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Preface  

The present volume contains the. notes of lectures delivered at the eighth 
Scheveningen Conference held at Wassenaar, the Netherlands, August 16- 
21, 1992. The conference was organized by P.J.M. Bongaarts (University of 
Leiden), G.F. Helminck (University of Twente), E.M. de Jager (University 
of Amsterdam),  H. Lemei (Delft University of Technology), R. Martini (Uni- 
versity of Twente) and H.G.J. Pijls (University of Amsterdam). Financial 
support  was obtained from the Royal Dutch Academy of Science (KNAW) 
and the Foundation for Fundamental Research on Matter (FOM). 

This conference is the eighth in a series of meetings that  started in 1973. 
All of these meetings have been centered around a main topic of research 
and have been partly instructional in character in order to stimulate further 
research. Like the last four, this Scheveningen conference was devoted to 
geometric ideas in mathematical physics. 

Algebraic geometric aspects of integrable systems are dealt with in the 
contributions of J. Harnad and E. Previato. The paper of J. Harnad de- 
scribes by means of severM concrete examples a general framework in which 
many Hamiltonian systems with a "curve-background" can be explicitly in- 
tegrated. The account of E. Previato furnishes the geometric insight into 
several integrability techniques for the modified KdV equation and gives the 
geometry behind transformations related to this equation. The equations 
that  play a role in this work are part of whole systems of equations, so-called 
hierarchies. They reappear in the papers of R. Dijkgraaf and G.F. Helminck. 
The latter paper presents an analytical construction of solutions of the Toda 
lattice hierarchy, while the former discusses the relation between integrable 
hierarchies and string theory. This leads, in particular, to useful integral 
expressions for the T-functions of these hierarchies. As is now well-known, 
these T-functions are determinants of suitable operators. Probabilities for 
the distribution of eigenvalues are also of this form and they are the central 
topic in the paper by C.A. Tracy and H. Widom. In their work these authors 
give a new and transparent way to derive the JMMS-equations satisfied by 
these T-functions. 



Viii 

Clearly, in the geometric description of interesting equations from mathe- 
matical physics, singularities might emerge. The paper by D-J. Smit and 
M.V. de Hoop, and that  of J. de Graaf are beautiful illustrations of this 
phenomenon. In the contribution of D:J. Smit and M.V. de Hoop, a new 
expression for the fundamental solution of a specific hyperbolic system is 
given. It is described in terms of integrals over cycles corresponding to sin- 
gularities of the hypersurface defined by the characteristic equation. This 
is used to analyze the asymptotic behaviour of the fundamental solution. 
The article by J. de Graaf gives the mathematical background to Hopper's 
equation, a description of its state space and a discussion of some finite di- 
mensional subsystems. 

In the world of integrable systems one is not only interested in differential 
equations but also in integrable difference equations. In their contribution 
F.W. Nijhof and H.W. Capel give a quantization procedure for integrable 
lattice models, such as the lattice analogue of MKdV. In addition, they dis- 
cuss the properties of these systems and associate a quantum Yang-Baxter 
structure to them. Finally, the paper of S. Rodriguez-Romo and D.W. Ebner 
introduces q-deformations of Clifford algebras and discusses quantum sym- 
metries related to Yang-Baxter bundles. 

The organizing committee is indebted to all those who made this conference 
possible and in particular to the Royal Dutch Academy of Science (KNAW) 
and the Foundation for Fundamental  Research on Matter (FOM~ for their 
financial support.  We would like to express our grati tude to all those who 
helped to make this conference a success, to the participants for creating a 
nice and friendly atmosphere, the invited speakers for accepting our invita- 
tion and the contributors for their very interesting and stimulating accounts. 
Finally, we wish to express our gratitude to Springer-Verlag for their assis- 
tance and the efficient production of these proceedings. 

G.F. Helminck 

Enschede, The Netherlands, June 1993 
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Isospectral Flow and Liouville-Arnold 
Integration in Loop Algebras* 

3. Harnad 1 
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7141 Sherbrooke W., Montreal, Canada H4B 1R6, and 

Centre de recherches math~matiques, Uni~;ersit~ de Montreal 
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A b s t r a c t .  Some standard examples of Hamiltonian systems that  are integrable 

by classical means are cast within the framework ofisospectral flows in loop alge- 

bras. These include: the Neumann oscillator, the cubically nonlinear Schrbdinger 

systems and the sine-Gordon equation. Each system has an associated invari- 

ant spectral curve and may be integrated via the Liouville-Arnold technique. 

The llnearizing map is the Abel map to the associated Jacobi variety, which is 

deduced through separation of variables in hyperellipsoidal coordinates. More 

generally, a family of moment maps is derived, embedding certain finite dimen- 

sional symplectic manifolds, which arise through Hamiltonian reduction of sym- 

plectic vector spaces, into rational coadjoint orbits of loop algebras ~+ C ~-[(r) +. 

Integrable Hamilton]ans are obtained by restriction of elements of the ring of 

spectral invariants to the image of these moment maps; the isospectral property 

follows from the Adler-Kostant-Symes theorem. The structure of the generic 

spectral curves arising through the moment map construction is examined. Spec- 

tral Darboux coordinates are introduced on rational coadjoint orbits in ~[(r) +*, 

and these are shown to generalize the hyperellipsoidal coordinates encountered 

in the previous examples. Their relation to the usual algebro-geometric data, 

consisting of linear flows of line bundles over the spectral curves, is given. Apply- 

ing the Liouville-Arnold integration technique, the Liouville generating function 

is expressed in completely separated form as an abelian integral, implying the 

Abel map linearization in the general case. 

K e y w o r d s .  Integrable systems, Liouville-Arnold integration, loop algebras, 

isospectral flow, spectral Darboux coordinates, Abel map linearization. 

t Research supported in part by the Natural Sciences and Engineering Research Council of 
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1 Background Material and Examples  

In this first section, we shall examine several examples of integrable Hamilton]an 

systems that  may be represented by isospectral flows on coadjoint orbits of 

loop algebras. In each case, the flow may be linearized through the classical 

Liouville-Arnold integration technique. An explicit linearization of the flows 

can be made in terms of abelian integrals associated to an invariant spectral 
curve associated to the system. A key element in the integration is the fact that  
a complete separation of variables occurs within a suitably defined coordinate 

system - essentially, hyperellipsoidal coordinates, or some generalization thereoL 

A general theory will then be developed in subsequent sections, based essentially 

on moment map embeddings of finite dimensional symplectic vector spaces, or 

Hamilton]an quotients thereof, into the dual space of certain loop algebras, the 

image consisting of orbits whose elements are rational in the loop parameter. 

The origins of this approach may be found in the works of Moser [Mo] on 

integrable systems on quadrics, Adler and van Moerbeke [AvM] on linearization 

ofisospectral flows in loop algebras and the general algebro-geometric integration 

techniques of Dubrovin, Krichever and Novikov [KN], [Du]. The theory of 

moment map embeddings in loop algebras is developed in [AHP] ,  [AHH1].  

Its relation to algebro-geometric integration techniques is described in [AHH2],  

and the use of "spectral Darboux coordinates" in the general Liouville-Arnold 

integration method in loop algebras is developed in [AHH3].  Some detailed 

examples and earlier overviews of this approach may be found in [AHH4],  

[AHHS].  The proofs of the theorems cited here may be found in [AHP] ,  

[ A H H 1 - A H H 3 ] .  

1 .1 .  T h e  N e u m a n n  O s c i l l a t o r  

We begin with the Neumann oscillator system ([N], [Mo]), which consists of a 

point particle confined to a sphere in Rn, subject to harmonic oscillator forces. 

The phase space is identifiable either with the cotangent bundle or the tangent 

bundle (the equivalence being via the metric): 

M = T*S n-1 = {(x,y)  E R'* × R" I xTx = 1, yTx  = 0} C R'* × R ~, (1.1) 

where x represents position and y momentum. The Hamiltouian is 

H(x,  y) = l [ y T y  + xTAx], (1.2) 

where A is the diagonal n × n matrix 

A = d i ag (a , , . . ,  ore) E M "×",  (1.3) 



with distinct eigenvalues {O~i}i= 1 . . . . .  determining the oscillator constants. 

Equivalently, we may choose the ttamiltonian as: 

¢ (x ,y)  = l [ ( x r x ) ( y r y )  + x r A x -  (xry)2],  

in view of the constraints 

(1.4) 

x T x  ----- 1, yTx  = 0. (1.5) 

The unconstrained equations of motion for the Hamiltonian ¢ are: 

dx  = ( x r x ) y  _ ( x r y ) x  (1.6a) 
dt 

~Yt = --(yTy)x -- + (1.6b) (xTy)y.  Ax 

Since 
{¢, xTx} :-- 0, 

it is convenient to interpret the relation 

(1.7) 

( x , y ) ,  > ( x , y + t x ) ,  (1.9) 

and is invariant under the C-flow. We may then apply Marsden-Weinstein re- 

duction, quotienting by the flow (1.9). The reduced manifold is identified with 

a section of the orbits under (1.9) defined by the other constraint: 

yTx = 0. (1.10) 

The integral curves for the constrained system are determined from those for 
the unconstrained system by othogonal projection: 

( x ( t ) , y ( t ) ) l ~ ,  , (~(t),y(t))con~t~. 

• - \ x r ( 0 x ( 0 ]  • 
(1.11) 

Marsden-V~einstein reduced space n - : ( 1 ) / N  This lifts the projected flow on the r 

to one that  is tangential to the section defined by eq. (1.10). 

alone as a first class constraint. The function n(x) generates the flow 

n(x) := xTx = 1, (1.8) 



Assuming the constants al determining the oscillator strengths are distinct, 

the integration proceeds (cf. [Mo]) by introducing the Devaney-Uhlenbeck com- 

muting integrals 

Ii := --~ ( x i y j -  yixj) 2 + x~, (1.12) 
j = l , j # i  OL i - -  O~j 

which satisfy 

n 

E I i  = xTx (1.13a) 
i--1 

E ai[, = 2~. (1.13b) 
i------1 

Define the degree n - 1 polynomial P(A) by 

"P(A) 1 ~-, Ii 
a ( ~ )  "-- 4 Z.JI=I ~ --  O~i' 

where 
rt 

a ( ~ )  :=  I - [ ( ~  - . , ) ,  
i=1  

P(A) = P,~_IA n-1 + P,_2A "-~ + " "  + To. 

