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Abstract

We prove that for a specific class of Lie bialgebras, there exists a natural differential
calculus. This class consists of the Lie bialgebras for which the dual Lie bialgebra is of
triangular type. The differential calculus is explicitly constructed with the help of the R-
matrix from the dual. The method is illustrated by several examples.
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1 Introduction

In [1] the authors discuss differential calculi of Poincaré-Birkhoff-Witt type on the universal
enveloping algebra of a Lie algebra. It is shown in [2] that these differential algebras can be
equipped with a differential Hopf algebra structure (for the definition see e.g. [3]) extending
the standard Hopf algebra structure of the enveloping algebra. This Hopf algebra structure
turns out to play a prominent role in the quantization of these differential calculi.

A Quantized Universal Enveloping algebra (QUE algebra) on a Lie algebra g is a Hopf
algebra deformation Un(g) of the enveloping algebra U(g) (see e.g. [4]). Its classical limit
determines a co-Poisson bracket on U(g) whose restriction to g is called a cocommutator and
defines a Lie bialgebra structure on g. In [5] the authors investigate deformations of De Rham
complexes on U(g) in order to obtain a De Rham complex on the QUE algebra Un(g). They
show that a necessary condition for the existence of such deformations can be interpreted as
a compatibility between the differential operator and the co-Poisson bracket.

One could say there are two main strategies to utilize this compatibility condition in order
to construct De Rham complexes on QUE algebras. The first one is to start with a certain
differential calculus on U(g) and compute a compatible cocommutator. This is the point of
view presented in [5]. The second approach is to consider a certain quantization of the Lie
algebra g, take its classical limit and try to construct a compatible diffential operator d. This
is the approach we will use in this paper. In fact we will prove that, for a specific class of Lie
bialgebras, there exists a natural compatible differential calculus. This specific class consists
of the Lie bialgebras for which the dual Lie bialgebra is of triangular type.



2 The compatibility condition

Let g be a finite dimensional Lie bialgebra over the field of complex numbers C with com-
mutator [ , ] and cocommutator § : g — g® g. A cocommutator is a 1-cocycle with the
additional property that its transpose §" : g*® g* — g* defines a commutator on g*. We note
that g* denotes the algebraic dual of g. With respect to a basis {X¥}, of g one can write

(2.1) [X?, X9 =CPiX' §(XP) = X*® X'

where C7'? and o, are the so-called structure constants with respect to the given basis of g.
Throughout this paper we will make use of the Einstein summation convention.

A differential calculus on U(g) of PBW type can be described by the universal enveloping
algebra of an N-graded colour Lie superalgebra L (for the definition of colour Lie superalgebra
see [6]) that extends g in the following way (see [2]). A basis of L is given by {X?, X7}, where
the elements X? have degree zero and the elements X7 have degree one. The commutator of
L is an extension of the commutator of g of the form

(2.2) [X?, X9 = AP*X' [X?, X9 =0,
the corresponding 2-cocycle is defined by
(2.3) e(m,n) = (-1)™" m,n € N.

The commutator of L is constructed such that the linear operator d : L — L defined by
d(X?) = X? and d(X?) = 0 is a graded derivation of degree 1. For the structure constants
AD? this yields the following conditions:

(2.4) ARAL — AAR = CP A
(2.5) AP _ AT = CP?

Condition (2.4) expresses the Jacobi identity and condition (2.5) the derivation property of d.
The differential operator is the graded derivation on U(L) that uniquely extends d. In order
to obtain a more intrinsic description of L one can define the linear map p: g — gl(g) by (see

[1])

(25) p(X7)(X?) = 47X
Conditions (2.4) and (2.5) are equivalent to
(2.7) p([z,9]) = o(z) 0 p(¥) — £(¥) 0 o(=)

(2.8) [2,y] = p(z)(¥) — p(¥)(z)

for all z,y € g. Such a map p is therefore called a multiplicative representation of g (see [7]),
it completely determines the differential calculus on U(g).

In order to construct a De Rham complex on the QUE algebra Ux(g), which reduces
to the previously described differential calculus on U(g) when h is put equal to zero, the
cocommutator §, which is the classical limit of Ux(g), and the differential operator d must be
compatible in a certain sense. This compatibility condition, which is introduced in [5], can
be described as follows. Define the extension of 6 from g to L by

(2.9) fod=(d®id+7®d)ob=dg o8,

where 7 : L — L is defined as the linear map satisfying 7(z) = (—1)Pz for all z € L?. With
respect to the given basis of L the extension looks like

(2.10) §(XP)=af(X* e X'+ X* 0 X1).

