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Abstract

The designing of tests has bcen a source of concern for test developers over the
past decade. Various kinds of test forms have been applied. Among these are the
fixed-form test. the adaptive test and the testlet. Each of these forms has its own
design. In this chapter the construction of test forms is placed within the general
framework of optimal design theory. A review of various objective functions and
methods for the designing of different test forms is given. The advantages of
using these methods are discussed, and an illustration of an optimal test design

will be given.

Key words: optimal test design, adaptive tests, testlets, sequential procedure,

cfficiency, consistency.
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A Review of Selection Methods for Optimal Test Design

Since the First World War, the construction of tests in education and
psychology has gone through a number of different stages. and tests have been
administered in various different forms. Although at first the construction of
tests was done by hand, the recognition that the construction of tests could be
improved by taking into account the psychometric characteristics of the items has
lead to alternative, and more structured methods of test construction. Perhaps one
of the most promising directions in the construction of tests is the use of the idea
of so-called item banks. An item bank is'a very large set of items. These items
are grouped into certain content areas and it is assumed that the psychometric
characteristics of these items have been estimated. When such an item bank is
available, the construction of a test is done by selecting items from the bank
according to certain specifications. A lot of research has been done on optimal
item selection methods. Many of these methods are based on mathematical
programming procedures. See Adema (1990), Boekkooi-Timminga (1989), and
Theunissen (1986) for a review of these methods. Although the mathematical
programming methods were mainly proposed for the construction of fixed-form
tests, other forms like two-stage and parallel tests (Adema, 1990) can aliso be
handled by these methods. Recently two computer programs based on
mathematical programming algorithins have been developed; namely the
CONTEST program (Bockkooi-Timminga and Sun, 1991), and the OTD program
{Verschoor, 1991).

The fact that fixed-form tests do not have equal reliability or equal
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validity over the whole range of abilities in the population, has motivated Lord
(1971, 1980) and Weiss (1976,1978), among others, to propose adaptive test
forms. The central idea was that if each examinee in a sample is given an
individually design;d test, .his would lead to more efficient estimation of the
abilitics of these examinees. The availability of fast computers and item response
theory (IRT) models has made the development of computerized versions of
adaptive testing (CAT) possible. See Wainer (1990) for a review of various
aspects of CAT.

With the development of item banks and computerized adaptive tests, the
special skills of the test developer were replaced by statistical characteristics.
This development was criticized by Wainer and Kiely (1987). They argued that
the test developer’s skills are still needed in the construction process. Because
several practical problems with the existing CAT procedures were not solved
satisfactory, Wainer and Kiely (1987) and Wainer and Lewis (1990) proposed the
application of so-called testlets. Testlets are actually small bundles of items,
where examinees follow a fixed number of paths. A test may consist of a number
of diffcrent testlets, and an examinee does not have to take every testlet in the
test nor does an examinee have to take all items within the testlet. The many
advantages and disadvantages of fixed-tests and adaptive tests are combined in a
testlet design.

The above described construction of different test forms can be regarded
as an optimal design problem. Optimal design methods have been applied in
various ficlds of research. Although most of the developments have been reported
and applied in bioassay research, optimal design methods can also be applied in
educational measurement. Berger (1991) and Berger and van der Linden (1992),

for example, have recently described the application of optimal design methods
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for the designing of optimal samples for item parameter estimation in IRT
models.

The objective of this paper is to give a review of the different optimal
design methods and criteria for item selection for the construction of different test
forms. This review places these methods within the general framework of optimal
design theory. Silvey (1980) and Ford, Kitsos and Titterington (1989) give a
review of optimal design research for nonlinear models. The present paper also
indicate. that the optimal design methods all have the same characteristics and
can be applied to any IRT model. This review not only includes the already
known methods but also introduces some altemative selection methods which
may prove useful in the future.

First a description of a test design will be given. Then the two most
frequently applied information measures will be described, and finally the
different criteria for the selection of itemns for different situations will be

reviewed.

Test Design

A test design is characterized by the pattern of the examinee-item
combinations. Actually, a test design is connected with a particular test form. For
example, a fixed-fonn test where examinees all take the same items in the test,
may be designed in such a way that the items are ordcred fromn very casy to
extremely hard. If examinees take the items in the test starting with the most easy
itetn, and stop whenever they give a wrong answer to an item, then the most able

examinces will have to answer more items then the examinees with a low ability

c>
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level. When examinees are also ordered according to their ability level, then the
scores of a test design will approximately hav: a Guttman scale pauem. In Figure
1 an example of such an approximate Guttman test design is given. The crosses
in Figure 1 indicate the examinee-item combinations. The 16 examinees take a
test consisting of 20 items. The examinee with the lowest ability level only takes
two out of 20 items and the most able examinee takes 19 out of 20 items. It
should be emphasized, that the empty cells in the score matrix of the approximale
Guttman Test design are empty by design, i.e. the design will determine whether

a response is available or not.