Then on T*S '*-1, 

(1.14) 

(1.15) 

~ ~xVx 
1 

Pn-1 = = - - ,  
4 4 

1 (1.16) p . _ ~  = ~¢. 
An equivalent set of commuting integrals consists of the coefficients of the poly- 

nomial ( P 0 , . . . ,  Pn-2}. The Liouville-Arnold tori T are the leaves of the La- 

grangian foliation defined by the level sets: 

Pi = Ci. (1.17) 

We now proceed to the linearization of the flows through the Liouville- 

Arnold method. First, introduce hyperellipsoidal coordinates {)~u}u=l,...n-1 and 

their conjugate momenta, {(u}~,=l,...n-1, which are defined by: 

n--1  ~ [ I . = 1 ( ~  - ~ )  
x_j. _ ( 1 . 1 8 a )  Z__, 

i=1 ~ - ,~i a ( ~ )  

1 ~ xiYi (1.18b) 
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In terms of these, the canonical 1-form is: 

n n--1 

0 = E yldxilT*S"-I = E (,dA~,. (1.19) 
i--1 #=1 

Restricting this to T determines the differential of the Liouville generating func- 

tion S: 
n - 1  n - 1  / - ~ . )  

E c,e~,IP,=~.,. = es = E V ~-5-3-,) e~"' (1.2oi 
lu~l p~ l  

which, upon integration, gives 

s = E V ~--{Z "~ (1.21) 
/a=l 

This is seen to be an abelian integral on the (generically) genus g = n -  1 

hyperelliptic curve C defined by: 

z ~ + a(A)P(A) = 0. (1.22) 

The linearizing coordinates conjugate to the invariants Pj are then: 

OS 1 ~ f0 )'" AJdA - b j t ,  (1.23) 
QJ := OPi = "2 ~=1 v/a(A)P(A) 

where, for 4~ = 2Pn-2, 

bn-2 = 2, b i - -O,  j< :  n - 2 .  (1.24) 

The map: 
(A1, . . .A,-1)  , (Q1 , . . .Q , -1 )  (1.25) 

defined by eq. (1.23) is, up to normalization, the Abel map from the symmetric 

product Sn-IC to the Jacobi variety J (C)  of C: 

A :  S " - I C ,  , , J(C) ~ C " - I / F ,  (1.26) 

where F = is the period lattice. 

We now turn to the interpretation of such systems as isospectra] flows in a 

loop algebra (cf. [AHP] ,  [AHH3] ,  [AHH4]).  Let 

X(~) = ~v +/c0(A), (1.27) 



where 

[' - -  ~--., n z ; y ~  
A / l.-.~i=l A--otl 

Af0(A) := ~ \ E i= I  a-,~, 

(0 +) 
Y : =  0 0 " 

_ v ' "  \ 
/ e +* 

Z..,,=l A--oq / (1.2Sa) 

(1.28b) 

We define a map JA : R n x •n , ~'[(2) +" to the dual space of the positive half of 

the loop Mgebra ~'[(2), relative to the standard splitting ~'[(2) = ~"[(2) +* +~[(2)-* 

into holomorhic parts inside and outside a circle & '1 in the complex A-plane, 

containing the ai 's  in its interior region: 

JA:  ( x , y ) ,  ~ N0(A) E 5[(2) +*. (1.29) 

This is a Poisson map with respect to the Lie poisson structure on ~'[(2) +*. The 

Hamiltonian ¢ is then given by restriction of an elementary spectral invariant: 

1 f d), 
¢ (x ,y )  = -tr(A/(A)2)0 := - ~ / ~ s '  tr(JV(A)2)--A" (1.30) 

and all the other invariants Pj may be similarly represented. The equations of 

motion are seen to be equivalent to the Lax equation: 

d.hf 
dt -IN,Pal'], (1.31) 

where 
[ xTy A -t- y T y ~  (1.32) 

B := d¢(J~)+ = ~,_xTx _ x T y  ] ,  

and (d¢(Af)+ signifies projection of the element d¢(.Af) E ~](2) to ~[(2) +. This is 

an example of the Adler-Kostant-Symes (AKS) theorem (to be explained more 

fully in Section 2). The spectral invariants (elements of the AKS ring) are 

generated by the residues of the rational function 

det - a(A) - 4 i=l A-c~i"  

To see the relation with the standard algebro-geometric linearization meth- 

ods ([Du], [KN], [AHt I2 -AHH3] ) ,  we begin with the invariant spectral curve: 

det(£(A) - z][2) = z 2 + a(A)P(A) = 0, (1.34) 

where 

~(A := -~AT(A), ; := a(A)~, (1.35) 



and let 

.A4(A, ~) := (aV'~ (-A) '112) , (1.36) 

where 112 is the 2 × 2 unit matrix. Then the columns of the matrix .A4(A,() of 

cofactors of M(A, ~) are the eigenvectors of H(A) (CA = eigenvahe) on C: 

!V'" ~,~, _ ±V "~ ~ + ! 
2 z-,i=, ;~_~, ( 2 z-,i=, ~_~, 2 } (1.37) M(A,O = _ _ , v , -  ~ 

The hyperellipsoidal coordinates {At, ,#u}u=l . . . . . . .  1 define the finite part of the 

zero-divisor: 
n--I 

D = Z P(Au' ¢'~') + p(oo, ), (1.38) 
p.=l 

i.e., the zeros of a section of the bundle E ~ C dual to eigenvector line bundle. 

This bundle can be shown generically to have degree n, and thus to be an element 

of the Picard variety E 6 Pic'L The Abel map then identifies the symmetric 

product Sn- IC  with the Jacobi variety if(C) ~ Pic°. The linearity of the flow 

in Pic" follows from noting that the Lax equation 

dA/" 
dt = [d¢(YV')+,YV'], (1.39) 

implies a linear exponential form for the transition function 

,(A, z, t) = exp(¢z(A, z)t). (1.40) 

1.2 N o n l i n e a r  S c h r S d i n g e r  ( N L S )  E q u a t i o n  

We now apply a similar analysis to the quasi-periodic solutions of the cubically 

nonlinear SchrSdinger equation (cf. [P1], [AHP] ,  [AHH4])  

u ~  + v ~ u ,  = 21ul~. (1.41) 

Let 

A / 1~2"~J=l J~--~J -- " 1 A[ N(A) n Z2 
k -  E~=, ~,2% - i  ~i=, ~-~i 

and let w denote the standard symplectic form on C": 

(1.42) 

w = i d~ T A dz = i ~ dYj A dzj (1.43) 
J=! 



We define the Poisson map: 

J :  C n ~ ~u(1,1) +* 

, H( ,x ) ,  

and let 

£(,~) = @.Af( ,~ )  = Lo,~ " - x  + L I £  " -2  + . . .  + L n - 1 .  

The spectral curve is defined by the characteristic equation 

det(£(,~) - zl-) = z 2 + a(,~)P(,~) = O, 

P(A) := Po + Pl,k + . . -  + p~_2~,-2,  

and has genus g = n - 2. Choosing the AKS Hamiltonians: 

] H~ = ~ ~ tr(X(A) 2) = -P2,, ,-3 
0 

Ht = ~ )~2 tr(N-(X)2) = -P2,n-4 
0 

gives the Lax equations 

where 

d 
~x£() , )  = [(dH~)+,£()~)] 

d£ ( ,~ )  = [(dH,)+,£(),)], 

(dH~:)+ = ,~Lo + L1 

(dHt)+ = J~2Lo + ALl + L2. 

Choosing invariant constraints so that: 

i ( 1  01) Lo = ~ 0 - ' 

the compatibility conditions: 

O(dH:~)+ O(dH,)+ 

Ot Ox 

51 "-~ ( 0 O) ,//, 

- l u l :  ' 

- -  + [(dH=)+,(dHt)+] = 0 

(1.44) 

(1.45) 

(1.46) 

(1.47a) 

(1.47b) 

(1.48b) 

(1.48b) 

(1.49a) 

(1.49b) 

(1.50) 

(1.51) 



reduce to the NLS equation (1.41). To obtain the quasi-periodic solutions, we 

introduce the spectral Darboux Coordinates {q, P, A., (.}~=1 . . . . . .  2, analogous to 

the hyperellipsoidal coordinates above: 

z~_ _ 2 u y I . = I ( A - A . )  

,=~ X - ~.  ~() , )  

i ~-~ 'z" ~ ~ P('~.) 
~" = --2 i : l  A;---ai  -- " a(A.) 

q := in(u), P := (L0)22, 

(1.52a) 

(1.52b) 

(1.52c) 

Then the symplectic form: may be expressed as 

n--2 

= ~ d~. A ~C. + dq A dP. (1.53) 
. = 1  

As above, the spectral curve is invariant, and the coefficients of the charac- 

teristic polynomial generate a complete set of commuting integrals, so we may 

apply the Liouville-Arnold integration method. The coordinates (A., ~.) defined 

by (1.52a,b) again give the finite part of the divisor of zeros of the eigenvectors of 

A/'(A), while the remaining pair (q, P)  are determined by the additional spectral 

da ta  at A -- oo. The Liouville generating function in this case becomes 

S = E ( .dA . lp ,=c . t .  + qP = - dA + P l n u  
. = 1  

(1.54) 

and the linearizing coordinates conjugate to the Pi's are: 

cOS 1 ~ f 0 ~  AidA 
Oi -- cO~ -- 2 .=1 x/_a(A).p2(A ) = bim + cd, i = 0 , . . . n  - 3, (1.55) 

which are abelian integrals of the first kind, and 

cOS 1 ~ . / A ~  A'~-2dA l n u -  b,~_2a + e,~_2t, (1.56) 
Q2,n-2 - cO.Pi - -2 ~ x  do x/-a(A)~2(A) 2-~2 

which is an abelian integral of the third kind, the integrand having simple poles 

at the two points (ocl, oo2) over ~ = oo. For the Hamiltonian H~ = - P n - 3 ,  

we have bi = -Si,n-~, c~ = 0, while for Ht = -P,~-4,  bi = 0, ci = -51,,~-3. An 

explicit formula for the function u(z, t) may be obtained in terms of the Riemann 
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theta function 0 associated to the spectral curve by applying the reciprocity 
theorem relating the two kinds of abel/an integrals (cf. [AHH4] ) .  

- ct)O(A(oo2,p) + tU + x V  - K) 
u(x, t )  = exp(q) = K exp(bz + O ( A ( o o a , p ) + t U + x V  K ) '  (1.57) 

where A :  S"-2C,  , J(C),'~ Cn-2 /P i s  the Abel map, U , V  E C "-2,  b,c E C 
are obtained from the vectors with components (bi, cl) on the RHS of eq. (1.55), 

(1.56) by applying the linear transformation that normalizes the abel/an differ- 
entials in (1.55), and K is the Riemann constant. 

1 .3  S i n e - G o r d o n  E q u a t i o n  

As a last example, consider the sine-Gordon equation (cf. [ H W ] ,  [P2], [AA]) 

Let 

where 

02U 02U 
Ox 2 at 2 - sin(u). (1.58) 

X'(A) : :  ),Y + X'o(A), (1.59) 

y= (0 1) (b(A) c(A)'~ (1.60) 
1 0  ' Af°(A) := 2A _~(~) - b ( A ) ) '  

with b(A), c(A) given by 

b(A) = A £ ( --~__iiT_~i ~i_%' ~ (1.61a) 

c(A) = E \ ~ 1  - A 2  + &g. _ ~ 2 . ]  ' (1.61b) 
/----1 

and T, 7 E C v complex vectors with components {~i,"[i}i=l,...p. (Here ai ,  ~i,  
- a l ,  - ~ i  are assumed to be distinct.) 

Define 
P 

a(A) := ~ [ ( A  2 - a~)(A 2 - &2)]. (1.62) 
i = l  

The symplectic form on C p × C p is given by: 

P 

= 4 ^ d e / +  d /A d 0. (1.63) 
i----1 
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Again, define a Poisson map: 

i : CP x CP ~ ~ ( 2 )  +* 

Y : ( ~ , ~ ) ,  ,Xo(~), 

where the twisted loop algebra: 

~ ( 2 )  + c ~ ( 2 )  + c ~(2) + c ~I(2, c )  + 

is defined as the fixed point set in ~"[(2, C) + under the involutions; 

al : X() , ) ,  

a2 : X ( ~ ) ,  

Let n = 2p, and 

, x t ( X )  

,(; o). 

