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Abstract

The assessment of dimensionality of the data is not only

important to item response theory (IRT) modelling, but has

also been important to other multidimensional data analysis

techniques. T...e fact that the parameters from the factor

analysis formulation for dichotomous data can be expressed in

terms of the parameters in the multidimensional IRT model,

suggests that the assessment of the dimensionality of the

latent trait jpace can also be approached from the factor

analytical point of view. In this paper some problems

connected with the assessment of the dimensionality of the

latent space are discussed and the conclusions are supperted

by simulated results.
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On the Assessment of Dimensionality in

Multidimensional Item Response Theory Models

The dimensionalit; of a set of test items has been a

source of debate in educational and psychological literature.

The development of the well-known one-, two-, and three-

parameter item response theory (IRT) models has increased the

need of adequate tests for the unidimensionality of the

latent trait space. See Hattie (1985) for a review of methods

to assess unidimensionality. In many situations the

assumption of a unidimensional latent trait is untenable and

this has lead to the development of multidimensional latent

trait models. As these models gained currency in educational

research and their application became feasible by the

development of computer programs like TESTFACT (Wilson, Wood

& Gibbons, 1984), NOHARMII (Fraser, 1988) and MAXLOG

(McKinley & Reckase, 1983), the need for a measure to assess

the adequacy of the model i.e. the assessment of the

dimensionality of the latent trait space, increased. It is

well-known that misspecifications of the dimensionality of

the model will severely change the estimates of the item

parameters. Unfortunately no widely accepted index to

identify the dimensionality of items is yet available.

7.he dimensionality of data is not only an important

issue in IRT modelling, but has also been important to other

multidimensional techniques, such as factor analysis.

Recently it has become known, that there is an important

relation between the multidimensional IRT model and the

7
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factor analysis model for dichotomous data. Takane and de

Leeuw (1987) showed the formal equivalence of the marginal

likelihood of the multidimensional two-parameter normal ogive

model (Bock and Aitkin, 1981) and the likelihood of the

factor analysis model for binary data (Muthén, 1978) . This

means that the 1RT parameters can be expressed in terms of

the parameters of the factor analysis formulation. An

empirical comparison done by Knol and Berger (1990) showed

that for the simulated conditions, common fa, tor analysis

estimation procedures performed equally well as the marginal

maximum likelihood estimation of the IRT parameters proposed

by Bock and Aitkin (1981) . The estimates of the item

parameters obtained from MINRES (Harman & Jones, 1966; Zegers

& Ten Berge, 1183) computed on tetrachoric correlations among

the items, for example, were quite comparable with the

estimates obtained from TESTFACT. These results suggest that

the problem of assessing the dimensionality in

multidimensional IRT models for dichotomous data can also be

approached from the factor analytical point of view.

A number of empirical studies have been devoted to this

problem. Ha.ableton and Rovinelli (1986), Tucker, Humphreys,

Lloyd and Roznowski (1986) and McDonald (1985) among others,

considered various measures and Muthén (1978) and Bock and

Aitkin (1981) provided formal statistical tests.

The purpose of the present study is to discuss some of

the problems connected with the assessment of the

dimensionality of a latent space and to compare some factor

analytical methods for the assessment of dimensionality with
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procedures available from multidimensional IRT models. First,

however, a short description of dimensionality will be given.

The Dimensionality of the Latent Trait Space

Multidimensional 1RT models assume that an examinee is

characterized by more than one latent trait. Let it be the

vector of m latent traits of an examinee, i.e.

fl a (01, 02 Om). An examinee can be represented as a

point in an m-dimensional latent trait space. If each of the

traits influences the performance of the examinee on at least

two of the n items in a test, then m is the dimension of the

latent space. This definition of dimensionality is connected

with the principle of local indepe.Idence. The formal

requirement of the independence of a set of item responses

X = (X1, X2, , is that the joint distribution of the

responses given a latent trait vector 11 is equal to the

product of the marginal distributions of the items given 0,

i.e.:

P(X=200) in1

p(xi.xile).
=

(1)

