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Abstract

In order to obtain conditional maximum likelihood estimates, the so-called

conditioning constants have to be calculated. In this paper a method is exa-

mined that does not calculate these constants exactly, but approximates them

using Monte Carlo Markov Chains. As an example, the method is applied to

the conditional estimation of both item and person parameters in the Rasch

model.

Key words: CML estimation, Monte Carlo methods, Markov Chains, Rasch

Model.
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Introduction

In this paper, an alternative calculation method is examined for conditional

maximum likelihood estimation (CML) in item response models that belong to

the exponential family. In order to obtain CML estimates, the conditioning con-

stants have to be calculated. These constants may be difficult to compute. The

method examined provides an alternative to calculating the constants exactly:

they are approximated using Monte Carlo methods. The key idea for this ap-

proximation was developed by Geyer and Thompson (1992). They showed that

in the exponential family a quantity which is proportional to the conditioning

constant can be expressed as an expectation with respect to a certain distribu-

tion. Upon simulating from this distribution, an estimate of the proportional

quantity can therefore be obtained as the observed sample mean. Inserting

this estimate into the conditional likelihood then allows one to maximise the

approximate likelihood, as the proportionality constant does not depend upon

the parameters to be estitnated. In the first section below the method will be

explained in some detail. The next section will consist of a description of the

simulation process: as the distributions from which to simulate may be rather

complex, Monte Carlo Markov Chain methods, such as Hastings or Gibbs sam-

pling may be necessary. The resulting estimation equations will be examined

more closely in section 3.

As an example, the method discussed will be applied to the conditional esti-

mation of both item and person parameters in the Rasch Model (Rasch 1960).

In section 4 estimates obtained using the above method will be compared to

exact CML estimates. The results seem very acceptable.
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A Monte Carlo method for CML estimation

In this section it will be explained how a method developed by Geyer and

Thompson (1992) can be applied to conditional maximum likelihood estimation

in item response models. The method will be applied to the Rasch model. In

order to make the theory to follow more understandable, the section will there-

fore start with a description of the conditional Rasch model.

The conditional Rasch Model

Consider a test consisting of M items. Let Xi = .r, with .r = 0, I be a response

to item j, and let the variable X = x be the M-vector of responses to the ertire

test. The total score T is defined as
ist

T = E Xi.
j=1

Then for the Basch model the conditional likelihood for one observation, i.e.

response pattern, looks like

exp (E1 Xi bi )
Pr(X T; 0 , 5) =

L.,x.t(x)=texp (Ei Xi )

where 6 is a vector of difficulty parameters for the j items, and 9 denotes the

latent ability. The summation in the denominator is over all possible response

patterns with the same total score T = I. These denominators, there is one for

each value of T, are known eletnentary symmetric functions and they will be

denoted in this paper by 70):

E exp (Ej Xibi ).
x 0,0=1

With this notation the above formula can be rewritten as
exp (Ej X) hi)

Pr(X T;0,6) =
7t(6)
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The corresponding log likelihood is given by

log L(6 I T) = Ei XS, log7t(6)

so that the log-likelihood for the whole sample becomes

log L-(5 T) = E Nt log-N(6)

where Nt denotes the number of persons in the sample with T = t, .51 is the

item total and T is the column vector of observed total scores. The solution

equati, ns are obtained upon setting the partial derivatives of this equation with

respect to the bi's equal to zero. These partial derivatives are given by

7(k)j(45)exp (-4)a log L
= Sk E Nt

a6, 7,05)

in which the numerator is equal to a-7(6)/a6k, with -ylk)1(6) a gamma function

for the set of items not containing item k. For example, if there were 3 items,

we would have

72 = exP (-61 62) + exP (-61 63) + exP (-62 (53),

(1)
72 = exP ((52 63).

For the Rasch model, recursive formulae are available for calculating -N(6); but

for other IRT models this is not always the case.

Approximating 7g(6): the Geyer and Thompson method

Instead of calculating the gamma functions it is possible to approximate them

with the help of Monte Carlo Markov Chain (MCMC) methods, using the fol-

lowing idea developed by Geyer and Thompson (1992). Let the probability
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density function for one observation in the conditional formulation of the Rasch

Model be known as ft(X; 45); then the corresponding conditional likelihood of 45

as a function of X can be written as ft(b; X). Note that in this notation the

conditioning variable T has moved from behind the bar to a subscript on

Omitting the dependence of the likelihood on X we therefore have

exp (Ei Xjbj)
Mb) = Pr(X I T; 0, b) =

-rt(o)

Now if t,f7 were another set of parameters, then MO) would be equal to

exp (E; x.17,b1)
f;(0) = Pr(X I T; 0,0) =

7t(0)

1.

Trivially, using the definition of -(b) and multiplying by one,

exp (EX j;tv)
70) = E exP Xi (5..? (Ei Xj Oi) 7t(IP)

7,0p)

x::(x)=f

so that, moving one -rt(0) from the right to the left hand side of the equals sign

and using the definition formula of f(0)

7t(45) E exp _Ei exp (Ei xi

E [ex!) {Ei Xi ))] MO)
x ox)=1

[exp {E. xj(bj tl)j)}1i .