= a(A)Y + Lo A2n-1 + L1A2n-2 + . . .  + L2n-1. 

The spectral curve is: 

det(£(X) - zI) = z 2 + a(X)P(X) = 0 

P(~)  = Po + ~2P1 + "'" + ~2" -2P . -1  + ~2..  

Choosing the AKS Hamiltonians: 

H~(X) := l t r  ( a(~) (X(A) + XY)2) o = -Po 

o 

gives the Lax equations 

where 

~ £(A) = [A,£(X)] 

d 
~ £ ( ~ 1  = [B,£(~)] ,  

1 
- A  = dH~(.M)_ = ~(L2,,-1 + a(O)Y) 

B = dH~(Af)+ = Lo + ~Y. 

(1.64) 

(1.65) 

(1.66) 

(1.67a) 

(1.67b) 

(1.68a) 

(1.68b) 

(1 .69 )  

(1.70a) 

(1.70b) 

(1.71) 
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Choosing the level set: 

gives 

where 

1 
Po = ~  

16 

L 2 n - 1  + a ( O ) Y  = -~ _ e _ i u  0 ' 

e i~ = a(0)(c(0) - 1), 

with u real. Then  the compatibi l i ty  conditions: 

O A  O B  
+ [A, B] = 0 

07 O~ 

reduce to the Sine-Gordon equation 

(1.72) 

where 

(1.73) 

(1.74) 

(1.75) 

and is again hyperell iptic,  with genus g = 2n - 1. Quot ient ing by the involution 

(z,~)~-~(z,-A) (1.79) 

gives a reduced curve with genus g = n - 1 defined by 

z 2 + 5 ( E ) P ( E )  = O, (1.80) 

where 

A 2 :=  E,  f i (E ) ; =  a(A), / 5 ( E ) : =  P(),) .  (1.81) 

We also in t roduce  the augmented  curve, defined by 

52 + E a ( E ) P ( E )  = O, (1.s2) 

of genus g = n, where 

5 := zA. (1.83) 

~2 + a(;~)P(~) = o, (1.7s) 

The quasi-periodic solutions are obtained as in the previous example. The 

unreduced spectral  curve is defined by 

( = x + t ,  rl = x - t .  (1.77) 

u** - uu  = sin u, (1.76) 
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The spectral Darboux coordinates are defined by 

5 ( E . )  - 1 = 0 ( 1 . 8 4 a )  

C, v@--~, = 2D(E,), # = 1 , . . .  n, (1.84b) 

where 

~(E) := b(~), ~ ( E ) : =  c(~).  (1.85) 

These again are interpreted as zeros of the sections of the dual to the eigenvector 
line bundle associated to ,~f(~). The symplectic form is then 

w = ~ dE~ A d~# = -dO. (1.86) 
#=1 

The Liouville generating function is 

S(Po, . ,  nn-1, El ,  En) = (1.87) . . . . .  , ~ )  ~E, 
#----1 o 

giving rise to the Abel map linearization: 

Q' - cg• - 2 #=, i _ E a ( E ) P ( E )  dE (1.88a) 

: Ci -t- 26i,o~ - 251,n-1r/, (1.88b) 

which only involves abelian integrals of the first kind on the augmented curve. 

In terms of theta  functions, the solution may be expressed as 

) ~< = - i  l n ( - E , , )  - ~ (1 .89a)  
\ # = 1  

= - 2 i l n  O ( A ( p 0 , 0 ) - U r / - _ V f _ - K )  + C ,  (1.89b) 
E)(A(p0, oo) - U~ - V~ - K) 

where U, V are again obtained from the coefficients on the RHS of (1.88) by 

applying the normalizing linear transformation to the abelian differentials ap- 

pearing in (1.88). Full details for this case may be found in [HW].  

In the following two seetions~ a general approach to integrable systems 

is developed, yielding all the above results as particular cases, but allowing 

generalizations to more complex systems of higher rank. 
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2 Moment Map Embeddings in Loop Algebras 

2.1 Phase Space and Loop Group Action 

We begin by defining the generalized Moser space (cf. [ A H P ] )  to be the sym- 

plectic vector space consisting of pairs (F, G) of rectangular N x r matrices: 

M = {(F, G) E M g'r x M N'r} (2.1) 

with symplectic form: 

w = tr dFT A dG. (2.2) 

The loop algebra, denoted ~, consists of smooth maps from a circle S 1, 

centred at the origin of the complex A-plane, into g[(r), s[(r),  or some subalgebra 

thereof. 

= ~'~(r) (or ~-I(r)) 
= {X(A) E gl(r), A E S '  C C U oo}. (2.3). 

There is a natural splitting of 

= ~+ + g-,  (2.4) 

as a vector space direct sum of the subalgebra ~+, consisting of e]ements X(A) 

admitting a holomorphic extension to the interior of S 1, and ~- ,  consisting of 

elements admitting a holomorphic extension to the exterior, with normalization 

X(oo) = O. We identify ~ as a dense subspace of its dual space ~* through the 

pairing 

1 / "  d)~ 
< ~, x > := 2~-5 Jbs tr (~,(~)x(~))W' (2.5) 

! 

~ e ~ - ,  x e ~  +. 

Under this pairing, we have the identification 

where 

(~+)* ~ ~_, (~ - ) *  ~ ~+, (2.6) 

~* = ~+ + ~_ (2.7) 

simi]arly represents a decomposition of ~* into subspaces consisting of e]ements 

holomorphic inside and outside S 1, but with the normalization such that ele- 

ments # E ~+ satisfy #(0) = 0 (and hence the constant loops are included on 
~_). 
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The loop group ~+ is similarly defined to consist of smooth maps g : S 1 

Gl(r)  which admit holomorphic extensions to the interior of Sa: We define a 

Hamiltonian action: 

~+ :M----* M 

g(~,) : (F, a )  ~ (F~, a~) ,  (2.s) 

where (Fg, Gg) are determined by the decomposition 

(A - )~I) - 'Fg-I (A)  = (A - )~[)-1F9 + Fhol (2.9a) 

g(A)GT(A _ M ) - I  = GT(A _ ~1)--1 ..~ Ghol- (2.9b) 

Here A E M N'N is some fixed N x N matrix, with eigenvalues in the interior 

of S 1, and (Fhol,Ghol) denote the parts of the expressions on the left that  are 

holomorphic in the interior of 5 '1. This Hamiltonian action is generated by the 

equivariant moment map: 

jA(F ,  G) = )~GT(A - AI) - '  F, (2.10) 

which is thus a Poisson map with respect to the Lie Poisson structure on ~+*. 

This map is not injective, its fibres being (generically) the orbits of the sub- 

group GA := Stab(A) C GI(N) acting by conjugation on A, and by the natural  

symplectic action on M. 

9: (F,G) ' (9F, (9T)- l ) ,  9 e GA C GI(N) (2.11) 

The relevant phase space is therefore the quotient 

M / a A  ~ "~*a, (2.12) 

which is identified with a finite dimensionM Poisson subspace ~ C 9+* con- 

sisting of elements that are rational in the loop parameter  A, with poles at the 

eigenvalues of A. 

2.2 Simplest Case 

We now consider the simplest case, where A is a diagonal matrix: 

A = d i a g ( ~ l , . . .  ~ 1 , . . .  ~ k , . . .  ~ k , . - .  ~ , , . - .  ~ , ) ,  (2.13) 
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possibly with multiple eigenvalues {O~i}i=l,...n of multiplicity ki < r, all in the 

interior of S 1. The matrices (F, G) are decomposed accordingly as 

F =  Fi , G =  Gi , (2.14) 

where (Fi, Gi) are the ki × r dimensional blocks corresponding to the eigenvalues 

oq. For this case, N'0(A) has only simple poles: 

GTFi ~ Ni (2.15) 
N0(A) = JA(F,G) = -A ~:-~i  "-- A A~---~i' 

i=1 i=1 

with residue matrices Ni generically of rank: 

rk(Fi) = rk(Gi) = ki. (2.16) 

The Ad*~+-act ibn  for this case becomes: 

9(A): N 0 ( A ) , . ,  A ~ g(ceilNig-l(cq), (2.17) 

i=1 

which can be identified with the Ad*-action of the direct l~roduct group Gl(r) x 
• .. x G/(r)  (n times) on [g[(r)*] n. 

The fibres of the map a 7A coincide with the orbits of the block diagonal 

subgroup: 

GA = Stab(A) = Gl(kl) × Gl(k2) × ... x Gl(kn) C GI(N), (2.18) 

under the action: 

(hi , . . .  hi, . . ,  ha): (Fi,Gi), , (hiFi, (hT)-'Gi) (2.19) 

This is also a ttamiltonian action, generated by the "dual" moment map: 

JH(F,G) := (F1Gr~,. . . , . . .F,G T) ~ (gI(kx) x . . .  x 9[(k,))*. (2.20) 

The Ad*q5 + orbits are then the level sets of the Casimir invariants: 

tr(FiGTi) l, k=  l , . . . n  l= 1,...ki. (2.21) 



17 

More generally, the image of the moment map ~'A is a Poisson submanifold 

of ~A C ~'+* consisting of elements of the form 

" P' ( 2 . 2 2 )  

/=-1 /~=1 

where Pi is the dimension of the largest Jordan block of A corresponding to 

eigenvalue ai. 

2.3 Dynamics: Isopectral AKS Flows 

The Hamiltorfian flows to be considered are those generated by elements 

of the ring of Ad*-invariant functions 2"(~*), restricted to the translate AY + ~A 

of the subspace ~A by a fixed element AY G ~-*,  where Y E ~[(r). (The latter 

is an infinitesimal character for ~ - ,  since it annihilates the commutator of any 

pair of elements.) We denote the ring of elements so obtained by 

ZAYKS := 2:(~*)lxy+~A, (2.23) 

and refer to it as the AKS (Adler-Kostant-Symes) ring. 

Let 

X(A) = AY + ~¢0(A) GAY + ~A- (2.24) 

We then have the fundamental theorem that  underlies the in tegrability of the 

resulting Hamilton]an systems, the Adler-Kostant-Symes theorem: 

T h e o r e m  2.1 (A KS) .  

1. I f  H G Z y Hamilton's equations are: AKS~ 

dH 
XH(PJ) = dt = [(dH)+,A/'] = -[(dH)_,jY'] (2.25a) 

Y 2. I f  I l l ,H2  E ~-AKS, 
{H1,H2} = 0. (2.25b) 

Thus, all the AKS flows commute, and are generated by isospectral defor- 

mations determined by Lax equations of the form (2.25a). In fact, it may be 

shown ([RS], [AHP] ,  [AHH2]) that  on generic coadjoint orbits of the form 

(2.22), these systems are completely integrable; i.e., the elements of the Poisson 

commutative ring 2"AYI<s generate a Lagrangian foliation. Since the map (2.10) 
with image consisting of elements of the form (2.22) is a Poisson map, and passes 

to the quotient Poisson space M / G A  to define an injective Poisson map, the same 

results may be applied to the pullback fA o H of any Hamiltonian in the AKS 

ring ZYAKs . 
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C o r o l l a r y  2.2. The results of Theorem 2.1 remain valid if  the Hamiltonians 

Ha, H2 are replaced by jA o HI, jA o H2 on the space AY + "~A, identified with 

AI/GA through 

X(A) - AY + N0(A) = AY + JA(F, G). (2.26) 

2 . 4  R e d u c t i o n s  

To obtain interesting examples, one usually must reduce the generic systems 

described above in a manner that is consistent with the structure of the dy- 

namical equations. This generally consists of ttamiltonian symmetry reductions 

involving either continuous or discrete symmetry groups. (It may also involve 

symplectic, or more generally, Poisson constraints.) We briefly summarize the 

procedure for both types of symmetry reductions below. The discrete Hamilton- 

inn reduction procedure is described in greater detail in [HHM];  the continuous, 

Marsden-Weinstein reduction is fairly standard [AM]. 