Insert Figure 1 about here

Adaptive tests also have special designs. Most adaptive tests are
administered in such a way, that each examinee takes a different set of items.
The full Nxn matrix of responses of N examinees on a total of n different items
will therefore contain a lot of empty cells. In an adap:ive test design, the pattern
of the cells in the Nxn response matrix is determined by the adaptation process.
The design pattern connected with an adaptive test form is certainly not fixed,
and may be completely different for examninees having the same ability levels. An
example of an adaptive test design is also given in Figure 1. Note that for this
particular design an equal number of 10 out of 20 items is administered to each
of the 16 cxaminees.

The designs connected with testlets are more fixed than adaptive test
designs. A test containing scveral testlets will usually have a limited number of

paths for an examinee 0 run though. Depending on their responses to previous



ral

Selection Methods
6

items, examinees may take different items in the testlet and may even take only
some of the testlets in the test. The response pattern in a testlet design often
follows a kind of branching scheme. Actually, two different types of branching in
a testlet design may be distinguished. Examinees may not have to take every
testlet in the test. Such a branching may be referred to as between testlet
branching. When a testlet is structured in such a way that a fixed number of
branches of the items within that testlet is made possible, this will be referred to
as within testlet branching. The third diagram in Figure 1 displays a typical
within testlet design connected with a hierarchical testlet (Wainer & Kiely, 1987).
In this example, the 16 examinees all take the first item. Then, depending on
their response to the first item, they take the second or the third item, and so on.
Testlet designs are not as flexible as adaptive test designs, but more fiexible than
the designs for fixed-form tests.

For the description of a test design some notation is needed. Suppose
that we wish to construct an optimal test design for a sample of N examinees
(/=1.....NM) and n distinct items (i=1,...,n). Let the matrix U = {u,-j} represent the
response pattern. If the ©-scale with all possible abilities is divided into ¢ distinct
categories Bj. such that 1 < ¢ < N, then these categories can be gathered in 8’ =
(6}, 85. 83, .., 8), where 8 € R, and R is a c-dimensional set of real
numbers. Corresponding with the vector 9 is a vector of weights, W' = (wy, wy,
ws, ..., W,). These weights can be used in different ways.

The weights in W may be used to characterize the distribution of the
sample for which the optimal test is constructed. If, for example, all weights in W
are cqual, then the sample will have a unifonn distribution for the abilities. By a
suitable selection of weights a normal ability distribution can also be

approximated. The weights can also be used to select only a few 8-levels. If we

Nt
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wish to find an optimal test design for only two extreme O-levels, then all but
the corresponding two weights w; will be equal to zero. The weights can also be
used o give more weight to certain 9j-values than to others. Weights can also be
used to emphasize the sizes of the intervals between the different Gj-levels. Some
of the criteria discussed in this chapter will make use of such weights.

The items in the test design can be characterized by the vector of
structural parameters &'= (§;, &, &3, ... .§,), where each element &, may be a
vector representing more than one item parameter. For example, for the Rasch
model &; will represent the difficulty or location parameter. For extensions of the
Rasch model, E‘,l may contain more than one parameter. Of course, items with the
same item parameter values may be represented by the same vector &;.

The probability of obtaining a response can now be given by the
function P(Gj;ﬁi). The mean and variance vi the parametric family are P(Gj;gi)
and {P(Bj;éi) [1- P(9j$§,’)”» respectively, and the likelihood function for the
data matrix U and © is:

c n
. by  (1-p;)

L we:8] = I P,’(Gjlii)“j i [I—Pi(ej;éi)]wj L
1

j:l i:

where Pij is the proportion of correct responses on item i in category j of 6, and
estimation of the parameters {Bj,ii} can take place by means of the usual
maximum likelihood (ML) estimation procedures.

After a model P((-)j;éi) is chosen, the test design can be selecicd. The
selection of a test design must be done in such a way, that it will lead o the

most accurate cstimation of the paramecters. The problem, however, is to find

4
-
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such test designs. More specifically the problem is to find the set of parameters
€ connected with a certain test form that will enabie the most efficient estimation
of the parameters in the sample characterized by

{6, W).