In other words, if we define
7t(6)

dt(45) =
-MO)

then, if we were able to simulate a random sample of B 'observations' from

ft(11)) = ft(X; 0) we could estimate all dt(b)'s by the sample means:

clt(b) = -11-3 Eexp {Ej Xtbj(6j j)}
b=1
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for any value of b. Note that the first subscript nr! X, the t, is there to indicate

that every simulated response vector X belongs to a Fet having common total

score T. Defining log V to be

log L'(6 I T;IP) = E. bis; E Nt log dt(6),

note that

log L' (6 I T; t,b) = 6js; E /Nit logdt(6)

= Ej sis; E Nt log 7t (6)
-rt

E, Si E Nt lovt(45.) +E Nt7t(0)

log L(6 IT) + E Nry:(0)

attains its maximum for the same value of 6 as does log L(6 I T). So we now

can substitute dt(6) for dt(5) and inaximise the resulting expression

log L" (5 I T; ) Ei 63 Si E Nt log Cit(6)

= cS Sit E Nt log exp {--Ej Xtbj(bj

with respect to I5 to get an approximate solution to the original likelihood equ-

ation.

However, the density ft(X;t1t) depends on a similar constant as does ft (X; 6),

i.e. on 7t OM, and this constant is still unknown, or at least difficult to calculate;

therefore it is not possible to simulate from ft(X; IP) in any direct way. The

solution to this can be found in the use of Markov Chains and the llastings

algorithm, which will be described below.
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Simulation of response patterns: the Hastings algorithm

A Markov Chain is a sequence of realisations of a random variable X with the

property that

Pr(Xk = xk 1X1 = Xk-1 = Xk-1) Pr(Xk = Xk Xk-1 Xk-1).

Here the subscript k is used to denote the ordering of the sequence in time; and

X either may or may not be a vector valued variable; in this section I will not

use boidface to distinguish between the two. In the Markov Chain context the

value of X is often called the 'state' of X. The probabilities of going from one

state to another in a Markov Chain can be represented in a matrix P, having

as entries pij = Pr(Xi = i I Xi_i = j); hence the rows of P add up to one.

The Markov Chain is said to be irreducible if it is possible to get from any state

to any other state in a finite number of transitions. The states of irreducible

Markov Chains on finite sets of values can be shown to follow a unique limiting

or ergodic distribution; denoting this (discrete) distribution by 7r, it is given as

the solution to

7rP = 7r

i.e. if the transitions are made according to P, then for large N, Pr(Xki.N = i

Xk = j) = r1, independent of the value of Xk (see e.g. Proth & Hillion 1990).

For our calculations we need simulations from ft(X;IP). Now imagine it

would be possible to find a transition matrix P that has its limiting distribution

ir equal to ft(X; 2/0. Then we could start from any initial response pattern Xk ,

and using the proper row with conditional probabilities from matrix P we could

then simulate a new state for the response pattern, say Xk+1 (the subscript still

indicates ordering in time). and so on; until, after N successive state changes,

we would have Xk+N 7r = fi(X;71.7). Using this Monte Carlo Markov Chain

sampling scheme gives us an estimator d(b) that is asymptotically normally
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distributed and approaches (Mb) in mean square as the number of Monte Carlo

samples B oo (Hastings 1970).

Of course, the problem is to find P from rP = r. In general, this is impos-

sible. However, Metropolis et al. (1953) and Hastings (1970) found a way to

sample from r without actually knowing P. Let X be the present state of the

sequence, and X' an alternative state. Then their algorithm is as follows:

1. Define any convenient transition matrix Q

2. Propose a new state, say X', for the variable X, in our case the response

pattern X, according to the probabilities in :he relevant row of Q

3. Define

o(X', X) = min {1, 71(X' )Q(X' X)1r(X)Q(X, X') f

4. Accept the proposed state with probability a.

The algorithm can be proved to work, i.e. to generate a sequence with the

desired ergodic distribution, using the 'detailed balance' lemma. This lemma

states the following: if for irreducible P it holds that ripij = jpji then r is the

limiting distribution for P. Substituting qij for pi', this condition can be easily

' iecked to hold in the above algorithm.

Recalling that in our case r(x) represents ft(X; = exp (Ej X )ht (IP)

the denominators of r(X) and of r(X') in step 3 are equal. Thus the cleverness

of the algorithm lies in the fact that in calclilating w((AA..'))(cP-Ax.:ix,)) there is no need

to calculate these denominators as they will cancel.

The algorithm as presented above is known as the Metropolis algorithm;

when a symmetric matrix Q is used it is called the Hastings algorithm. In

that case also the terms involving Q will cancel and a reduces to a(X, X') =

min {1,144 Another improvement, in the case of a vector valued variable

X, would be not. to propose a new state X' ad random, but to consider changing
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only one element of X at a time. If the variables in X are independent of each

other, or depend only on a few other variables, many additional factors in

will cancel. In this latter case, the generation of one new simulation consists of

sequentially considering a new value for each of the variables in X in turn. This

iE also called a 'full scan'; therefore, after one full scan the next simulated value

for X has been obtained.