The differential d and the cocommutator § are compatible if and only if this extension defines a
cocommutator on L. In that case we call L a colour Lie bisuperalgebra. Hence, the problem of
constructing a compatible differential calculus on the Lie bialgebra g is to find a multiplicative
representation of g that defines a colour Lie superalgebra L with the additional property that
the induced extension of § defined by (2.9) is a cocommutator. In order to study this problem
we will look at it from the dual point of view.



3 The dual point of view

From the theory of Manin-triples (see e.g. [4]), we learn that a Lie bialgebra structure on
g induces a Lie bialgebra structure on g*. The commutator of g* is the transpose of the
cocommutator of g and the cocommutator of g* is the transpose of the commutator of g. For
instance, if the Lie bialgebra g is described by (2.1) then the structure of g* is given by

(3.1) (0,0, = 0., 6°(0,)=Cre.e 06,
where the elements ©, are defined to be dual to the basis elements X7, i.e.
(3.2) O, €9" <0,,X?>=§]

and 67 denotes the Kronecker delta symbol. Evidently this is also valid for colour Lie bisu-
peralgebras. We consider L* to be the dual of the colour Lie bisuperalgebra L with basis
{X?,X?}, and structure maps as described by (2.1), (2.2) and (2.10), that represents the
compatible differential calculus on the Lie bialgebra g. As basis of L* we choose {@F, (:)P}p
which is defined dual to the basis of L, i.e.

(3.3) <0,LXI>=6] <0,,XT>=0 <0,,X'>=0 <0,X?>=4§..

From the duality between L and L* we find the following expressions for the commutator and
cocommutator of L*:

(3.4) [05,0,] = o‘;q@l (O3, C:)q] = O‘;qél [épaéq] =0,

(3.5) §'(0,)=Cror®0;  §(0,) = A2,0, 0, - 47,0, ® 0.
The differential operator d on L satisfies

(3.6) do[,]=1], ]odg §od=dgoé.

We define @ : g* — g* to be the transpose of the differential d. It satisfies 8(®,) = 0 and
9(0,) = —0O, and from (3.6) it follows that

(3.7) §"0d=08g08" do[,]=[,]08g=][,]0(8oid+17109).

If we look at the construction of a compatible differential calculus on U(g) from the point
of g then the problem is to find a multiplicative representation p of g. This representation
describes the commutator between elements of L° and L' and is such that the first condition
of (3.6) is satisfied. The second condition of (3.6) is then used to extend the cocommutator
and one needs to verify whether the extension meets the conditions of a cocommutator on
L. However, dually we see that the colour Lie superalgebra structure of L* given by (3.4)
is uniquely determined by the commutator of g* and the second property of @ from (3.7).
Hence, in the dual formulation the problem is to find an extension of the cocommutator of
g* which is a cocommutator on L* and satisfies the first condition of (3.7). Evidently, these
problems are equivalent. However, in case the dual Lie bialgebra g* has a triangular structure
there is a simple and natural solution which is evident from the dual point of view.

4 A canonical compatible differential calculus

Let us suppose that the dual Lie bialgebra g* has a triangular structure. This means that its
cocommutator is a coboundary, i.e. §" : g* — g* ®g" can be written by means of an R-matrix
Re g*®g* as 6"(0) = O - R, with a corresponding R-matrix which is antisymmetric and a
solution of the Classical Yang Baxter Equation (CYBE). The dot denotes the action of the
Lie algebra g* on the tensor product g* ® g* induced by the adjoint representation. The
antisymmetry of R is reflected by the condition ¢(R) = —R where 0 : g*® ¢g* - g* ® g*
represents the flip operator on the tensor product. In terms of the dual basis {©,}, we can
write

yielding
(4.2) §'(0,) =7"(a%,0,® 01+ a1,0: ® O).



The CYBE is usually written as
(4.3) [|R, R|] = [Ri2, R1s] + [Ri2, R23] + [Ri3, R23] = 0.
In this notation Ryz denotes the element v¥'0;, ® ©®;®1 in U(g")®U(g*)®U(g*) and [|R, R|]
is considered as element of g* ® g* ® g* C U(g*")® U(g*)® U(g").

In order to extend &* from g to L* it seems quite natural to preserve the coboundary
property. Hence, we propose the following extension:
(4.4) SO =0-R Oc(L") ="
Evidently this extension 6 defines a cocommutator: §* is a 1-cocycle since it is a 1-coboundary
by construction and the commutator properties of the bracket on L defined by its transpose
are a direct consequence of the triangularity properties of the matrix B. Due to the fact
that @ is a derivation on L* and that dg(R) = 0 it follows that the first condition of (3.7)
is satisfied. Hence this extension defines a compatible differential calculus on U(g). With
respect to the basis {®F, ©%}, one finds that
(4.5) §*(0) =0, -R=7"(a%,0,00:+0%,0,® 0,)
which in comparison with(3.5) yields
(4.6) Afy =M ay,.