2.4.1 D i s c r e t e  R e d u c t i o n :  

We consider discrete groups generated by elements c~ either of finite order 

or generating compact orbits, which act on the space M by symplectic diffeo- 

morphisms, and as automorphisms of the loop algebra ~+. Let 

cr : M ~ M (2.27) 

be such a symplectomorphism, and 

(2.28a) 

the corresponding automorphism of ~+, with dual Poisson map 

a s : ~+* , ~+*. (2.28b) 

We assume that the moment map fA intertwines these two actions, so that the 

following diagram commutes 

M ~ , M 

5A 1 1 )  A 

It follows that  )'A may be restricted to the fixed point sets 

c M, c 

(2.29) 

(2.30) 
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and its restriction defines a moment map from the fixed point set Ma to the 

dual space 

~+* := 5~* C 5 +* (2.31a) 

of the subalgebra 

~+ := 5 + C 5 + (2.31b) 

of fixed elements under ag. The results of Theorem 2.1 and Corollary 2.2 may 

then be applied on the reduced spaces, provided the ttamiltonians in the ring 

ZYKS are chosen to be invariant under the symmetry a~. 

2.4 .2  C o n t i n u o u s  H a m i l t o n i a n  R e d u c t i o n  

All the Hamiltonians in the ring 2"AYKS are iuvariant under the Hamiltonian 

group action given by conjugation of .N(A) by A-independent elements in the 

stability subgroup of Y: 

Gy  := Stab(Y) C GI(r), gy := stab(Y) C g[(r). (2.32) 

This action is generated by a moment map Jy, given by the leading term No of 

.No, restricted to ~y 

JY := N01gr, (2.33) 

where 

jA = .A/-0(A) = No + N1A-1 + . . . .  (2.34) 

Since the elements of ZYKs are Gy invariant, Jy is conserved under all the AKS 

flows. Fixing a level set 

JY = t,0 ~ g~, (2.35) 

which we assume to be a regular value of Jy, and restricting to the coadjoint 

orbit O2¢o(;~) C (5+) *, the reduced space is 

Ored := JyI(tzo)/Go, (2.36) 

where Go C Gy denotes the stability subgroup of #0- The reduced Hamiltonians 

Hre d on  Ored are then given by 

Hred o 71" = Hlj~l(t,o), 

where 

H e Z[Ks, (2.37) 

rr : J y ~ ( # o )  ~ J , y ~ ( # o ) / G o  (2.38) 

denotes the projection map. 



20 

2.5  E x a m p l e s  

We now indicate how the loop algebra formulation of examples like those of 

Section 1 is obtained from the general scheme described above. 

2.5.1 N e u m a n n  Osc i l la tor  ( and  s imi lar  examples )  in ~"[(2, R) +* 

Consider the case r = 2, ki = 1,n = N. A discrete antilinear involution 

gives the reality conditions: 

c~ i=~i ,  F = ' f f ,  G = G  (2.39) 

reducing ffl(2, C)* to fir(2, R)*. The stabilizer of A = diag ('~1,.--, 4 , )  consists 
of the diagonal subgroup GA = {cling(d1,..., d , )  C Gl(n)} acting as 

GA:M-----* M 

where Fi and Gi are just 2-component row vectors. The moment map generating 

this action is just 

JA(F, G) = (F1ar~ , . . . ,  F,,ar,) ~ R", (2.41) 

which coincides with the traces of the 2 x 2 residue matrices N i in (2.1'5). Choos- 

ing the zero level set for these, Marsden-Weinstein reduction is equivalent to the 

subgroup reduction g[(2) + D ~"[(2) +. Choosing an appropriate symplectic section 

gives the reduced parametrization: 

1 x 1 F = ~ ( , y ) ,  G = ~ ( y , - x )  (2.42) 

x, y E R '~- 

The reduced symplectic form becomes 

w = dx T A dy. (2.43) 

The reduced moment map is 

xpn zi~,i 
)~ - -  ~--~i=1 A - ~ i  H0(~) = YA(F,a)=  ~ - 4 

E I = I  A--~i 

_ v ' "  J - - \  
Z-~i----1 A-~i  / • 

x " n  zly~ ] 
(2.44) 
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Viewing this as defined on the symplectic vector space ~[~ × •n, there 

is a residual fibration generated by the finite group (Z2) n of reflections in the 

coordinate hyperplanes. The ~](2)- character AY may be expressed as: 

and the resulting AKS flows involve isospectral deformations of elements of the 

form: 

A / ' ( A ) = (  ac 2 a )  +Af°(A)" (2.46) 

The tIamiltonians are chosen, as usual, from the AKS ring zAYgs(~'[(2)*). 

In addition to the symmetry reductions already implemented, it is possible to 

impose further symplectic constraints of the form 

f ( x , y ) = O ,  g ( x , y ) = O ,  {f ,  g} # 0 ,  (2.47) 

and apply the standard methods for constrained systems. (Provided one of 

these functions is in the Poisson commutative ring ZAYKS(~[(2)*), the constrained 

Hamiltonians will still commute.) The particular case of the above with 

1 
a = 0 ,  b =  2' c =  0, (2.48a) 

f : = x T x - - l = 0 ,  9 : = Y T X = 0 ,  (2.48b) 

and ttamiltonian (1.30), gives the Neumann oscillator system. The invariant 

spectral curve is of the form 

det(£(),) - z[) = z ~ + a()~)T'(A) = 0, (2.49) 

where 

:= (2.50) 

and ~o(),) is generally a polynomial of degree n - 1 or n, depending on whether 

a 2 + bc vanishes or not. 

2.5.2 The NLS Equation: Reduct ion to ~u(1,1) + 

Again, we choose r = 2, ki = 1, n = N. Similarly to the previous example, 

the zero moment map reduction under 

GA = S t a b ( A )  = C x × C x × . . .  × C × (2.51) 
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is equivalent the subgroup reduction 9"[(2, C) + D ~'[(2, C) +. Choosing a suitable 
symplectic section gives the parametrization 

~22 1 w F= (z,w), a = ~ ( , - z ) ,  

z, W E C  n. 

(2.52) 

The further reality conditions 

O~i : ~ i ,  Z : S W  

F : a : ( 2 . 5 3 )  

give the discrete reduction ~'[(2, C) +* D ~ ( 1 ,  1) +* as the fixed point set under 
an antilinear involution. On this real subspace, the symplectic form becomes 

ca = i d ~  T Adz, (2.54) 

and the reduced moment map has the form. 

/ '  i v ' "  I:xl ~ " ~2 \ 
/ o ( A ) =  Y A ( F , G ) =  -~ ~ , =~ . ,, ~ . 

' - ~  E j = l  ~ - ~  
- -  j = l  , k - - c  U 

In this case, we choose the character AY to vanish, so.h/'(A) coincides with N0(A). 
The commuting flows are generated by the pair of commuting Hamiltonians: 

H~ = ~ A Z°Ks(~(1 ,  (2.56a) 
0 

H i  = 7 A 2 tr(.N'(A) 2) E 37~Ks(KU(1, 1)+*). (2.56b) 
0 

Further invariant constraints are added to ensure that the leading terms of the 

polynomial matrix (1.45) have the form given in eq. (1.49). Defining £(A) again 
as in eq. (2.50), the resulting invariant spectral curve again has the form 

det(/:(A) - zll) = z 2 + a(A)T'(A) = 0, (2.57a) 

£(A) := ~ A / ' ( A ) ,  (2.575) 

where P(A) now is of degree n - 2. The Lax form (].48a,b) of Hamilton's 

equations then follows from the AKS theorem, and the compatibility condition 

(1.51) gives the NLS equation (1.41). 
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2.5.3 H i g h e r  R a n k  Case .  T w o  C o m p o n e n t  C o u p l e d  N L S  S y s t e m :  

R e d u c t i o n  to  ~ ( 1 , 2 )  + 

As an illustration of a system described by an algebra of higher rank, we 

consider the case of the coupled two component cubically nonlinear SchrSdinger 

equation (viz. [ A H P ] ,  [AHH2] ,  [AHH3]) :  

iu ,  + u ~  = 2u(lul ~ + I~12) (2.5sa) 

i~, + v ~  = 2~(lul ~ + Iv12). (2.58b) 

In this case, we take r = 3 and ki = 1 for all i, so n = N. The process 

of discrete and continuous symmetry reduction is applied analogously to the 

preceding case, giving the sequence g[(3, C) +* D ~'[(3,C) +* D ~ ( 1 , 2 )  +*. The 

reduced form of the resulting pair of n × 3 matrices (F, G) is 

F = (p,r/,~), G = ( p , - r / , - ( ) ,  (2.59) 

where r/, ~ E C n is a pair of complex n-component  column vectors and p E IR n 

is a real column vector with components 

pi = x/Ir/il = + ICil =, i = 1 , . . . n .  (2.60) 

The reduced symplectic form is 

= i(d~ T A dr /+ d~ T A d¢), (2.61) 

so the components (r/i, ~i)i=x,...n and their complex conjugates provide a canon- 

ical coordinate system on OX0. The reduced moment map has the form 

A/o()`) = YA(F,a) 
" 1 ( P~ r/'P' ~'P') 

-- - -~iPi  --Ir/i[ 2 ---~iZi , (2.62) = - i ) ` E ) `  ai 
j = l  - -~ iPi  ---~ir/i --ICI[ 2 

so the coadjoint orbit may be identified with C '~ × C n. Again we choose the 

character )`Y to vanish, so A/()`) coincides with A/0(),). As for the single compo- 

nent NLS equation, the commuting pair of Hamiltonians for the two component 

CNLS case is chosen to be 

] IIx = ~ )` tr(A/()`) 2) E Z ( ~ ( 1 , 2 )  +*) (2.63a) 
0 
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Defining, as before, 

~(~) := ~ H o ( ~ )  = Lo:¢ -~ + L~ "-~ +. . .  + ~._~, (2.64) 

further invariant constraints must also be imposed, implying that the leading 

terms are of the form (cf. [AHP]) :  

i(2 0 0) 
= 0 - 1  0 , L1 = 

Lo ~ 0 0 1 

('u'2+'v[ 2 - ~  - ~ )  
L2=i us -[u[ 2 -vu . 

0 
0 

(2.65) 

The Lax equations generated by the tIamiltonians (2.63a,b) have the same 

form as eqs. (1.48a,b), and the compatibility conditions (1.51) are equivalent to 

the CNLS system (2.58a,b). The invariant spectral curve in this case is a three 

sheeted branched covering of p1 determined by an equation of the form 

det(£()~) - zI) = z 3 + a(A)zT)(A) + a(A)2Q(A) = 0, (2.66) 

where P(A) and Q(A) are polynomials of degrees n - 2 and n - 3, respectively. 