The problem of finding optimal test designs cannot be answered in any
general sense and will depend on a number of factors. First, the assumed
response model will determine the final outcome. An optimal test design for the
Rasch model will generally not be optimal for the t-vo-parameter logistic model.
Fortunately, however, the methods for finding optimal test designs can be applied
to practically any parametric IRT model.

A second problem is connected with the test form. An oplimal test
design will differ per test form. For exainple, an optimal design for a fixed-forn
test may not be optitnal at all for an adaptive test, and vice versa.

Another problemn is connected with the parameters themselves. The
accuracy of the parameter estimates will depend on the amount of information in
the data, and test designs may differ in their amount of inforination. The variance
o: the estimators is usually inversely related to the amount of information in the
data, and some suitable information measure must be chosen before one can find
an optimal test design.

Finally, a selection criterion for the items must be chosen. Since the
optimality of a test design will depend on the optimality criterion that was used.
the choice of criterion may be crucial. In fact, two altematives can be
distinguished. The first kind of criterion is based on all parameters in {0, W).
This e¢nables a simultancous oplimization procedure for all the parameters in 8.
The second kind is formulated on a subset of parameters or even for single

parameters, and allows for a stepwise optimization, i.e. for each of the ej—va]ues
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separately. Although the latter group of criteria has been frequently applied in
adaplive testing, these criteria can alsu be used for the designing of fixed-form
tests.

In the following sections the two most frequently applied information

measures will be described.

Information Measures

Many different types of information measures for the estimation of
parameters have been proposed. Two of the most frequently applied information
measures are Fisher's information measure and the Bayesian measure, which is
based on the inverse variance of the posterior distribution.

Let the information measure be symbolized by J(Bj). Then Fisher's

information function connected with the paramcter ej is defined as:

3 2
J@) = E Log L{w8:E])” , 2
Ch) {7)'97 g L{we:E}) @

where L{u;8;E) is the likelihood function. Higher values for J(Oj) indicate that
mor¢ information on the parameter Oj is available in the sample. Fisher’s
information has been the most often used measure in test construction. Not only
the mathematical programming methods for the construction of fixed-form tests
make use of this measure, this measure is also very popular for the construction

of adaptive tests.
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The second measure is the Bayesian measure. The Bayesian approach to
test construction was first proposed by Owen (1975). Instead of using Fisher’s
information on the ability parameters, Owen (1975) proposed to use the posterior
variance. To our knowledge, no mathematical programming procedure based on
the maximization of the inverse posterior variance criterion has yet been
proposed. To do this, one must first formulate a suitable prior distribution on the
abilities being measured. Then, after the selection of response data, the posterior
distribution has to be developed by combining the prior distribtion with the
response data. This means that the use of a Bayesian selection criterion to select
itemns for inclusion in a fixed form test would not be very practical. On the other
hand, the implementation of such a Bayesian procedure in the mathematical
programming models for two-stage or multi-stage testing procedures proposed by
Adema (1990) would be feasible, and it would probably increase the efficiency of
the selection procedure, at least when a suitable prior is selected.

When the expected posterior variance is used for item selection, then:

J®p = E ( var~@; | M@ ) . @

where M(Bj) is the prior information on Bj.
For all the parameters in (0, W}, the infornnation measures J(Bj) can be

grouped into the following vector:
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JOIE)Y = [ JOy), 48, JO3), ... , JOp) | . @

This vector J(8|E) cratains all available information on the parameters 0 in the
data and optimality of a test design is usually represented by a function of the
two vectors J(8|&) and W. It should be noted, that for multidimensional IRT
models the vector 6 will become a matrix and J(8 | &) will also be a matrix, but

the optimality procedures will generally remain the same.

A Class of Optimal Design Criteria

The above given information measures are related to the amount of
uncertainty of the estimators of the elements in 8. Optimality of a test design can
be defined simultaneously for all the parameters in {68,W} by considering a
function ®(.) of J@|E) and W. Such a simultancous optimization has the
advantage that it will lead to an optimal design for the whole sample of
examinees characterized by {8.W), and also takes into account the shape of its
ability distribution.

An optimal test design is a design for which the function ¢
{JI8]E),W) has the largest possible value, and the problem of finding an
optimal test design is actually the problem of maximizing a real-valued concave

objective function, i.e.:

‘0
Y
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maximize ¢ {J(6{E&),W)} (5
subject to
ij = Nnax - ©)

where Nmax is some prior specified maximuin sample size. In most cases this
maximization problem is not easy to solve, and the solution will generally depend
on the function @(.) and the information measure being used.