This means that if a population of examinees is characterized

by m latent traits which completely span the latent space,

then the responses of a 'sub' population of examinees with

fixed values for e are mutually statistically independent.
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If, however, a model specifies a number of latent traits,

which do not completely span the latent space, then there

will still remain mutual dependencies among the items for

fixed values of e. This is why McDonald (1989) concluded that

ocal independence is not an assumption as such, but merely

defines the dimensionality of the latent traits. In other

words, the local independence principle is formally trivial,

if no further conditions are added. In addition to locally

independent models, Jannarone (1986) presented conjunctive

locally dependent models. Although Suppes and Zanotti (1981)

presented a process in which any locally dependent model can

be replaced by an equivalent locally independent model and it

may be concluded that all latent trait models are in fact

locally independent models, this does not mean that the

dependent models discussed by Jannarone (1986) do not provide

meaningful alternatives to the more traditional independent

models. However, dependent models will not be considered in

this paper.

The above definition of dimensionality of the latent

trait space does not make a distinction between dominant and

nondominant dimensions. For example, if some of the latent

traits guide the performance on only a few items in a test,

then these traits are not as important for the explanation of

the total variance as traits that influence all items in that

test. An example of such a dominant trait is a 'reading'

trait for a verbal test composed of items on various topics.

One of the problems encountered in assessing the

dimensionality of the items is the existence of such dominant
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(major) dimensions together with less dominant (minor)

dimensions and this distinction may explain some of the

conflicting results found in a number of studies on the

assessment of dimensionality.

Another problem with the traditional definition of

dimensionality, is that the principle of local independence

is really a very strong principle. Goldstein (1980) doubts

whether this condition is actually met in real life data. To

assess the aimensionality of items all higher order cross-

product moments should be considered. Instead, the assessment

of dimensionality is often restricted to the inspection of

only first order correlations. McDonald (1981,1985) refers to

this as a 'weak' form of the principle of local independence.

Since multivariate normal variables are mutually indepexIdent

if, and only if all covariances are zero, this 'weak' form

implies the 'strong' form of local independence under

multivariate normality.

Both above mentioned problems with the traditional

definition have led Stout (1987, 1989) to relax the

definition and to propose a more practical term, namely

essential dimensionality which is based on the concept of

essential independence. His definition of essential

independence is as follows. Given a vector of latent traits

0, the n responses in X of a sample of N examinees are

essentially independent, if X satisfies
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Cov(xi,x1Ie=0)
Dn(Q)

( 3 )

-9 0 as n --) 00 (2)

If the average covariance of the responses is small in

magnitude, then the responses of a 'sub'population with fixed

Q's are said to be essentially independent, asymptotically.

The essential dimensionality of an item pool is the minimal

dimensionality necessary to satisfy the essential

independence principle. This definition of dimensionality is

easier to implement than the traditional one. Although all

common measures for the assessment of dimensionality are

implicitly based on this definition, only the measures based

on "residuals" are a direct implementation of this principle.

Generally procedures to assess dimensionality can be

grouped into the following four categories:

Procedures based on formal statistical tests for the fit of

a model.

- Procedures based on information theoretic model selection

criteria.

Procedures based on the total amount of explained variance.

Procedures based on "residuals" after a model has been

fitted to the data.

In the following sections each of these procedures and the

problems connected with their use, will be described.

Finally, some results based on simulated data will be given

for each of these procedures.

4 4)
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Formal Statistical Test for the Fit of a Model

Bock and Aitkin (1981) proposed to apply the multiple factor

analysis model to dichotomous data. They assumed that an

unobserved response process yij, for person i and item j is a

linear function of m normally distributed latent variables

6im] and factor loadings

1j- [kji, Xj2,... Aim], i.e.:

Yij ' 111611 1j2942 Ajmeim uij- (3)

Oik is the ability of person i on ability dimension k, Xjk is

the loading of item j and dimension k and Dij are error

terms; Ujj MVN(a,r2), where r2 is diagonal matrix with

positive elements 012. In contrast to classical factor

analysis for continuous data the unobservable process yij is

connected to the dichctomous response variables xij by the

following mechanism:

if yij 2 yj, then xij = I

otherwise xij = 0 ,

where yj is a threshold parameter connected with item j.

