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Abstract

A procedure to obtain bicovariant differential calculi on matrix quantum groups is pre-
sented. The construction is based on the description of the matrix quantum group as a
quantized universal enveloping algebra by the use of exponential coordinates. The procedure
is illustrated by applying it to the two-dimensional solvable quantum group and the Heisen-
berg quantum group.
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1 Introduction

In the past few years a substantial number of papers have been published dealing with exam-
ples of bicovariant differential calculi (see [1]) on special classes of quantum groups, especially
on simple quantum groups (see e.g. [2], [3], [4], [56]). However, to our best knowledge not
much is known concerning differential calculi on nonsemisimple and inhomogeneous quantum
groups. In this paper we present a method for constructing ’natural’ bicovariant differential
calculi on matrix quantum groups which can effectively be applied to these types of quantum
groups. The adjective natural refers to the two main aspects of the calculus. The first is that
we demand the bicovariance to be induced by the slightly richer structure of a differential
Hopf algebra. The second denotes the fact that the calculus in some sense arises from an
extension of the duality between the Hopf algebra of functions on the group and the universal
enveloping algebra of its corresponding Lie algebra. We will explain this in more detail in the
sequel.

We consider a matrix quantum group, i.e. a function algebra which is quantized by means
of the well known RTT-relations for a given solution of the quantum Yang Baxter equation
R. The transfer matrix T can classically be represented as T' = eE *"li where the dynamical
variables z' can be interpreted as exponential coordinates on the group generated by the
matrices /;. In [6] the authors show that these exponential coordinates can be fruitfully
utilized in order to present the quantized function algebra as a deformation Ux(g,) of the
enveloping algebra of g . Here g, denotes the Lie bialgebra which is dual to the Lie bialgebra



generated by the matrices /; equipped with the coproduct that arises from the Poisson bracket.
Hence, the exponential coordinates enable us to apply certain techniques, that are developped
for quantized universal enveloping (QUE) algebras, to quantized function algebras.

In particular, the method to construct differential calculi on QUE algebras of Poincaré-
Birkhoff-Witt type presented in [7], can be used to construct differential calculi on matrix
quantum groups. The resulting De Rham complexes can elegantly be described in terms
of quantizations of the enveloping algebras of colour Lie superalgebraic extensions of the
Lie algebras involved. Since these De Rham complexes possess a differential Hopf algebra
structure that extends the usual Hopf algebra structure of the enveloping algebra, the obtained
differential calculi are intrinsically bicovariant. More importantly, the construction of those
De Rham complexes can be computed on (colour) Lie superalgebraic level. For more details
on this we simply refer to the examples presented in [7]. We will illustrate this procedure for
the matrix quantum groups in detail by applying it to the two-dimensional solvable quantum
group and to the Heisenberg quantum group.

2 The two-dimensional solvable Quantum Group

We apply the method described in the introduction to construct a bicovariant differential
calculus on the two-dimensional solvable quantum group.

2.1 The quantum group

To construct the quantum group we begin by considering the classical algebraic group of
2 X 2-matrices of the form

(2.1) T:(‘S ;’)

The algebra of regular functions on this group is isomorphic to the free commutative algebra
on the alphabet {a,a™!,b}. It is usually equipped with a bialgebra structure by defining the
comultiplication A(T) =T © T and the counit €(T") = I, i.e.

(2.2) Ala)=a®a €ela)=1 A(d)=a®b+bR®1 €(b)=0

This bialgebra becomes a Hopf algebra by defining the antipode S by S(T") = T, which
boils down to

(2.3) S(a)=a"'  S(b)=—a"b

A corresponding quantum group can be introduced by imposing the commutation relations

RTT, = T5T) R with the R-matrix given by

1 0 0
0 1 0 0
(2.9) =g o b
0 0 0 1

In terms of the coordinates a and b in (2.1) this is equivalent to ab = gba. In order to define
a differential calculus on this quantum group one needs to introduce certain commutation
relations between the 1-forms da and db and the coordinate functions ¢ and b. These com-
mutation relations need to be chosen in such a way that they are compatible in some sense
with the relation ab = gba.