Recapitulation:

1. We want to (lo conditional maximum likelihood estimation for the para-

meters in the Rasch model. This means we need to know the values of the

conditicning constants

2. We want to estimate these constants by the method proposed by Geyer

and Thompson. That means we need artificial data drawn from ft (X; 0),

where V) is an arbitrary point in the parameter space.

3. To draw the samples from ft ( X; 1/)) we want to use the Hastings algorithm.

Assuming we have actually drawn the sample, we then proceed to marimise the

following equation, in which (1,(6) has lieen expanded in full:

log L'05 T; 117) = Ei Ei Nt log [iElt3,_i 0.0}]

with partial derivatives

a log L*
= N

Et) Xtbk eXP {Ej Xtbj(6j 16)1
Sk +Et t

(Mk exp { Ej Xtbj(63 tbi)}

In the next section the resulting estimation equations will be examined more

closely.
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Estimation

The two main tasks to be performed for the implementation of the estimation

method proposed in section 1 are the simulation of the Monte Carlo data, and

the actual estimation. In this section I will comment on several aspects of the

estimation equations. In particular I will compare the equations for the Monte

Carlo estimation to those for ordinary CML estimation. But I will start with

another description of the algorithm for generating response vectors.

Generation of Monte Carlo response patterns

Starting from the current realisation of a response vector X, the next realisation

will be obtained after one 'full scan'. Recall that we are simulating from a distri-

bution conditional On total score. Therefore we cannot change only one value

Xj at a time: a new proposal state X' has to be obtained by interchanging the

position of two different values in the response vector. A full scan then consists

of the following steps (note that the subscript on X again denotes items instead

of temporal ordering):

1. i = 1

2. if Xi = x, with x = 0 or 1, then randomly choose one of the items, say

item j, with Xj = 1 x

3. the proposed state X' is the response vector with Xi = 1 x and Xj = x

4. accept this p:oposed state with probability a = min {1 , ; t(ixxl

5. if i < M , with M the number of items, then i = i + 1, and go back to 2;

else stop: the next simulated response vector has been obtained.

The newly arrived at simulated response vector will in turn serve as input

for the next full scan etc. There may be need for a 'burn-in' period in the very

111
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beginning, in order to allow the algorithm to move away from a possibly badly

chosen starting configuration X.

Of course, the response vectors simulated in this way will not be completely

independent. The autocorrelation could be reduced by inserting 2 or more scans

between successive Monte Carlo simulations. But as its only influence will be on

the variance of dt(6), it is equally well possible to use all the generated response

patterns and to go on generating them until the variance is acceptable.

Having obtained a 'fairly large number', B. of simulated response vectors it

is possible to start estimating 5.

Starting values

As starting values, i.e. first choice of the well known Gustafsson (1979)

starting values are used:

(o)
= \--,M hr t(Af -t)

"t M(M

in which Si is the item total EiN Xij and Sj the average of the item totals:

SJ /M.

If S is far away from 0, the approximation of log L by log might not

be too well at b = b. Therefore it is probably wise to use the estimate 6 ar:

a new 2/) and repeat this preliminary procedure a couple of times before go.ng

on to simulate a truly large sample that will be used for estimation. Geyer

and Thompson also advise to use a restriction on the maximum steplength per

iteration, but. in view of the good starting values available for CML estimation

in the Basch model, I found there was no need for such a restriction.

Identifiability

To begin with, the usual constraint Ei = 0 or 61 = 0 has to be imposed.
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Next, it is well known (Ford 1957) that in order for a solution to the ordinary

CML equations to exist, all persons and items with perfect scores (T = 0 or

T = Al, and Si = 0 or S.; = N) have to be deleted from the sample. Meaningful

estimates for these persons and or items cannot be obtained, and deleting them

will not influence the estimation of the remaining parameters.

For the present estimation procedure this latter assertion remains yet to be

investigated. As to the influence of perfect persons on item parameter estima-

tion, we had

log L, = Ei bi S.; E, Nt log [II-Err:I exp { Ei Xtoi(b.i }1

It is evident that the term with T = 0 does not contribute to the function value,

as all the Xtbj's are equal to zero, so we get log( I/B x B) = log 1 = 0. Likewise,

the term with T = Al would have no contribution. Let there be k persons with

total score T = M , then if w: would delete these persons we would have log L"

equal to

N, log T4 E exp Xtbj(6j
t,tAf b=1

The terms with k Ei cance , and although the resulting formula is not exactly

equal to the original log-likelihood, the difference does not depend on the pa-

rameters to be estimated, so it will result in the same estimates. For these

reasons, persons with perfect response patterns can be safely omitted from the

estimation of item parameters.

