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Abstract

The designing of tests has been a source of concern for test developers over the

past decade. Various kinds of test forms have been applied. Among these are the

fixed-form test, the adaptive test and the testlet. Each of these forms has its own

design. In this chapter the construction of test forms is placed within the general

framework of optimal design theory. A review of various objective functions and

methods for the designing of different test forms is given. The advantages of

using these methods are discussed, and an illustration of an optimal test design

will be given.

Key words: optimal test design, adaptive tests, testlets, sequential procedure,

efficiency, consistency.
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A Review of Selection Methods for Optimal Test Design

Since the First World War, the construction of tests in education and

psychology has gone through a number of different stages. and tests have been

administered in various different forms. Although at first the construction of

tests was done by hand, the recognition that the construction of tests could be

improved by taking into account the psychometric characteristics of the items has

lead to alternative, and more structured methods of test construction. Perhaps one

of the most promising directions in the construction of tests is the use of the idea

of so-called item banks. An item bank is'a very large sct of items. These items

are grouped into certain content areas and it is assumed that the psychometric

characteristics of these items have been estimated. When such an item bank is

available, the construction of a test is done by selecting items from the bank

according to certain specifications. A lot of research has been done on optimal

item selection methods. Many of these methods are based on mathematical

programming procedures. See Adema (1990), Boekkooi-Timminga (1989), and

Theunissen (1986) for a review of these methods. Although the mathematical

programming methods were mainly proposed for the construction of fixed-form

tests, other forms like two-stage and parallel tests (Adema, 1990) can also be

handled by these methods. Recently two computer programs based on

mathematical programming algorithms have been developed; namely the

CONTEST program (Boekkooi-Tinuninga and Sun, 1991), and the OTD program

(Versehoor, 1991).

The :act that fixed-form tests do not have equal reliability or equal

(;
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validity over the whole range of abilities in the population, has motivated Lord

(1971, 1980) and Weiss (1976,1978), among others, to propose adaptive test

forms. The central idea ws that if each examinee in a sample is given an

individually designed test, :his would lead to more efficient estimation of the

abilities of these examinees. The availability of fast computers and item response

theory (IRT) models has made the development of computerized versions of

adaptive testing (CAT) possible. See Wainer (1990) for a review of various

aspects of CAT.

With the development of item banks and computerized adaptive tests, tne

special skills of the test developer were replaced by statistical characteristics.

This development was criticized by Wainer and Kiely (1987). They argued that

the test developer's skills are still needed in the construction process. Because

several practical problems with the existing CAT procedures were not solved

satisfactory, Wainer and Kiely (1987) and Wainer and Lewis (1990) proposed the

application of so-called testlets. Test lets are actually small bundles of items,

where examinees follow a fixed number of paths. A test may consist of a number

of diffl-lrent testlets, and an examinee does not have to take every testlet in the

test nor does an examinee have to take all items within the testlet. The many

advantages and disadvantages of fixed-tests and adaptive tests are combined in a

testlet design.

The above described construction of different test forms can be regarded

as an optimal design problem. Optimal design methods have been applied in

various fields of research. Although most of the developments have been reported

and applied in bioassay research, optimal design methods can also be applied in

educational measurement. Berger (1991) and Berger and van der Linden (1992),

for example, have recently described the application of optimal design methods



Selection Methods

4

for the designing of optimal samples for item parameter estimation in 1RT

models.

The objective of this paper is to give a review of the different optimal

design methods and criteria for item selection for the construction of different test

forms. This review places these methods within the general framework of optimal

design theory. Si Ivey (1980) and Ford, Kitsos and Titterington (1989) give a

review of optimal design research for nonlinear models. The present paper also

indicate :. that the optimal design methods all have the same characteristics and

can be applied to any IRT model. This review not only includes the already

known methods but also introduces some alternative selection methods which

may prove useful in the future.

First a description of a test design will be given. Then the two most

frequently applied information measures will be described, and finally the

different criteria for the selection of items for different situations will be

reviewed.