2.2 The duality

From [6] we derive the following factorization of the matrix 7.

ab e“O 1,8 az By
(2:5) TZ(O 1>:<0 1><0 1)26 e”

where

- (23) - (30)



Classically, this factorization expresses the duality between the group and its Lie algebra by
means of the exponential mapping. This expression of T in terms of exponentials combined
with the discussions presented in [6] and [8] motivated us to study the function algebra in
terms of the coordinates o = log(a) and 8 = a~'b. We will construct the differential calculus
in these coordinates and afterwards transform the results to the original coordinates a and b.
We write ¢ = e®, hence the commutation relation for « and 8 is [, 8] = hB. The coalgebra
structure in terms of o and 3 is described by

(2.7) Al@)=a®1+1Q@a ea)=0 S(a)=-a
' AB) =188 +B®e ™ €B)=0 S(8)=—c "B

By the substitution o' = +, the Hopf algebra deformation of the function algebra is described
by [«',8] = B and

2.8 Ald)=ad'®1+1Q0' ea’)=0 S(a') = —a'
-y AB) =108 +B8®e™ (f)=0  S(8)=—e "B

Hence, this Hopf algebra can be seen as a QUE algebra on the two-dimensional Lie algebra
with basis {&’, 8} and commutator [a@’, 3] = 8. The corresponding classical limit defines a Lie
bialgebra with cocommutator given by §(a) = 0 and 6(8) = o ® 8 — B® «. This Lie bialgebra
is isomorphic to the dual of the Lie bialgebra with basis {z,y}, commutator [z,y] = y and
cocommutator §(z) = 0, 6(y) = z®y —y®=z which arises from the Poisson Lie Group structure
that originated the quantization. It is this form of duality that will enable us to construct a
bicovariant differential calculus on the quantum group.

2.3 The bicovariant differential calculus

In [7] the authors present a method to construct differential calculi of PBW type on QUE
algebras. It is shown that the differential Hopf algebra structure of the resulting De Rham
complexes can be described as QUE algebras of certain colour Lie superalgebraic extensions of
the original Lie algebra. Fundamental in their approach is a compatibility condition between
the differential operator and the cocommutator of the Lie bialgebra that is defined as the
classical limit of the quantization. We have applied this method in order to construct a De
Rham complex on the Hopf algebra defined by (2.8). By resubstituting o’ = ha we obtained
the result in terms of the coordinates {«a,}.

The resulting differential Hopf algebra € can be described as follows. It is an N-graded
algebra generated by the elements «,3 of degree zero and the elements do,dB of degree one.
The defining relation [, 3] = kB is extended with the following set of relations:

[a,da] = —hda [a,dB] =0 [8,da] = —RhdS BdB —e*dB.6 =0

29" [da,da]=0 [d,dB] =0 [dB,dB] =0

We note that [ , ] denotes the ’colour’ commutator which is defined by

(2.10) [z,y] = 2y — (=1)"yz zeNf,yec 0l

The comultiplication A and the counit € are defined by (2.7) and
Alda)=da®1+1Qda e(da) =0

(2.11) -

A(dB)=1®dB+dB®e 4+ B ®da.e™*(

=) e(d) =0.

These extensions are a direct consequence of the fact that A and e are differential algebra
morphisms. The antipode S is an anti differential algebra morphism, in particular we have

Sod=4do§ yielding

h p—
(2.12) S(da) = —da  S(dB) = —(dB — = - Lia)e
The differential operator d : 2 — 2 is the unique graded derivation of degree one that satisfies
(2.13) dla)=da d(B)=dB d(da)=0 d(dB)=0

From this one easily sees that d has the characteristic property of an exterior derivative: d? =
dod = 0. By performing the inverse transformation of coordinates given by a = e*,b = e°f3,
the previous results yield the following theorem.



