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Abstract

Items with the highest discrimination parameter values in a logistic item response

theory model do not necessarily give maximum information. In this paper it is

derived which discrimination parameter values as a function of the guessing

parameter and the distance between person ability and item difficulty, give maxi-

mum information for the three-parameter logistic item response theory model. An

upperbound for the information as a function of these parameters is derived. This

upperbound for the information function is used to formulate a fast item selection

algorithm for adaptive testing. In a small simulation study this algorithm was one

and half to six times as fast as an algorithm in which the information of all

items in an item bank is calculated.

Key words: adaptive testing, attenuation paradox, item selection, information

function, discrimination parameter, logistic IRT model
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A Simple and Fast Item Sekction Procedure for Adaptive Testing

One of the major features of the information function in item response theory

(IRT) is that it can be used for the selection of items from item banks. This can

be done sequentially during test adminstration as is the case in computerized

adaptive testing (CAT) (Lord, 1980; Wainer, Dorans, Flaugher, Green, Mislevy,

Steinberg, & Thissen, 1990).

Lord (1977) proposed a maximum information selection criterion for adaptive

testing. For the two- and three-parameter logistic (2PL and 3PL) IRT models it

can be inferred that an increase of the item discrimination parameter ai will lead

to an increase of intbrmation. Lord (1980, Eq. 10-6) showed that for the 2PL and

3PL models the maximum obtainable item information is an increasing function

of the squared item discrimination parameter as long as item difficulty bi and

person ability 9 are optimally matched. For the 2PL model, maximum informa-

tion is obtained when item difficulty is equal to person ability. It can also be

shown that the area under the item information function for the 2PL model is

equal to the discrimination parameter. For the three-parameter model, a similar

relation can be found (see Birnbaum, 1968, Eq. 20.4.26).

Insert Figure 1 about here

Figure 1 shows item information functions on a (0-b1)-scale for different

values of the discrimination parameter ai for the 2PL model. It can be seen that

b
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increasing the value of the discrimination parameter will lead to a higher but also

more peaked information function. This phenomenon shows that the area under

the information function is concentrated in a smaller range of ability values, i.e.,

the width of the information function becomes smaller as the discrimination

parameter increases.

Samejima (1994) has shown that the area under the square root of the

information function for the 2PL model is equal to n --- 3.14), irrespective of

the value of the discrimination parameter. This implies that in the 2PL model the

information functions of two items must cross at least once. For reasons of

symmetry, the information functions of two items with the same difficulty

parameter, but with different discrimination parameters, must cross twice. This

fact is shown in Figure 1.

Figure I also shows that, when item difficulty is not equal to person ability,

an extreme increase of item discrimination may lead to a decrease of item

information. This effect has been referred to as the attenuation paradox in IRT by

Lord and Novick (1968, p. 368) and Birnbaum (1968, p. 465).

Insert Figure 2 about here

Figure 2 depicts item information for the 2PL model as a function of item

discrimination for different values of the distance between person ability and item

difficulty. The well-known fact that an item with a high discrimination parameter

is not necessarily the most informative item, and that, therefore, selection of

items in an adaptive test should not solely be based on the discrimination

parameter, can also be seen in Figure 2.
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In this paper, it is shown which discrimination parameter values give maxi-

mum information, and how high this maximum information is. Both the optimal

discrimination as well as the maximum attainable information are functions of the

distance between item difficulty and person ability for logistic IRT models. The

results of this paper are implemented in an item selection algorithm for adaptive

testing, and a small simulation study will show that this algorithm will improve

item selection.

Derivation of Optimal Item Discrimination Parameter Values

In this section, it is determined which value of the item discrimination

para.meter is the most informative one, given certain fixed values of the other

item parameters and the person ability parameter for the 3PL IRT model. The

corresponding maximum information values will also be given. The 2PL model is

a special case of the 3PL model, and the results will therefore also hold for the

2PL model.

The item characteristic curve of the 3PL 1RT model is (Lord, 1980,

Eq. 4-37):

Li
P i(6) = c + (1 -c i) e ,

Li
1+e

(1)

where Li = ai(8-b), and aiE R+, bie R and c;, f0,1) are the discrimination,

difficulty and guessing parameter, respectively, and OE R is the ability parameter.