Kiefer (1974) considured a general class of optimality criteria @ () and
discussed their properties within an approximate equivalence theory. Members of
this class are the so-called product criterion, the sum criterion, and the minimum
value criterion. Conceptually, the product criterion can be regarded to correspond
with the well-known geometric mean and the sum criterion may be regarded to
comrespond to the arithmetic mean. This class not only includes these
simultaneous optitnality criteria, but also includes criteria which are suitable for
stepwise optimization. In Table 1 different optimality criteria are displayed, and

each of these criteria will be discussed in the following sections.

Insert Table 1 about here
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Optimality Criteria for Simultaneous Optimization

Product criterion

The first criterion is a product criterion. The most frequenty applied
form is the determninant criterion. Usually this criterion is defined as the
determinant of an inverse variance-covariance matrix of the estimators, and is
often referred to as the D-optimality criterion. This measure was first proposed
by Wald (1943), and it is also known as the generalized variance Criterion
(Anderson, 1984). It can be shown that this criterion is related to Shannon’s
(1948) information measure of uncertainty about the parameters (Berger, 1991).
If the vector J(8|E) represents the main diagonal of a diagonal matrix, then the
determinant of that matrix is the product ot the main diagonal elements. For an

optimal test design the product criterion will become:

c ).
o elow) = I Jep . (M
j=1

This criterion has many advantages. Perhaps one of the main reasons for
using this critcrion is that it has a natural interpretation. It can be shown that it is
related 1o the volume of a confidence region in the parameter space. This means
that it can be used to fonnulate a confidence interval round the parameter
estimates. A sccond feature is that it does not depend on the scale of the

independent variable. For the well-known one-, two-, and three-parameter IRT
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models, this means that the D-optimality criterion is invariant under linear
transformation of the logit scale. Finally, it must be mentioned that its upper
bounds for the two-paraineter logistic model have been derived by Khan & Yazdi
(1988). This means that the actual optimality function value can be compared to
the maximal achievable value of the criterion. Such a comparison, for example,
was done by Berger {1992b) for two‘-stage sampling designs.

The D-optimality criterion has also been appealing because of its
equivalence with other criteria. The general Equivalence Theorem of Kiefer and
Wolfowitz (1960) shows that the D-optimality criterion is equivalent to the G-
optimality criterion, which minimizes the maximum variance of the predicted
response over the design space. This result indicates that a design is D-optimal if
and only if it is G-optimal.

The D-optimality criterion also has some disadvantages. The first
disadvar tage is that it is generally not sensitive to misspecifications of the model.
For example, Abdelbasit & Plankett (1983) showed that for the two-parameter
logistic model a D-optimal sampling design for the estimation of the two
parameters of a single iten consists of only two distinct ability levels. Berger
(1992a,b) presents figures of these sampling designs. Because such D-optimal
designs are only based on two distinct design points or ability levels, they may
not be sensitive to changes in the model specification. Not only minor, but also
large deviations in the item characteristic curve may not be detected with data
collected according to these designs. Although thesc problems have been
encountered for sampling designs, it can be inferred that these problem will also
occur when the D-optimality criterion is applied to test designs.

Another disadvantage of this criterion is that models with a differcnt

number of parameters cannot be compared with each other, because the function

i
c-
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depends on the number of parameters being used. It should be noied, however,

that this problem also occurs with the other functions.

Sum criterion
A second criterion is the trace or A-optimality criterion. For the test
design this function is defined as a weighted sum of information measures

connected with the ¢ Gj- parameters in the sample:

.
O JEIEW) = Y w; J8) . ®
j=1

This criterion has also often been applied in optimal design research.
Although there are cases in which A-optimality is more easily demonstrated than
D-optimality, the A-optimality criterion does not have the same advantages as the
D-optimality criterion. It is not invariant under lincar transforination of the
parameter scale and its upper bounds depend on the actual vaiues of the
parameters themselves. Although this criterion may seem more appealing to
practitioners than the D-optimality criterion, it has hardly been applied in IRT
modelling. An example of such a sum criterion for mathematical programiming

methods has been given by van der Linden and Boekkooi-Timminga (1989).

