test.

Evaluation of the Fit of Item Characteristic Curves

For dichotomous items, Lord (1980, pp.46-49) has pointed out that the expected

number right score Ei oi,(61) and ability 9 are the same things expressed on different scales of

measurement. The important difference is that the measurement scale of the expected number

right score depends on the test, while the measurement scale of 9 is independent of the items

1 0
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in the test. For polytomous items, the situation is more complicated, in fact, Hemker, Sijtsma,

Molenaar and Junker (1996) have shown that the unweighted sum score does not necessarily

have a monotone likelihood ratio in 0. However, usually the =weighted sum score and the

associated estimate of 0 will highly correlate.

The idea of the LM test and modification index presented here will be to partition

the latent ability continuum into a number of segments, and to evaluate whether an item's ICC

conforms the form predicted by the null-model in each of these segments. However, to be able to

properly define an LM statistic, the actual partitioning will take place on the observed total score

scale rather than on the 0 scale. As already mentioned above, the LM tests and modification

indices developed here focus on specific items. So let the item of interest be labeled i, while

the other items are labeled j = 1, 2, ..., i 1, i + 1, ..., K. Let x,i) be a response pattern without

item i, and let r(x,i)) be the unweighted sum score on this response pattern, that is,

r(4)) = EEgxn.ig. (17)

The possible scores r(xn will be partitioned into Si disjoint subsets; the index i signifies

that this partition may be different for every item i. Consider the ordered boundary scores

ro < r1 < r2, < r, <, < rs with ro = 0 and rs, = Ejoi mj. Further, define

w(s 4)) = { 1 if 7-3_1 <= < re,
0 otherwise ,

(18)

so w(s, xn is an indicator function which assumes a value equal to one if the unweighted sum

score of response pattern is in score range s. Because a partition of the score range also

induces a partition of the sample of respondents, the term sub-sample will be used to signify

groups of respondents with a sum score in a certain subset of the score range. The choice of the

number of subsets Si and the choice of the boundary scores will be returned to below.

First, the case of the 2-PL and the NRM will be considered, generalization to the

GPCM will be sketched at the end of this section. The essence of the approach is introducing

an alternative model with discrimination parameters aig + -rigs and 0i9 + Sigs. Consider a model

where the probability of scoring in category g of item i, conditional on w(s, 4i)), is given by



ni(en) = Pr(Xnig = 11 (i)
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= 1, On Oai, "Yi)

oc exp((aig + "Yigs)On Pig + 6igs)), (19)

for g = 0, 1, ..., m,. Under the null-model, that is, the 2-PL model or NRM, 7,9, and 6igs

will be equal to zero. In the alternative model, Ngs and 8,9s are free parameters, which gauge

the deviation of the discrimination and difficulty parameters in the sub-groups from the values

aig and f3tg . Some restrictions need to be imposed to identify this model. For instance, the

restrictions 1,2,0.9 = 2.0s = 0 are imposed in addition to the usual restrictions ato = 0,0 = 0 to

identify (19) for fixed s. Further, the complete set of Si probabilities (19) can be identified using

the restrictions -y.kgs = 6,gs, = 0. Under this parametrization, aig and 0,9 are the discrimination

and difficulty parameters of item .i in subgroup Si and -y,g, and 6igs, s = 1, ..., Si 1 are the

deviations from this baseline in the other subgroups. An alternative to this parametrization will

be considered in the section where a numerical example will be given.

The probability of a response pattern xn is given by

Pr(x I en, ct, i) =

Pr(xni I w(s, x.L1)), en, cki, 0i, 7i, 6i)Pr I On, a03) =

119"12,1-19 ni9.9.(en).,,w(s,n
joinzo,/,jhonrih, (20)

where x,, stands for the response on item i. Derivation of the LM test proceeds as follows.

Let 77,95(On) be abbreviated 77,gs. For respondents n with a sum score in category s, that is,

w(s, xn(')) = 1, it holds that

bn("Yigs) = On(Xnig nnigs)

and

(21)
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bn(aigs) = nnigs Xnig

so the elements of the vectors of first order derivatives h(-yi) and h(6i) are given by

and

E E(bney:98) I Xn, t) Oi)

'n1w(s,x$P)=1

(22)

(23)

E E(bn(oi) f xn, t, 7i, 5i). (24)

nlw(s,4))=1

Notice that from inspection of (22) and (24), it follows that the h(5i95) is the difference of the

observed number of persons of sub-sample s scoring in category g of item i, and its expected

value. A the test for the simultaneous hypothesis -yigs = 0 and Gigs = 0, for s = 1, 1

and g = 1, ...,mi, can be based on a statistic LM(^yi, 6,), which is defined by (15) with

442 = c' = (-y'i, 6:). When LM(^yi, 6i) is evaluated using MML estimates of the null-model,

that is, with MML estimates of t and with ^yi= 0, and 6, = 0, LM (yi, 5.i) has a asymptotic X2-

distribution with 2m, (Si 1) degrees of freedom. It is also possible to define separate tests for

the hypothesis -y,s,s = 0, for s = 1, ..., Si 1 and g = 1, ...,mi, and the hypothesis 62,9s = 0, for

s = 1, ..., Si 1 and g = 1, ..., mi. The first test, say LM(^yi), can be based on the first order

derivatives h(72.). This statistic LM(^y,) has an asymptotic X2- distribution with mi(Si 1)

degrees of freedom. In the same manner, a test based on a statistic LM(-yi) can be defined for

the hypothesis big, = 0, for s = 1, ..., Si 1 and g = 1, ..., rrh, which also has an asymptotic

distribution with mi (Si 1) degrees of freedom.

