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Abstract

The assessment of dimensionality of the data is not only
important to item response theory (IRT) modelling, but has
also been important to other multidimensional data analysis
techniques. T..e fact that the parameters from the factor
analysis formulation for dichotomous data can be expressed in
terms of the parameters in the multidimensional IRT model,
suggests that the assessment of the dimensionality of the
latent trait jpace can also be approached from the factor
analytical point of wview. In this paper some problems
connected with the assessment of the dimensionality of the
latent space are discussed and the conclusions are suppcrted

by simulated results.
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On the Assessment of Dimensionality in

Multidimensional Item Response Theory Models

The dimensionalit of a set of test items has been a
source of debate in educational and psychological literature.
The development of the well-known one-, two-, and three-
parameter item response theory (IRT) models has increased the
need of adequate tests for the unidimensionality of the
latent trait space. See Hattie (1985) for a review of methods
to assess unidimensionality. In many situations the
assumption of a unidimensicnal latent trait is untenable and
this has lead to the development of multidimensional latent
trait models. As these models gained currency in educational
research and their application became feasible by the
development of computer programs like TESTFACT (Wilson, Wocd
& Gibbons, 1984), NOHARMII {(Fraser, 1988) and MAXLOG
(McKinley & Reckase, 1983), the need for a measure to assess
the adequacy of the model 1i.e. the assessment of the
dimensionality of the latent trait space, increased. It is
well-known that misspecifications of the dimensionality of
the model will severely change the estimates of the item
parameters. Unfortunately no widely accepted index to
identify the dimensionality of items is yet available.

“he dimensionality of data is not only an important
issue in IRT modelling, but has also been important to other
multidimensional techniques, such as factor analysis.
Recently it hes become known, that there 1is an important

relation between the multidimensional IRT model and the

i
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factor analysis model for dichotomous data. Takane and de
Leeuw (1987) showed the formal equivalence of the marginal
likelihood of the multidimensional two-parameter normal ogive
model (Bock and Aitkin, 1981) and the 1likelihood of the
factor analysis model for binary data (Muthén, 1978). This
means that the IRT parameters can be expressed in terms of
the parameters of the factor analysis formulation. An
empirical comparison done by Knol and Berger (1990) showed
that for the simulated conditions, common fa tor analysis
estimation procedures performed equally well as the marginal
maximum likelihood estimation of the IRT parameters proposed
by Bock and Aitkin (1981). The estimates of the item
parameters obtained from MINRES (Harman & Jones, 1966; Zegers
& Ten Berge, 1783) computed on tetrachoric correlations among
the items, for example, were gquite comparable with the
estimates obtained from TESTFACT. Tbese results suggest that
the problem of assessing the dimensionality in
multidimensional IRT models for dichotomous data can also be
approached from the factor analytical point of view.

A number of empirical studies have been devoted to this
problem. Ha.tbleton and Rovinelli (1986), Tucker, Humphreys,
Lloyd and Roznowski (1986) and McDonald (1985) among others,
considered various measures and Muthén (1978) and Bock and
Aitkin (1981} provided formal statistical tests.

The purpose of the present study 1is to discuss some of
the problems connected with the assessment of the
dimensionality of a latent space and to compare some factor

analytical methods for the assessment of dimensionality with

5
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procedures available from multidimensional IRT models. First,

however, a short description of dimensionality will be given.

The Dimensionality of the Latent Trait Space

Multidimensional IRT models assume that an examinee |is
characterized by more than one latent trait. Let § be the
vector of m latent traits of an examinee, i.e.
@ = (64, 05 ,..., 8p]. An examinee can be represented as a
point in an m-dimensional latent trait space. If each of the
traits influences the performance of the examinee on at least
two of the n items in a test, then m is the dimension of the
latent space. This definition of dimensionality is connected
with the principle of 1local indepeadence. The formal
requirement of the independence of a set of item responses
X = (X1, X2, ... , Xul, is that the joint distribution of the
responses given a latent trait vector § 1is equal to the
product of the marginal distributions of the items given §,

i.e.:

n
Pix=xl@) = T P(Xy=xy19). (1)

This means that if a population of examinees is characterized
by m latent traits which completely span the latent space,
then the responses of a ‘sub’ population of examinees with

fixed values for 8§ are mutually statistically independent.