Theorem 1 The differential Hopf algebra £ described hereafter is a De Rham complez of
Poincaré- Birkhoff- Witt type on the two-dimensional solvable quantum group. In particular
it defines a bicovariant differential calculus. The algebra structure of Q is defined as the N-
graded algebra generated by the set {a,a™",b} of degree zero and the set {da,db} of degree
one, imposed with the following defining relations:

(2.14) aal=a"la=1 ab=qba
(2.15) a.da =g 'da.a a.db = db.a

’ bda =g 'dab+ (g7 —1)db.a b.db=q 'db.b
(2.16) (da)® =0 dbda = —dadb (db)’> =0

It is equipped with a differential operator d : @ — Q) which is defined as the unique graded
derivation of degree one that satisfies

(2.17) d(a)=da d(a™')=—gda.a™® d(b)=db d(da) =0 d(db)=0

Its comultiplication A, counit € and antipode S are defined as the unique (anti) differential
algebra morphisms satisfying

Ala)=a®a ela)=1 S(a) = a”?!

(2.18) AD)=a®b+b®1 €(b)=0  Sb)=-a"b

which implies

A(a_l) =al®a? E(a_l) =1 S(a_l) =a
(2.19) A(da)=da®a+a®da €(da) =0 S(da) = —gda.a™?
A(db) =da®b+a®db+db®1 e(db)=0  S(db) = qda.a—2b — db.a~t

We remark that this differential Hopf algebra is an extension to a Hopf algebra of a differential
calculus defined on the quantum plane. More specifically, it corresponds to the calculus III
for s = g described in [9].

The only result of the preceding theorem we did not yet prove is the statement that
the differential calculus is bicovariant. This is a direct consequence of the differential Hopf
algebra structure of 2. The associativity of the multiplication g : 2 ® 2 — Q implies that
the restrictions y; : 2°® 0! - 0! and T '@ 0° — O turn Q! into a bimodule over N°.
Doe to the PBW property Q' is generated by dQ° as right (and left) 2°-module. The unique
decomposition of the restriction of A to Q' defined by

(2.20) A=Ap+Arwith Az :0' - Q°® 0 and Ar: 0" - Q' @N°

gives, due to the coassociativity property, Q' the structure of a bicomodule over Q°. From
the fact that A is a differential algebra morphism one easily sees that

Ar(df.g) = (id ® d) o A(f).A(g)
Ar(df.g) = (d ®id) o A(f).A(g)

This shows that the differential calculus described in the theorem is bicovariant, and in partic-
ular Q' is a bicovariant 02°-bimodule. We remark that, although in most papers one considers
0! as a left N°-module, we will mainly work with Q' as a right 2°-module.

(2.21)

2.4 Maurer-Cartan forms

A 1-form w is called left-coinvariant if it satisfies
(2.22) Ap(w)=1Quw

where Az denotes the left corepresentation of ° on ' as defined in (2.20). From the
expression of T in terms of exponentials one can obtain a set of left Maurer-Cartan 1-forms
as follows.

d(T) = d(e®®e”?) = d(e*®)e”? + e*"d(”?) =

e” —1 e —1
h

( )ecw:z:doz.eﬁy +e*®ePYydB = e“meﬁy(( Nzdo + ydo.B) + ydB)



We can write this result as d(T) = TO with

eh'— Eh'—
(2.23) o= ( o CFldaftdp >
0

0
Hence, ® = T71d(T), so
AL(©) = AT™)AL(T)) = AT) (1 @ d) o A(T) =
(ToT)  (TedT)=(TeT)  (TeTO)=1806
which implies
(2.24) AL(0)=1Q0.
So the entries of ©® are left Maurer-Cartan forms. Therefore we define

h _ h _
(2.25) 0, = & - Lia  6,=° - L 4B+ dg.