Insert Table 1 about here

The exact expressions for the matrices of second order derivatives needed for

evaluating (15) in the present case are found as follows. In the previous section, it was shown

that the observed information matrix for the null-model, Hii(Ool, Om) , with col = can

13
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be derived using (11). This identity can also be used for deriving H22 (C, c) and H21 (C, chi),

with c' = ei). In Table 1, expressions are given for Bn(00, 00, where Oa is equal to

7ihs, 6igs, Or bihs, and q5b is equal to yigs, ihs, bigs, 6ihs, Oiig, Ctiti, 13i93 /3th It is

easily verified that elements B(-y,igs, ,v iht), B n\-igs) -y iht, ail Bn (6igs Siht) are equal to zero

if S t. Further, if i j, Bn(7i9.9)1(jhs) = 0, Bn(6i9s,6j118) = 0 and Bn(7i9s75jhs) = 0.

The expression for H22(c, c) can now be derived applying (11). For instance, the elements

E(Bn(Yigs,l'ihs) .1 xn.7,"Yi,(5i) and E(bn(7igs)bn("Yihs) I xn, l'i, 6i) must be summed over

all respondents with w(s,xn ) = 1. The expressions for H21 (C, cbm) are computed in a similar

manner.

Similar tests can also be derived for the GPCM (Muraki, 1992). In this model, every

item i has but one discrimination parameter a,. Therefore, the shape of the ICC's are evaluated

introducing a, + -y,s and 13,9 + 6igs and testing the null- hypotheses -yis = 0, 5,gs = 0, or

both -yi3 = 0 and 6igs = 0, for s = 1, ..., Si 1 and g = 1, ..., ?Th. Again, these tests can be

based on statistics LM(-yi) , LM(Oi) and LM(-y S.,) , which have Si 1 , m,(S, 1) and

(m, + 1) (Si 1) degrees of freedom, respectively. Since the GPCM is derived from the NRM

by introducing the linear restrictions atg = gai , the matrix H11(001, Om) for the GPCM can

derived from the equivalent matrix for the NRM by pre- and post- multiplying the latter with

the matrix of these linear restrictions and its transpose, respectively.

The defmitions of H22 (c, c) and H21 (C, cboi) are changed accordingly.

Evaluation of Local Stochastic Independence

Evaluation of local independence will be based on alternative models which are

generalizations of models proposed by Kelderman (1984) and Jannarone (1986) in the

framework of the Rasch model. To grasp the flavor of these models, they will be presented

here for dichotomous items first. Let item i and item j be two items where the responses are

dependent. Consider a model given by

Pr( xi, xi 9, ai, 0i, fj,7ij, 6ii)

exp[xi(aie 130 + xj(air9 13j) + 6ii)] , (25)

where xi and xi take the values 0 or 1. In Table 2, the probabilities of the combinations of

14
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xi and x3 are cross-tabulated. From inspection of this table, it can be seen that 7 ti and 6,3 are

parameters modeling the association between the two items. First consider a model without -y,3,

which is the 2-PL model version of the Kelderman (1984) model.

Insert Table 2 about here

In this model Sij represents the addition the item difficulty parameters fii and to account for

the probability of a simultaneous correct response to the two items. In the generalization of the

Jannarone (1986) model to the 2-PL model, besides an additional location parameter 8, also

an additional discrimination parameter -yij is added. This parameter accounts for interaction

between the probability of a simultaneous correct response to the two items and the ability

dimension O.

This approach to modeling dependence between item responses can be generalized

further to polytomous items by adding the appropriate number of rows and columns to the

cross-tabulation of Table 2 and adding the parameters needed to model the additional row and

column effects. As a result, the model for a simultaneous response to item i and item j becomes

cnigjh = Pr (Xnig = 1, Xnjh = 1 I On, cti, f3i, a.; ,

o eXP [ (Ckig en Oig (aihen Qjh) + (7igjhen Oi9ih)1: (26)

where -yigjh = aigjh = 0, if either g = 0 or h = 0. The probability of a response pattern changes

from (4) to

771i Mj mk

PT (fin 9., ck, A-Yip 450 = II 1-1 c:199;ihh H ort
g=0 h=0 10i,j k=0

(27)

LM tests and modification indices for assessing lack of local dependence can be based on

derivatives of the log-likelihood- with respect to -y,93h and Sig3h, evaluated under the null-model

where 7 89jh = 0 and oig3h = 0. Finding these derivatives, denoted h(7,4) and h(6i3), again

proceeds using expression (5). So inserting

1.5
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bn(bigih) = Cr, h Xfti9Xnjh
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(28)

(29)

into (5) produces the desired expressions. Notice that the h(6,0h) is the difference

pz9,xnbetween observing simultaneous responses V'n x and its expected value Er, Err.-.reigjh

6i;). In the same manner, the expression for h(yzgjh) is the difference between

En xnigxnihE(On xn, Oii) and En gcnigjhOn I xn,

A test for the composite null-hypothesis 6joh. = 0, and ryzgjh = 0, for g = 1, ...,mi

and h = 1, can be based on LM(-y,:i,6ii), which is defined by (15) with 002 = =

(-y'ii, 5'.). When this statistic is evaluated using MML estimates of the null-model, it has an

asymptotic x2- distribution with 2m,mi degrees of freedom.

The matrix of weights W defined in (15), can again be found using (11). Therefore,

expressions for B,,(4), Ob) are needed, where (/), and cbb are -yzoh and 6,0h or a parameter of

the null-model. The needed expressions are tabulated in Table 3, they easily follow from taking

derivatives of (28) and (29).