4
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If, however, a model specifies a number of latent traits,
which do not completely span the latent space, then there
will still remain mutual dependencies among the items for
fixed values of 8. This is why McDonald (1989) concluded that
ocal independence is not an assumption as such, but merely
defines the dimensionality of the latent traits. In other
words, the local independence principle is formally trivial,
if no further conditions are added. In addition to locally
independent models, Jannarone (1986) presented conjunctive
locally dependent models. Although Suppes and Zanotti (1981)
presented a prc¢cess in which any locally dependent model can
be replaced by an equivalent locally independent model and it
may be concluded that all latent trait models are in fact
locally ipndependent models, this does not mean that the
dependent models discussed by Jannarone (1986) do not provide
meaningful alternatives to the more traditional independent
models. However, dependent models will not be considered in
this paper.

The above definition of dimensionality of the latent
trait space does not make a distinction between dominant and
nondominant dimensions. For example, 1if some of the latent
traits guide the performance on only a few items in a test,
then these traits are not as important for the expianation of
the total variance as traits that influence all items in that
test. An example of such a dominant trait is a ‘readirg’
trait for a verbal test composed of items on various topics.
One of the problems encountered in assessing the

dimensionality of the items is the existence of such dominant

|
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(major) dimensions together with less dominant (minor)
dimensions and this distinction may explain some of the
conflicting results found in a number of studies on the
assessment of dimensionality.

Another problem with the traditional definition of
dimensionality, is that the principle of local independence
is really a very strong principle. Goldstein (1980) doubts
whether this condition is actually met in real life data. To
assess the dimensionality of items all higher order cCross-
product moments should be considered. Instead, the assessment
of dimensionality is often restricted to the inspection of
only first oxrder correlations. McDonald (1981,1985) refers to
this as a 'weak’ form of the principle of local independence.
Since multivariate normal variables are mutually indeperndent
if, and only if all covariances are zero, this ’weak’ form
implies the ‘strong’ form of local independence under
multivariate normality.

Both above mentioned problems with the traditional
definition have led Stout (1987, 1989) to relax the
definition and to propose a more practical term, namely
essential dimensionality which is based on the concept of
essential independence. His definition of essential
independence is as follows. Given a vector of latent traits
@, the n responses in X of a sample of N examinees are

essentially independent, if X satisfies

-~
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-0 as n — o (2)

c ,x416=0) |
D, (@) = IZ | ovi(xy,x4169=0)
{<ji<n ( n )
2

If the average covariance of the responses is small in
magnitude, then the responses of a ’‘sub’population with fixed
@’'s are said to be essentially independent, asymptotically.
The essential dimensionality of an item pool is the minimal
dimensionality necessary to satisfy the essential
independence principle. This definition of dimensionality is
easier to implement than the traditional one. Although all
common measures for the assessment of dimensionality are
implicitly based on this definition, only the measures based
on "residuals” are a direct implementation of this principle.

Generally procedures to assess dimensionality can be
grouped into the followiny four categories:

- Procedures based on formal statistical tests for the fit of
a model.

- Procedures based on information theoretic model selection
criteria.

- Procedures based on the total amount of explained variance.
- Procedures based on "residuals™ after a model has been
fitted to the data.

In the following sections each of these procedures and the
problems connected with their wuse, will be described.
Finally, some results based on simulated data will be given

for each of these procedures.
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Formal Statistical Test for the Fit of a Model

Bock and Aitkin (1981) proposed to apply the multiple factor
analysis model to dichotomous data. They assumed that an
unobserved response process Yiqr for person i and item j is a
linear function of m normally distributed latent variables
0= 04, 040, .--s O4m) and factor loadings

ng [le' ij,... ljm], i.e.:
Yij = leeil + ljzeiz + ... ljmeim + Vs (3)

8ix is the ability of person i on ability dimension k, A4y is
the loading of item 3j and dimension k and vj4 are error
terms; Vy4 - MUN(Q,T2), where I'? is diagonal matrix with
positive elements ojz. In contrast to «classical factor
analysis for continuous data the unobseivable process Yi4 is
connected to the dichctomous response variables X4 4 by the

following mechanism:

{ if Yi4 2 Y4, then X4 = 1

otherwise Xi4 = 0,
where Y4 is a threshold parameter connected with item 3.

The probability of answering an item 3 correctly, given the

apbility vector §4 for person i is

13
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Pixiy=1185) = @ ((yy - kgl Ayk01x) 704} (4)

where ® is the cumulative standard normal distribution. To
obtain the parameter estimates, Bock and Aitkin (1581)
developed an iterative marginal maximum likelihood estimation
procedure based on the EM algorithm due to Dempster, Laird
and Rubin (1977). “ne procedure was implemented in TESTFACT
by Wilson, Wwood and Gibbons (1984).