The probability of answering an item j correctly, given the

ability vector pi for person i is

I 3
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9

(4)

where (I) is the cumulative standard normal distribution. To

obtain the parameter estimates, Bock and Aitkin (1981)

developed an iterative marginal maximum likelihood estimation

procedure based on the EM algorithm due to Dempster, Laird

and Rubin (1977). 'ine procedure was implemented in TESTFACT

by Wilson, Wood and Gibbons (1984).

If the sample consists of N perms with responses on n

items, then there are s 5 rin(2n,N) distinct response

patterns. The estimated joint probability of the response

patterns is:

ri
s pi

Lm = N! n
1=1 ri!

(5)

where r1 is the frequency of response pattern 1 and Pi is the

estimated marginal probability of the response pattern

computed from the item parameter estimates. The well known

likelihood ratio statistic is:

Gm2
ri

2 X ri ln ri ln Pi )

1=1 N 1,=1

with dfm- $ n(m+1) + m(m-1)12 aegrees of freedom.

(6)
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By means of this statistic two different test procedures can

be carried out to decide the smallest number of factor such

that the model fits the data.

The first procedure is based on a sequence of tests of

the hypothesis Hm*: m = m* against the alternative m > m*,

for a stepwise increase of the number of factors

m*= 1, n. The procedure stops when

Gm2 Xi-a,dfm (7)

The second procedure is based on Haberman's (1977)

result that the difference of two statistics for alternative

models is asymptotically chi-square distributed with degrees

of freedom equal to the difference of the degrees of freedom

corresponding to each of the two statistics The sequence of

tests of the hypothesis Hm*: m = m* against the alternative

m = m* + 1 for m* = 1, ..., n-1, stops when:

qiiff GM GM+1 5 Xl-a,(n-m)"
(8)

This procedure is especially useful when some of the expected

cell frequencies are almost zero. This may often be the case

when N < 2n.

Both procedures can be carried out by the TESTFACT

program and Bock, Gibbons and Muraki (1988) concluded from an

empirical comparison that these procedures seem adequate in
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selecting the number of factors. There are, however, some

problems connected with these test procedures.

The first problem is that of the asymptotic

distribution. Kendall (1977) has pointed out that Pearson's

chi-square and the likelihood ratio statistic are often

regarded as equivalent becalse of their asymptotic

properties. In practice, however, the results may be very

different. Although maximum likelihood estimators of

parameters retain standard large sample properties under

various conditions, the large sample approximation of chi-

square statistics are often unacceptable. Moreover, the

asymptotic test for the fit of a model is generally very

sensitive to sample size. For relatively small samples the

procedure is unreliable, because of the small expected cell

frequencies and for large samples the procedure almost always

favours the alternative hypothesis (McDonald, 1989).

A second problem is the choice of the level of

significance. The adequate selection of the number of factors

is in fact a multiple decision problem. In general, a whole

family of hypotheses L2 E { HiliEI } can be considered, where

I is an index set. Corresponding with each hypothesis Hi

there is a real valued statistic G2 The family of statistics

G m { G2lieI and the family of hypotheses together form a

a so-called testing family [SI Gl. The overall probability a

of making type I errors is unknown. and some sort of

simultaneous test procedure (STP) will be needed to control a

for the whole testing family. Although a likelihood ratio

based STP is available for the testing of association in a

1 6
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contingency table (Gabriel, 1969), there is no STP available

yet for the fit of a multidimensional IRT model. Some sort of

correction, like the one proposed by Aitkin (1979) may be

useful. His correction is based on the fact that the upper

limit of the overall (w. for n tests with level of significance

ai is (1 (1-ai)11).