In terms of the coordinates a and b one obtains

(2.26) 61 =gda.a”' =a"'da G, =dba"' =a'db

so these are like the classical left Maurer-Cartan forms. The corresponding structure matrix
M which is defined by the property (see e.g. [1] and [10])

(2.27) Ar(6:)=0; @ M}

is equal to

(2.28) M= ( (1) 'L__llb >

Associated to the Maurer-Cartan forms one can define the commutation matrix w which
describes the commutation between the functions and these 1-forms. This matrix is defined
by
(2.29) O, = 0w(f)i feq’.

One can easily see that w is multiplicative, i.e. w(fg) = w(f)w(g) for all functions f and g.
For that reason it suffices to compute w(f) for the generators f = ¢ and f = b. By direct
computation we find

“la 0 b 0
(2.30) w(a):(qo a) w(b):<(1_q)a b)

and hence
mony g "a™b" 0
(2.31) w(a™b™) = < (], (1 — Qat™t  a™bm ) meZ,;nelN
Remark that [n], denotes the g-analogue of the natural number n defined by
" -1
2.32 =
( ) [n]q g —1

It is possible to introduce a functional matrix F such that (see e.g. [1] and [10])
(2.33) g0k = 01(Fj x g) = 01(id @ Fi) 0o A(g) g € Q°.

This functional matrix has the obvious multiplicative properties:

(2:34) Fj(9192) = Fi(a1)F}(92) Fj(1) =8

One easily verifies that for the generators a and b one has

10 0 0
(2.35) F(a) = ( o ) F(b) = ( 1-g o )

and hence

(2.36) F(a™) = < "0 >F(amb) - ( a Eq) 0 >F(a"‘b") —0 (n>2)



2.5 Left-invariant vector fields
We define the operators V* : 2° — Q° by

(2.37) d(f)=6V*(f) Fe’

and we call these operators left-invariant vector fields. One can easily show that they have
the property Ao V¥ = (1@ V*)o A (see e.g. [11]) which expresses the left-coinvariance. From

0xV*(fg) = d(fg) = d(f)g + fd(g) = 0:V*(£)g + FO.V'(9) = 06(V*(F)g + w(£)I V' (9))

we derive the so-called quantum Leibnitz rule

(2.38) VH(f9) = VE(f)g + ()i V' (9)-

We compute explicitly the action of the left-invariant vector fields on ordered monomials
a®b™. Similar to the vector fields one can define the partial derivatives with respect to the
coordinates a¢ and b by

(2.39) d(f) = da.8af + db.8sf fe€Q°
and by a direct computation one finds that
(2.40) 0a(a?b™) = [p]—1a? '™ Bp(afb™) = [m],_1aFb™

One can interpret this result in terms of the differential g-operator on functions which is
defined by
df _ flgz) — f(=)

2.41 — =
(2.41) dgz z(g—1)
With this definition one can write
3] 3]
2.42 8, = 8, —
(242) 9,10 "7 9, 1b
From
(2.43) d(f) = da.8af + db.0sf = 0.V (F) + 6:V>(f)
one finds that R o
2.44 V=g 'a8, = ¢ V2 =ad, =
(2.44) 4 4%=1 9 e =, ub

2.6 The Quantum Lie algebra

In the classical situation the Lie algebra corresponding to the solvable group is defined to be
the Lie algebra of left-invariant vector fields. The classical left-invariant vector fields V*, V2
satisfy the commutation relation [V', V2] = V2. In order to find the quantum analogue of
this commutation relation we consider

d*(f) = d01V'f — 010, (V') f — 010, V2V ft

(2.45) dO2 V2 f — 0,0, VIV2f — 0,0,(V?)?f = 0.

From the commutation relations (2.14), (2.15) and (2.16) we find the following for the products
of Maurer-Cartan forms

(2.46) 616, =0 6.6, = —q0:6; 626, =0

From the Maurer-Cartan equation d(®) = —@? it follows that

(2.47) d(6:)=0 d(62) = —60:10,.