If the sample consists of N persans with responses on n
items, then there are s S min(2P,N) distinct response
patterns. The estimated ijoint probability of the response

patterns is:
]
Lp = N! T ——— (5)

where r; is the frequency orf response pattern 1 and §l is the
estimated marginal probability of the response pattern
computed from the item parameter estimates. The well known

likxelihood ratio statistic is:

—
LR o B

S
G2 - 2z [ Z

ry
ry in — -~
1=1° 1 N

ry in §l ] . (6)
1 1

with dfy= s - n(m+l) + m(m-1)/2 iegrees of freedom.

14
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By means of this statistic two different test procedures can
be carried out to decide the smallest number of factor such
that the model fits the data.

The first procedure is based on a sequence of tests of
the hypothesis Hp«: m = m* against the alternative m > m=*,
for a stepwise increase of the number of factors

m*= 1, ..., n. The procedure stops when

sz s x%—a,dfm‘ (N

The second procedure 1is based on Haberman’s (1977)
result that the difference of two statistics for alternative
models is asymptotically chi-square distributed with degrees
of freedom equal to the difference of the degrees of freedom
corresponding to each of the two statistics The sequence of
tests of the bypothesis Hgpe: m = m* against the alternative

m=m*+1 form* =1, ..., n-1, stops when:
2 =2 - g2 2
Giiff = Gm ~ Sp+1 S Xi-q, (n-m) (8)

This procedure is especially useful when some of the expected
cell frequencies are almost zero. This may often be the case
when N < 20,

Both procedures can be carried out by the TESTFACT
program and Bock, Gibbons and Muraki (1988) concluded from an

empirical comparison that these Procedures seem adequate in
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selecting the number of factors. There are, however, some
problems connected with these test procedures.

The first problem is that of the asymptotic
distribution. Kendall (1977) has pointed out that Pearson’s
chi-square and the 1likelihood ratio statistic are often
regarded as equivalent becaase of their asymptotic
properties. In practice, however, the results may be very
different. Although maximum likelihood estimators of
parameters retain standard large sample properties under
various conditions, the large sample approximation of chi-
square statistics are often unacceptable., Moreover, the
asymptotic test for the fit of a model is generally very
sensitive to sample size. For relatively small samples the
procedure is unreliable, because of the small expected cell
frequencies and for large samples the procedure almost always
favours the alternative hypothesis (McDonald, 1989).

A second problem 1is the <choice of the 1level of
significance. The adequate selection of the number of factors
is in fact a multiple decision problem. In general, a whole
family of hypotheses 2 = | Hi‘iel } can be considered, where
I is an index set. Corresponding with each hypothesis Hjy
there is a real valued statistic G%. The family of statistics
G = { G%lieI } and the family of hypotheses {2 tcgether form a
a so-called testing family (2, G]. The overall probability a
of making type I errors is unknown. and some sort of
simultaneous test procedure (STP) will be needed to control a
for the whole testing family. Although a 1likelihood ratio

based STP is available for the testing of association in a

16
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contingency table (Gabriel, 1969), there is no STP available
yet for the fit of a multidimensional IRT model. Some sort of
correction, like the one proposed by Aitkin (1979) may be
useful. His correction is based on the fact that the upper
limit of the overall ¢ for n tests with level of significance
a; is {1 - (1-ay)"}.

A third problem is the coherence of the procedure. The
hypotheses Hjy for the testing of the dimensionality of the
latent trait cspace are ordered. A two-dimensional model, for
example, will explain more variance than a one-dimensional
model. If the hypothesis of unidimensionality of the latent
space Hi 1s accepted, a coherent test procedure will also
accept the hypothesis Hy that there are two dimensions.
Gabriel (1969) proved that for 1likelihood ratio based
statistics Gf the testing family is monotone, 1i.e. whenever
two hypotheses Hy and Hy are ordered (nested) such that i<J,
the numerical relation G7 2 G% holds for {i,3 € I}.
Increasing the number of factors in the model will decrease
the values of the likelihood ratio statistics for the fit of
the model. Note that tests based on the union intersection
principle are also monotone, but that Pearson’s chi-square
statistic is not (Gabriel,1969).

The monotonicity of the testing family, however, does
not necessarily indicate that the testprocedure is coherent.
Coherence prevents the contradiction of rejecting a model
with say m factors without also rejecting all models with

less than m factors.