A third problem is the coherence of the procedure. The

hypotheses Hi for the testing of the dimensionality of the

latent trait space are ordered. A two-dimensional model, for

example, will explain more variance than a one-dimensional

model. If the hypothesis of unidimensionality of the latent

space H1 is accepted, a coherent test procedure will also

accept the hypothesis H2 that there are two dimensions.

Gabriel (1969) proved that for likelihood ratio based

statistics G2 the testing family is monotone, i.e. whenever

two hypotheses Hi and Hj are ordered (nested) such that i<j,

the numerical relation G2 G3 holds for (i,j e I).

Increasing the number of factors i the model will decrease

the values of the likelihood ratio statistics for the fit of

the model. Note that tests based on the union intersection

principle are also monotone, but that Pearson's chi-square

statistic is not (Gabrie1,1969).

The monotonicity of the testing family, however, does

not necessarily indicate that the testprocedure is coherent.

Coherence prevents the contradiction of rejecting a model

with say m factors without also rejecting all models with

less than m factors.
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To illustrate the above mentione (I. problems the results

for the Bock and Lieberman (1970) LSAT-7 data are given in

Table 1. It seems difficult to draw conclusions. For a

significance level ai = 0.10, the results give evidence of a

two factor model. If the relative large sample size is taken

into account and a smaller ai is selected, ai = 0.01, then a

one factor model seems more appropriate. The non-coherence of

the test procedure is demonstrated by the fact that the p-

values do not always increase as the number of factors

increases. Although this exampl2 does not actually show an

incoherent decision, it can be seen that the possibility

exists.

Insert Table 1 about here

A Model Selection Criterion

Since we are dealing with a model identification problem and

inferences are based on maximum likelihood, it is suggested

to assess the dimensionality of the latent trait space by a

model selection criterion which does not have the above

mentioned disadvantages of the formal test procedures.

Akaike (1974) developed an information theoretic

criterion for the identification of optimal and parsimonious

1 s
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models in data analysis. Akaike's information criterion for

model (4) takes the form of a maximized likelihood and is

defined as:

AIC(m) m -2 ln( Lm(ifX,I;j,i))) + 2 km, (9)

where Lm(i,i,crjjj) is the maximized likelihood and km is the

number of independent parameters in the model. (-AIC(m)/2)

is an unbiased estimate of the mean expected log likelihood.

The first term of AIM(m) is a measure of badness of fit. The

term 2km is the penality term correcting for overfitting due

to the increasing bias in the first term as the number of

parameters in the model increases. The model with the minimum

AIC(m) value is chosen to be the best fitting model. Bozdogan

and Ramirez (1988) and Ichikawa (1988) showed that the

criterIon worked quite good in assessing the number of

factors in ML factor analysis. A review cf the general theory

is g4.ven by Akaike (1987) and Bozdogan (1987).

To assess t' dimensionality, it will be convenient to

formulate a criterion comparing the likelihood of the model

with m factors with that of the saturated model. The log of

the maximized likelihood for the normal ogive model is:

ln (Lm) = ln N! + r1 ln P1 / ln (r1!). (10)
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11.t. number of independent estimated parameters is

n(m+1)-m(m-1)/2. Subtraction of this expression from that of

the log of the likelihood for the saturated model with

s 5 min(2n,N) different response patterns, results in the

following AIC expression:

ri
AIC(m) - 2 [ / ri In E ri ln Pi] 2(dfm). (11)

A minimum value for the AIC(m) criteric.:n will indicate the

'true' dimensionality. In Table 1 the AIC(m) values are given

for the LSAT-7 data. These values show that a 2-factor normal

ogive model would probably be the best fitting model.

Procedures eased on the Proportion of Explained Variance

The determination of the number of components in principal

component analysis and in factor analysis is often based on

the amount of explained variance, i.e. based on criteria

formulated on the eigenvalues of a correlation matrix. Among

these procedures are the well known Kaiser's (1960)

eigenvalue greater than 1.0 rule, the scree test of Cattell

(1966) and the parallel analysis method (Horn, 1965) . A huge

amount of research has been done on these methods. Although

there are sometimes conflicting conclusions, the main trend

seems to be that parallel analysis and the scree test perform

quite good for continuous data (Zwick & Velicer, 1986).