Minimum value criterion

This criterion may have different forms. Either the minimum value of
the information on the paramecters is maximized, or the maximun valuc of the

inverse information or asymptotic variance is minimized. An altemative

-4
<
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formulation is based on the smallest eigenvalue of the information matrix, and is
referred to as the E-optimality criterion. For IRT models and test designs the

smallest value of the vector J(8 | &) is maximized:

C
® (JO|E.W} = min {J6)} . 9
Jj=1

This criterion is often calied a MAXIMIN criterion. An exampie of 2a MAXIMIN
criterion used as objective function in mathematical programming is given by van

der Linden & Boekkooi-Timminga (1989).

Optimality criteria for Stepwise Optimization

The function @ (.) is defined for the whole set of parameters {6,W]. In
some cases, however, optimality for some subset of parameters or for each single
parameter may be of interest. For example, a test constructor may want to ﬁhd a
test design that is optimal for the estimation of only the lower ability levels in a
sample. Such a selection of the parameters in © can be established by setting the
weights corresponding to the higher Bj-valucs equal to zero. The problem is then
to find an optimal test design for the subset {Bs, W}, where 1 <5<cis the
number of parameters in the subset. In many cases, the estimators of the
parameters in the subset will not be independent of the estimators of the
remaining parameters. In these cases, this dependency should be taken into

account when iteins are selected. The solution to the maximization problem for a

VY,
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reduced set of paramelers is often referred to in the optimal design literature as
®- cptimality.

In this section, criteria which are formulated for a single parameter 9j,
i.e. for a single examinee, will be given. These criteria are special cases of the
above given criteria for a whole sample of examinces. Instead of a simultaneous
maximiiau‘on, these methods allow for a stepwise optimalization for each single
parameter separately. These criteria have been mainly used for the construction of
adaptive tests.

In adaptive testing, the construction of a test is individualized for each
examinee, and the item selection criterion is formulated for cach examinee
separately, that is for a single parameter. A distinction between construction
methods for fixed-form tests and adaptive tests, is that item seiection in adaptive
testing is based on previous responses. If an examinee x has an ability ex (x €
N), then the selection criterion is based on an estinate of the parameter 6,
instead of on the parameter itself. Given such a provisional point estiinate. items

are selected with the largest information on the ability estimate, i.e..

@ {(JO|E).W) = J®,). (10)

This criterion was first suggested by Lord (1977) and has been referred to as the
maximuin information selection criterion (Thissen & Mislevy, 1990). An adaptive
test is composed sequentially, after successive administration of the sclected
items. Compared to the fixed-form test, the adaptive test fonn may lead to more

efficient estimates of the ability, but the stepwise scarch, for each examince
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separately, through a relatively large number of items will, of course, be more
time consuming than for the construction of a fixed-form test.

There is, however, a disadvantage. Criterion (10) is based on a
provisional point estimate of ©,. Especially when the information measure is
based on relatively few items, the uncertainty of the estimator may be very high.
In these cases the selection of items may be improved by applying a criterion
which will take into account the uncertainty of the estimators. Some objective
functions that do take into account the uncertainly of the estimators have bcen
proposed by Veerkamp & Berger (1994).

A 100(1-a)% confidence interval for 8, with lower limit 9; and upper
limit 6 can be formulated by means of the well-known property that its
estimator is asymptotically normally distributed with mean Qx and variance
J(GXIZ';)'1 which may be replaced by (10). If the pair of vectors {8,,W)
contain all discrete values of the abilities lying within the confidence interval for
8. so that the first (lowest) Bj-valuc is 6, and the highest (last) 9j-value is Op,
then the arca under the information function with limits 6; and 8p may be

roughly approximated by:

R
- . ; 11
o (JBIEW = Y o) JE), an
J=L
where ©; = lej_l - le. These weights are used to include the size of the

intervals between the distinct Bj—levels. and as such enables approximation of the
area under the information function. Item selection in adaptive testing may be

improved by applying this interval criterion instcad of the maximum (point)
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information criterion.

An extension of the interval selection criterior is also possible by
including additional weights. If, for example, more weight is given to the
information measure J(6 | £) when the likelihood is nigh and less weight is given

when the likelihood is low, then a likelihood weighted selection criterion may be

formulated as:

c
o Elow) = ¥ LueE™) o) e, (12
j=2

where L[u(");ej;z;(")] is the likclihood for the responses of the n already
administered items. It should be noted, that equations (11) and (12) are equivalent
to the weighted sum criterion given in equation (8). Only the weights differ.
Some advantages of these criteria are given by Veerkamp & Berger (1994).
Because of the additional use of the amount of uncertainty of the estimators,
these criteria are expected to perfonn at least as good as the maxiinuin
information criterion. Simnulated results given by Veerkamp and Berger (1994)

seem to supnort this conjecture.
An lllustration
One of the main features of silnultancous optiinization criteria is that the

shape of the ability distribution can be taken into account. An illustration of this

fcature is presented in Figures 2 and 3. Suppose that we have an item bank with

o
£ 0D
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an infinite number of items. These items have been calibrated by means of the
two-parameter IRT model, and cover the full range of combinations of b,- € <-
3+3> and a; <0.5,3.0>. The product criterion in (7) was used to select the
items trom the item bank.