—
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To illustrate the above mentione problems the results
for the Bock and Lieberman (1970) LSAT~-7 data are given in
Table 1. It seems difficult to draw conclusions. For a
significance level wy = 0.10, the results give evidence of a
two factor model. If the relative large sample size is taken
into account and a smaller ay is selected, ay = 0.01, then a
one factor model seems more appropriate. The non-coherence of
the test procedure is demonstrated by the fact that the p-
values do not always increase as the number of factors
increases. Although this example does not actually show an
incoherent decision, it can be seen that the possibility

exists.

Insert Table 1 about here

A Model Selection Criterion

Since we are dealing with a model identification problem and
inferences are based on maximum 1likelihood, it is suggested
to assess the dimensionality of the latent trait space by a
model selection criterion which does not have the above
ment ioned disadvantages of the formal test procedures.

Akaike {1974) developed an information theoretic

criterion for the identification of ocoptimal and parsimonious

15
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models in data analysis. Rkaike’s information criterion for
model (4) takes the form of a maximized likelihood and is

defined as:
AIC(m) 3 -2 In{ Lyp@,& 64,791 + 2 Xy, (9)

where Ly (8,4 G5 ¥4) is the maximized likelihood and ky is the
number of independent parameters in the model. ({-AIC(m)/2}
is an unbiased estimate of the mean expected log 1likelihood.
The first term of AIM(m) is a measure of badness of fit. The
term 2k, is the penality term correcting for overfitting due
to the increasing bias in the first term as the number of
parameters in the model increases. The model with the minimum
AIC(m) value 1s chosen to be the best fitting model. Bozdogan
and Ramirez (1988) and 1Ichikawa (1988) showed that the
criterion worked quite good in assessing the number of
factors in ML factor analysis. A review cf the general theory
is given by Akaike (1987) and Bozdogan (1987).

To assess t' . dimensionality, it will be convenient to
formulate a criterion comparing the likelihood of the model
with m factors with that of the saturated model. The log of

the maximized likelihood for the normal ogive model is:

S S
in (L) = ln N! +121r1 in By -lEvln (ryt). (10}

-
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Th. » number of independent estimated parameters is
n{m+l)-m(m-1)/2. Subtraction of this expression from that of
the log of the 1likelihood for the saturated model with
s € min(29,N) different response patterns, results in the

following AIC expression:
y Loy B
AIC(m) = 2 { £ ry In — -~ ry; 1In ] - 2(dfp) . (11)
m 1=1 1t N 1=t 1 m

A minimum wvalue for the AIC(m) critericn will indicate the
'true’ dimensionality. In Table 1 the AIC(m) values are given
for the LSAT-7 data. These values show that a 2-factor normal

ogive model would probably be the best fitting model.

Procedures Based on the Proportion of Explained variance

The determination of the number of components in principal
component analysis and in factor analysis 1s often based on
the amount of explained variance, i{.e. based on criteria
formulated on the eigenvalues of a correlation matrix. Among
these procedures are the well known Kaiser’s (1960)
eigenvalue greater than 1.0 rule, the scree test of Cattell
(1966) and the parallel analysis method (Horn, 1965)., A huge
amount of research has been done on these methods. Although
there are sometimes conflicting conclusions, the main trend
seems to be that parallel analysis and the scree test perform

quite good for continuous data (Zwick & Velicer, 1986).

QU
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Similar methods have also been proposed for dichotomous
data. Collins, Cliff, McCormick and Zatkin (1986)
investigated the modified scree test on phi and tetrachoric
correlations and concluded that Dboth procedures perform
poorly. Although they prefer the analysis with phi-
correlations, Green (1983) and Hambleton and Rovinelli (1986)
among others, found that phi coefficients produce spurious
factors based on the difficulty level of the binary items. On
the other hand, Drasgow and Lissak (1983) found that a
modi fied parallel analysis was quite good in detecting the
unidimensionality of dichotomous data. Tucker, Humphreys,
Lloyd and Roznowski (1986) compared some eigenvalue indices
and found that these indices did not work very well. Recently
Bernstein and Teng (1989) questioned the application of
eigenvalue criterjia to categorical data. They concluded that
false evidence of multidimensionality is often found. These
results do not seem to be very encouraging. Moreover, there
are sSsome problems in applying eigenvalue criteria to
dichotomous data.