R and R+ are sets of real and positive real numbers, respectively. In Equation

P1(8) denotes the probability of a correct response to item i for a person
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ability 0. The corresponding item information function is given by:

/i(0) =

(c+eLi)(1+e-L1)2

2a . (1-c )
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(2)

(see e.g. Lord, 1980, Eq. 4-43). The value of a for which a maximum

information function value is reached for fixed values of ci and (8-b1) is found

by setting the derivative of the natural logarithm of the information function with

respect to ai equal to zero, i.e.:

log[Ii(0)] 2 e
Li

(0 -bi) e
-L

= +2 = 0. (3)
aai a Li -L

c.+e 1+e
i

After some elementary operations, this equation can be reduced to:

L. 2L
2c i(1 + Li) + (2(c 1+1)+L)e +(2-L)e I = 0 .

Insert Table 1 about here

(4)

It can be shown that solutions of Equation 4 must lie between -6 and 3 (see

the appendix for proof). Hence, Equation 4 can be solved iteratively, substituting

real numbers for L between -6 and 3. This leads to two solutions of Li, namely

one for (0-b1) > 0 and one for (0-b1) < 0. These two optimal values of Li are

9
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given in Table 1 for crvalues ranging from 0.0 to 0.9 with steps 0.1. From these

optimal Li-values the corresponding optimal arvalues can also be derived. lf, for

example, ci = 0.1 and (0-b1) = -2, then the optimal arvalue will be -1.816 / (-2)

= 0.908. This value is depicted as a cross in Figure 3. The optimal arvalues for

c1 = 0 and for c- = 0 9 are shown as functions of (0-b1) in Figure 3. All lines for

0 < ci < 0.9 lie between the line of ci = 0 and the line of ci = 0.9.

Insert Figure 3 about here

The values of Ii(0)(041)2 in Table 1 can be obtained by substituting the

values for ci and the optimal values for ai and Li in equation (2). An upperbound

for Ii(0) can be found by dividing 1(0)(0-bi)2 by (04,1)2. As an example, for

items with c = 0.1, the information at ability level 0 < bi can be at most:

[ -1.81640 -61)12 0.222

-1.816(1 .e1.816)2 (0 -111)2
(5)

This fact means that the information for items with c1 = 0 1 and (9-b1) = -2 is

always less than 0.055. This value is shown as a cross in Figure 4, together with

the upperbound information functions, for two different.values of ci, namely ci =

0 and ci = 0.6. Similar lines can be drawn for 0 < ci < 0.6 and these lines all lie

between the two previous lines in Figure 4. For ci > 0.6, the lines lie below the

line of ci = 0.6.

U
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Insert Figur. 4 about here

The results in Figure 4 and Table 1 show that three factors determine the

value of the upperbound information, namely I 0-b1 I, sign(8-bi) and c. The

second faztor denotes whether (0-b1) is greater than or less than 0. Keeping the

other factors constant, the maximum information is a decreasing function of both

I 9-b1 I and ci, and it is higher for (8-b1) > 0 than for (9-b1) < 0.

For example, for items with ci > 0.1 and (0-b1) < -2, the maximum informa-

tion is tess than the maximum information for items with ci = 0.1 and

(8-bi) = -2, which in turn are less informative than items with ci = 0.1 and

(3-bi) = 2. As a consequence, when we have items with guessing parameter

values c 0.1 which are more difficult than a person's ability by at least two

units, i.e. (0-b1) 5.. -2, then thei: information 11-(0) 5. 0.055. For items with the

same guessing parameter values, but with (8-bi) 2, the information will be

/j(8) 0.392/4 = 0.098.

Insert Figure 5 about here

Finally, in Figure 5 the upperbound information times the squared distance

between person ability 0 and item difficulty b is shown as a function of the

guessing parameter. These lines are based on the results given in Table 1.

11
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An Item Selection Algorithm

The upperbounds for the information derived in the previous section can be

used to improve item selection for adaptive testing. Suppose that we want to

select items from an item bank in an adaptive test with Lord's (1977) maximum

information criterion. This criterion selects the item which has the highest value

of the information function at a certain value 00 on the ability scale, usually

some provisional ability estimate. An heuristic to select the maximum informative

item at 00 is to calculate the information of all items for this value O. It is not

necessary, however, to compute the information of all items in an item bank to

determine which one has maximum information.

This can be seen as follows. Let cmin be the smallest guessing parameter

value among all items in the itembank. Let I ,+(cmin) and / ,..(cmin) be the

upperbounds of /1-(80)(00-b)2 for positive and negative values of (00-b) ,

respectivel, These upperbounds cmn be found in Table 1 under the heading

/1-(00)(00-b1r for values of cmin under the heading ci. So, for example,

(0.1) = 0.392 and / (0.I) = 0.222. In the following I will either be

/max,+(cmin) or imax,-(cmin).

The following result for two items i and j can be derived:

/2 maxif (80 en ii(00) < 1.00)--bi)- > th
1.(00)

This follows from:

1 0

(6)
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(7)

(8)

'If(%)

/00)(80-bi)2 < /max

013 -bi)

/max
<

(00 -bi)2

The left hand side of Equation 8 follows from the definition of / as an

upperbound of 11-(00)(00-b)2.