Insert Table 3 about here

As in the previous section, also here special tests can defined for the hypothesis

-yzoh = 0, g = 1, ..., and h = 1, ..., m3, and 6,93h = 0, g = 1, and h = 1, ..., mi. These

tests, denoted LM(-y,3) and LM(6i3) are defined by (15) with c = -y.i3 and c = respectively.

They both have mim3 degrees of freedom. Analogous to the previous section, tests for the

GPCM can be defined as special cases of tests for the NRM. These tests, demoted LM(7,3),

LM(5i3) and LM(-yzi, 6,3) have one, mm3 and 2m,mj degrees of freedom, respectively.

Modification Indices in a Bayes Modal Framework

It is well-known that item parameter estimates in the 2-PL model (and the 3-PL model,

16
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which is beyond the scope of the present paper) are sometimes hard to obtain, because the

parameters are poorly determined by the available data, in the sense that in the region of the

ability scale where the respondents are located, the ICC's can be appropriately described by

a large number of sets of item parameter values. To obtain "reasonable" and finite estimates,

Mislevy (1986) considers a number of Bayesian approaches, entailing the introduction of prior

distributions on the parameters. In the present section, it will be shown how the LM tests and

modification indices presented above can accommodate these assumptions. In particular, two

approaches will be studied, in the first approach the prior distribution is fixed, in the second

approach, often labeled an empirical Bayes approach, the parameters of the prior distribution

are estimated along with the other parameters. Let p( n) be the prior density of the

= (a', /3'), characterized by parameters n, which in turn follow a density p(n). In a Bayes

model framework, parameters estimates are computed by maximising the posterior density of

, which is proportional to In L( X) + lnp( + lnp(27).

First, the prior distribution of will be considered known. Let d( = a In p(

27)/(9 and D( = 02 lnp( I nv a . The first order derivatives of the posterior

with respect to say h *( are given by h*( = h( + d( where h( is defined

in (5), and the Bayes modal estimates are found upon solving h* ( = 0. The opposite of

the second order derivatives of the posterior with respect to say H" ( are given by

H* ( = H( +D(C where H ( CC is defined in (10). Substituting H* (

for H11( in the above LM statistics defines the comparable statistics for a Bayes modal

framework with a fixed prior.

In an empirical Bayes framework, the parameters n, are estimated. Consider the

defmitions of Section 3. The parameter vector 00 was partitioned (41, 0102). In the present

context, 001 is the concatenation (e,779 and 002 can be -y, , bz , or their concatenation, or

, 62, or their concatenation, all depending on the hypothesis considered. The first order

derivatives of the posterior distribution are given by h* (Oo) = a In L( X)I 000 + a lnp( I

77)1600 + a In p(n)/300, which will be written as

h*(00) = h(00) + d(00) + g(4,0). So empirical Bayes modal estimation entails

solving h* ( =0 and h.* ( 77)- 0, that is, h* ( = h( )+d( = 0 and ft* ( = d(n)+g(

= 0 .

The opposite matrix of second order derivatives will be partitioned

H "(00, 00) = (
H;:1(C C
1111(7!, )

11;1(002, C

Hii(C 77)
1111(77,n)

H;1(002, n)

1112(C 002)
H12(77,002)

1122(002, 002)

17
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Let H(00, 00) = 521n L( X)iackoaCt/o, D(00,00) = a21nP( 77)15(Po ack'o, and

G(00, 00) = -132 1nP(77)/0004. Then the opposite matrix of second order derivatives

becomes

1 111(C + D(C) D(C n) 1112(C 002)
11*(00100) = D(n,) D(n,n)+ G(n,n)

11;1(002, 0 H;2(002,002)

Replacing H(00,00) in the above statistics by H* (00, 0) gives the definitions the equivalent

statistics for the empirical Bayes modal framework. In the numerical examples given below,

for dichotomous items, a fixed normal prior on the logarithm of a, with parameters yin a, 01,,,

will be used. For the empirical Bayes example, the natural conjugate prior for the normal

distribution will be used, which is normal for Ain given 01 a and inverted Wishart for 01n

(Ando & Kaufman, 1965). For details on this procedure one is referred to Mislevy (1986).

Multiple Populations and Incomplete Designs

Above, for reasons of simplicity, it was assumed that all respondents were drawn from

the same population and responded to the same set of items. Generalization to a situation where

this is not the case proceeds as follows. Firstly, it will be assumed that Q populations have

normal ability distributions indexed by Aq and at, , q = 1, ..., Q. Further, q(n) is the population

to which respondent n belongs. To identify the model, the first ability distribution will be fixed

to standard normal, and the definition of the vector of free model parameters is now extended

to = (a', 0,1121(72, )PQ)C1C?). Secondly, a missing data indicator z will be introduced.

This vector has elements zni equal to one if a response of person n to item i is observed, and

zero otherwise. In the present context, it will be assumed that the ignorability principle by

Rubin (1976) holds, that is, the missing data indicator does not depend on the unobserved

responses. As a consequence, parameters can be estimated using a likelihood function or a

posterior distribution that is conditional on the value of the missing data indicator. Therefore,

(4) and (5) now become

bn() = a
[ln Pr (x I zn, 9 n, a, 0) +1119(On; Fyn), crq(n))]

= hi On; ilv(n)) 0g(n))1

13

(30)
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The likelihood equations for the population parameters are derived upon observing that

bn(lig(n)) = (9n Aq(n))aq(n)

br,(aq(n)) = + Pq(n))2crq(n),

(31)

(32)

Again using (5), first order derivatives can be derived, and estimation equations are given by

and

= E E(°n I xn, zn,
q nln(q)=q

a q2 = E 48 ! I xn, zn, Aq2,

q nln(q) =q

(33)

(34)

Where Ng is the number of respondents in the sample of population q. First order derivatives for

item parameters are derived from (8) and (9) by replacing the summations in these equations

by summations over respondents n with zni equal to one, that is, the estimation equation for the

parameters of item i only depends persons who have actually responded to item i. In the same

manner, expressions for first order derivatives can be derived for item parameters of alternative

models and for second order derivatives of item parameters.