The first problem with these criteria is the choice of
correlation coefficient. Phi coefficients generally produce a
positive definite correlation matrix and tend to avoid the
problem of Heywood cases. On the other rand, phi coefficients
tend to overestimate the number of underlying dimensions. The
use of tetrachoric correlations will produce a more reliable
estimate of the underlying dimensions, but the sample based
estimate of the correlation matrix is often not positive

definite and tends to produce more Heywood cases. Although
£y ¢
Y
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fast and generally accurate computational &lgorithms exist
(Divgi, 1979) the coefficients will become unstable when
extreme values are reached. Morecver, the use of tetrachoric
correlations is inappropriate when ability distributions are
not normal and the item response function is not normal ogive
(Lord, 1980). Of course, the problem of non positive
definiteness can be avoided by smoothing the correlation
matrix. But this may change the pattern of the eigenvalues,
especially when n is relatively small,

Pnother problem which is not generally recognized, |is
that the pattern of the eigenvalues depends on the size of
the discrimination parameters of the items. ©Under the
assumptions for model (3), that the abilities 8; ~ MVN(Q,I)
and the errors 14 ~ MVN (¢,T?), the covariance matrix of the

unobsexvables yiq 1is:
I, = AA’ + T2, (12)
The nxm matrix of factor loadings is A and r? is a diagonal

matrix with unique wvariances ojz. Under multivariate

normality the population correlation matrix is:

R = (Diag(AA’)+T217 Y2 (AA7+T2) [Diag(AA’)+T2]7Y/2 (13)
Equation (13) can also be written as:

1/2

1/2[I+ AA’) [I+Diag(AA’)] , (14)

R = [I+ Diag(AA’)]

Q . (L
ERIC 2
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where A is an nxm discrimination parameter matrix and relates
to A by A= I'"1A. It can be seen, that an increase of values
of the discrimination parameters will generally increase the
correlations.

There is no analytical expression available for the
eigenvalues of an arbitrary correlation matrix, but from a
theorem due to Ger;gorin (see Pullman, 1976) an upper limit
of the largest eigenvalue epax of an arbitrary positive

definite matrix can be derived:

n
emax S max{j&llrijl , i=1,...,n} , (15)

where ry- is an element of R. This upper limit {s generally a
good approximation of the largest eigenvalue of a correlation
matrix (Morrison, 1976). Increasing the discrimination values
will increase the correlations among the items and will
increase the largest eigenvalue. Since Ly ey = n, increase of
the largest eigenvalue will generally decrease the other n-1
eigenvalues.

In conclusion, the pattern of the eigenvalues of the
correlation matrix 1is influenced by the size of the
discrimination parameters of the items and a procedure based
on the pattern of the eigenvalues may lead to erroneous
conclusions about the dimensionality of the latent trait

space.

'
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Procedures Based on Residuals after Fitting the Model

One of the conclusions drawn by Hattie (1984) and Hampleton &
Rovinelli ° 36) was that residuals obtained from nonlinear
factor analysis could very well determine the correct
dimension of a latent trait space and McDonald (1981,1989)
recommended the use of the mean (absolute) residuals.

If Ap is the nxm estimated matrix of factor loadings
from a solution with m estimated common factors, and R is the
tetrachoric correlation matrix, then the ©off-diagonal

elements of the matrix:
R* = R - ApAp’ (16)

*
are the residuals ryi4. The mean squared and mean absolute

residuals are:

£f.= 2 -1l gL (et 2
1 {(n{n-1)] te3 (ryy)
and
£.= 2(n(n-1)1"1 T L letyl 17
2 (n(n-1) ] <3 rij (17)

respectively. Since the squared residuals f; are generally
more sensitive to outliers than absolute residuals f;, only
the results for f, will be reported in this study.

It has already been mentioned, that the mean absolute
residuals is an implementation of the definition of essential

dimensionality by Stout (1987, 1989). The only problem in

LW .llj
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applying this criterion is that it may not be clear when the
value of the criterion is small enough. A possibility is to
compare the f; criterion after the fit of an m-dimensional

model witl values of this criterion from random data.

Conditions for the Simulation Study

To compare the performances of the different measures binary
data matrices were generated for known difficulty and
discrimination parameters. Though several values for these
parameters were considered, the results of only two matrices
with different discrimination parameter values will be given,

The two matrices are:

The notation in brackets (5x) indicates that groups of 5
items have the same pattern. The sample sizes were set equal
to N = 250 and N = 500, and the number of items was n = 15.
Each group of 5 items with the same discrimination parameter
values has difficulty parameter values -2, -1, 0, 1 and 2.
Generation of data from a one-dimensional and a two-
dimensional latent trait model was done by using the first
and the first two columns of matrices A; and Ajjg,
respectively. The actual generation of the binary data for
the multidimentional IRT model was done by using the random

number generator of the NAG (1984) program library and the

' o
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sample tetrachoric correlations were computed Dby a

modification of the Divgi (1979) procedure.