Test Design

A test design is characterized by the pattern of the examinee-item

combinations. Actually, a test design is connected with a particular test form. For

example, a fixed-form test where examinees all take the same items in the test,

may be designed in such a way that the items are ordered from very easy to

extremely hard. If examinees take the items in the test starting with the most easy

item, and stop whenever they give a wrong answer to an item, then the most able

examinees will have to answer more items then the examinees with a low ability
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level. When examinees are also ordered according to their ability level, then the

scores of a test design will approximately hay: a GuUman scale pattern. In Figure

1 an example of such an approximate Gutunan test design is given. The crosses

in Figure 1 indicate the examinee-item combinations. The 16 examinees take a

test consisting of 20 items. The examinee with the lowest ability level only takes

two out of 20 items and the most able examinee takes 19 out of 20 items. It

should be emphasized, that the empty cells in the score matrix of the approximate

Guttman Test design are empty by design, i.e. the design will determine whether

a response is available or not.

Insert Figure 1 about here

Adaptive tests also have special designs. Most adaptive tests are

administered in such a way, that each examinee takes a different set of items.

The full Nxn matrix of responses of N examinees on a total of n different items

will therefore contain a lot of empty cells. In an adaptive test design, the pattern

of the cells in the Nxn response matrix is determined by the adaptation process.

The design pattern connected with an adaptive test form is certainly not fixed,

and may be completely different for examinees having the same ability levels. An

example of an adaptive test design is also given in Figure 1. Note that for this

particular design an equal number of 10 out of 20 items is administered to each

of the 16 examinees.

The designs connected with testlets are more fixed than adaptive test

designs. A test containing several testlets will usually have a limited number of

paths for an examinee to run though. Depending on their responses to previous
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items, examinees may take different items in the testlet and may even take only

some of the testlets in the test. The response pattern in a testlet design often

follows a kind of branching scheme. Actually, two different types of branching in

a testlet design may be distinguished. Examinees may not have to take every

testlet in the test. Such a branching may be referred to as between testlet

branching. When a testlet is structured in such a way that a fixed number of

branches of the items within that testlet is made possible, this will be referred to

as within testlet branching. The third diagram in Figure 1 displays a typical

within testlet design connected with a hierarchical testlet (Wainer & Kiely, 1987).

In this example, the 16 examinees all take the first item. Then, depending on

their response to the first item, they take the second or the third item, and so on.

Test let designs are not as flexible as adaptive test designs, but more flexible than

the designs for fixed-form tests.

For the description of a test design some notation is needed. Suppose

that we wish to construct an optimal test design for a sample of N examinees

(j=1,...,N) and n distinct items (i=1,...,n). Lct the matrix U = {au) represent the

response pattern. If the 0-scale with all possible abilities is divided into c distinct

categories S, such that 1 < c < N, then these categories can be gathered in 0' =

(Op 02. 03, , 0e), where 0 E Rc, and le is a c-dimensional set of real

numbers. Corresponding with the vector 8 is a vector of weights, W' = (w1, w2,

w3, , we). These weights can be used in different ways.

The weights in W may be used to characterize the distribution of the

sample for which the optimal test is constructed. If, for example, all weights in W

are equal, then the sample will have a uniform distribution for the abilities. By a

suitable selection of weights a normal ability distribution can also be

approximated. The weights can also be used to select only a few 0-levels. If we
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wish to find an optimal test design for only two extreme 0-levels, then all but

the corresponding two weights ivj will be equal to zero. The weights can also be

used to give more weight to certain Of-values than to others. Weights can also be

used to emphasize the sizes of the intervals between the different Of-levels. Some

of the criteria discussed in this chapter will make use of such weights.

The items in the test design can be characterized by the vector of

structural parameters 4'= (41, 42, 43, ... .4n), where each element 4i may be a

vector representing more than one item parameter. For example, for the Rasch

model 4i will represent the difficulty or location parameter. For extensions of the

Rasch model, 4i may contain more than one parameter. Of course, items with the

same item parameter values may be represented by the same vector E.

The probability of obtaining a response can now be given by the

function P(0.',4.). The mean and variance ui the parametric family are P(0-;4.)
1 1 I I

and {P(Of;4i) P(0./;4i)H, respectively, and the likelihood function for the

data matrix U and 0 is:

where pif is the proportion of correct responses on item i in category j of 0, and

estimation of the parameters (0f,4i) can take place by means of the usual

maximum likelihood (ML) estimation procedures.

After a model P(0.' *4.) is chosen, the test design can be selected. The
.1 1

selection of a test design must be done in such a way, that it will lead to the

most accurate estimation of the parameters. The problem, however, is to find
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such test designs. More specifically the problem is to fmd the set of parameters

4 connected with a certain test form that will enable the most efficient estimation

of the parameters in the sample characterized by

(8, W).