Imputing these generalized definitions of h(0) and H(ck, ck) into the definitions of

the tests for local independence, LM(-yii,k), LM(-yij) and LM(bii) , results in the statistics

which can also be applied in the framework of multiple populations and incomplete designs.

For the tests for the shape of the ICC's, LM(-yi, bi) , LM(-yi) and LM(6i), some additional

provisions need to be made. This has to do with the fact that the definition of the alternative

model depends on the respondents sum scores r(x)), which, in turn, depend on the partial

response patterns xn(i). However, when every person responds to a unique set of items, setting

19
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boundary scores for partitioning the score continuum becomes quite difficult, because the

rationale of the procedure is that respondents grouped together should be approximately located

in the same region of the latent ability space. Choosing boundary scores related to the proportion

of correct responses is very crude, because the proportion of correct scores not only depends

on the persons' ability, but also on the difficulty of the items. Partitioning the latent ability

continuum and then deriving boundary scores for the respondents is extremely laborious and

completely undermines the philosophy of the approach. Therefore, application of these statistics

must be confuted to designs were the sample of respondents is split up into a number of groups

of respondents who were administered the same set of items. The sets of items are often called

booklets. Then, for every booklet, boundary scores are set in such a way that resulting score

ranges roughly reflect comparable ability levels across booklets. This approach is the same as

the approach of the comparable Si -test for the Rasch model (Glas & Verhelst, 1995).

A Numerical Example

The aim of this section is to give an example of the use of LM tests and modification

indices using real data. The data are a completely random sample of the data emanating from the

central national examinations in secondary education in the Netherlands in 1995. The items used

are from a test concerning reading comprehension in English. To keep the presentation compact,

only the first 10 items of this examination will be used. However, the results did prove typical for

the complete examination. In Table 4, an overview of the data and the MML estimates are given.

The second and third column, labeled "p-value" and "rit" contain the observed proportion correct

scores for the items and the item-test correlations. The frequency distribution of the respondents

unweighted sum scores is displayed in the last column. The remaining columns contain MML

estimates of the parameters and estimates of their standard errors. The columns labeled "Set (.)"

contain standard errors computed using the observed information matrix, given by (11), the

columns labeled "Se(.)" contain standard errors computed using the Fischer information matrix,

given by (13). It can be seen that these two estimates of the standard errors are very close indeed.

Insert Table 4 about here

Next, for these 10 items, LM statistics were computed, an overview is given in Table

5. In this example, for every item, the score range was divided into four sections. There are

several considerations pertaining to the choice of the number of subsets. St of the score range

20
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and the choice of the boundary scores. Generally speaking, the number of score groups will

depend on the number of items and the number of respondents available. Inspection of (22)

and (24) reveals that, for polytomous items, the first order derivatives h(52) are the difference

between the number of persons obtaining an unweighted sum score in category s and scoring

in category g of item i, Enitv(3,.n=i x,, and its expected value.

Insert Table 5 about here

For dichotomous items, this boils down to the difference between the number of persons in s

making the item correct and its expected value. Therefore, it may be a good strategy to form

the subgroups in such a way that the observed and expected frequencies are not to low, which

can be supported by setting the boundary scores in such a way that the numbers of respondents

in each subgroup are comparable. As a side line, it must be mentioned that the fact that the

magnitude of h(6,) depends on a difference between observed and expected frequencies will

be helpful in assessing the severity of the model violations. Due to a large sample size, b, may

differ significantly from zero, yet the severity of the violation in terms of a difference between

the observed and expected frequencies may be insignificant from a practical point of view.

The columns labeled "LM* (.)" contain values for LM statistics computed using exact

expressions for the matrix of second order derivatives. Since four subgroups were formed,

LM* (-y 06'0 has 6 degrees of freedom and LM*(-yi) and LM* (6,) both have 3 degrees of

freedom. To keep the presentation concise, association between items was evaluated for

consecutive items only, the results are displayed in the second panel of Table 5. Here,

LM* (ryti , 8,3) has 2 degrees of freedom and LM* ('y) and LM* (k) both have one degree

of freedom. Finally, the columns of Table 5 labeled "LM(8i3)" and " L M (6 i)" contain LM

statistics computed using the Fischer information matrix. Inspection shows that the values of

these statistics are very close to the values obtained using the exact expressions for the second

order derivatives. This result was typical for all analyses made in this numerical example.

Therefore, in this section no further comparisons between the two approaches will be presented.

Although the primary aim of the tests presented here is to serve as item-oriented

diagnostic tools, they also serve the purpose of evaluation of global model fit, especially if

the number of items is large. Consider the ten significance probabilities of the LM(-yt, 6 2)

test displayed in the third column of Table 5. Under the null-model, that is, under the 2-PL

model, these ten significance probabilities should have an approximate uniform distribution.
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Of course, this is only an approximation, because these 10 statistics are dependent. For reasons

of dependence, one should not combine the significance probabilities of the LM*(-yi3, 4)- ,

the LM* (7,)- and LM*(k)-statistics, because the dependence between these three statistics

is too prominent. This can, for instance, be verified by inspection of Table 5. The same line of

argument also applies to the three tests focussed at dependence between the items. Although

the requirement of independence is also not fulfilled within one LM test replicated over items,

here the dependence is far less prominent, and a fair approximation to the uniform distribution

favors the model. On the other hand, a majority of low significance probabilities is indicative

for global model violation. If, for instance, a significance level of 10% is used, a percentage of

significant tests that greatly exceeds 10% is an indication of poor global model fit.