0
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Similar methods have also been proposed for dichotomous

data. Collins, Cliff, McCormick and Zatkin (1986)

investigated the modified scree test on phi and tetrachoric

correlations and concluded that both procedures perform

poorly. Although they prefer the analysis with phi-

correlations, Green (1983) and Hambleton and Rovinelli (1986)

among others, found that phi coefficients produce spurious

factors based on the difficulty level of the binary items. On

the other hand, Drasgow and Lissak (1943) found that a

modified parallel analysis was quite good in detecting the

unidimensionality of dichotomous data. Tucker, Humphreys,

Lloyd and Roznowski (1986) compared some eigenvalue indices

and found that these indices did not work very well. Recently

Bernstein and Teng (1989) questioned the application of

eigenvalue criteria to categorical data. They concluded that

false evidence of multidimensionality is often found. These

results do not seem to be very encouraging. Moreover, there

are some problems in applying eigenvalue criteria to

dichotomous data.

The first problem with these criteria is the choice of

correlation coefficient. Phi coefficients generally produce a

positive definite correlation matrix and tend to avoid the

problem of Heywood cases. On the other rand, phi coefficients

tend to overestimate the number of underlying dimensions. The

use of tetrachoric correlations will produce a more reliable

estimate of the underlying dimensions, but the sample based

estimate of the correlation matrix is often not positive

definite and tends to produce more Heywood cases. Although
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fast and generally accurate computational Ligorithms exist

(Divgi, 1979) the coefficients will become unstable when

extreme values are reached. Morecter, the use of tetrachoric

correlations is inappropriate when ability distributions are

not normal and the item response function is not normal ogive

(Lord, 1980). Of course, the problem of non positive

definiteness can be avoided by smoothing the correlation

matrix. But this may change the pattern

especially when n is relatively small.

Another problem which is not generally

of the eigenvalues,

recognized, is

that the pattern of the eigenvalues depends on the size of

the discrimination parameters of the items. Under the

assumptions for model (3), that the abilities MVN(1,I)

and the errors MVN (.,r2), the covariance matrix of the

unobservables yij is:

Im = AA' + r2. (12)

The nxm matrix of factor loadings is A and r2 is a diagonal

matrix with unique variances 012. Under multivariate

normality the population correlation matrix is:

R (Diag (AA' ) +1'21-1/2 [AA' +r21 [Diag(AA1
).0-2]-1/2.

(13)

Equation (13) can also be written as:

R - (I+ Diag(AA')]
-1/2

(I+ AA'l (I+Diag(AA')] (14)



Assessment of Dimensionality

18

where A is an nxm discrimination parameter matrix and relates

to A by A= r-1A. It can be seen, that an increase of values

of the discrimination parameters will generally increase the

correlations.

There is no analytical expression available for the

eigenvalues of an arbitrary correlation matrix, but from a

A

theorem due to Gersgorin (see Pullman, 1976) an upper limit

of the largest eigenvalue emax of an arbitrary positive

definite matrix can be derived:

emax 5 max( L Iriil , il,...,n)
j=1

(15)

where rij is an element of R. This upper limit is generally a

good approximation of the largest eigenvalue of a correlation

matrix (Morrison, 1976). Increasing the discrimination values

will increase the correlations among the items and will

increase the largest eigenvalue. Since Li ei = n, increase of

the largest eigenvalue will generally decrease the other n-1

eigenvalues.

In conclusion, the pattern of the eigenval,aes of the

correlation matrix is influenced by the size of the

discrimination parameters of the items and a procedure based

on the pattern of the eigenvalues may lead to erroneous

conclusions about the dimensionality of the latent trait

space.



Amps

Assessment of Dimensionality

19

Procedures Based on Residuals after Fitting the Model

One of the conclusions drawn by Hattie (1984) and Hampleton &

Rovinelli ' 36) was that residuals obtained from nonlinear

factor analysis could very well determine the correct

dimension of a latent trait space and McDonald (1981,1989)

recommended the use of the mean (absolute) residuals.