The problem of finding optimal test designs cannot be answered in any

general sense and will depend on a number of factors. First, the assumed

response model will determine the final outcome. An optimal test design for the

Rasch model will generally not be optimal for the two-parameter logistic model.

Fortunately, however, the methods for fmding optimal test designs can be applied

to practically any parametric IRT model.

A second problem is connected with the test form. An optimal test

design will differ per test form. For example, an optimal design for a fixed-form

test may not be optimal at all for an adaptive test, and vice versa.

Another problem is connected with the parameters themselves. The

accuracy of the parameter estirnates will depend on the amount of information in

the data, and test designs may differ in their amount of information. The variance

ol the estimators is usually inversely related to the amount of information in the

data, and some suitable information measure must be chosen before one can find

an optimal test design.

Finally, a selection criterion for the items must be chosen. Since the

optimality of a test design will depend on the optimality criterion that was used.

the choice of criterion may be crucial. In fact, two alternatives can be

distinguished. The first kind of criterion is based on all parameters in (8, W).

This enables a simultaneous optimization procedure for all the parameters in 8.

The second kind is formulated on a subset of parameters or even for single

parameters, and allows for a stepwise optimization. i.e. for each of the Of-values
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separately. Although the latter group of criteria has been frequently applied in

adaptive testing, these criteria can also be used for the designing of fixed-form

tests.

In the following sections the two most frequently applied information

measures will be described.

Information Measures

Many different types of information measures for the estimation of

parameters have been proposed. Two of the most frequently applied information

measures am Fisher's information measure and the Bayesian measure, which is

based on the inverse variance of the posterior distribution.

Let the information measure be symbolized by J(13i). Then Fisher's

information function connected with the parameter Of is defined as:

aJ(Bj) E ( L'()g
L[u;8;U2 ,

1

(2)

where L[u;O.,1 is the likelihood function. Higher values for J(0j) indicate that

more information on the parameter Of is available in the sample. Fisher's

information has been the most often used measure in test construction. Not only

the mathematical prograimning methods for the construction of fixed-form tests

make use of this measure, this measure is also very popular for the construction

of adaptive tests.
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The second measure is the Bayesian measure. The Bayesian approach to

test construction was first proposed by Owen (1975). Instead of using Fisher's

information on the ability parameters, Owen (1975) proposed to use the posterior

variance. To our knowledge, no mathematical programming procedure based on

the maximization of the inverse posterior variance criterion has yet been

proposed. To do this, one must first formulate a suitable prior distribution on the

abilities being measured. Then, after the selection of response data, the posterior

distribution has to be developed by combining the prior distribution with the

response data. This means that the use of a Bayesian selection criterion to select

items for inclusion in a fixed form test would not be very practical. On the other

hand, the implementation of such a Bayesian procedure in the mathematical

programming models for two-stage or multi-stage testing procedures proposed by

Adema (1990) would be feasible, and it would probably increase the efficiency of

the selection procedure, at least when a suitable prior is selected.

When the expected posterior variance is used for item selection, then:

J(0.) E ( Var 1(3.IM(0.)) ) ,
1 I

(3)

where M(0i) is the prior information on

For all the parameters in (0, WI, the information measures J(0f) can be

grouped into the following vector:

4 r
I
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(4)

This vector J(9 I 4) ceatains all available information on the parameters 0 in the

data and optimality of a test design is usually represented by a function of the

two vectors J(0 I 4) and W. It should be noted, that for multidim?nsional IRT

models the vector 8 will become a matrix and J(0 I 4) will also be a matrix, but

the optimality procedures will generally remain the same.

A Class of Optimal Design Criteria

The above given information measures are mlated to the amount of

uncertainty of the estimators of the elements in 0. Optimality of a test design can

be defined simultaneously for all the parameters in (0,W} by considering a

function (1)(.) of J(0 I 4) and W. Such a simultaneous optimization has the

advantage that it will lead to an optimal design for the whole sample of

examinees characterized by {0,W), and also takes into account the shape of ItS

ability distribution.

An optimal test design is a design for which the function (1)

(J(0 I 4),W) has the largest possible value, and the problem of finding an

optimal test design is actually the problem of maximizing a real-valued concave

objective function, i.e.:

I o
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(5)

E W.; = Nmax , (6)

where NM
is some prior specified maximum sample size. In most cases this

aX

maximization problem is not easy to solve, and the solution will generally depend

on the function 0(.1 and the information measure being used.