Next, to the influence of perfect items on the estimation of other item para-

meters. It seems plausible to use 7,1,/, = co or 4, = oo for items with Sp = 0 or

Sp = N respectively. Thus they will generate only perfect response patterns. It

is easy to show that, deleting those items from the loglikelihood will not influence

the estimation equations for the other items.
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Rank of the system of equations

One topic clearly needs some more attention. As Si is sufficient for in the

context of ordinary CML there will only be as many estimation equations as

there are different values of S. The situation is different for the Monte Carlo

CML equations. Here we have

S
log L Eb Xtbk exP {-- Ei Xtbj(6i

= k + E, Nt
aak Eb exp {-- Ei Xtbi(6j

and because of the Monte Carlo processes there is no guarantee that if Sk = Si,

then also Xtbk will be equal to Xtbl, not even if you take th = Or. So without

taking any precautions one would in this case end up with different estimators

for items with the same value of the statistic. This is clearly an undesirable

state of affairs. The easiest way out would seem to retain only one of the items

with equal values on Si in the analysis, but that would cause problems for the

conditional Monte Carlo samphng scheme. Instead, I decided to average the

estimation equations for items with equal values for Si. This has implications

for the way the equations can be written. If Sk = St, then k will have to be

equal to (Si. To begin with, I therefore take TN = Th. This will prove to be a

convenient choice. Now, with Sk = Si, we have

and

Eb Xtbk eXP E., Xtbj(61 .0;7)1 j = 1 ... M,
Eb exP xib; (63

Eb Xtbt exp { Ei Xtbj(bj TP.i )}
= Nt j = 1 ...M

Eb exp E, )1

so that Sk Si is equal to

1 '
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+ xthoexP {xtbk(bk Xtbi(61 E.wvkovi Xtb)(S) 014
E

Ebexp{x,,,k(6,, 0.01

If th, and if we let lebk, be equal to Xtbk + X tbl the above equation

simplifies considerably. Likewise, we can do the same for all sets of items with

the same value for S. so that we get a different vector of observations, say Y.

in which Yj is equal to a sum over several X 's. Now we can write

Eb Y.tbh exP { Ei Y,b;(6; )1
Sh Mh E N, 1 . . . Ma, h = 1 .

Ebexp Ej (6j

where Ma is the number of different values actually appearing for 5, and M h

the number of items with S = sh. The above becomes particularly relevant

when estimating abilities instead of difficulties, because usually the number of

persons will be much larger than the number of items. As there only are M 1

different values for T, then only M 1 equations will be necessary instead of

N.

Estimating abilities

All the above applies equally well to estimation of 8 as to estimation of b. The

same routines can be used to maximise both sets of equations. The only cor-

rection that has to be made is that the sign of the outcomes when estimating

0 has to be reversed. It would have been fortunate if the same Monte Carlo

data could be used for both estimation procedures. However, sampling under

the condition of one fixed marginal (say for T), will change the other marginal,

so this is not a feasible possibility.

If both 0 and 45 are estimated using CML, they still have to be positioned on

to a common scale. This can be achieved by first estimating 0 and b separately,

and then setting 9 * = 9 + kl, the latter being a vector of ones. Then optimise
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the joint maximum likelihood for 0" and b with respect to k, (aid finally take

as your estimates e + kl and b.

All function maximisations were carried out using the Fletcher-Reeves algo-

rithm, in a a slightly modified form proposed by Polak and Ribiere (for details,

see Press, Teukolsky et al 1992).

Results

This section gives some results obtained in testing the Hastings algorithm used

for the simulation of response patterns. The last part of the section will compare

the Monte Carlo estimates to exact CML estimates for 3 small real data sets.

The data

For some of the tests all possible response patterns have to be considered. The-

refore some small data sets, preferably with known or previously estimated

parameter values, were necessary. I used data provided by Thissen (1982). He

reports the results of CML estimation on a 10 item memory test. This test was

taken by 40 persons, 5 of which had a zero score, so there were 35 of them left

for estimation. In addition he reanalyses two 5-item sections of the law school

admissions test. These two subtests, which will be denoted as Isat6 and Isat7,

were analysed earlier by Andersen and Madsen (1977) and by Bock and Lieber-

man (1970). The data represent responses of 1000 subjects drawn from a larger

sample of students applying for_ admission to law schools at various universities

in the United States. After omitting persons with perfect scores, 699 and 680

respectively remained for analysis.
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Response pattern generation

In order to test the algorithm for simulation of conditional response vectors, data

were generated for a 5-item test with item difficulties equal to the starting va-

lues for the lsat6. For the four non-perfect values of the total score 500 response

vectors were generated from ft(X; tk) using the Hastings algorithm described

in section 1. As the numbef of different response patterns is quite small in this

case (25 2 = 30), it was possible to calculate the theoretical conditional pro-

babilities, i.e. the value of ft(X; = exp (Ei Xj6i)ht(0), for each pattern

and to compare the observed frequencies for the generated response patterns to

the expected ones. Next, a chi-square statistic x2 = E (fobs fexp)2/fexp was

calculated for each conditional distribution ft(X; 0). This process was repeated

with Monte Carlo sample sizes B equal to 1000 and 2000. The results are given

in table 1.