If Am is the nxm estimated matrix of factor loadings

from a solution with m estimated common factors, and R is the

tetrachoric correlation matrix, then the off-diagonal

elements of the matrix:

R* = R AmAmi , (16)

are the residuals rij. The mean squared and mean absolute

residuals are:

f
1
= 2En(n-1)]-1 I E (rtj)2

i<j

and

f2= 2[n(n-1)]-1 E Irtjl (17)

respectively. Since the squared residuals fl are generally

more sensitive to outliers than absolute residuals f2, only

the results for f2 will be reported in this study.

It has already been mentioned, that the mean absolute

residuals is an implementation of the definition of essential

dimensionality by Stout (1987, 1989) . The only problem in

4
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applying this criterion is that it may not be clear when the

value of the criterion is small enough. A possibility is to

compare the f2 criterion after the fit of an m-dimensional

model with values of this criterion from random data.

Conditions for the Simulation Study

To compare the performances of the different measures binary

data matrices were generated for known difficulty and

discrimination parameters. Though several values for these

parameters were considered, the results of only two matrices

with different discrimination parameter values will be given.

The two matrices are:

1.0 0.5 0.0 (5x)

[

2.0 2.0 0.0 ] (5k)

AI = 1.0 0.0 0.5 (5x) A// = 0.0 2.0 2.0 (5x)

0.0 0.5 1.0 (5x) 2.0 0.0 2.0 (5A)

The notation in brackets (5x) indicates that groups of 5

items have the same pattern. The sample sizes were set equal

to N = 250 and N = 500, and the number of items was n = 15.

Each group of 5 items with the same discrimination parameter

values has difficulty parameter values -2, -1, 0, 1 and 2.

Generation of data from a one-dimensional and a two-

dimensional latent trait model was done by using the first

and the first two columns of matrices AI and AII,

respectively. The actual generation of the binary data for

the multidimentional IRT model was done by using the random

number generator of the NAG (1984) program library and the
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sample tetrachoric correlations were computed by a

modification of the Divgi (1979) procedure.

Results

For almost all conditions of the simulation study the test

procedure erroneously favoured the alternative hypotheses.

The results for the G2diff test procedure are given in Tables

2 and 3.

These results indicate that the test procedure is often

not capable of locating the correct dimension cf the latent

space. The results in Table 2 show that the test procedure is

not capable of locating the minor third dimension. It must be

emphasized that these results are based on only 10 simulated

data matrices per condition and that more simulations will be

needed to draw firm conclusions. The huge amount of computer

time needed by TESTFACT prevented us from expanding these

simulations.

Insert Tables 2 and 3 about here

The results for the AIC criterion are given in Tables 4

and 5. Although there are misspecifications, it can be seen

that the AIC criterion tends to locatc the correct dimension

of the latent space somewhat better than the x3iff procedure.
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Again it must be emphasized, that the number of silimlated

runs is small, due to the large amount of CPU time needed to

run TESTFACT.

Insert Tables 4 and 5 about here

Figures 1 and 2 show the eigenvalue patterns for the two

discrimination parameter matrices AI and All. The points in

the Figures indicate the means of the eigenvalues for 50 runs

and the vertical lines from the plotted points indicate the

range of the eigenvalues. The almost horizontal line is the

eigenvalue pattern for random data matrices. The Figures show

that only parallel analysis seems adequate, although the

minor third dimension in AI is not recognized.

Insert Figures 1 and 2 about here

Residuals have been obtained from various estimation

procedures. In the Figures 3 through 8 the results are given

for the common factor analysis procedure MINRES performed on

the matrix of tetrachoric correlations, the residuals

obtained from TESTFACT and the residuals obtained after an

unweighted least squares approximation of pairwise

proportions due to McDonald (1985) and computed by NORARMII.

0~7
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The computer program MAXLOG, with joint ML es_iTdation was

also considered. The residuals from MAXLOG, however, were not

very adequate, probably because of the drift of the

discrimination parameters.