So, as soon as it is determined that a certain item j has a certain information

ii(00), then all items i with either positive 00-61 and (00-bi)2 >

mmax,+(cmin)//j(00), or negative 00-61 and (00-61)2 > /max,.(cmin)/ij(00) will

have less information than item j, no matter what values for ai and ci c min are

encountered.

The algorithm

The algorithm has the following initialisation steps:

1. Order the N items in the itembank according to their difficulties:

61 < 62< ...< bN.

2. Determine the smallcst guessing parameter value in the itembank: cmin.

3. Compute the constants tmax,+(cmin) and Imax,.(cmin).

If 00 is an provisional ability estimate after the administration of a set of

items in an adaptive test, then the selection of the next item with maximum

information on 00 from the set of items in the itembank not already included in

the test, consists of the following steps:

13
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Step I: Search for item j with difficulty value equal to the smallest positive

difference (00-bi) among all items.

If 00 < b1 or 00 > bN item j is the easiest respectively the most

difficult item.

Step 2: Search through the itembank for items i in increasing order of

for positive values of (00-b1).

If (00-61)2 > Imax,+(cmin)/I/00), then go to Step 3.

Otherwise, compute Ii(0), if Ii(00) > li(00) set j=i, and continue the

search.

Step 3: Search through the itembank for items i in increasing order of

for negative values of (00-b1).

tIf 0401)2 > hen stop searching.Imax,-(cmin)/1/90)
Otherwise, compute 1i(0), if ii(00) > /le& set j=i, and continue the

search.

Step I can be sped up somewhat by starting the search for item j with an

item that is expected to have a difficulty close to the difficulty of item j. Note

that in Steps 2 and 3 the index j represents the most informative item which is

eventually administered to the test-taker. The answer to this item is scored, and

the test-taker's ability is re-estimated. Item j is then removed from the item bank.

In conclusion, this search process only passes through a part of the itembank,

i.e. the infonnation is computed only for items with relatively small values of

(00-bi)2. This strategy will speed up item selection considerably.

14
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A Simulation Study

To establish the relative speed of this item selection algorithm, a simulation

study was performed in which the above described algorithm was compared to

the algorithm with straightforward calculation of the information of all items in

an item bank. For both algorithms Lord's maximum information criterion was

used to select items. This choice means that for each test exactly the same items,

in the same order, were selected by the two algorithms. So, the algorithms only

differed in their CPU-times. The simulations were performed using a program

written in Borland Pascal 7.0, and were run on a 486DX2/66MHz computer.

Desi gn

For seven different ability values, 9 = -3, -2, -1, 0, 1, 2, and 3, respectively,

adaptive tests of 30 items were simulated. These simulations were repeated for

three different itembanks. Each itembank consisted of 200 items. In all banks, the

distributions of the discrimination parameters and guessing parameters were

uniform. The discrimination parameters were uniformly distributed between 0.5

and 2, i.e. ai U(0.5,2), and the guessing parameters between 0.1 and 0.3, i.e.

c U(0.1,0.3). The three itemhanks differed only in tbeir distributions of the

difficulty parameters bi. One bank had a uniform U(-3,3) distribution of item

difficulties, and in the other two banks the item difficulties were normally

distributed, one with a variance of 1, and the other with a variance of 3. So, the

distributions of item difficulties were U(-3,3), N(0,1), and N(0,3), respectively.

The number of replications for each condition, i.e., each combination of ability

level and itembank, was 100.

15
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Results

In Figure 6, the total amount of CPU-time used to select 30 items in 100 tests

is shown as a function of 0 for the two algorithms and the three item banks. The

three lines a little above 40 seconds show the CPU-time needed to calculate the

information of all items in the bank not already included in the test. The other

three lines show the CPU-time needed by the proposed algorithm to select the

items.

This algorithm improved item selection speed with a factor between 1.5 and

6. For a uniform distribution of the difficulty parameters the relative speed did

not depend much on the ability value of the examinee, but for thc item banks

with normally distributed difficulties the speed did largely depend on the ability

value. For 0 = 0 the amount of CPU-time was relatively high, because there

were relatively many items with a difficulty parameter in this area. So, in these

cases the information had to be computed for relatively many items.

The high CPU-times for extreme negative ability values for the N(0,1)-

distribution of item difficulties may be explained as follows. The item difficulties

are thinly spread around -3. The information of the most informative item j in the

search process was usually not very high, because most of the time (00-by) < 0,

and I 00-bj I is large. So, the range of difficulties of items that can be more

informative than item j is rather large. On the other hand, for extreme positive

ability values the CPU-times were not that high, because the information for

items j with large distances between 00 and bj is higher for (00-by) > 0, than for

(00-by) < 0. Note that for the N(0,3)-distribution, the brvalues were spread out

much more than for the N(0,1)-distribution, and that this effect did thus not

occur.
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Insert Figure 6 about here

Summary and Conclusion

When item difficulty and person ability are not optimally matched, the

optimal discrimination parameter value in logistic item response models is not its

maximum value. This fact has been referred to as the attenuation paradox in item

response theory. In this paper it has becn shown that the optimal discrimination

parameter value is inversely related to the distance between item difficulty and

person ability, and it is derived which discrimination parameter value provides

maximum information at certain points on the ability scale. The corresponding

maximum information is inversely related to the squared distance between person

ability and item difficulty.