Insert table 1 about here

None of the values in this table is significant, hut two remarks apply. First,

it, is probably not really justifiable to perform a )(2 goodness of fit test, because

the generated response patterns are not completely independent, being subsequ-

ent realisations under the Hastings algorithm. Therefore, the values should be

interpreted with some care. And second, as a result of the randomness in the

data simulation process, the generation of tables like table 1 is in this case itself

a random process. So ideally the analysis should be repeated a large number of

times, say a 1000, and the results studied. I did not do that; I only repeated

it several times. Although sometimes significant \ 2 values appeared, which is

to be expected, largely the pattern was as above. Therefore, although more

rigourous tests still can be done, for the time Lying the conclude was that the

response pattern generator works satisfactorily.
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The estimator .4, (5): sequential plots

The next thing to investigate was the performance of the estimator dt(6). First,
- (b)

some plots were constructed depicting the relationship between dt(6) and b,

where di(6) (6) is the value for dt(6) as calculated from the first b (out of B)
- (b)

Monte Carlo simulations. Then d(ö) is plotted against b, so that a kind of

time series plot results. Now there are several factors which will influence the
o

estimate di(6)
(t

. Firstly, of course, there is the number of simulations b upon

which it is based. Hopefully, with increasing b, the estimate will become stable,

i.e. converge to a certain value. In other words, dt(6)(b+1) dt(6)(b) should go

to zero for large b and any value of j. Next, it seems likely that the goodness of

the estimate will be influenced by the shape of the distribution of ft(X; 0), as

the empirical pmf of a sample from a 'regularly shaped' distribution in general

will more closely resemble the shape of its parent than a sample of the same

si7.,e from an irregularly shaped distribution. Thirdly, recall that dt(6) estimates

(5)/-yi(0), and that the estimate will probably be better for 6 close to 0, and

worse for 6 a large distance from 0. So the distance from 6 to 0 is a third

factor that might influence the 'goodness' of the estimate.

Ideally, what I should have done is use a fixed value for 6, then generate

response vectors at various points 0, and finally examine the behaviour of
(b)

dt(6) for each value of 0. However, I decided to work the other way around:
(a)

use a fixed 0 and examine the behaviour of dt(b) for various possible values

of 6. The advantage of course is that now there is need to simulate only one

data set instead of several ones. I wanted to look at estimates for 6 close to

IP, far away from 0, and in between. Arbitrarily, I decided that 'close' would

mean I tp; i< .1, Vj. As it would be rather artificial to have all 6i tiv

equal to each other. a 6 close to 0 was generated by sampling 6j from a uniform
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distribution on (0) .1, + .1) for each j. In a similar way 6, 's were sampled

from L1(01 3, + 3) to get a faraway point, and from U(11), 1, tI + 1) to

get an intermediate point. Now for the faraway point not all the bi's will in fact

be far from the respective tp,'s, but this choice will prove interesting.

Having generated Monte Carlo data at ti) and having found an arbitrary value
(b)

for 6 in the required distance range, the sequential estimates for dt(6) were

then calculated for b ranging from 1 to 2000. Informally repeating this several

times with different values for the seed, it appeared that sometimes the results

were as expected, and sometimes they were not.

Insert Figure 1 about here

To begin with an example of a nice result, figure 1 displays the plots for

three arbitrarily chosen values of t for a ten item data set using as the starting

values for the memory data, for the largest distance of 3. Plots for B = 500 and

B = 2000 are placed next to each other; the 500 simulations are the first 500

from the 2000. After 500 simulations the estimates do not seem to have reached

their equilibrium completely. After 2000 simulations the lines look smooth, but

note that for example the line for t = 7 still seems to be increasing; also, the

line for t = 5 still shows occasional small wiggles. However, bearing in mind

that these are plots for 6 a large distance away from 0, I think these results are

quite nice. It would be hard to say whether they are representative, though.

Most plots for d .1 (d indicating the distance) were better than these ones,

some were similar; and also there were plots for d 3 t hat were worse than

these ones. But on the whole I am inclined to believe that these plots are fairly

average for this 10 item data set. For a 5 item data set on the other hand I found

that sometimes the plots were more fluctuating, even withe 13 = 2000. A closer

inspection showed that this could happen because of extreme differences in the

'
4.0
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values for Ei Xi (bi ti). The explanation is as follows. In estimating (4((5)

two processes are involved: each new response pattern in first generated and

then it is added to Eb exp {Ei Xj(bj 'Pi)} (for convenience omitting the

subscripts b and t on X(bi); this means each response pattern has a probability

of occurring, depending only on ft(X;:tP), and it has a particular value for

Ei 01 1,(;j), depending on the differences bj . Now problems are likely

to occur, for some fixed 6, when there is a (or a few) response patterns with

a very small probability of occurrence, and at the same time a comparatively

large negative value for Ei XI (bi zbi); large, that is, compared to the value

of Ei Xi (bi ) for other X. Then exp {Ej X1(6.; 16)1 can become very

large indeed; so that in our example every once in a while a value of 2097 would

be added to the summation, whereas many other values with higher probabilities

would be equal to .5 or .11. It would take perhaps a B of 100,000 simulations

to level this out. This is why I said above that the way of generating the b's

would prove interesting. The finding can be stated differently too: there is no

problem when bj 1,/,i is of about the same size for all j. Then all the terms

in the summation over B will be of about equal size, even for different response

patterns X. Problems can arise if there are one or more j for which bi is

very large negative, compared to the other differences. No problems will occur

in the reverse case, when there is a reasonable number of items and bi ti.) is

very small for some j compared to the rest.