Insert Table 6 about here

The next interesting question is whether the results of Table 5 are much different in

a Bayes model framework. Two analyses were made, one analysis where the discrimination

parameters are assumed to be drawn from a known log-normal distribution, and an empirical

Bayes analysis where the conjugate prior is introduced to this log-normal distribution. In the

first case, the parameters of the log-normal distribution are fixed to An r = .0 and ah, = 0.5.

The reason here is that these are the default values in Bilog-MG (Zimowski, Muraki, Mislevy,

& Bock, R.D., 1996), which will probably be the software mostly used by practitioners. Above,

it was already mentioned that the conjugate prior for the normal distribution is normal for ph.,..y

given o- and inverted Wishart for o- , (Ando & Kaufman, 1965) Using the terminology of

Mislevy (1986), for this last distribution the parameters m = 5 and b = 1 were chosen. The

results of computation of the LM statistics are shown in Table 6. Generally, the pattern of

significant indices remains the same. For instance, using a 10% significance level, for all three

analyses, item 7 has a significant LM(-y St) and LM(6,). In the same manner, the item pair

3 and 4 has a significant LM(-y.,, 8) and LM(-y.,3) and LM(8,) -test in all three analyses.

However, sometimes the pattern changes. For instance, the significant LM(-y2, 60-test for item

3 disappears in the Bayesian analyses and a significant LM(-y,3, (5,i)-test for the item pair 2 and

3 appears in the empirical Bayes analysis. It must be mentioned that such changes occurred less

when the number of items in the analysis was higher.

Insert Figure 1 about here
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Insert Table 7 about here

In Section 3, it was sketched that using (16) an estimate of a freed fixed parameter

can be computed by performing one Newton-Raphson step. Standard errors of these one-step

estimates can be computed using the diagonal elements of W. In Section 4, the alternative

model was identified by imposing 7i9& = = 0. Therefore, for s =-- 1, ..., Si 1

, the parameters -y,g, and 6,9s can be viewed as the deviations from the discrimination and

difficulty parameter of group St, respectively. However, in practice it proves more elegant

to have confidence intervals for all 5, score levels. Therefore, the MML estimates of av and

13t9 will be imputed in the alternative model as a fixed constants, so that the parameters -Ng,

and 6,93 can be viewed as the deviations from these estimates for all groups s = 1, ..., 52.

This alternative parametrization entails that, for the computation of LM tests and modification

indices, the elements of h(C and H(C) associated with atg and 13,g should be removed.

Because this is just a simple reparametrization of the alternative model, this operation does not

alter the outcome of the LM test.

In Table 7, one-step estimates are computed for the first two items, the results are

displayed under the heading "Modification Indices" in Table 7. Assuming asymptotic normality

of these estimates, they can be transformed into standardized normal indices. An example

using the two items of Table 7 is shown in Figure 1. The circles signify standardized one-step

estimates of -y2, the triangles the standardized one-step estimates of 5,. Using these displays,

the locus of miss-fit can be identified at a glace. For instance, the lack of fit of the second

item is mainly due to the low score level. Of course, an interesting question is how much the

freed parameters will change if new MML estimates are computed, both for the parameters of

the initial 2-PL model and the parameters of interest. In Table 7, these estimates are displayed

under the heading "Parameter Estimates". It can be seen that these estimates are little different

from the estimates under the heading "Modification Indices". The parameters of item 2 in group

4 seem an exception, but this appearant effect vanishes when the estimates are standardized by

their standard error. The fact that new MML estimates were computed for all parameters in

the model supports computing a likelihood ratio test. The log-likelihood of the original model

equaled -12028.783, the model with additional parameters for item 1 resulted in -12027.109,

the model with additional parameters for item 2 resulted in -12023.459. So, the LR-test for

the first item has a value 3.338 (df=6, p=0.764), the test for the second item has a value
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10.648 (df=6, p=0.100). This is in accordance with the other results, the first item seems

to fit, the second might be called a borderline case. The strategy used here may serve as a

prototype: first, compute LM tests and modification indices, which can be done quickly without

additional estimation, then perform additional estimation for items where model fit appears to

be troublesome, and, finally, relax the model in cases of serious violations.

A Power. Study

In this section, an unassuming power study will be presented. It will in no way

be exhaustive, because that would need a systematic variation of sample size, test length,

parameter values and model violations which is far beyond the scope of this paper. The main

purpose of the study was to get a general idea of the power of the LM tests. The arrangement

of the study reported is quite arbitrary. However, the results are not significantly different

from some other simulation studies that ware carried out. The sample size was equal to 1000

respondents, 9 dichotomous items were used. The discrimination parameters -yi were equal to

(.5,.5,.5,1,1,1,1.5,1.5,1.5). The difficulties 6, were(- 1,0,1, - 1,0,1, - 1,0,1). The ability distribution

was standard normal. The first collection of studies was focussed on the tests for the shape of

the ICC's, the second collection of studies was focussed on the tests for local independence.