Kiefer (1974) considtzed a general class of optimality criteria (1) (.) and

discussed their properties within an approximate equivalence theory. Members of

this class are the so-called product criterion, the sum criterion, and the minimum

value criterion. Conceptually, the product criterion can be regarded to correspond

with the well-known geometric mean and the sum criterion may be regarded to

correspond to the arithmetic mean. This class not only includes these

simultaneous optimality criteria, but also includes criteria which are suitable for

stepwise optimization. In Table 1 different optimality criteria are displayed, and

each of these criteria will be discussed in the following sections.

Insert Table I about here
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Optimality Criteria for Simultaneous Optimization

Product criterion

The first criterion is a product criterion. The most frequently applied

form is the determinant criterion. Usually this criterion is defined as the

determinant of an inverse variance-covariance matrix of the estimators, and is

often referred to as the D-optimality criterion. This measure was first proposed

by Wald (1943), and it is also known as the generalized variance criterion

(Anderson, 1984). It can be shown that this criterion is related to Shannon's

(1948) information measure of uncertainty about the parameters (Berger, 1991).

If the vector J(0 I ) represents the main diagonal of a diagonal matrix, then the

determinant of that matrix is the product ot the main diagonal elements. For an

optimal test design the product criterion will become:

(J(314),W} = J(0)
1=1

(7)

This criterion has many advantages. Perhaps one of the main reasons for

using this criterion is that it has a natural interpretation. It can be shown that it is

related to the volume of a confidence region in the parameter space. This means

that it can be used to formulate a confidence interval round the parameter

estimates. A second feature is that it does not depend on the scale of the

independent variable. For the well-known one-, two-, and three-parameter HIT
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models, this means that the D-optimality criterion is invariant under linear

transformation of the logit scale. Finally, it must be mentioned that its upper

bounds for the two-parameter logistic model have been derived by Khan & Yazdi

(1988). This means that the actual optimality function value can be compared to

the maximal achievable value of the criterion. Such a comparison, for example,

was done by Berger (1992b) for two-stage sampling designs.

The D-optimality criterion has also been appealing because of its

equivalence with other criteria. The general Equivalence Theorem of Kiefer and

Wolfowitz (1960) shows that the D-optimality criterion is equivalent to the G-

optimality criterion, which minimizes the maximum variance of the predicted

response over the design space. This result indicates that a design is D-optimal if

and only if it is G-optimal.

The D-optimality criterion also has some disadvantages. The first

disadvar tage is that it is generally not sensitive to misspecifications of the model.

For example, Abdelbasit & Plankett (1983) showed that for the two-parameter

logistic model a D-optimal sampling design for the estimation of the two

parameters of a single item consists of only two distinct ability levels. Berger

(1992a,b) presents figures of these sampling designs. Because such D-optimal

designs are only based on two distinct design points or ability levels, they may

not be sensitive to changes in the model specification. Not only minor, but also

large deviations in the item characteristic curve may not be detected with data

collected according to these designs. Although these problems have been

encountered for sampling designs. it can be inferred that these problem will also

occur when the D-optimality criterion is applied to test designs.

Another disadvantage of this criterion is that models with a different

number of parameters cannot be compared with each other, because the function

1 6
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depends on the number of parameters being used. It should be noted, however,

that this problem also occurs with the other functions.

Sum criterion

A second criterion is the trace or A-optimality criterion. For the test

design this function is defined as a weighted sum of information measures

connected with the c 0- parameters in the sample:

4) {AP, ),141) = E j ..481) .

j=1

(8)

This criterion has also often been applied in optimal design research.

Although there are cases in which A-optimality is more easily demonstrated than

D-optimality, the A-optimality criterion does not have the same advantages as the

D-optimality criterion. It is not invariant under linear transformation of the

parameter scale and its upper bounds depend on the actual values of the

parameters themselves. Although this criterion may seem more appealing to

practitioners than the D-optimality criterion, it has hardly been applied in IRT

modelling. An example of such a sum criterion for mathematical programming

methods has been given by van der Linden and Boekkooi-Timminga (1989).