3. S p e c t r a l  D a r b o u x  C o o r d i n a t e s  a n d  L i o u v i l l e -  
A r n o l d  I n t e g r a t i o n  

In this section, the general method of linearization of AKS flows in rational 

coadjoint orbits will be explained. For simplicity, the spectral properties of the 

matrix A will be chosen as in Section 2.2, but  the method is equally valid in 

the more general case (see [AHH3]) .  It consists of two steps. First, a suitable 

generalization of the hyperellipsoidal coordinates encountered in the examples 

of Section 1 is introduced, the spectral Darbouz coordinates (Theorem 3.2) asso- 

ciated to the invariant spectral curve C. These consist of families of canonical 

coordinates on coadjoint orbits O~" 0 of the type discussed in the preceding sec- 

tion, which are naturally associated to the spectral data  of the matrix A/() 0. 

The second step consists of using a Liouville generating function S to compute 

the canonical transformation to coordinates conjugate to the spectral invariants, 

in which the flow becomes linear. It turns out that for all Hamiltonians in the 

AKS ring 2"AYKs this generating function, defined with respect to the natural 

isospectral Lagrangian foliation of OAf0, may be expressed within the spectral 
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Darboux coordinate system in completely separated form (Theorem 3.3). It fol- 

lows from the construction that this transformation is given in terms of abelian 

integrals, showing that, in the general case, the Abel map yields a linearization 

of the flows on the Jacobi variety if(C) of the spectral curve. One thus arrives at 

the algebro-geometric linearization results (viz. [Du], [KN], [AvM]) entirely 

through classical Hamiltonian methods. 

3 .1  P h a s e  S p a c e  a n d  G r o u p  A c t i o n s  

In the following, the phase space will initially be thought of as a coadjoint orbit 

O~0 within the image of a moment map of the type introduced in Section 2. 

,]A : M -.-~ ~+* 

yA : (F, G) ~ A G T ( A  - AI~) -1 F. 

(3.1a) 

(3.1b) 

The image defines a finite dimensional Poisson submanifold 

I m ( J  A) := gA C ~+* (3.2) 

which, in the simplest case, consists of elements of the form 

Ni }, (3.3) ), 
• , A  

i = l  

where the ranks {ki}i=l  ..... of the residue matrices Ni coincide with the multi- 

plicities of the eigenvalues {al} i=l  ..... of the diagonal N × N matrix 

A=dJag(~i,...,~i,...~n). (3.4) 

The coadjoint action of the loop group ~+ on ~A in this case becomes equiv- 

alent to the coadjoint action of (G/(r)) n on (g[(r)*) n, obtained by evaluating the 

group element g(A) E ~+ at the poles )~ = c~i: 

g:  { N i }  ~ { 9 ( o q ) N i g ( o q ) - l } .  (3.5) 

It follows that the Ad~+-orbits are determined as simultaneous level sets of the 

Casimir invariants of the separate residue matrices Ni under this action: 

Ni I trN[ = cit, I = 1 , . . .k i} .  0.~'o = { A )~ - c~ i 
i=1 

(3.6) 
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The equations of motion induced by any element of the AKS ring ¢ E 2"AYrcs 

have the Lax form: 

d2¢'()~) _ [d~(Af)+,A/'] (3.7) 
dt 

where 

¢ = ~lxY+b'a (3.8) 

is the restriction of the Ad*-invariant element • E 2"(~'*) to the subspace con- 

sisting of elements of the form 

~¢(~) = ~Y + N0(A), No e ~a. (3.9) 

Define the 9[(r)-valued polynomial 

£(,k) := a(-~)Af()~) = a( ,~)Y + Lo~ n - '  + . . .  + L , , - 1 ,  
A 

where 

a(~) := l ' I ( ~ -  ~,) 
i=1 

is the minimal polynomial of A. This satisfies the equivalent Lax equation 

(3.10) 

(3.11) 

d~(~) 
dt = [d~(.h/')+, £].  (3.12) 

The invariant spectral curve Co is then determined by the characteristic equation 

det (Z:(A)- z[~) = 0 (3.13) 

which, after suitable compactification, is viewed as an r-fold branched cover of 

p1, possibly having singularities over the points A = ai  due to the r - ki fold 

multiplicity of zero eigenvalues. Other singularities could, of course, also occur, 

but for simplicity we again place ourselves in a "generic" situation in order to be 

able to give the main results in as explicit form as possible, and therefore exclude 

this possibility. The essential results remain valid without such simplifying as- 

sumptions, but explicit formulae for the spectral polynomial, genus, dimensions 

of orbits, and form of the abelian differentials must be modified accordingly. 

We assume henceforth, for simplicity, that the spectral curves Co have no 

singularities other than those that arise over {A = a l } i = l  ...... if ki < r - 1, 

due to the multiple zero eigenvalues of the residue matrices Ni. This implies 

in particular that  the Ni's, while not necessarily diagonalizable, must lie on 

orbits that  have the same dimensions as the diagonalizable orbits whose nonzero 
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eigenvalues are distinct; namely, ki(2r - ki - 1). We also assume that  one of two 

conditions holds, which excludes further singularities over )~ = oo: 

Case (a) Y = 0 and L0 lies on a Gl(r)  orbit of the same dimension ( r ( r  - 1)) 

as those with simple spectrum. 

Case (b) Y 7~ 0 and lies on a Gl(r)  orbit of the same dimension as those with 

simple spectrum. 

Remark.  An effect of this assumption is to eliminate from consideration the 

example 2.5.3, which has singularities over )~ = oc. However, this case may also 

be dealt with (viz. [AHH3]) ,  by imposing a further set of symplectic constraints 

defining a "generic" deformation class of admissible spectral curves. 

In some cases, it is not the orbit ON'0 itself that  is the relevant phase space, 

but its reduction under the Hamiltonian action consisting of conjugation by the 

stability subgroup Gy  = Stab (Y) C Gl(r):  

g :  No(),) ,  > gAf0(A)g -1, g E G y .  (3.14) 

The corresponding moment map is just the leading term in Af0(A): 

J(Af0) := L0 = ~ Ni, (3.15) 
i ~ l  

restricted to the subalgebra 9Y := stab(Y) C 9[(r). Another case of interest, 

particularly when Y = 0, consists of restricting to a symplectic submanifold 

O~o C O~0 determined by the zero level set of the components of L0 within the 

annihilator of a Caftan subalgebra. (This is symplectic at regular elements L0.) 

For future reference, we list the various subcases of interest. 

Case (a) Y = 0. In this case, all the elements 4) E ZI~+* in the AKS ring are 

invariant under the full Gl(r)  action (3.14), and all components of L0 are con- 

served. We may therefore reduce by the full group Gl(r)  or any of its subgroups. 

The two subcases of greatest interest are: 

Case (a.1) Complete  reduction at a regular point L0 = #0 e 9[(r)*. The reduced 

manifold is then 

O~f d = J - l ( / t o ) / G o  , (3.16) 

where Go C Gl(r)  is the stabilizer of/to. The dimension of the reduced orbit is: 

dim O.~0 d = dim O]v'0 - (r - 1)(r + 2). (3.17) 

Case (a.2) Sympleet ie  invariant  manifold. We take the zero level set of all com- 

ponents of L0 in the annihilator of a Cartan subalgebra, (e.g., we choose L0 to 
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be diagonal). Denote this submanifold, which is symplectic at all regular values 

of Lo, as: 

050 := {No e O.w'olLo e 7- (Cartan subalgebra)}. (3.18) 

Its dimension is 

r,~red 2(r 1). (3.19) dim O~o -- dim OHo - r(r - 1) = dim ~'~o + - 

Case (b) Y ¢ 0. In this case, the elements ¢ E ZI'~+.+,xy of the AKS ring are 

only invariant under the action of the stabilizer G y  = Stab(Y) C Gl(r). Two 

cases of special interest arise: 

Case (b.1) The full orbit OAr0 (i.e., no reduction). 

Case (b.2) The reduction of Oxo under the full stabilizer G y  C GI(r) of a 

regular element Y E gl(r), taken at a value L0l~,. = ~0 E 1~-. The group G y  is 

a maximal abelian subgroup with r - 1 dimensional orbits and Go = Gy .  The 

reduced orbit is denoted 

OY, rod JI2)(vo)/aY, .'~o = (3 .20)  

and has dimension 

rqY, red = dim 0~" o - 2(r - 1). dim ~Ar ° (3.21) 

3 .2  S t r u c t u r e  o f  t h e  S p e c t r a l  C u r v e  

The affine part of the spectral curve C0 is determined by the characteristic equa- 

tion (3.13). Taking into account the ranks of the residue matrices {Ni}i=l ..... 

in (3.3), we see that the characteristic polynomial has the general form 

~(A, z) = det (£(k)  - z[r) 

-~. ( - - Z )  r -~- z r - - l p l ( ) ~  ) + ~ Aj(A)T)j(A)z r - j ,  (3.22) 
j=2 

where n 
Ai( ) := - rank L ( . , )  : k,.  (3 .23)  

i----1 

This shows that near A ~ oo, we have 

n 

L n - 1  
if Y = 0 (case (a)) (3.24) 
if Y # 0 (case (b)). 
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This suggests a compactification, not within F '2, but rather in the total space of 

a line bundle over p1 = U0 U Uoo (where U0, Uoo denote the open disks obtained 

by deleting )~ = oo and ,k = 0, respectively), with coordinate pairs (,k, z) over U0 

and (~, ~ over Uoo related by 

z (over U0 n U~).  (3.25) z ) ,  , = = y z )  

This is just  the total space 7" of the bundle O ( m )  ~ F '1 whose sheaf of sec- 

tions consists of homogeneous functions of degree m. The transformation (3.25) 

extends the affine curve Co defined by (3.13) over ~ = oo, defining the compact- 

ification: 

Co ~ C ,--* T.  (3.26) 

The possible spectral curves so arising are branched r-sheeted covers of 

~1, which within any given orbit of type (3.3), have z-values over each )~ = ai  

that are fixed (being Casimir invariants of the coadjoint action (3.5)). Of these, 

there are ki nonsingular points (.k = a l ,  z = (ia)a=l,...k~ corresponding to the 

nonzero eigenvalues of £ (a l ) ,  and the point (~ = ai,  z = 0), which generically 

is an r - kl-fold ordinary singular point corresponding to the r - kl-fold zero 

eigenvalue. Figure 3.1 gives a visualization of the spectral curves C, embedded 

in T,  as branched coverings of pa, constrained to pass through these points. 