Insert Table 8 about here

The results of the first collection of studies are reported in Table 8. In these studies, the

ICC of item 5 was contaminated by introducing parameters -y. and 528, s = 1, ..., 4. First, values

were set for some parameter -y, and 6i., these values are shown in the third and fourth column

of Table 8 under the labels "-y," and "6,". Using these values, two patterns of violations were

created, (781, 7i2 Yi3 7i4, bil, biz, 6i3, 6,4) was equal to -, 6,, 6,,
6,) in the first version, and equal to (-y , --6,, 15,, 6,) in the second

version. For an example, consider Table 8, where every row corresponds to a simulation study.

Consider study 18. In the second column it can be seen that this study has the second pattern

of violations, the third and fourth column display that -y = 0.50 and 6,, = 0.50, so here (7a ,

5,1,6i2, 56, 6,4) was equal to (-0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50) .

Using this setup, 100 replications were made for every row in Table 8 , for every replication 1000

response patterns were generated, MML estimates were computed andLM(-yi,6,)-, LM (10- ,

and LM(6,)-tests were performed using a 10% significance level. The proportion of significant
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tests is displayed in the last six columns of Table 8, the tests in the columns labeled LAP()

were computed using the observed information matrix, the tests in the columns labeled LM(.)

were computed using the Fischer information matrix. The first row of Table 8 corresponds

to the null-model, that is, to the 2-PL model, and it can be seen that the proportion of tests

significant at 10% is approximately equal to 0.10, which is as it should be. Further, it can be

seen that the proportions of significant tests are monotone increasing in -rt. and bt., which is

also in accordance with the purpose of the tests. However, an interesting feature of the results is

that all tests are sensitive to all violations, for instance, LM(7t) is both sensitive to a violation

= 0 and St. 0, and a violation -y,, 0 and 62. = 0. In fact, the power of LM(6i) to a

violation 0 and 8t. = 0 is greater than the power of LM(-y,) . So it must be concluded

that attribution of the outcome of the test to specific parameters will be quite difficult. This

result must be attributed to the high correlation between estimates of the item discrimination

and item difficulty parameters, so the reason for the poor discriminative power of the tests

must be attributed to the properties of the 2- PL model, and not to the properties of the tests.

Summing up, the tests must be used as caution indices, and one must not expect to be able to

trace significant results back either the item discrimination or difficulty parameters.

Insert Table 9 about here

Table 9 contains the results of a comparable study to the power of LM(-y2,8,3) ,

LM(-y,i) and LM(6,3). Again, the number of items is 9 and the number of respondents is 1000.

Also the parameters of the 2- PL model were the same as in the previous study. In Table 9, every

row of the table corresponds to a study. Association between items was induced by introducing

additional parameters and 6,3, in the second and third column it can be seen that one half of

the studies the concerns association between item 1 and 5, the other half concerns association

between item 5 and 8. The values of -y,3 and 6 are displayed in the next two columns. For

every study, 100 replications were made and the proportion of LM tests significant at the 10%

level was computed. The results are given in the last 6 rows of Table 9. As above, the tests in

the columns labeled LM*(.) were computed using the observed information matrix, the tests

in the columns labeled LM(.) were computed using the Fischer information matrix. Contrary

to the above studies, the tests prove more discriminative with respect to the specific violation

imposed. So LM(-y) has substantial power for a violation = 0 and 6,3 # 0, while the

power of LM(-y,i) is low. Analogously, for a violation -yti 4 0 and 6j = 0 the opposite applies.
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Discussion

In the present article, it was shown that LM tests and modification indices are a

practical and useful tool for evaluation of model fit. Their practicality is a result of the

circumstance that most of the ingredients needed are available at the end of the estimation

procedure, so very little additional computations have to be made. They are usefulness because

they are item oriented diagnostic tools, which give an indication of the source of model

violations. Potentially, they offer the possibility of directed model relaxation to obtain sufficient

model fit. On the other hand, the discriminative power of the approach must not be exaggerated.

For instance, if the model is grossly violated, a sum score r(x,(:)) on a partial response vector 4i)

may no longer be a valid indication of ability, so that the underpinning of the LM (-y) -, LM

and LM('-y=, 6) -test becomes unrealistic. Further, the discriminative power of the tests is, of

course, also limited by the characteristics of the model, for instance, the power study made

apparent that the well-known dependence between a,9, g = 1, ..., rn and Otg, g = 1, ..., int

obstructed the attribution of model violations to either set of parameters. An advantageous

aspect of some of the statistics is that they are based on a difference between observed and

expected frequencies, so the importance of a significant model test can be assessed in a

framework that is directly related to observed data. The approach presented here can obviously

be extended in several directions. The first extension is tailoring the approach to the 3-PL model.

Further, the model can also be extended to encompass models with multidimensional ability

distributions. Finally, in many structural models on ability parameters, the item parameters

estimates issued from a calibration phase are imputed into the structural model as known

constants. Also evaluation of the validity of these imputed constants when confronted with

the new data seems.another promising area where LM statistics and modification indices might

be useful.
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Table 1
Expressions for Bn ('a, Oa) for the parameters of item i

l'ins or ajh 'rigs or/ixig bin, or QM big, or ,'gig

7ihs 041knihs(1 Onihs) Bn OnihSt)nigs Oni,bnihs(1 Onihs)

'rigs 0,?ylknigaknihs 0!tkigs(1 V'nigs) OniknigAbnihs en,nigs(1 Onigs)

6014 Ontknihs(1 Onihs) 9nOnihsOnigs Onihs(1 lknihs) Onihstknig3
Gigs entknigslknihs OnOnigs (1 Onigs) Onigslknihs 1bnigs (1 knigs)