In order to obtain a description of the corresponding multiplicative representation we study
in more detail the coboundary property of §*. By definition of §* we have

(4.7) <O -Rz®y>=<6(0),z0y >=<0,[z,y] > Oecg',z,yeg
and by (4.1)

(4.8) ©-R=+"([0,0,]00; +0,R[0,0,)).

We focus on the first term and take ® = ®. Due to

(4.9) <[01,0,]®0,X?® X! >=<0},0,80;,X*® X? >=a},é]

we can write the transpose of the action of the first component of R, which we will denote by

$1:9>0®g, as

(4.10) $1(X* ® X7) = —y"%ab X*
or equivalently
(4.11) ¢1=—R"% o (6§ ®1id)

where R'® denotes the map from g ® g® g to g which is defined by letting R act on the first
and third component of the tensor product. Similarly one derives that

(4.12) $2 = —R™ 0 (id ® §)

which is defined as the transpose of the action of the second component of R. Hence, combining
(4.7), (4.11) and (4.12) we obtain

(4.13) [z,9]= —(R® 0 (6 ®id)+ R? 0 (1d®6))(z®y) =,y € g.
In order to rewrite this expression we note that
(414:) id®5201200230(5®id)0012.

From this we derive that
R 0(id®6) = R 001200230(6®id)0oo1a = —RZ 00230(6§®id) o012 = —R¥0(6®id) 001z
and by substiting this in (4.13) we obtain

(4.15) [z,9] = R® o (6®id)o(c12 —id)(z2®y) z,y€Q
From the reasoning above we conclude that the mapping p: g — gl(g) defined by
(4.16) p(z)(y) = RYo (6®id)oo12(z®y)

satisfies (2.7) and (2.8), i.e. it defines a multiplicative representation of g. From this reasoning
we can extract the following result.

Theorem 1 Let g be a Lie bialgebra with corresponding dual Lie bialgebra g* of triangular
type with R-matriz R € ¢g* ® g*. Then, the map p : g — gl(g) defined by (4.16) is a
multiplicative representation on g and this multiplicative representation defines a differential
calculus on U(g) which is compatible with the cocommutator § of g.



5 Examples

In this section we present some examples.

5.1 The 2-dimensional solvable Lie algebra

Consider the 2-dimensional Lie bialgebra S over C with basis {a,b} and structure maps
(5.1) [a,b] = Aband 6(a) =Aa®b—bQ®a)=AaAb &b)=0

We define the dual basis {a, 3} of S*, the structure maps of S* are given by

(5.2) [a,8] = A and §*(a) =0 6&*(B) = A AB.

Evidently S is triangular with R-matrix R = 8 A «a. The extension of §* according to formula
(4.4) is ) )

(5.3) *@)=éa-(BAra)=Xara §(B)=B-(BAa)=-2BAd

The corresponding multiplicative representation of S is described by

(5.4) pla) = ( e ) p(b) = ( o )

and this defines the differential calculus on U(S) given by
(5.5) [a,d] = —Xdé [a,b] =0 [b,a]=—Xb [b,b] =0
We remark that the Lie bialgebras S and (S*)°? are isomorphic, an isomorphism ¢ : § — §*

is given by p(a) = =8, ¢(b) = a.

5.2 The Heisenberg Lie algebra

Consider the 2n + 1-dimensional Heisenberg Lie bialgebra H, with basis {C,pi,%’}lgign and
structure maps

(5.6) [e,pi] = [e,q:] =0 [pi,q;] = 5;0 8(c)=0 &(pi)=pinc 68(qgi)=qiAc.
We define the dual basis {v, &:,B:}1<i<n of H, and obtain as structure maps

[v, i) :—noz,' [v,8:]] = —B; [ei, 8] =0
(5.7) §(r) =Y aiABi &) =0 §'(B:) =0

i=1

One can easily verify that H, is triangular with R-matrix R = %Eiﬁ; A a;. The extension
of §" is given by