By substituting (2.46) and (2.47) in (2.45) one obtains the following quantum commutator

(2.48) VivZ — ¢ 'vivl = ¢ 1V2



2.7 The Laplacian

In formula (2.43) we defined the partial derivatives with respect to the coordinates {a,b}.
Since this definition considers the forms as right-module over the functions, these partial
derivatives can be considered as right-partial derivatives. Analogously, one can define left-
partial derivatives by

(2.49) d(f) =8a (f).da+ 85 (f).db feQ°
By direct computation one finds that

(2.50) B (aPb™) = [plog™a® b By (a?B™) = [m]yg?ab™

We introduce a Laplacian on the quantum group by

— —

(2.51) Aq =8, 008, + 0,008 .
By substituting (2.40) and (2.50) in (2.51) we obtain the following expression for the Laplacian

9 2 2 8
2.52 Ag=2Xyo— Afo
(2:52) 1= 2% 540, 0 1% 0, ° 5, 1b

q

The symbol A, denotes the g-scalar multiplication operator which is defined by

(2.83) Aef(2) = flg=).

The upper index indicates with respect to which coordinate this operator acts.

3 The Quantum Heisenberg Group

We apply the method described in the introduction to construct a bicovariant differential
calculus on the quantum Heisenberg group.

3.1 The quantum Heisenberg group

At first we consider the classical Heisenberg group, i.e. the algebraic group of 3 x 3-matrices
of the form

1 a b
(3.1) T=(0 1 ¢
0 0 1

The algebra of regular functions on this group is isomorphic to the free commutative algebra
on the alphabet {a,b,c}. Similar to the solvable group its Hopf algebra structure is defined
by A(T)=T®T, ¢(T) =1I and S(T) = T™! yielding

Ala)=a®14+1Qa e(a)=0 S(a) = —a
(3.2) AB)=bt®1+1Qb+a®c €b)=0 S(b) = —b+ac
Ale)=c®1+1®c e(c)=0 S(c)=—c

We define a quantum Heisenberg group by means of the R-matrix from [12]. This R-matrix
is given by

Is 2hel —hel
(3.3) R=| 0 IL—hey 0
0 0 I

where ej denotes the 3 X 3-matrix with 1 on the i-th row and j-th column and 0 in all
other positions. In terms of the coordinates a, b and ¢ this yields the following commutation
relations

(3.4) [a,b] = ha [a,c]=0 [b,c]= —he.



3.2 The duality

We computed the following factorization

1 0 0 1 0 b 1 a 0
(3.5) T=|0 1 ¢ 01 0 0 1 0 | =e%ee™
0 0 1 0 0 1 0 0 1
where
010 0 00 0 0 1
3.6 e=| 0 0 0 =00 1]z=[00 0
y
0 00 0 00 0 00

This indicates that {a,b,c} are exponential coordinates. By the substitution b’ = % the
deformation of the function algebra on the Heisenberg group is described by

(3.7) [a,0]=a [a,c]=0 [b,c]=—c

and
Ala)=a®1+1Qa €(a)=0 S(a) = —a

(3.8) ABY=VR1+1®0 +h'a®c €b)=0 SO)=-b+rlac
Ale)=c®1+1®c e(c)=0 S(c)=—c

This Hopf algebra can be seen as a QUE algebra with deformation parameter A~! on the Lie
bialgebra with basis {a, b’,c}, commutator given by (3.7) and cocommutator described by

(3.9) 6(a) =0 5(b'):a®c—c®a 8(c)=0.

This Lie bialgebra is dual to the standard three-dimensional Heisenberg Lie bialgebra which
is described by the commutator

(3.10) [z,9] =2 [z,2]=0 [y,2]=0,
and cocommutator
(3.11) 5(z)=z®z—2Qz 6(y)=y®z—2Qy 6(z)=0.