3 0



Table 2
Cross-tabulation of Probabilities

Pr(xi, xi I cri,

Xi = 0

7ii, Oij) cc

xi = 1
Xj = 0 1 exp(xi0 i3i)

= 1 exp(ctie exp((cri + + *Tii)0 i3i ± bii)
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Table 3
Expressions for Bn(0.,tbb) for the parameters of item i

7ih jig 61h big

7igj h On2cnigih(1 (fligjh) O2 (nig j hCnikj 1 Oncnigjh(1 Cnigjh) On(nigjh(nik jl
7ikj1 94(nikj1(nigjh On2 (nik j1(1 Cnikj1) On Cnik j1(nigjh OhCnikj1(1 (nikj1)
6igjh OnCnigjh(1 (nigjh) On(nigjh(nikji Cnigjh(1 Cnigjh) Cnigj hCnikj1

6ikj1 OnCnikfiCnigjh enCnikj1(1 Cnikjl) Cnikj1(nigjh Cnikj1(1 Cnikj1)
On2(nigjh(1 Cnigji) (nikj1(1 Eh Cnik j1) en(nigj h(1 E, (nig j1) enCnigjh(1 Eh Cnig j h)

(la On2(nighSc',..
l nki en2 CnikjlEh (nikjh) enCnigjh E, Cnikjl OnCnikj/ Eh (nikjh)

/3ig BnCnig h(1 Cnig j 1)j enCnikj1(1 Eh (nigjh) Cnigjh(1 Elnigjl) Cnik j1(1 Eh Cnigjh)
/3ik enCnigjhE, (nik jl OnCnikj1 Eh Cnikj h Cnigjh El Cnikj1 CnikjlEh Cnikjh

3 2



Table 4
Data Summary and MML parameter estimation of 10 Examination Items

Number of observations = 2039

item p-value rit a, A Se -(a;) Se' (A) S:e(cti) Se(A) score frequency
0 2

1 .40 .36 .30 .40 .071 .047 .071 .047 1 7

2 .86 .41 1.28 -2.31 .176 .145 .169 .138 2 23

3 .87 .37 .95 -2.16 .132 .105 .132 .105 3 92

4 .49 .41 .50 .06 .075 .047 .077 .047 4 175

5 .81 .39 .75 -1.59 .103 .074 .106 .075 5 314

6 .57 .42 .59 -.32 .078 .049 .081 .049 6 380

7 .66 .39 .53 -.71 .080 .051 .082 .051 7 425

8 .63 .47 .85 -.61 .097 .055 .100 .056 8 333

9 .62 .40 .49 -.52 .078 .049 .079 .049 9 224

10 .56 .43 .63 -.25 .083 .049 .083 .049 10 64
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Table 5
LM modification indices for 10 Examination Items

item LW (7; ,6; ) p LM* (N) p LW (bi) p LM(bi) p

1 3.26 .78 .87 .83 1.36 .72 1.41 .70

2 11.93 .06 12.64 .01 2 48 .48 2.58 .46

3 13.29 .04 5.48 .14 .75 .86 1.41 .70

4 2.88 .82 1.12 .77 .45 .93 .46 .93

5 4.43 .62 2.29 .52 1.02 .80 .90 .82

6 7.47 .28 2.47 .48 4.29 .23 5.00 .17

7 11.62 .07 4.30 .23 9.20 .03 9.70 .02

8 7.31 .29 3.63 .30 1.53 .67 1.52 .68

9 11.10 .09 5.51 .14 6.10 .11 6.30 .10

10 9.15 .17 6.56 .09 3.76 .29 4.23 .24

item i item j LW (7ii 050 p LW (NJ) p L M* (60 p LM(6ii) p

1 2 4.25 .12 3.39 .07 .62 .43 .64 .42

2 3 .46 .80 .44 .51 .41 .52 .41 .52

3 4 18.91 .00 4.93 .03 19.73 .00 18.69 .00

4 5 .85 .65 .80 .37 .31 .58 .31 .58

5 6 1.89 .39 1.74 .19 .18 .67 .18 .67

6 7 .89 .64 .35 .55 .27 .61 .26 .61

7 8 3.85 .15 3.59 .06 .16 .69 .16 .69

8 9 4.64 .10 .91 .34 2.40 .12 2.22 .14

9 10 2.41 .30 1.73 .19 .24 .62 .23 .63
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Table 6
LM modification indices in a Bayesian Framework

Statistics Computed Using Fixed Prior
item LM(..yi,bi) p LM(N) p LM(&)

1 4.99 .55 2.45 .48 1.97 .58

2 11.83 .07 6.78 .08 2.56 .47

3 4.94 .55 3.58 .31 1.28 .73

4 1.63 .95 .64 .89 .64 .89

5 3.31 .77 2.23 .53 1.14 .77

6 8.37 .21 2.66 .45 5.12 .16

7 11.88 .06 5.54 .14 10.82 .01

8 5.30 .51 2.60 .46 1.58 .66

9 11.73 .07 6.09 .11 7.21 .07

10 9.91 .13 6.25 .10 4.70 .20

item i item j LM(7ij p LM(N1) p LM(bii) p

1 2 1.59 .45 .20 .66 1.57 .21

2 3 .30 .86 .27 .60 .11 .74

3 4 18.49 .00 7.61 .01 17.78 .00

4 5 2.06 .36 2.03 .15 .13 .72

5 6 .58 .75 .53 .46 .27 .61

6 7 .09 .96 .01 .92 .08 .77

7 8 1.85 .40 1.79 .18 .38 .54

8 9 2.04 .36 .18 .67 1.50 .22

9 10 . .42 .81 .31 .58 .06 .81

Statistics Computed Using Emperical Prior
item LM(7i,e5i) p LM(-yi) p LM(6i)