(5.8) () = 5 D (@A BitaiAB) 8(a)=0 8(B)=0

i=1

which gives the following differential calculus on U(Hn)
~ 1. . 1.
(5.9) [pi, ;] = %3¢ lg:, 53] = -5 8¢

and all other commutators are equal to zero. For instance the multiplicative representation

in case n = 1 looks like
0 -1 o0
W=(0 o o
0 0 0

o o o
o o o
o oONj=

(5.10) pc)=0 p(p) = (



5.3 The dual of the non-standard s,

We consider the 3-dimensional Lie bialgebra K with basis {v,«,} and structure given by

[’Y,OZ] =7 ['YWB] =0 [avﬂ] = _:3
8(v) =anp ba) =2yAa  6(B) —2vAPB

The corresponding dual basis of K* will be denoted by {%,e, f} and its structure is given by

[hve] = 2e [hvf] = _Zf [6, f] =h
§*(h) =hAe &) =0 8*(f) =fAe.

(5.11)

(5.12)

From this we see that K* is isomorphic to the Lie algebra sl; equipped with the non-standard
cocommutator determined by the R-matrix R = %h A e. The extension of §* is given by

(5.13) §*(h)=hné & ()=ené 5*(f):f/\e—%h/\h
and the corresponding multiplicative representation of K is described by

1 0 0 00 0
(5.14) ple) = ( 0 -10 ) p(B)=0 p(y)= ( 00 —3 )
0 0 10

0 0

The differential calculus on U(K) is given by

[,6] =&  [8,4]=0 [v,&] =%
(5.15) [0,8] =8 [8,6]=0 [v,f]=0
[v,4]=0  [B,4]=0  [v,4]=—38

5.4 The dual of the Virasoro algebra

In this example we consider an infinite dimensional Lie algebra. By V we denote the Virasoro
algebra, this Lie algebra has a basis {ep,c}, with commutator given by

3

(5.16) lepreq] = (@ —Plepsq + 5g+q%c [c,ep] =0 p,g €Z.

The Virasoro algebra can be equipped with a triangular Lie bialgebra structure by means of
the R-matrix R = ¢ A eg, this yields the following cocommutator

(5.17) 6(ep) =pep Ac 6&(c) =0.

The dual Lie bialgebra V" consists of formal series in {f?,v},. These elements are defined
to be dual with respect to the given basis of the Virasoro algebra. The commutator and
cocommutator of V* are given by

3

P £ _ Pl — _pfP §*(FP) — 9% — p) fP—9 4 §*() = 9 9.9 .

7 £ =0 (v f7l=—pf* &7 =) Q- '@ f ()= ‘e
q q

The extension of the cocommutator of V' to the colour Lie superalgebra with basis {e;, €y, ¢, é}p
according to (4.4) is given by
(5.18) 6(ép) =p(é ®c—c®ép) 6(¢)=0.
The corresponding multiplicative representation on V* is described by

(5.19) p(fA) =0 p(fF)v)=0 p(7)(fF)=—pf" p(7)(7)=0.

We remark that in this example V* plays the role of g and V the role of g*. So, in fact we
used the triangular structure of V' C (V*)" to obtain a multiplicative representation of V*.



6 The quasi triangular case

In this section we discuss the possibility of extending the result of Theorem I to the case where
g” is of quasi triangular type. A Lie bialgebra is said to be quasi triangular if its cocommutator
is a coboundary determined by an R-matrix that satisfies the CYBE. In contrast to the
triangular case, the R-matrix does not need to be antisymmetric. In general one can write
R = R, + R; where R, and R, denote the antisymmetric and the symmetric part of R
respectively, i.e. 0(Ra.) = —Ra and o(R,) = R,. Since the cocommutator §" satisfies c06* =
—6&", the symmetric part of R is g-invariant. Suppose we extend §* to L* as described by
(4.4), i.e. 5*(@) —O®.-R=0©.R,+0-R,. The antisymmetry condition for the extension &*
implies that R, needs to be invariant under the adjoint action of the odd part of L*. We can
write

(6.1) Ro=) ¢:i®¥: o(R,)=R,
where both {¢;}; and {4:}: are linearly independent sets in g*. Then

(62) ©-R.=) ((0,6:]®%i+4:®[0,8:]) = > ([0,6:]® i +¢: ® [0,:]) =0

implies that both sets are invariant under the adjoint action of ® € g*. Hence, the extension
will only be well defined if all terms in R, consist of central elements of g*. However, in that
case

(6.3) 0=[|R, R[] =[|Ra + Rs, Ra + R:[] = [|Ra, Ra|]

which implies that g* is of triangular type with R-matrix R,. The conclusion is therefore that
the construction of section 3 can not be applied to ’proper’ quasi triangular Lie bialgebras
such as for instance doubles of Lie bialgebras (see e.g. [4]).
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