Insert Figures 3 through 8 about here

The pattern of the residuals show a relatively large

drop of f2 after a model with the correct dimension of the

latent traits is fitted to the data. Comparison of the f2

values with those from random data indicate that all

procedures perform quite well and that residuals from

NOHARMII even were able to discover the minor third dimension

in AI.

Summary and Conclusions

The assessment of dimensionality of the latent traits is

a difficult problem and each of the discussed measures has it

own disadvantages. In this paper the assessment of

dimensionality is approached from the factor analytical point

of view. Although the results from this study do not indicate

that )ne of the measures performs best in assessing the

dimenslonality of a latent space, the results seem to
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indicate that some of the measures are not very good. The

following conclusions may be drawn from this study:

- Asymptotic X2 tests for the fit of a latent trait model are

not very reliable. The AIC criterion seems to perform

somewhat better, but more research will be needed to draw

definite conclusionr.

- The structure of the matrix with discrimination parameters

is crucial for the performanct of the eigenvalue measures,

because the size of the discrimination parameter values

determines the explained variance of each factor in the

model.

- The disadvantages of the eigenvalue criteria and their

performance in this study lead to the conclusion that these

measures should be avoided. Parallel analysis, however, did

perform quite good.

- The "residual" measures from TESTFACT, MINRES and NOHARMII

performed quite good, and even a minor dimension could be

located by NOHARMII.

Finally, it must be noted, that the conditions of this

study were limited and that the results from TESTFACT were

based on a small number of runs. More simulations will be

needed to drawn more definite conclusions.
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Table 1

Chi=AZiamte_Ltii--tabitiaa--W1CLAILCCiratilti01-1.52XTASAT=i.liZt.tat

a4=1000. n=5. quadrature points=.71

2Gm df p Giiff df AIC (m) /2

1 factor 31.72 21 0.064 10.72

2 factors 22.76 17 0.157 8.96 4 0.062 5.76

3 factors 21.45 14 0.090 1.31 3 0.727 7.45

-411
-"-
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Table 2

latcnt trait apace for AI with the Giiff prwedure lai=0.05)

N=250

decision

N=500

decision

0

1

2

3

0

1

2

3

Dimension of latent trait space

0 1 2 3

90 80 60

10 20 40 100

80 60 20

20 40 80 90

10
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Table 3

I Se 11

2
=latent trait space for AII-Mith-the-gdiff procedure tai0.051

N..250

decision

N=500

decision

0

1

2

3

2

3

Dimension of latent trait space

0 1 2 3

80 100 10

20

^

80 10

10 90

^

90 100 20 ^

10 80 60

40



Table 4

LI ;!;.: 0; :

Assessment of Dimensionality

1 n111: q;

laterA trait spAce for A1711111LINLAWAILAmitarim

Dimension of latent trait space

N=250 0

decision

N=500

decision

0

1

2

3

0

1

2

3

1 2 3

34

90 80 30

10 20 50 40

20 60

100

dolt

80 20

20 70 40

10



Table 5

Z. 11 .

Assessment of Dimensionality

0.. 0:
latent trait Apace fu AIL with the AICIm) criteria

N-250

decision

N-500

decision

0

1

2

3

0

1

2

3

Dimension of latent trait space

0 1 2 3

35

100 90

10 90

10 100

90 80 10

10 20 80 40

10 60
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Figure Captions

figure Eigenvalue plots for matrix of discrimination

parameters A/.

figure 2. Eigenvalue plots for matrix of discrimination

parameters Au.

figure 3. Plotted mean absolute residuals for AI and MINRES.

EigvIg_A, Plotted mean absolute residuals for Au and MINRES.

Figure 5. Plotted mean absolute residuals for AI and

NOHARMII.

figure 6. Plotted mean absolute residuals for AI/ and

NOHARMII.

figure 7. Plotted mean absolute residuals for AI and

TESTFACT.

figure 8. Plotted mean absolute residuals for AI and

TESTFACT.
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