Zia ~._~...~,,~.~.._..~..X....,.,~|..~I.~. "" ~ ~ " ~ ' ~  "-~" 

~ ~  I I  

v 

F i g u r e  3.1 

The detailed structure may be expressed more precisely by writing the 

form of the characteristic polynomial P(A, z) for any spectral curve C in a neigh- 

borhood of a given curve Cn as a perturbation of the characteristic polynomial 

PR(.k,  z)  defining CR. 
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P r o p o s i t i o n  3.1 ( [AHH3]) .  In a neighborhood of the point AfR E OXo with 

characteristic polynomial PR(A, z ), the characteristic polynomial has the form: 

where 

P(~ ,  ~) ---- PR(~, z) + a(~) ~ . i(~)pj(~)z r-~, 
j=2 

(3.27) 

n 

. , ( ~ )  = 1-i( ~ _ .~)m.x(0,i-k,-,) (3.28) 
i----1 

~j 

p/(A) =: E PJa)~a' (3.29) 
a--0  

and {p j( A ) } j=2,...r are polynomials of degree: 

5j =_ deg pj(A) = { dj - j i f  Y = 0  (3.30a) 
dj i f  Y ¢ 0 

dj = ~ min(j  -- 1, ki) .  ( 3 . 3 0 b )  

i=1 

The number of independent spectral parameters {Pin}, (a = 0 , . . .  6j + n - m - 

1, j = 2 , . . . r )  is thus: 

d = ~ +  r -  1, (3.31) 

where 

1 1 ) ( m r - - 2 ) -  1 n = -~(r -- -~ ~ ( r  - ki)(r - ki - 1) (3.32) 
i=1 

is the genus of the (partially) desingularized spectral curve C obtained by sepa- 

rating branches at {c~i, 0}. In a neighborhood of any generic point on OAro, these 

spectral invariants are all independent. 

The complete integrability of the systems under consideration on the var- 

ious coadjoint orbits O.V0, and the reductions O~0 d, O ~  ed and symp]ectic sub- 

manifolds O~0 thereof, may be seen from the following Table of generic dimen- 

sions for the various cases discussed above. (Note that  the Pin's referred to do 

not include the leading terms of the polynomials pj(A) in eq. (3.29).) Recall that 

the value of the genus ~ of the desingularized curve C given in Proposition 3.1 

depends on the value m, which is different in the cases (a) and (b): 

n -  1 for case (a) (3.33) g = y(m), m -- 
n for case (b). 
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Case 

(a) 
(a.1) 
(a2) 
(b.1) 
(b.2) 

Tab le  o f  D i m e n s i o n s  

Dimension J/: Pin's • Pi's 

dimO~o = 2 ~ + ( r - 1 ) ( r + 2 )  ~" r -  1 
dim rored = 2g g 0 v,  a r  o 

dim 050 = 2 ( ~ ' + r - 1 )  ff r -  1 
d imO~o = 2 ( ~ + r - 1 )  ~ r -  1 

o r,red = 2~ "~ o dim 2v'0 

Here, the notation {Pi}i=2 ..... is used to denote the components of L0 

evaluated on a basis of the relevent Cartan subalgebra (not including the trivial 

central element, which is a Casimir invariant, and hence constant on orbits). 

These are also elements of the ring ZYKs, corresponding to the leading terms in 

the polynomials p j(),) in eq. (3.29) for case ( a ) ,  and the next to leading terms for 

case (b) (the leading terms being constant in the lat ter  case), but they are listed 

separately since, in cases (a.1) and (b.2), they are fixed through the Marsden- 

Weinstein reduction procedure, and hence do not contribute to the number of 

independent invariants on the reduced spaces. Moreover, these elements enter 

again in Section 3.4 when defining the spectral Darbouz coordinates for these two 

cases. It follows from the dimensions in the Table and the independence of the 

commuting invariants that  cases (a.1), (a.2), (b.1) and (b.2) all give completely 

integrable systems. 

3.3 Spec t ra l  Lagrangian  Foliation 

The Lagrangian foliation given by fixing simultaneous level sets of the invariants 

in the ring ZAYKS of spectral invariants (i.e., fixing the spectral curve C) is depicted 

below in Figure 3.2 for the various cases discussed above. 

o7,,o or O -o o r  oy¢: o") 
Liouville-Arnold 

Tori T > 
(isospectral leaves) 

dim T = 
+ r - 1  ( o r 9 " )  

Admissable curves C C T 

d i m C = f f + r - 1  (o r~ )  

F i g u r e  3.2 

We may summarize the relevant spectral data  associated to each element 

N E AY + 5.4 as follows: 
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* A spectral curve C (r-fold branched cover of ]p1) defined by the characteristic 

equation: 

P(A, z) = det(£(A) - z[r) = 0, (3.34) 

(after suitable compactification and desingularization). The r -  1 points over A = 

oo are determined by the leading terms of the polynomials p/(A) of Proposition 

3.1. 

• An eigenvector subspace: [V(A,z)] C C r at each point in C which, by our 

genericity assumptions, is one dimensional. 

Together, these determine an eigenvector line bundle E ---* C, and its cor- 

responding dual bundle E ~ C. The la t ter  may be shown (viz. [ A H H 2 ] ,  

[ A H H 3 ] )  to be generally of degree 

deg (E) = ~ + r - 1, (3.35) 

and hence, by the Riemann-Roch theorem, to have an r -dimensional  space of 

sections. Conversely, it turns out that  this da ta  is sufficient to reconstruct the 

ma t r ix / : (A)  (and hence A/'(A)) up to conjugation by an element of Gl(r) ;  that  
oY, red is, it is sufficient to determine the projected point in the reduced orbit  ~'0 or 

O ~  d, but not the element .N'()Q itself. 

In order to reconstruct the element Af(A), it is necessary to add some 

further spectral data, consisting of a framing at A = oo; tha t  is, a basis of 

sections {al E H°(C,E)}i=I ..... of the bundle E --* C, chosen to vanish, e.g. 

at all but one of the r points {ooi}i= 1 ..... over A = oo (for the case where the 

Car tan subalgebra in question consists of the diagonal matrices).  

ai(ooj) = O, i ¢ j .  (3.36) 

This adds r - 1 dimensions to the fibres, (since framings related by {'ai = hal} 

are equivalent). Furthermore, the spectrum over A = cxz in the class of admissible 

spectral curves must be left undetermined, adding r - 1 dimensions to the base 

space in Figure 3.2. 

More generally, it is insufficient to just consider line bundles, since this ex- 

cludes the possibifity of degeneracy in the spectrum and fur ther  singular points. 

The appropriate  generalization consists of a coherent sheaf defined by the exact 

sequence 

0 ~ O ( - m )  er c r ( ~ ) - ~  O e"  , E , 0, (3.37) 

where O ( - m )  denotes the sheaf obtained by pulling back the corresponding 

sheaf over IP 1 to 7-. In the case of bundles, the exact sequence (3.37) just means 
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that  the dual space to the space of eigenvectors over the spectral curve is given 

by the cokernel of the linear map defined by £T(A) -- z[~. A more complete 

discussion of the significance of this construction may be found in [ A H H 2 ] ,  

[ A H H 3 ] .  

3 . 4  S p e c t r a l  D a r b o u x  C o o r d i n a t e s  

In this section we give a method for constructing the appropriate  Darboux coor- 

dinates naturally associated to the spectral data  discussed above, in which the 

Hamiltonians in the spectral ring :YAYKS determine a Liouville generating func- 

tion in completely separated form. First, we shall give a purely computat ional  

description of these coordinates in terms of simultaneous solutions of polynomial 

equations. The significance of this prescription in terms of the eigenvector line 

bundles of the preceding section will follow. 

Let 
Af(£) ( [ r ,  (3.38) 

and denote by /~I(A,¢') the transpose of the matr ix  of cofactors. Then, over 

the spectral curve defined by the characteristic equation (3.34), the columns of 

M(A, ¢') are the eigenvectors of Z:(A) (or Af(A)), and hence, generically, these are 

all proportional;  i.e. M(A,~)  has rank 1. Let V0 E C r be a fixed vector, and 

denote the solutions to the system of polynomial equations 

M(,k, ~)V0 = 0, V0 e C ~ (3.39) 

as { ~ , ~ , } ~ = 1  ..... Note that ,  due to the rank condition, there really are only two 

independent equations here, the other r - 2 following as linear consequences. 

The significance of these equations in relation to the spectral data  is quite 

simple; they are the conditions that  a section of the dual eigenvector line bundle 

E ~ C should vanish. The solutions give the zeros of the components of the 

eigenvector determined by the vector V0. As is well known in algebraic geometry, 

giving the divisor of zeros of any section of a line bundle amounts  to giving the 

linear equivalence class of the bundle itself. It follows, since the bundle E --* C 

is of degree ~ +  r - 1, that  there will in general be ~ '+ r - 1 zeros. However this 

is not necessarily the number  of solutions to (3.39), since some of the zeros may 

be over A = co. In fact, we may distinguish two cases of particular interest as 

follows. In order to characterize the spectrum over ,k = co, define 

£(),)  := £ (~) /A m. (3.40) 
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Case (i). V0 is an eigenvector of ~7(co). In this case, r - 1 of the zeros are 

over A = oo (the only point omitted over oo being the one corresponding to the 

eigenvalue of V0.) Hence, there are only ~" finite solutions pairs {At,,(t,}t,=l,...y, 
and these are generically independent, when viewed as functions on the phase 

space O~0 (case (a)) or Ox0 (case (b)). Moreover, they are invariant under 
the action of the reduction group for both cases, since this leaves the space 

[V0] invariant, and hence they project to functions on the reduced space O ~  d 

(case (a)) or O ~  ~d (case (b)). In view of the dimensions given in the Table of 

Dimensions, Section 3.2, the projected functions provide coordinate systems on 

the reduced spaces. On the prereduced spaces, we must supplement these with 
a further r - 1 pairs of coordinate functions, which we define as follows. Choose 

a basis where Lo (case (a)) or Y (case (b)) is  diagonal, and Vo = ( 1 , 0 . . . , 0 )  T. 

Then let 

ln(/1)i l  + } • ;=2 , j# i ln (p i -  pj) for case (a) 

qi := ln(L0)il for c a s e  (b) (3.41a) 

Pi := (io)ii,  i =  2 , . . . r .  (3.41b) 

The pairs {qi, Pi}i=2,...r provide the remaining coordinates required. 

Case (ii). Vo is not an eigenvector o f&oo)  and, furthermore, V0 ¢ Im (E.(oo)- 
~'i[) for any eigenvalue ~'i(oo) of ~(oo). In this case, none of the zeros are 

over A = co, and there are generically ~ + r - 1 independent solution pairs 

{Au,(u}u=l,..4+r-1 of eq. 0.39). These then provide a coordinate system on 

the prereduced space 050 (case (a)) or O~0 (case (b)). 

We then have the following fundamental result. 

T h e o r e m  3.2. 1. IfVo ~ Im (~(oo) - "zi][) for any eigenval'ue "Si(oo ) of ~.(oo), 
tile functions {At,, (t,}a,...y+~-x define a Darboux coordinate system on (9~f ° (case 

(a) or OAz o (case (b)). The orbital symplectic form is therefore: 

~'+r--1 

= ^ d e , .  (3.4231 
/*=1 

2. IfVo is an eigenvector of Lo (case (a) or Y (case (b)), the functions {At, , (~,},,...y 
project to Darboux coordinates on the reduced spaces r,~red (case (a)) or O r'red '.-9% ~o 
(case (b)), so the reduced orbital symplectic form is: 

~'r~d = E dAu A d~'t`. 
i~=1 

(3.42b) 
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3. I f  Vo is an eigenvector of Lo (case (~)) or Y (case (b)), the functions 

{A~,, ~t*,qi, Pi}~=L...'~j=2,...r define a Darboux coordinate system on O~0 (case 
(a) or OW0 (ease (b)), so the orbital sympleetic form is: 

 o,b : dA. ^ de, + dq, ^ dP,. 
/~----1 i----2 

(3.42c) 

In the following section, we consider a number of elementary examples of 

the above theorem. We shall see that  the resulting spectral Darbouz coordinates 

do, indeed, generalize the hyperellipsoidal coordinates that were encountered in 

the examples of Section 1. 