Results

For almost all conditions of the simulation study the Gé test
procedure erroneocusly favoured the alternative hypotheses.
The results for the sziff test procedure are given in Tables
2 and 3.

These results indicate that the test procedure is often
not capable of locating the correct dimension cf the latent
space. The results in Table 2 show that the test procedure is
not capable of locating the minor third dimension. It must be
emphasized that these results are based on only 10 simulated
data matrices per condition and that more simulations will be
needed to draw firm conclusions. The huge amount of computer
time needed by TESTFACT prevented us from expanding these

simulations.

Insert Tables 2 and 3 about here

The results for the AIC criterion are given in Tables 4
and 5. Although there are misspecifications, it can be seen
that the AIC criterion tends to locate the correct dimension

of the latent space somewhat better than the xaiff procedure.

26
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Again it must be emphasized, that the number of sixulated

runs is small, due to the large amount of CPU time needed to

run TESTFACT.

Insert Tables 4 and 5 about here

Figures 1 and 2 show the eigenvalue patterns for the two
discrimination parameter matrices Ay and Aj;. The points in
the Figures indicate the means of the eigenvalues for 50 runs
and the vertical lines from the plotted points indicate the
range of the eigenvalues. The almost horizontal line is the
eigenvalue pattern for random data matrices. The Figures show
that only parallel analysis seems adequate, although the

minor third dimension in Ay is not recognized.

Insert Figures 1 and 2 about here

Residuals have been obtained from various estimation
procedures. In the Figures 3 through 8 the results are given
for the common factor analysis procedure MINRES performed on
the matrix of tetrachoric «correlations, the residuals
obtained from TESTFACT and the residuals obtained after an
unweighted least squares approximation of palrwise

proportions due to McDonald (1985) and computed by NOHARMII.
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The computer program MAXLOG, with Jjoint ML es.ination was
also considered. The residuals from MAXLOG, however, were not
very adequate, probably because of the drift of the

discrimination parameters.

Insert Figures 3 through 8 about here

The pattern of the residuals show a relatively 1large
drop of f, after a model with the correct dimension of the
latent traits is fitted to the daca. Comparison of the £y
values with those from random data indicate that all
procedures perform quite well and that residuals from
NOHARMII even were able to discover the minor third dimension

in AI'

Summary and Conclusions

The assessment of dimensionality of the latent traits is
a difficult problem and each of the discussed measures has it
own disadvantages. In this paper the assessment of
dimensionality is approached from the factor analytical point
of view. Although the results from this study do not indicate
that »>ne of the measures performs best 1in assessing the

dimensionality of a latent space, the results seem toO

()8
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indicate that some of the measures are not very good. The
following conclusions may be drawn from this study:
- Asymptotic 12 tests for the fit of a latent trait model are
not very reliable. The AIC criterion seems to perform
somewhat better, but more research will be needed to draw
definite conclusions.
~ The structure of the matrix with discrimination parameters
is crucial for the performance of the eigenvalue measures,
because the size of the discrimination parameter values
determines the explained variance of each factor 1in the
model.
-The disadvantages of the eigenvalue criteria and their
performance in this study lead to the conclusion that these
measures should be avoided. Parallel analysis, however, did
perform quite good.
~ The "residual” measures from TESTFACT, MINRES and MNOHARMII
performed quite good, and even a minor dimension could be
located by NOHARMII.

Finally, it must be noted, that the conditions of this
study were limited and that the results from TESTFACT were
based on a small number of runs. More simulations will be

needed to drawn more definite conclusions.

ANS



Assessment of Dimensionality

25

References
Aitkin, M. (1979). Simultaneous test procedure for
contingency table models. Applied Statistics, <8, 233-

242.

Akaike, H. (1974). A new 1look at the statistical model
identification. tra ’
AC-19, 716-723.

Akaike, H. (1987). Factor analysis and AIC. Psychometrika,
Eas -17-332.

Bernstein, I.H., & Teng, G. (1989). Factoring items and
factoring scales are different: Spurious evidence for

multidimensionality due to item categorization.

Psychological Bulletin, 105, 467-477.
Bock, R.D., & Aitkin, M, (1981). Marginal maximum likelihood

estimation of irvem parameters: Application of an EM
algorithm. Psvchometrika, 46, 443-459.

Bock, R.D., & Lieberman, M. (1970). Fitting a response model
for n dichotomously scored items. Psychometrika, 33,
179-197.

Bock, R.D., Gibbons, R., & Muraki, E. (1988)., Full-
information item factor analysis. Applied Psychological
Measuremeat, 12, 261-280.