The relation between this distance and an upperbound on information can be

used in an algorithm for the maximum information item selection criterion for

adaptive testing. In a small simulation study this algorithm was 1.5-6 times as

fast as a more simple and straightforward algorithm. The difference between

these algorithms is that in the simple algorithm the information function values

for all items is determined, and in the proposed algorithm information is calcu-

lated for a relatively small subset of these items.

It may be argued that this algorithm will not be of much use when so-called

info tables (Thissen & Mislevy, 1990, pp. 116-117) are used, where the informa-

tion of the items is computed in advance, i.e. before the actual testing. This is not

entirely true, because the computations needed to sct up an info table can also be

17
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sped up by means of the proposed algorithm. Moreover, when itembanks are

frequently changed by inclusion of newly calibrated items or exclusion of

rejected ones, this algorithm can be used to compute updated info tables.

Finally, Kingsbury & Zara (1989), and Stocking & Swanson (1993), among

others, have described constrained adaptive testing procedures. Their procedures

may take much time when a lot of constraints are incorporated in the selection

process. So, it may be worthwhile to investigate the possibility of incorporating

the algorithm proposed in this paper into constrained adaptive testing.

l 6
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Table 1

Optimal Li-values and Corresponding Maxima for 1i(0)(0-bi)2

for Different ci-values Given Fixed (8-b1)-Values

c

(0-b1) < 0 (9-bi) >

L. 1(9)(0-b)2 L. 11-(8)(8-bil2

0.0 -2.399 0.440 2.399 0.440

0.1 -1.816 0.222 2.417 0.392

0.2 -1.669 0.145 2.434 0.346

0.3 -1.591 0.101 2.451 0.300

0.4 -1.541 0.073 2.467 0.255

0.5 -1.505 0.052 2.482 0.211

0.6 -1.478 0.037 2.497 0.168

0.7 -1.457 0.025 2.512 0.125

0.8 -1.440 0.015 2.526 0.083

0.9 -1.427 0.007 2.540 0.041

Note. Values for /1(0)(9-b1)2 were rounded upwards to 3 decimals.

20
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Figure captions

Figure 1. Item information functions.

Figure 2. Item information as functions of the discrimination parameter.

Figure 3. Optimal a-value as a function of (0-b).

Figure 4. Upperbound information as a function of (3-b).

Figure 5. Upperbound information times (0-b)2 as a function of c.

The total CPU-time for two Maximum Information Item Selec-

tion Mgorithms for ICO 30-item Adaptive Tests for three 200-

item Itembanks.
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Appendix

Proof that Solutions of Equation 4 Must Lie Between -6 and 3

This proof is split in the following two parts: (1) proof that solutions of Equation

4 cannot be less than -6; and (2) proof that solutions of Equation 4 cannot be

greater than 3.

(1) Proof that L > -6

Equation 4 can be rewritten as:

2 Li L 1 Li
2c i(1 +Li) + (2(c i+1)+_L)e +[(2-L)e +_Lile = 0. (9)

3 3

The left part of Equation 9 is negative if Li < -6, because it consists of three

parts, which are all negative if Li< -6:

(a) the first part, 2ci(1+L1), is less than or equal to 0 if Li< -1. So it is also

less than 0 if Li< -6;
2 Li

(b) the second part, (2(c1+1)+7L )e is less than 0 if Li < -6,

because 2( ci + I ) + 4.L 1 < <=> Li< -3(c i 4-1) , and -3(c1+1) > -6,

because ci < 1; and
Li Li

i(c) the third part, [(2 -L +...1.L de s less than 0 if Li < -6,
Li Li 1

because e is positive and [ ( 2 -L i)e + i] is negative if
Li 1

Li < -6; [ (2 -L)e +7L1] is negative because it is an increasing

function of Li for Li <1, Which is negative for Li= -6.

28
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(2) Proof that L. < 3

Equation 4 can be rewritten as:

[ 1
2ci 2c1 2(ci1)

1 2 ...1 . 0. (10)Lie2Li
2L L; L L;

Le e 1 L.e e 1

The part between brackets in (10) is a decreasing function of Li for Li.> 0, and it

can be found by substition that for Li= 3 this part is smaller than 0. So, the part
2L

between brackets is ngative if Li> 3. Combining this result with Lie
i

> 0 if

Li> 3 completes the proof that the left part of Equation 10 is negative if Li> 3.
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