3 .5  E x a m p l e s  

We begin by considering the simplest possible case; namely, where Af0(A) has 

only one pole, at A = ~1, and r = 2 or 3. This just corresponds to coadjoint 

orbits of the finite dimensional Lie algebras s[(2) and 5[(3). Then we consider the 

case ~-[(2, R)  + for arbitrary n, with rank(Ni) = kl = 1 for all i = 1 , . . .  n. This 

reproduces the hyperellipsoidal coordinates for the finite dimensional examples 

of Secs. 1.1 and 2.5.1 (cf. [Mo], such as the Neumann oscillator. Finally, we 

consider the case ~u(1, 1) +, which provides the appropriate complex coordinates 

for the nonlinear SchrSdinger equation, as discussed in Secs. 1.5 and 2.5.2. 

(a) Single poles: n = 1 
(a.1) Take 9 = s[(2, R),  and (without loss of generality), a l  = 0. Then the 

dimension of a generic orbit is dim OAr o = 2. We parametrize N0(A) as follows: 

(o :) AN1 - N1 := (3.43) 
H 0 ( A )  - A - ~ 1  u ' 

and choose 

1 01 _)  0:(10) 
The characteristic equation is then 

(3.44) 

det ( £ ( A ) - Z [ r ) =  z 2 - A  2 - a  2 - u r = 0 .  ( 3 . 4 5 )  

In this case, V0 is an eigenvector of Y and the genus of the spectral curve is ~" = 0, 

so there are no {AU,~u}'s. The single pair of spectral Darboux coordinates is 

thus 

q2 = In u, P2 = a. (3.46) 



36 

It is easily verified that, relative to the Lie Poisson structure, they satisfy 

{q2, P2} = 1. (3.47) 

(a.2) We consider the same orbit as in (a.1), but choose 

In this case, V0 is not an eigenvector of Y. The genus is still ~ = 0, but the 

equation (3.39) now has a finite solution, giving the Darboux coordinate pair 

a 
)~1 = - u ,  {1 = - - .  (3.49) 

U 

These are verified to also satisfy 

{~1, ~1 } = o. (3.5o) 

(a.3) Take 9 = s[(3,R),  and again, c~1 = 0. Then the dimension of a generic 

orbit with n = 1 is dim O~o = 6. We parametrize Af0(1) as: 

-avU-- b r s )  Af0(A) = N1 : :  a e , (3.51) 
f b 

and choose 

Y =  1 0 , Vo=  • (3.52) 
0 - 1  

Again, V0 is an eigenvector of Y, but the spectral curve has genus ~ = 1, and is 

realized as a 3-fold branched cover of p1. We therefore find one Darboux coordi- 

nate pair ()h, ~1), corresponding to a finite zero of the eigenvector components, 

plus two further pairs, (q~, P2, q3, P3), corresponding to zeros over A = oo: 

1 (  ev _ ~ )  
AI = '~  b - a - - - + u  ' 

q 2 = l n  u, q a = l n v ,  

u v a + u v b - e v  2 - f u  2 
~1 = 

- u v a  + uvb - ev 2 + .fu 2 

P2 = a, P3 = b. (3.53) 

Again, it is easily verified directly that  these form a DarbotLx system, with 

nonvanishing Lie Poisson brackets 

{A1,~'1} = 1, {q2,P2} = 1, {q3,P3} = 1. (3.54) 
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(b)  Now consider the case 5 + = M ( 2 , R )  +, with a rb i t r a ry  n, bu t  ranks  kl = 1 

for all i, and hence de t (Ni )  = 0 for all the residue matr ices  Ni. For generM Y, 

.M(A) then  has the fo rm 

N ( A )  = X a + z.-,i=l .x-s,, -z - , i= ,  x - s ,  , (3.55) 
C -2 n z i ,~--',n ~:iyl 

E i = I  A-a l  /--~i=1 A-~i 

where {xi, Yi}i=1,...n form a Darboux system on the reduced Moser space, which 

is identified with R2n/(z2) N. In this case, the characteristic equation defining 

the invariant spectra] curve C is 

det(£(A) - z~2) = z 2 + a(A)P(A) = 0, (3.56) 

where 
P ( A )  = - ( a  2 + bc )A  n + P n _ l ) ~  n - 1  + . . . .  (3.57)  

In par t icu lar ,  this gives eq. (1.34) for the  case a = c = 0, b = - ½ .  Thus ,  C is 

hyperel l ipt ic ,  a 2 -shee ted  b ranched  cover of p l ,  with 2n - 1 or 2n finite b ranch  

points ,  depending on whe ther  or not a 2 + bc vanishes.  T h e  genus is therefore  

generically ~ = n - 1. The  dimension of the coadjoint  orbi t  is d im OAf0 = 2n. 

The  ma t r ix  .Ad(X, ~') is 

1 - h~_ ' v ' "  y,'= \ 
M-- = - a  + 5 ~-,i=l ~,x-o,~?- ~ - ~  - "5 z.-,i=l x - ~  } . (3.58) 

n , a - -  1 X ' n  ~;Y! - -  £ ]  
- -C--  1 E I = I  X-oi  2 A-~i=I X-~i  "~/  

Taking  

V o =  ( 1 0 ) ,  (3.59) 

if c # 0, V0 is not an eigenvector  of Y, so the full set of n spec t ra l  D a r b o u x  

coordinate  pairs {)~u, fft`}t`=l ..... are given by: 

x i 
i=, ~ + 2c = O, (3.60a) 

1 ~ xlyi  
{t` = - a  + 7 i=x A-u - -~ i '  (3.60b) 

I~= l , . . . n .  

These  are therefore hyperel l ipt ic  coodinate~ {At, } and their  conjugate  m o m e n t a  

{C,'t`}. In the case c = 0, $I0 is an eigenvector  of Y, and eqs. (3.60a,b) are replaced 

by 
2 

1 z i  - O, 

i=1 ,X, - ai  

1 ~ ziYi  

~, - a  + -~ i=1 ,X, - o~i 

tz = 1 , . . . n  - 1, 

(3.61a) 

(3.61b) 
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yielding only n -  1 pairs of Darboux coordinates {A#, ( ,u}#=l  . . . . . .  1, since one of 

the zeros of the eigenvector components lies over A = ~ .  We must therefore 

complete the system by defining the additional pair 

1 n 1 n 
q := In (5 ~ ~)'  P := ~ ~ x,y,. (3.62) 

i=1 i=1 

It is easily verified directly that 

w = -dO,  (3.63) 

where 

0 := ~ yidxi = ~ , = 1  ~t'd)~t , if c ¢ 0 
n--1 (3 .64)  

i=1 ~-~=1 ~,d)~t, + Pdq if c = 0. 

(c) N L S  Equation: ~ ( 1 ,  1) + 

Taking the orbit O•o in ~ ( 1 ,  1) +* as parametrized in eqs. (2.54), (2.55), with 

Y = 0, the symplectic submanifold O ~  ° C OXo is defined by the constraint 

d = o. (3.65) 
i=1 

The spectral Darboux coordinates {q, P, A~,, ¢'~,}~=1,..,n-1 are then given by eqs. 

(1.52a-c). It is easily verified in this case that the orbital symplectic form re- 

stricted to 050 is 

Worb = -dO, (3.66) 

where 
n n - - 2  

elO~o = - i  ~ ~Azjjo~ ° = ~ ¢ . ~  + P~q, (3.67) 
j = l  t~=l 

so {q, P, ),~,, ~,}~,=1 . . . . . .  2 do, indeed, define a Darboux coordinate system. 

A similar construction holds for the case of the sine-Gordon equation (Sec- 

tion 1.3), where the relevant algebra is the twisted loop algebra ~ ( 2 )  +, obtained 

by a suitable combination of discrete and continuous reductions. The orbits are 

parametrized by eqs. (1.60), (1.61a,b), and the relevant spectral Darboux coor- 

dinates determined by eqs. (1.84a,b). Details may be found in [HW].  

In the last section we explain how, in the general case, these spectral 

Darboux coordinates lead directly to a linearization of the ANS flows through 

the Liouville-Arnold integration procedure. In each case the relevant lJnearizing 

map turns out to be the Abel map to the Jacobi variety of the spectral curve. 
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3 .6  L i o u v i l l e - A r n o l d  I n t e g r a t i o n  

Using the spectral Darboux coordianates, we may define the local equivalent of 

the "canonical" 1-form 

where 

' ± 
0 := Z (~'dXu + Pidq, (3.68a) 

#=1 i=2 

i " 
= + P, dq,, (3.6Sb) 

,,=1 a, . . , . ,  i=2 

% := a(X~,)(, .  (3.69) 

(Note that for the examples given above, this actually is the canonical 1-form 
on R2n/(Z2)n , or c2n/(z2) n, viewed as the cotangent bundle of Rn/(Z2) n and 

Cn/(Z2) n, respectively.) On the Liouville-Arnold torus T,  defined by taking the 

simultaneous level sets 

Pi~ = Ci~, Pi = Ci (3.70) 

of the spectral invariants, we have 

olT = d S ( ~ l ,  . . .  ~ ,  q 2 , . . ,  qr, P~,, P~), (3.71) 

where S(A1, . . . ,  Ay, q2, .- . ,  qr, Pia, Pi) is the Liouville generating function to the 

canonical coordinates conjugate to the invariants (Pin, Pi). Eq. (3.71) can be in- 

tegrated by viewing z = z(A, Pin, Pi) as a meromorphic function on the Riemann 

surface of the spectral curve C. 

S(Xu, qi, Pi~, Pi) = dk + ~ qiPi, 
,=1  o a ( ~ )  i=2 

(3.72) 

where zv = zl,(A~,,Pia,Pi ) is essentially determined implicitly by the spectral 

equation 

P(X, ,  zu(X,, Pia, Pl)) = 0. (3.73) 

The linearizing coordinates for AKS flows are then given, as usual, by differen- 

tiation of S with respect to the invariants: 

Q~° - - o p - - ~ x  = + Q,a,O (3 .74a l  
t~=l o 

OS _ g ' r ~ f  X~' 1 OZ Oh 
Oi - OPi ~-" ]x a(A) OPi dA + qi = - ~ i t  + Qi,o, 

#=1 °u (3.74b) 
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where, from the explicit structure (3.27) of the characteristic polynomial given 
in Proposition 3.1, we obtain, by implicit differentiation, that the integrands of 
eqs. (3.74a,b) are of the form 

1 Oz d A -  ai(~)zr--i'~a 
win := a(1) OPia "Pz(l,z) dA 

1 Oz ,k 

- p (A, z )  

(3.75a) 

(3.75b) 

where 

Rij := { 

( P 1  - Pi) E2<i1<i2...<i1_2•i Pit... Pii_~ 
and e = 0 for case (a) 

(Vx - YI) E2<i,<i,...<ij_~¢i Yi ," ' -  Yij_= 

and e = 1 for case (b) . 

(3.76) 

The point to note is that the differentials {wla}, {wi} appearing in eqs. (3.75a,b) 

are, respectively, abelian differentials of the first and third kinds on the Riemann 
surface defined by C, the latter having their poles at the points ( ~ 1 , . . .  ,c~r) 
over A = c~. 