In Figure 2 the probability mass functions of the resulting optimal test
designs for a positively skewed ability distribution is given for items having three
different values of the discrimination parameter a; = 1.0, 2.0, and 3.0,
respectively. These functions indicate that if the items have a discrimination
parameter a; = 1.0, the optimal test would consist of about 80% of the items
having difficulty parameter value b; = -1 and about 20 % of the items with
difficulty b; = -0.5. A very small proportion of items would have a difficulty
parameter value b,- = 2.0. When the items have a higher value for a;, the shape
of the probability mass function on tie difficulty scale will resemble the

positively skewed ability distribution for which the test was designed.

Insert Figure 2 about here

In Figurc 3 the optimnal test designs are given for a uniform ability
distribution. The results in Figure 3 show that for a unifonn ability distrib:tion
the probability mass functions will also approximately have a uniform shape on
the difficulty scale. It should be noted, that the sclection of items from the iwem
bank is rather artificially structwred, i.c. the items are assumed to have a constant
discrimination parameter in each test and exhaustion of the item bank does not
play a role. because of the infinite number of items. In this case, the most

optimal combination of parameter values can be sclected as often as required. For

L
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siall item banks, the results will be expected to be quite different.

Insert Figure 3 about here

Discussion and Conclusion

An important aspect of objective measurement in education is the
construction of test forms which are not only valid and reliable, but also will
produce efficient estimates for the latent trait distribution for which the particular
test is designed. In this chapter the designing of different test forms is placed
within the general theory of optimal designs. Different methods for optimal
design are reviewed in this paper and their properties are discussed. The main
conclusion of this paper is that the different test forms, such as fixed-forn tests,
adaptive tests and testlets, can be constructed by means of comparable methods,
and that these methods are actually the same as the procedures which have been
used in optimal design theory.

The construction of an optimal test design can be viewed as an
optimization problem, and several algorithms for finding optimal designs have
been proposed in the literature. Among those optimization procedures are the
mathematical programining procedures, which have been used for the
construction of fixed-form tests by Adema (1990) and Bockkooi (1989), among
others. Apart from these procedures several other optimal design algorithms have
been applied in other fields of rescarch. See for example, Cook and Nachtsheim

(1980) for a revicw. Perhaps the most promising algorithms for test construction
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are the sequential design algorithms. These procedures have been studied
extensively by Ford, Titterington and Wu (1985), Wu (1985), Wu and Wynn
(1978) and Wynn (1970), and were applied to IRT modelling by Berger (1992ab,
in press). The sequential construction of optimal test designs by means of the

methods discussed in this paper is straightforward.
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Table 1

Diffirent Item Selection Criteria for

Simultaneous and Stepwise Optimization

Simultaneous Optimization Stepwise Optimization
Product Criterion Maximum Information Criterion
Sum Criterion Interval Information Criterion
Min. Value Criterion Weighted Interval Criterion

gl
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Subject Index

adaptive testing

testlets

fixed-form test

information measure function
mathematical programming
(optimal) test design / test construction
item bank

itemn selection

optimal sampling

parameter estimation

Gutuman scale

(maximnum) likelihood

Rasch model/(two-parameter) logistic model
IRT

Bayesian measure

posterior variance / distribution
prior distribution

product criterion

(weighted) sum criterion
minimuin value criterion
stepwise optimization

simultaneous optimization
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Subject Index (vervolg)

determinant criterion

D-optimality criterion

generalized variance criterion
Shannon’s information measure
general Equivalence Theorem
G-optimality criterion

trace criterion

A-optimality criterion

E-optimality criterion

maximin criterion

b -optimality

maximum infonmation selection criterion
interval criterion selection criterion
weighted interval selection criterion
discrimination parameter

difficulty paramcter

ability distribution
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Figure Captions

Figure 1 Three test designs.

Figure 2 Simultaneously designed optimal test design for a positively skewed
ability distribution.

Figure 3 Simultaneously designed optimal test design for a uniform ability
distribution.
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