Note that the Heisenberg Lie bialgebra is coboundary (see e.g. [13]) with R-matrix given by
r=z®Y — y®z. The corresponding Poisson Lie group structure which originates from the
classical limit of the quantization, is therefore given by the well known Sklyanin-bracket (see

[14]) {T ® T} = [T ® T, ], or explicitly

(3.12) {a,b} =a {a,c} =0 {b,c}=—¢

In the next section we will use the description of the Heisenberg quantum group by (3.7) and
(3.8) to construct a bicovariant differential calculus.

3.3 The bicovariant differential calculus

The description of the function algebra as a QUE algebra in (3.7) and (3.8) enables us to
apply the method of quantization described in [7]. We computed a differential operator which
is compatible with the cocommutator given by (3.9) and constructed a De Rham complex on
the given QUE algebra. The result is as follows.

Theorem 2 The differential Hopf algebra £ described hereafter is a De Rham complez of
Poincaré- Birkhoff- Witt type, and hence a bicovariant differential calculus, on the quantum
Heisenberg group with R-matriz (3.3). The algebra structure of 0 is defined as the N-graded
algebra generated by the set {a,b,c} of degree zero and the set {da,db,dc} of degree one,
imposed with the relations (3.4) extended with

[a,da] =0 [a,db] = (1 — X)hda [a,dc] =
(3.13) [b,da] = —Ahda [b,db] = —h(pda + 2Xdb + 7dc) [b,dc] = —Ahdc
[c,da] =0 [c,db] = (1 — A)hdec [e,dc] =0

and

(3.14) dbda = —dadb dcda = —dadc dedb = —dbdc (da)® = (db)® = (dc)* =0



The parameters p and T can be taken arbitrarily, the parameter A needs to be equal to +1.
The differential operator d : @ — § is defined as the unique graded derivation of degree one
that satisfies

(3.15) d(a)=da d(b)=db d(c)=dc d(da)=0 d(db)=0 d(dc)=0

The comultiplication A, counit € and antipode S are defined as the unique (anti) differential
algebra morphisms satisfying (3.2). This implies

A(da) =da®1+1Qda €(da) =0
(3.16) A(db) =db®1+1Q®@db+da®@c+a®dc €(db)=0
A(de)=de®1+1Qdc e(de) =0
and
(3.17) S(da) = —da S(db) = —db+da.c+ da.c S(dc) = —dc

The fact that the parameter A must be equal to 1 can easily be seen by considering the
overlap ambiguity b.a.db. By direct computation and using relations (3.4) and (3.13) one finds
(ba)db — b(adb) = R*(A* — 1)da. So due to the PBW basis it follows that A* = 1.

3.4 Maurer-Cartan forms
From the universal T-matrix expression (3.5) we deduce that
(3.18) d(T) = T(ydc + 2db+ zda — zdc.a) =TO

and hence left-coinvariant Maurer-Cartan forms are given by

0 6; 6, 0 da db—dc.a
(3.19) e=(0 0o 6 |=[0 o de

0 0 O 0 O 0
The corresponding structure matrix M defined by (2.27) is equal to

1 c 0
(3.20) M = 0 1 0
0 —a 1

The corresponding commutation matrices w(f) (see (2.29)) for the generators f =a, f =b
and f = ¢ are

a (1-X)h 0 c 0 0
(3.21) w(a) = ( 0 a 0 ) w(c) = ( 0 c 0 )
0 0 a 0 1-Xh ¢
and
b— b —hu 0
(3.22) w(b) = ( 0 b— 2k 0 )
0  h(1—Ma—hr b—Ah