Bozdogan, H. (1987). Model selection and Akaike’s information

criterion (AIC): The genral Theory and its analytical

extensions. Psychometrika, 52, 345-370.

]



L

Assessment of Dimensionality

26

Bozdogan, H., & Ramirez, D.E. (1988). FACAIC: Model selection

algorithm for the orthogonal fictor model using AIC and

CAIC. Bsvchometrika, 23, 407-415.
Cattell, R.B. (1966). The scree test for the number of
factors. Multivariate Behavioral Reseaxrch, 1, 245-276.

Collins, L.M., Cliff, N., McCormick, D.J., & Zatkin, J.L.
(1986) . Factor recovery 1in Dbinary data sets. A
simulation. Multivariate Behavioral Research, 3, 377-
392.

Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximam
likelihood from incomplete data via the EM algorithm
(with discussion). Jourpal of the Roval Statdistical
Socjety, Series B, 39, 1-38.

Divgi, D.F. (1979). Calculation of tetrachoric correlation
coefficient. Psychometxika, 4Q, 5-32.

Drasgow, F., & Lissak, R.I. (1983). Modified parallel
analysis: A procedure for examining the latent
dimensionality of dichotomously scored item responses.
Journal of Applied Psvchology, 68, 363-373.

Fraser, C. (1988). NOHARMII. A Fortran program for fitting
unidimensional and multidimensional normal ogive models
of latent trait theory. Armidale, Australia: The

University of New vland, Center for Behavioural
Studies.

Gabriel, K.R. (1969). Simultaneous test procedures - Some
theory of multiple comparisons. The _Annals of
Mathematical Statistics, 4Q, 221-250.

.
>

-
el E



(SO SN
=

Assessment of Dimensionality

27

Goldstein, H. (1980). Dimensionality, bias, independence and

measurement scale problems in latent trait test score

models. British Journal of Mathematical and Statistical

Psycholoay, 33, 234-246.
Green, S.B. (1983). Identifiability of spurious factors using

linear factor analysis with binary data. Applied

Psychological Measurement, 1, 139-147.
Haberman, S.J. (1977). Log-linear models and frequency tables

with small expected cells counts. Annals of Statistigs,
5, 1148-1169.

Hambleton, R.K., & Rovinelli, R.J. (1986). Assessing the
dimensionality of a set of test items. Applied

Psychbological Measurement, 1Q, 287-302.

Harman, H.H., & Jones, W.H. (1966). Factor analysis by
minimizing residuals (MINRES). Psychometrika, 31, 351-
368.

Hattie, J.A. (1984). An Empirical study of wvarious indices
for determining unidimensionality. Multidimensional

Behavioral Research, 13, 49-78.
Hattie, J.A. (1985) . Methodological review: Assessing

unidimensionality of tests and items. Applied
Psychological Measurement, 2, 139-164.
Horn, J.L. (1965). A rational and test for the number of
factors in factor analysis. Psychometrika, 3¢, 179-185,
Ichikawa, M. (1988). Empirical assessments of AIC proaocedure
for model selection in factor analysis. Behaviormetrika,

2.4.! 33"40 .

L



Assessment of Dimensionality

28

Jannarone, R.J. (1986). Con‘unctive item response theory
kernals. Psychometxika, 51, 357-373.

Kaiser, H.F. (1960). The application of electronic computers
to factor analysis. Educaticnal and Psychological

Measurement, 20, 141-151.
Kendall, M.G. (1977). Multivariate contingency tables and

some further problems in multivariate analysis. In: P.R.
Krishnaiah (Ed.). Multivariate Anpalysis V. North
Holland Publ. Comp., 483-494.

Knol, D.L., & Berger, M.P.F. (1990). Empirical Comparison
between factor analysis and multidimensional item

response models. Multivariate Behavioral Research. To

appear,
Lord, F.M. (1980). res
practical testing problems. Lawrence Erlbaum Associates,

Hillsdale, New Jersey.

McDonald, R.P. (1981). The dimensionality of tests and items.
British Jorpal of Mathematical and Statistical
Psvcholegy, 34, 100-117.

McDonald, R.P. (1985). Unidimensional and multidimensional
models for item response t ~ory. In D.J. Weiss (ed.),
Proceedings of the 1982 Computorized Adaptive Testing
Conference. Minn: University of Minnesota, 127-148.