Minimum value criterion

This criterion may have different fonns. Either the minimum value of

the information on the parameters is maximized, or the maximum value of the

inverse information or asymptotic variance is minimized. An alternative
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formulation is based on the smallest eigenvalue of the information matrix, and is

referred to as the E-optimality criterion. For IRT models and test designs the

smallest value of the vector J(0 I is maximized:

cp (J(8 ),W) = min {Ay)
j=1

(9)

This criterion is often called a MAXIM1N criterion. An example of a MAXIMIN

criterion used as objective function in mathematical programming is given by van

der Linden & Boekkooi-l'imminga (1989).

Optimality criteria for Stepwise Optimization

The function (1) (.) is defined for the whole set of parameters (0,W). In

some cases, however, optimality for some subset of parameters or for each single

parameter may be of interest. For example, a test constructor may want to find a

test design that is optimal for the estimation of only the lower ability levels in a

sample. Such a selection of the ptrameters in 0 can be established by setting the

weights corresponding to the higher Orvalues equal to zero. The problem is then

to find an optimal test design for the subset (Os, Ws), where I < s < c is the

number of parameters in the subset. In many cases, the estimators of the

parameters in the subset will not be independent of the estimators of the

remaining parameters. In these cases, this dependency should be taken into

account when items are selected. The solution to the maximization problem for a
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reduced set of parameters is often referred to in the optimal design literature as

(13 - cs
In this section, criteria which are formulated for a single parameter

i.e. for a single examinee, will be given. These criteria are special cases of the

above given criteria for a whole sample of examinees. Instead of a simultaneous

maximization, these methods allow for a stepwise optimalization for each single

parameter separately. These criteria have been mainly used for the construction of

adaptive tests.

In adaptive testing, the construction of a test is individualized for each

examinee, and the item selection criterion is formulated for each examinee

separately, that is for a single parameter. A distinction between construction

methods for fixed-form tests and adaptive tests, is that item selection in adaptive

teming is based on previous responses. If an examinee x has an ability ex (x E

N), then the selection criterion is based on an estimate of the parameter Ox

instead of on the parameter itself. Given such a provisional point estimate, items

are selected with the largest information on the ability estimate. i.e.:

4 3 {J(8 1 ),W) = ( 10)

This criterion was first suggested by Lord (1977) and has been referred to as the

maximum information selection criterion (Thissen & Mislevy, 1990). An adaptive

test is composed sequentially, after successive administration of the selected

items. Compared to the fixed-form test, the adaptive test form may lead to more

efficient estimates of the ability, but the stepwise search, for each examinee
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separately, through a relatively large number of items will, of course, be more

time consuming than for the construction of a fixed-form test.

There is, however, a disadvantage. Criterion (10) is based on a

provisional point estimate of Or Especially when the information meastut is

based on relatively few items, the uncertainty of the estimator may be very high.

In these cases the selection of items may be improved by applying a criterion

which will take into account the uncertainty of the estimators. Some objective

functions that do take into account the uncertainty of the estimators have been

proposed by Veerkamp & Berger (1994).

A 100(I-a)% confidence interval for Ox with lower limit OL and upper

limit OR can be formulated by means of the well-known property that its

estimator is asymptotically normally distributed with mean Ox and variance

Aex14)-1 which may be replaced by (10). If the pair of vectors (05,Ws)

contain all discrete values of the abilitie's lying within the confidence interval for

Ox, so that the first (lowest) Eli-value is OL and the highest (last) 01-value is OR,

then the area under the information function with limits OL and OR may be

roughly approximated by:

(13 {JO I WV) E
j=1..

where tui = I Oi_i - Oi . These weights are used to include the size of the

intervals between the distinct 0-levels, and as such enables approximation of the

area under the information function. Item selection in adaptive testing may be

improved by applying this interval criterion instead of the maximum (point)
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information criterion.

An extension of the interval selection criterion is also possible by

including additional weights. lf, for example, more weight is given to the

information measure J(8 I 4) when the likelihood is high and less weight is given

when the likelihood is low, then a likelihood weighted selection criterion may be

formulated as:

CI) MO I 4 LW} = E L[u (n) ;OA (n)] to./ J(f)j) ,

j=2

(12)

where L[u('1);ei;4(n)] is the likelihood for the responses of the n already

administered items. It should be noted, that equations (11) and (12) are equivalent

to the weighted sum criterion given in equation (8). Only the weights differ.

Some advantages of these criteria are given by Veerkamp & Berger (1994).

Because of the additional use of the amount of uncertainty of the estimators,

these criteria are expected to perform at least as good as the maximum

information criterion. Simulated results given by Veerkamp and Berger (1994)

seem to support this conjecture.