1 15.22 .02 4.55 .21 2.24 .52

2 8.47 .21 7.26 .06 3.90 .27

3 8.25 .22 4.86 .18 1.49 .68

4 1.21 .98 .41 .94 .67 .88

5 4.08 .67 1.15 .76 1.26 .74

6 7.68 .26 2.32 .51 5.27 .15

7 11.59 .07 4.50 .21 10.67 .01

8 6.79 .34 1.31 .73 1.37 .71

9 11.31 .08 4.89 .18 7.52 .06

10 9.50 .15 4.68 .20 4.80 .19

item i item j LM(ryij,60 p LM(7ii) p LM(bii) p

1 2 1.33 .51 .01 .93 1.01 .32

2 3 11.37 .00 .48 .49 .94 .33

3 4 17.20 .00 5.75 .02 16.81 .00

4 5 1.55 .46 1.49 .22 .04 .84

5 6 .98 .61 .91 .34 , .44 .51

6 7 .09 .96 .00 .98 .08 .78

7 8 2.65 .27 2.62 .11 .32 .57

8 9 2.52 .28 .55 .46 1.44 .23

9 10 .70 .70 .58 .45 .05 .83
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Table 7
Modification Indices and Parameter Estimation

Modification Indices Parameter Estimates
item group -yi, bi, se(yi,) se(6;,) bi, se(m) se(6;,)

1

2

1

2

3

4

1

2

3

4

-.169
.013
.230

-.413
-.625

.412
-.272
1.909

.129
-.039
.190

-.432
.642

-.405
.187

-.345

.197

.669

.894

.534

.301
1.865
1.889
3.432

.152

.099

.357

.468

.290

.721

.254

.870

-.159
.013
.243

-.408
-.557
.588

-.274
.391

.124
-.039
.198

-.424
.555

-.510
.182

-.542

.193

.665

.955

.516

.225
2.148
1.387
3.860

.153
.099
.407
.447
.198

1.110
.211
.399
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Table 8
Study of the Power of the Test for the Shape of the ICC

100 Replications per Study

study pattern N., 6i. LM' (7;,6;) LM(7i,6i) L Al" (71) LM (70 LM(6i) LM (6i)

0 0 .00 .00 .10 .09 .11 .10 .10 .10

1 1 .10 .00 .16 .06 .13 .13 .11 .10

2 .25 .00 .29 .36 .17 .23 .32 .33

3 .50 .00 .74 .77 .50 .56 .80 .81

4 2 .10 .00 .29 .13 .17 .17 .13 .09

5 .25 .00 .30 .19 .25 .17 .30 .26

6 .50 .00 .76 .72 .63 .52 .84 .76

7 1 .00 .10 .23 .22 .25 .21 .25 .24

8 .00 .25 :78 .78 .52 .58 .76 .81 .

9 .00 .50 1.00 1.00 1.00 1.00 1.00 1.00

10 2 .00 .10 .31 .23 .25 .23 .32 .26

11 .00 .25 .85 .82 .78 .75 .88 .86

12 .00 .50 1.00 1.00 .97 ..97 1.00 1.00

13 1 .10 .10 .32 .39 .27 .28 .34 .37

14 .25 .25 .97 .97 .84 .89 .99 .99

15 .50 .50 1.00 1.00 .99 .99 1.00 1.00

16 2 .10 .10 .40 .37 .34 .30 .47 .44

17 .25 .25 .95 .96 .93 .90 1.00 .99

18 .50 .50 1.00 1.00 1.00 1.00 1.00 1.00
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Table 9
Study of the Power of the Test for Association between items

100 Replications per Study

study item i item j bii (7; LM(Ni LM' (^tij ) LM(yij) LM `(6;j) L MOO

0 0 0 .00 .00 .09 .09 .08 .08 .11 .12

1 1 5 .05 .00 .10 .10 .10 .10 .13 .14

2 .10 .00 .13 .14 .13 .13 .14 .14

3 .25 .00 .24 .22 .22 .21 .10 .10

4 .50 .00 .55 .57 .68 .69 .11 .11

5 5 8 .05 .00 .15 .16 .13 .12 .07 .08

6 .10 .00 .12 .15 .17 .15 .12 .12

7 .25 .00 .21 .18 .19 .18 .13 .13

8 .50 .00 .36 .38 .46 .47 .15 .15

9 1 5 .00 .05 .13 .15 .06 .13 .14 .15

10 .00 .10 .13 .15 .10 .11 .17 .16

11 .00 .25 .35 .39 .13 .12 .49 .49

12 .00 .50 .92 .92 .13 .13 .96 .96

13 5 8 .00 .05 .13 .16 .06 .06 .17 .19

14 .00 .10 .17 .21 .14 .14 .22 .21

15 .00 .25 .35 .38 .09 .10 .38 .42

16 .00 .50 .90 .91 .14 .15 .93 .94

13 1 5 .05 .05 .11 .11 .11 .12 .09 .10

13 .10 .10 .12 .13 .13 .14 .15 .17

14 .25 .25 .57 .58 .40 .39 .59 .60

15 .50 .50 .97 .97 .90 .90 .93 .93

16 5 8 .05 .05 .11 .11 .07 .07 .11 .13

16 .10 .10 .17 .17 .10 .11 .15 .15

17 .25 .25 .41 .41 .17 .18 .44 .47

18 .50 .50 .87 .87 .51 .54 .83 .84
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Figure 1. Graphic Display of the Efficient Score Test for Two Items.
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