McDonald, R.P. (1989). Future directions for item response
theory. Interpational Journal of Educatiopal Research,
13, 2, 205-220.

fﬁx
v‘ng



T

Assessment of Dimensionality

29

McKinley, R.L., & Reckase, M.D. (1983). MAXLOG: A computer
program for the estimation of the parameters of a
multidimensional 1logistic model. Behavior Research
Methods & Instrumeptation, 15, 389-390.

Morrison, D.F. (1976) Multivariate statistical methods, New
York: McGraw-Hill.

Muthén, B. (1978). Contributions to factor analysis of
dichotomized variables. Bsychometrika, 43, 551-560.

NAG (1984) Library (Mark 11) Oxford, UK:Numerical Algorithms.

Pullman, N.J. (1976). Matrix Theory and its Applications. New

York: Marcel Dekker, Inc.

Stout, W. (1987). A nonparametric approach for assessing
latent trait unidimensionality. Psyvchometrika, 54, 589-
617.

Stout, W.F., (1989). A Nonparametric multidimensional IRT
approach with applications to ability estimation.
Psychometxika.

Suppes, P., & Zanotti, M. (1981). When are probabilistic
explanations possible? Synthese, 18, 191-199.

Takane, Y., & De Leeuw, J. (1987). On the relationship
between item response theory and factor analysis of
discretized variables. Psvchometrika, 57, 393-408.

Tucker, L.R., Humphreys, L.S., Lloyd, G., & Roznowski, M.A.

(1986) . accur
dimensionality. Urbana: University of Illineois,

Department of Psychology.



Assessment of Dimensionality

30

Wilson, D.T., Wood, R., & Gibbons, R.T. (1984). IESTFEACT:
Test scorina, Jitem statistics, and factor analysis.
Mooresville, IN:Scientific Software.

Zegers, F.E., & Ten Berge, J.M.F. (1983). A fast and simple
computational method of minimum residual factor
analysis. Multivariate Behavioral Research, 18, 331-340.

Zwick, W.R., & Velicer, W.F. (1986). Comparison of five rules

fcr determining the number of components to retain.

Psvchological Bulletin, 929, 432-442.

- J

1



. v . ST e e s e R e e 2

Assessment of Dimensionality

31
Table 1
- st
m GZ  df 7] df
m P {ff P AIC(m) /2

1 factor 31.72 21 0.064 10.72
2 factors |22.7¢6 17 0.157] 8.96 4 0.062 5.76
3 factors [21.45 14  0.090| 1.31 3 0.727 7.45
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Table 2
Parcentages 0f ae S1i0ns RDhoU he u-g. onall O1 he
2
latent trait space for Ar with the Gyirf Procedurxe (@j=0.03)

Dimension of latent trait space

N=250 0 1 2 3
0 - - - -
1 90 80 60 -
decision
2 10 20 40 100
3 - - - -—
N=500
0 - - - -
1 80 60 20 -
decision
2 20 40 80 90
3 - - - 10
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Table 3

Percant deci e

2
latent txait space for Arr with the G4iff-Pprocedure (®(=0,0Q5)

Dimension cf latent trait space

N=250 0 1 2 3
0 - - - -
1 80 100 10 -
decision
2 20 - 80 10
3 - - 10 90
N=500
0 - - - —_
1 90 100 20 -
decision
2 10 - 80 60
3 - - - 40

"
odd
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Dimension of latent trait space

N=250 0 1 2 3
0 - - - -
1 90 80 30 -
decision
2 10 20 50 40
3 - - 20 60
N=500
0 - - p— —
1 100 80 20 -
decision
2 - 20 70 40
3 - - 10 ou

SN

w
il



Assessment of Dimensionality

35

Table 5

Percentages of decisions about the dimensionality of the
latent trait space for Ary with the AIC(m) criteria

Dimension of latent trait space

N=250 0 1 2 3
0 P - - -
1 100 90 - -
decision
2 ~ 10 90 -
3 - - 10 100
N=500
o - - -— P
1 90 80 10 -
decision
2 10 20 80 40
3 - - 10 60
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Figure Captions

Figure 1. Eigenvalue plots for matrix of discrimination
parameters Ajy.

Eigure 2. Eigenvalue plots for matrix of discrimination
parameters Ary.

Eigure 3. Plotted mean absolute residuals for Ay and MINRES.
Figire 4. Plotted mean absolute residuals for Ayy and MINRES.
Figure 5. Plotted mean absolute residuals for Ay and
NOHARMII.

Eigure 6. Plotted mean absolute residuals for Ajp and
NOHARMII.

Figure 7. Plotted mean absolute residuals for Ay and
TESTFACT.

Figure 8. Plotted mean absolute residuals for Ap and

TESTFACT.
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