Having understood a possible source of erratic behaviour of the sequential

plots, the question becomes: do we have to worry about it? To answer this

question a simulation study was conducted which will be described in the next

section. One adjustment of the statement in Geyer and Thompson however

has to be made: in our case it is not the overall distance from b to */) which

influelces the goodness of the estimator dt((5) most: the spread in the distances
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bi ti,j, combined with the probability distribution ft(X; IP) is probably more

important.

The estimator dt(b): Accuracy of the approximation of d,(b)

Sequential plots, as drawn in the previous section, can be very enlightening

and instructive, especially when one happens to come across one that displays

unexpected or unwanted behaviour. But for finding out something about the

average behaviour of the estimator alternative means are needed. I conducted

a simulation study which is algorithmically given by:

1. Take a specific value for ti)

2. Choose a distance, say d = .1

3. Choose a value for (5 within that distance from

4. Calculate cii(6) for B = 500

5. Calculate (10) for 13 = 2000

6. Repeat steps 3-5 1000 times and calculate the average and standard devi-

ation for (10). Compare this with the expected value

7. Repeat steps 2-6 for distances of 1 and 3.

Of course, the trends that are so nicely visible in the sequential plots will

not appear in this way: looking only at (4(6) for B = 500 and 2000 provi'es one

with a look at a 'fixed point in the plot' only. Moreover, calculating the mean

and variance of dab) for 1000 replications might not be very instructive in itself,

as the values of ci1(6) should in the first place be compared to ryt(6)ht OM, which

is different in each of the 1000 replications because they each have a different

value for 6. Therefore, denoting lt(45)/1,(iP) by d1(6), for each of the 1000
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replications, the relative difference {cit(b) dt(6)}/dt(6) was calculated. This

relative difference was the variable of interest in the present investigation; its

mean, standard deviation, minimum and maximum are displayed in table 2 for

B = 500 and B = 2000.

Insert Table 2 about here

Again, the starting values for the lsat6 data were used to provide me with

a point tk. Looking at the top half of the table first, we see that for B = 500

the average relative error is very small: for 6 near to 1/., it is .001 at most. The

associated standard deviations vary from .02 to .05; and the maximum values

for the minimum and maximum relative errors are equal to .09 and .10 resp.

The worst values occur for t = 4. For the other distances the estimate behaves

worst for t = 4 as well. In the case of a distance 1, the average error for t = 4

is about 14%, and for d 3 the average estimate for t = 4 is about 1.67 times

as big as what it should be. Once it even was 16 times too big. Although, in

my opinion, the averages for the other values of t do seem acceptable for d .1

and d 1, the associated standard deviations are rather large for d s I.

The values for B = 2000 are, on the whole, strikingly similar to those for

B = 500. I can only conclude that on average it does not seem to make much

difference whether you use a Monte Carlo sample size of 500 or of 2000 in

estimating dt(6): on average the estimates are very reasonable for 6 within a

short distance of ti); but standard deviations of about 5% may still occur. For

6 far away from ti) the estimates are unreliable; and for 6 in between I am

inclined to say they are not utterly reliable either. Note, however, that for item

parameters in the context of 1RT a difference of 1 is quite substantial, and in

practice our starting values will probably be closer to the final estimates.

A consistent pattern seems to be that the estimates are better for smaller
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values of t; this is probably due to the fact that for small t the summation

Ei ,v1(6; ip,) consists of fewer terms (many of the xi being equal to zero),

so that the differences between values of exp {E.) Xi (bi 0.0} for different

response patterns with the same total score cannot become very large. Also,

this table has been obtained using a very small data set, consisting of only 5

items. It would be interesting to see whether the results would be similar with

larger numbers of items: the sequential plots shown in the previous section were

in general more irregular for a 5 item test than they were for a 10 item test. As

mentioned, this might be due to the fact that the pmf of a five-item response

vector is probably more irregular than the pmf of a ten-item response vector.

Comparison of MC estimates to exact CML estimates

In this section results will be presented for the estimation of item and ability

parameters for the lsat and memory data. The results are for one estimation

only, the procedure has not been replicated to examine the behaviour of the

estimators. Table 3 contains the Monte Carlo parameter estimates for the !sat

data together with the exact CML estimates.

Insert Table 3 about here

The Monte Carlo estimates have been calculated under the constraint (Si = 0,

and after the estimation process was completed, the estimates were rescaled to

have a mean of 0. The fourth column in the table contains the differences

between both estimation procedures. The Monte Carlo estimates are within I

standard error from the exact values. Therefore my conclusion is that they are

at least acceptable.

The ability estimates are presented in the tight hand side of the same table.

In this case, the so-called 'exact' estimates are no CML estimates at all: the



Monte Carlo CML 23

ability estimates are calculated treating the item parameters as known. Note

that, although the estimated standard errors are much larger for the ability

estimates than they were for the delta's, the Monte Carlo estimates are within

the same order of distance from the 'exact' values as they were for the item

parameters.