An Illustration

One of the main features of simultaneous optimization criteria is that the

shape of the ability distribution can be taken into account. An illustration of this

feature is presented in Figures 2 and 3. Suppose that we have an item bank with
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an infinite number of items. These items have been calibrated by means of the

two-parameter IRT model, and cover the full range of combinations of bi e <-

3,+3> and a; c <0.5,3.0>. The product criterion in (7) was used to select the

items from the item bank.

In Figure 2 the probability mass functions of the resulting optimal test

designs for a positively skewed ability distribution is given for items having three

different values of the discrimination parameter ai = 1.0, 2.0, and 3.0,

respectively. These functions indicate that if the items have a discrimination

parameter ai = 1.0, the optimal test would consist of about 80% of the items

having difficulty parameter value bi = -I and about 20 % of the items with

difficulty bi = -0.5. A very small proportion of items would have a difficulty

parameter value bi = 2.0. When the items have a higher value for ai, the shape

of the probability mass function on the difficulty scale will resemble the

positively skewed ability distribution for which the test was designed.

Insert Figure 2 about here

In Figure 3 the optimal test designs are given for a uniform ability

distribution. The results in Figure 3 show that for a unifonn ability distrThition

the probability mass functions will also approximately have a uniform shape on

the difficulty scale. It should be noted, that the selection of items from the item

bank is rather artificially structured, i.e. the items are assumed to have a constant

discrimination parameter in each test and exhaustion of the item bank does not

play a role. because of the infinite number of items. In this case, the most

optimal combination of parameter values can be selected as often as require. For



Selection Methods

21

small item banks, the results will be expected to be quite different.

Insert Figure 3 about here

Discussion and Conclusion

An important aspect of objective measurement in education is the

construction of test forms which are not only valid and reliable, but also will

produce efficient estimates for the latent trait distribution for which the particular

test is designed. In this chapter the designing of different test forms is placed

within the general theory of optimal designs. Different methods for optimal

design are reviewed in this paper and their properties are discussed. The main

conclusion of this paper is that the different test forms, such as fixed-form tests,

adaptive tests and testlets, can be constructed by means of comparable methods,

and that these methods are actually the same as thc procedures which have been

used in optimal design theory.

The construction of an optimal test design can be viewed as an

optimization problem, and several algorithms for finding optimal designs have

been proposed in the literature. Among those optimization procedures arc the

mathematical programming procedures, which have been used for the

construction of fixed-form tests by Adema (1990) and Boekkooi (1989), among

others. Apart from these procedures several other optimal design algorithms have

been applied in other fields of research. See for example, Cook and Nachtsheim

(1980) for a review. Perhaps the most promising algorithms for test construction
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are the sequential design algorithms. These procedures have been studied

extensively by Ford, Titterington and Wu (1985), Wu (1985), Wu and Wynn

(1978) and Wynn (1970), and were applied to IRT modelling by Berger (1992ab,

in press). The sequential construction of optimal test designs by means of the

methods discussed in this paper is straightforward.
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Table 1

Diffisent Item Selection Criteria for

Simultaneous and Stepwise Optimization

Simultaneous Optimization Stepwise Optimization

Product Criterion

Sum Criterion

Min. Value Criterion

Maximum Information Criterion

Interval Information Criterion

Weighted Interval Criterion
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adaptive testing

testlets

fixed-form test

information measure function

mathematical programming

(optimal) test design / test construction

item bank

item selection

optimal sampling

parameter estimation

Guttman scale

(maximum) likelihood

Rasch model/(two-parameter) logistic model

IRT

Bayesian measure

posterior variance / distribution

prior distribution

product criterion

(weighted) sum criterion

minimum value criterion

stepwise optimization

simultaneous optimization

r% to



Subject Index (vervolg)

determinant criterion

D-optimality criterion

generalized variance criterion

Shannon's information measure

general Equivalence Theorem

&optimality criterion

trace criterion

A-optimality criterion

E-optimality criterion

maximin criterion

435-optimality

maximum infonnation selection criterion

interval criterion selection criterion

weighted interval selection criterion

discrimination parameter

difficulty parameter

ability distribution

t
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Figure Captions

Figure 1 Three test designs.

Figure 2 Simultaneously designed optimal test design for a positively skewed

ability distribution.

Figure 3 Simultaneously designed optimal test design for a uniform ability

distribution.
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