By induction one can prove that

a® p(1—-XNha®! 0 c? 0 0
(3.23) w(a®) = ( 0 a? 0 ) w(c?) = ( 0 c? 0 )
0

0 a? 0 p(1—2A)heP™t P
and
(b— AR)? Ap((b — 2XR)? — (b — AR)F) 0
(3u287) = ( 0 (b—2XR)? 0 )
0 AT((b — 2AR)? — (b — AR)P) + 52a((b + 2R)P — bP) (b — AR)P

from which the matrix w(a?b%c") can easily be ontained. The functional matrix F defined by
property (2.33) is for the generators a, b and ¢ given by

0 (1-Xk 0 —A —ph 0 0 0 0
F(a)= ( 0 0 0 )F(b): ( 0 -2\ 0 )F(c): ( 0 0 0 )
0 0 0 0 —rh =Xk 0 (1-Xk 0



3.5 Left-invariant vector fields

By formula (2.37) we define left-invariant vector fields on the quantum Heisenberg group.
Due to the equality

d(f)=da. 8, f+db. 8 f+dec. 8. f =0V (f)+0:V(f) +6:V>(f)
one has . . . .
(3.25) V=8, V=8, V’=8.4ad
Hence, in order to find expressions for the left-invariant vector fields we compute the right-

partial derivatives with respect to the coordinates {a, b, c}. We will make use of the following
special operators:

1. The symbol o, denotes the shifting operator over a distance «, i.e.
(3.26) Gaf(z) = f(z+a)

2. The symbol V, denotes the difference operator defined by

fz+a)— f(=)

3.27 V. f(z) =
(3.27) (=) )
3. The composition Dy = V40 V_4 =V_4 0V, equals

fzta)-2f(2)+ f(z—a)

o?

(3.28) Daf(z) =

We remark that D, is the well known second order central difference operator.

In the following we consider these operators to act partially with respect to the coordinate b.
It turns out that the right-partial derivatives can be written as follows

- g 1 s t g 1
(3.29) 8a: O_Ah © (Uh ¢} % — Eh#Dh) 35: V_z,\h 3¢= O_Ah © (E — EhTDh)

3.6 The Quantum Lie algebra

The classical left-invariant vector fields V!, V2, V? satisfy the commutation relations
(3.30) [v,V]=0 [V,V?]=V? [V V’]=0

In order to find the quantum analogue of these commutation relations we consider the equation
dz(f) = 0. From the commutation relations we find the following for the products of Maurer-
Cartan forms

(3.31) 0201 = —6.0; 0301 = —0.10; 020 = —0:6,

616, =0 0205 = (1 — \)h6:65 0565 =0

Furthermore, from the Maurer-Cartan equation one finds
(3.32) d(01) =0 d(6:) =—6:0;s d(63)=0

By substituting (3.31) and (3.32) in the expression d?(f) = 0 one obtains the following
quantum commutator

Viv: - VvVl =0
(3.33) VVE V3V = V2 4 (1 - MA(V?)?
ViVe - VviVi =0

Note that in the case A = 1 the commutation of Maurer-Cartan forms (3.31) coincides with
the classical commutation relations and therefore the quantum Lie algebra is isomorphic to
the classical Lie algebra.
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3.7 The Laplacian

The left-partial derivatives are equal to

= a 1 - = a 1
(3.34) a= TAn © (g + Eh#Dh) = Vaan .= oaAn © (O'_h o) % + ghTDh)

This yields the following expression for the Laplacian

— — — — — — 2
(3.35) A:3a03a+3b08b+3¢oaC:aho;?—F%hu(ah—l)o;—aoDh—
1 2,20 \2 ” 1 J 1 2,2, 2 _
Z,uh(Dh) +D2h+0—h0ﬁ+§h7'(1—0'—h)0 %OD}I—ZT}L(D}I) =
92 o2 1., 8 a 1, 3 2
O'hOW—i—Dzh—l—O'_hOﬁ—l—Eh (;L%ovh—kr%ov_h—i(,u —|—T)Dh)ODh

We remark that, although there are differences between the differential calculi on the quantum
Heisenberg group corresponding to the values 1 and —1 for the parameter A, the Laplacian is
independent of the parameter .
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