Insert Table 4 about here

Table 4 contains the estimates for the memory test. The differences between

Monte Carlo and exact estimates seem to be somewhat smaller than for the

Isat data. Certainly in view of the larger standard errors here (a consequence

of the smaller sample size) this is very nice. Turning to the ability estimates

we find that there were no subjects with total scores larger than 7. Therefore I

was only able to calculate Monte Carlo estimates for 0 for T = 1 up to T = 7.

This is in contrast to the usual estimation method: upon assuming all the item

parameters are known, it is no problem to calculate ability estimates for any

value of T, whether this value actually appears in the data or not. Again the

differences are very small.

Computer times and storage

The storage required for this estimation procedure is huge. A tensor of approxi-

mately size MxMxB has to be stored, in which B is the number of Monte

Carlo samples, and M is the number of items. Storage is necessary because

the maximisation of every log L needs several iterations, in each of which the

Monte Carlo data appear, together with different values for the parameters. If

there are items with the same value for 8, the size of the array can be reduced

somewhat because of the fact that Monte Carlo responses for those items will

only appear in the equations added up together (i.e. Yj's instead of Xi's), so
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they might as well be stored added up together. In the case of estimating 9 this

is no trivial reduction, because otherwise the size of the array would have been

of order MxNx B.
For the three data sets I have examined, more than 90% of the computer

time, perhaps even 99%, was spent in generating the response patterns. Once

the response patterns were there, it was usually a matter of seconds, or even

less, to see the actual estimates appearing on the screen.

Insert Table 5 about here

This is reflected in table 5 in which the CPU-times for the estimates reported

in the previous section are given. The times are for a small UNIX machine. For

the !sat data, the CPU-times for calculating ability estimates are much larger

than the times for calculating item difficulties. This is because there are nearly

700 persons in the sample, so that in estimating 6 for each item 700 responses

have to be generated; whereas in estimating only 5 items are involved. Clearly

some work has to be done to see if these times can be reduced. One suggestion

could be to reduce the number of Monte Carlo estimation cycles, or the size of

the Monte Carlo samples, especially in estimating 8. At present I use an initial

sample size of 500; when the squared Euclidean distance between two conse-

cutive sets of parameter estimates becomes less than .10, I switch to a Monte

Carlo sample size of 2000 and do 2 more maximisation cycles. In estimating

however the precision reached after only 1 cycle with B = 500 was hardly ever

increased by subsequent cycles with B = 2000. Considering the fact that for

the estimation of ability parameters the simulated 'response vector' is of length

N , it is not very surprising that. these estimates are better, for the same value of

B, than those of the item parameters, which are based on a response vector of

length M . So for the ability parameters a substantial reduction in the amount
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of CPU-time might very well be possible. For the estimation of 5 I am not so

sure a very large reduction is possible (apart from improvements in the style of

programming). The switch to B = 2000 was always made after 1 or 2 cycles

with B = 500, but sometimes the first cycle with B = 2000 would then again

show a squared Euclidean distance of for example .14. Again, a suitable topic

for further work.

Conclusion and discussion

The estimation method examined in this paper seems to work, at least for small

data sets. The approximate estimates produced are not too far away from the

exact values. However, many things still need to be done; some of them I have

not even started with. Here they ;.ome, not in any particular order.
(B)

To begin with, the variance of the estimator (11(6) needs some more at-

tention. According to Hastings (1970) this variance is equal to

E2
B-1

I

B j=-B+1 Pj

where pi is the autocorrelation for lag j. As pointed out before, the autocorrela-

tion cannot a priori be assumed to be zero. Two methods for investigating this
(b)

are, first, similar sequential plots for the estimated variance of di(5) as the
- (b)

ones for clt(S) Itself. The second method would be to calculate the variance
(B)

of cli(6) for different numbers of scans between two successive simulations;

this should obviously reduce the autocorrelation.

The parameter estimates produced in section 3 should be reproduced a large

number of times with different values for the seed of the random number gene-

rator, to get some additional insight into the average and standard deviation of

the Monte Carlo estimates.
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The variance/covariance matrix of the parameter estimates has to be cal-

culated as well. Probahly it is possible to approximate the matrix of second

derivatives by a method similar to the one used to get the parameter estimates,

and then to invert this matrix. But possibly this will be more involved than

approximating only the parameter estimates.

The conditions under which the estimator dab) performs well need some

more attention. Especially the difference that seems to exist between the fin-

dings in this paper and the ones by Geyer and Thompson, concerning the influ-

ence of the distance from 5 to tP, could be examined further.

The estimation process needs some more attention as well, especially the-

oretically: can it be expected that the results of unconstrained maximisation

will be similar to those using one fixed parameter? Some preliminary analyses

seem to suggest that unconstrained maximisation (and later rescaling to a mean

of zero) gives results similar to the ones found above, the only difference being

slightly larger computer times.

All the estimations done until now were on very small data sets. It is neces-

sary to get some indication of the precision of the method for larger data sets

as well. The exactness of the ability estimates are promising in this respect: in

a way, these can be compared to estimates for very long tests (taken by only a

few people). However, both the CPU-time and storage needed for larger item

sets will increase with the number of items. But perhaps this problem will not

become too serious, though: recall that for estimating the parameters of a larger

test probably the number of Monte Carlo samples can be substantially reduced.

This will have an impact on both CPU and storage requirements.

The above leads me to conclude that although the method works, a lot of

work still needs to be done to make it suitable for CML estimation in models

where exact CML estimates are impossible to obtain.
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Table 1: Chi-square goodness of fit values for the distribution of gene-
rated response patterns.

x2 values for
t df B=500 B=1000 B=2000
1 4 3.94 2.00 2.21
2 9 1.88 12.83 11.71
3 9 11.19 8.23 7.76
4 4 0.27 11.86 8.01

t=total score, df=degrees of freedom.

B=number of generated response patterns.
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Table 2: Relative accuracy of the estimator cit(6). Results for 1000
replications.

B dist t mean sd min max
500 0.1 1 -0.0013 0.022 -0.043 0.040

2 -0.0015 0.037 -0.066 0.069
3 -0.0015 0.047 -0.079 0

4 -0.0013 0.054 -0.091 0. ,d9

1.0 1 -0.012 0.20 -0.46 0.53
2 0.021 0.36 -0.55 1.02
3 0.080 0.49 -0.60 1.31

4 0.135 0.59 -0.63 1.56

3.0 1 -0.074 0.45 -0.94 3.55
2 0.178 1.07 -0.94 7.79
3 0.821 2.16 -0.95 11.41
4 1.678 3.57 -0.95 15.98

2000 0.1 1 0.0008 0.021 -0.041 0.039
2 0.0018 0.036 -0.065 0.067
3 0.0028 0.046 -0.081 0.084
4 0.0035 0.053 -0.091 0.099

1.0 1 -0.014 0.21 -0.47 0.45
2 0.030 0.36 -0.56 0.90
3 0.088 0.49 -0.60 1.23
4 0.145 0.60 -0.62 1.55

3.0 1 -0.092 0.47 -0.92 2.51
2 0.146 0.99 -0.95 5.42
3 0.697 1.99 -0.95 11.31

4 1.478 3.29 -0.95 15.91

13.Nurnber of simulations.

dist.order of distance from tb to .5, a distance of d means by - tP, < d, Vj

t=total score, rnean=average relative error of 41(5), sd=standard deviation of average relative error

rnin=minimum observed value of relative error; max=maximum observed value of relative error

33
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Table 3: Item and ability parameter estimates for lsat data.

data item mc-it cml se cliff t mc-ab cml se diff
lsat6 1 -1.20 -1.26 .12 .06

2 -.70 -.62 .10 -.08
3 .23 .17 .09 .06
4 .43 .47 .08 -.04
5 1.24 1 .24 .08 .00

lsat 7 1 - .79 -.67 .10 -.12
- .43 -.54 .10 .11

3 -.08 -.13 .09 .05

4 .52 .54 .08 -.02
5 .78 .81 .08 -.03

1 -1.74 -1.60 1.18 -.14
2 -.52 -.47 .99 -.05
3 .53 .48 .99 .03
4 1.73 1.60 1.18 .12

1 -1.53 -1.44 1.14 -.09
2 -.46 -.44 .95 -.02
3 .45 .44 .95 .01

4 1.54 1.44 1.15 .10

mc-it. monte carlo estimate for item parameters, mc-ab monte carlo estimate for ability parameters.

cml exact cral estimates; se estimated standard errors for cml t. total score.

cliff montecarlo-estimates - cml-estimates.
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Table 4: Item and ability parameter estimates for the memory data.

item mc-est cml se diff t mc-est 'cml' se diff
1 -2.42 -2.49 .46 .07 1 -2.81 -2.71 1.16 -.10
2 -1.04 -1.02 .36 -.02 2 -1.68 -1.69 .90 .01

3 -.85 -.91 .36 .06 3 -.98 -1.00 .78 .02
4 .10 .05 .39 .05 4 -.39 -.43 .73 .04

5 .31 .33 .40 -.02 5 .10 .08 .70 .02
6 .44 .49 .42 -.05 6 .59 .57 .70 .02

.44 .49 .42 -.05 7 1.10 1.09 .74 .01

8 .60 .66 .43 -.06 8 1.69 .83

9 1.16 1.07 .48 .09 9 2.56 1.80
10 1.28 1.33 .52 -.05

mc-it. monte carlo estimate of itern parameters; mc-ab. monte carlo estimate of ability parameters.

cml exact cml estimates, se estimated standard errors for cml t: total score

cliff. montecarlo-estimate cml-estimate

0 0
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Table 5: Time needed for computations.

data cpu-time real time
item parameters Isat6 139 2:37

lsat7 148 2:45
memory 458 8:44

person parameters lsat6 1596 28:21
lsat7 1713 33:26
memory 665 11:14

cpu-time = number of central processor units.

real time = elapsed time in minutes and seconds.

`j
fl
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(b)
Sequential estimates dt (6) for some values of t, for B=500 and B=2000.

Memory data, dIstance between 6, and tp, < 3, Vj
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