T h e o r e m  3.3 [AHH3] .  The ~ differentials {wia}i=l,...~ in eq. 0.75a) form a 

basis for the space H°(S,  I(g) of abelian differentials of the first kind (where I (g  
denotes the canonical bundle). The linear flow equation (3.74a) may therefore 

be expressed as: 

A(D) = B + Ut,  (3.77) 

where A : SgC ~ Ch'/F is the Abel map, and B , U  E C y are obtained by 

applying the inverse of the ~ × ~ normalizing matrix M,  with elements 

Mt,,(ia ) := ~( Win, (3.78) 

to the vectors C, H 6 C ~ with components Cia and oh respectively (the pair --O--P-~, 
(ia) viewed as a single coordinate label in Ci).  The r -  1 differentials {wi}i=2,...r 

in eq. (3.75b) are abelian differentials of the third kind with simple poles at ooi 

and ool, and residues +1 and -1 ,  respectively. 

Comparing this general formula with the specific cases (1.23), (1.55), (1.56), 

(1.88a,b), for the examples of Section 1, we see that this provides the generafiza- 

tion that was required, expressing all linearized AKS flows on rational coadjoint 
orbits of ~](r)+,  and its reductions through the Abel map. 
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It is possible, moreover, to invert the map expressing these flows, by ex- 

pressing any symmetric function of the coordinates {A~,, (u}t,=l,...~ in terms of 

the Riemann theta function associated to the curve C. For example, in view of 

eq. (3.74b), the coordinates {qi}i=2,...r themselves are expressed as such symmet- 

ric functions through abelian integrals of the third kind. Applying the reciprocity 

theorem relating the two kinds of abelian integrals (viz. [A H H 3 ] ) ,  we obtain: 

C o r o l l a r y  3.4 [At IH3] .  For a suitable choice of constants {ei, fi}i=2,...r, the 
coordinate functions {qi(t)} satisfying eq.(3.74b) are given by: 

[0(B + tU- A(ooi)- K)] 
qi(t) = In L0(B + t-U - ~ - - - K ) )  + e i t  + f i ,  (3.79) 

where K E C y is the Riemann constant. 

This generalizes the theta function formula (1.57) giving the solution of the 

NLS equation. Similar formulae exist e.g., for the sine-Gordon equation ( [H W ])  

and many other systems that  can be cast in terms of commuting AKS flows in 

rational coadjoint orbits of loop algebras. Aside from technical complications 

resulting, e.g., from the reduction procedure or the imposition of further sym- 

plectic constraints, or from the presence of further singularities in the spectral 

curve, the procedure is largely algorithmic. It provides a very general setting 

for the explicit application of the Liouville-Arnold integration procedure to a 

wide class of known - and yet to be discovered - integrable Hamiltonian systems. 

Moreover, the moment map embedding method makes it possible to treat  both 

the intrinsically finite dimensional systems, and those systems corresponding to 

finite dimensional sectors of integrable systems of PDE's  (solitons, finite band 

solutions, etc.) on exactly the same footing. 
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Geometry  of the modified KdV equation 

E m m a  P r e v i a t o  

Mathematics Department, Boston University, Boston, MA 02215 

In t roduc t ion .  This is a write-up of my three Scheveningen lectures, which were 
intended as an educational overview of various aspects of the mKdV (modified 
Korteweg-de Vries) equation, vtTz6v2vx + v ~  = 0. The equation admits of the 
several integrability techniques which were progressively made famous by the 
KdV theory (see diagram below). However, I don't know of a place where all 
the recipes are spelled out for mKdV. Thus, there seemed to be two purposes 
to the exercise of writing these lectures: one was the precise identification of the 
appropriate geometric objects for solution; the other was spotlighting several 
concrete open problems in the KdV theory for which the mKdV construction 
gives a vantage point. The picture to keep in mind is that mKdV solutions fiber 
over KdV solutions the way a flag manifold fibres over a Grassmannian. This 
was pointed out in [DS], cf. [W2], but it was pursued in the language of Lie 
algebras rather than at the level of maps between curves, hamiltonian systems, 
and explicit families of special solutions. We precede the account of the lectures 
by a diagram which provides a Leitfaden and an abstract, and follow it by a list 
of open problems and suggested links, pertaining to the individual lectures. 
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Le i t faden  

P D E  --. M i u r a  
T r a n s f o r m a t i o n  ~ ~ Dr infe l 'd -Sokolov  

I n v e r s e  S c a t t e r i n g  
Z a k h a r o v - S h a b a t  
L a x  

Segal -Wilson 
G r a s s m a n n l a n  

S c a t t e r i n g  D a t a  as  
Canonica l  Variables  

F in i t e -Dimens iona l  Algebra ic  G e o m e t r y  
--* H a m i l t o n i a n  Sys t em --* Squa red  Eigenfunc-  

t ions,  Baker  Func t ion  

L e c t u r e  1. 

1.1 Set up for contrast: 

KdV KP 

mKdV 
NLS 
sine-Gordon 

DS 

1.2 AKNS formalism: Lax pairs and Lenard Hamiltonian structures. 
1.3 Scattering data: Deift-Lund-Trubowitz Hamiltonian structures. 
1.4 The finite-dimensional model: curve theory. 
1.5 Coadjoint orbit interpretation and reductions for rank 2 perturbations. 

L e c t u r e  2. 

2.1 The Segal-Wilson Grassmannian. 
2.2 Adaptation to the multicomponent case. 
2.3 The Drinfel'd-Sokolov theory. 
2.4 Finite-dimensional Grassmannian. 

L e c t u r e  3. 

3.1 Darboux transformations. 
3.2 The Krichever-Novikov equations. 
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1. W h y  m K d V  

1.1 A n e c d o t e s .  It 's official! We no longer need to excuse our interest in 
KdV. I was able to bring to the school the 1992 poster created by the Joint Policy 
Board for Mathematics. It depicts an ocean wave towering over a ship and the 
caption says, among other things: "The solitary wave [was] found by Korteweg 

and de Vries in 1895 to be governed by the equation T? + ~-; + u~-;~ + ° u  0~ 0~ 0x ---'s°~ = 
0. Until recently, solution of this equation strained the resources of the most 
powerful computers, but  mathematical  advances have now made the solution of 
this equation routine. (...) Not only has the mathematical  theory of water waves 
helped to understand and protect our environment, but its insights have also had 
significant impact on technological development. Although the solitary wave is 
now well understood, other water waves still have mysterious effects on our 
environment and remain objects of active mathematical  research." As you can 
tell, the goal of this material is to sensitize the general public to the importance of 
mathematics;  it was issued on the occasion of "Mathematics Awareness Week," 
an annual event established by a presidential proclamation in 1986. I thought it 
was pretty good of the KdV equation to make it to the poster! Less frivolously 
perhaps, KdV is the prototype of its genre, according to the Mathematics Subject 
Classification (1992 Revision) 35Q53: KdV-like equations. So, how to excuse my 
interest in mKdV? Until recently all I knew was the chance discovery reported 
in [AS, p. 6]: R. Miura decided to seek conserved quantities for an equation with 
one higher degree of nonlinearity than KdV: 

vt - 6v2v~ + v~x~ = 0 (mKdV) 

ut + 6uu~ + u ~  = 0 (KdV) 

and discovered what is known as the "Miura transformation": 

u = - v  2 - v~ (MT) 

which takes a solution of mKdV to one of KdV: indeed, ut + 6uu~ + uxx~: = 

- ( 2 v  + O~)(v, - 6v2v~ + v~,~) .  

Moreover, the standard substitution v = ~ for the Riccati equation - v  2 - 

v~ - u = 0 = (a~ + u)¢  suggested that  the conserved quantities be related to 
the spectrum of the operator L = a~ + u (we write 0~, or 0 for d) and gave 
rise to the Lax-pair representation, linearization and complete integrability of 
the problem! (see §2). In 1991 however, P. Nelson alerted me to recent work by 
R.E. Goldstein and D.M. Petrich [GP1,2] where mKdV appears naturally and 
KdV is derived from it. I report their theory below not only because it is so 
satisfying but  also because it gives a geometric interpretation for the role of the 
Schwarzian derivative. 

1.2 C u r v a t u r e  d y n a m i c s .  It is shown in [GP1] that  the physically im- 
portant  description of a plane region which moves in time with conserved area 
and perimeter can be given by imposing that  the curvature satisfy the mKdV 
equation (up to rescaling): we reproduce this striking derivation. We study a 
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family of closed plane curves Ct, whose points are 2-vectors r ( t )  depending on 
a (time) parameter  t. The curve dynamics will be given by _r t = U N  + WT, 
where: U, W are functions of 1; __T,N are the unit tangent and normal vector to 
the curve Ct at each point; and W is assumed to be periodic on each curve. On 
each curve the parametrization by arc length s obtains the Frdnet-Serret equa- 
tions T = _r,, - ~ N  = T , ,  ~T = N,  (~ is the curvature); we make the further 
assumption that  the motion be purely local, that  is U, W be functions of ~¢ and 
its s-derivatives. Global geometric quantities are the length of the curve Ct and 
the enclosed area: L(t)  = ~(r_~ . r~)l/~dcr, A( t )  = ½ :~ r_ x r~d~r, where ~r is any 
given parametrization of Ct; we regard tr, t as independent variables, thus we get 
variational equations: 

j j Lt = (re,. r_,,)-ll2(rtc, • ra)dtr = (U + tcW)ds (by substitution: da - ~sdS,  

ds etc.); At J × rtodo" / × radcr (by parts) = J Uds. r_ a = ~-~ar s , = r _ = r_ t _ 

If we now impose the stronger condition that arc length be preserved locally, 
the first equation says U + ~W - 0 and this is (not surprisingly) equivalent 
to requiring that  s and t be independent variables, indeed: [(9,,(gt]r = (t~U + 
W,)r , .  Under this assumption, the curvature evolution is found as: ~ = (T,  • 
T_.s)l/2 ~ t¢ t = - - 1 2 U  where 12 = (9,, + n 2 + n, (9- t ~, where a choice of integration 
is unique up to an arbitrary function of time c(t): W = - f "  d d n U  + c = 
- (9-1~U.  The next major  remark is that  area-invariance is satisfied for U = 
O, f  for which tcU(= - W , )  = (9,g; the simplest example is U 0) = 0, W 0 )  = 
c (arbitrary constant), which means that  Ct is simply a reparametrization of 
Co. The next U (2) = ns W(2) = ~2 3 2 , - ' V  gives mKdV tot = -to**, - ~n ~,, as 

advertised. Moreover, the recursion: U ('~) = 12U (n- l )  = 12(,-2)n, (n > 2), 
W(") = - 0 - 1 n U  (n) gives the mKdV hierarchy, nt = -12U(n). Now for the last 
feature, which we call the Schwarzian Derivative (SD): I would like to try and 
explain it in three separate ways: 

(A) We know that  the (rescaled) MT, u = - l t¢2  - in, achieves the KdV 
equation; in fact, the MT of the entire hierarchy nt = -12U( ' )  goes to the 
(independently defined) KdV hierarchy ut + (9, K (n) = ((9, -i~)(t~t + 12g(n)) = O. 
[GP1] gives the curve-dynamics interpretation: if we identify the R2-plane with 
the C-plane through z ( s , t )  = z ( s , t ) +  iy(s , t )  and change variables through 
z(s,t) = f"  ds'e i°(, ,st) so that  0 = - i log(zs )  and n = - i  z-'-t = -i(9, logzs (notice 

Z 

that  Zs and - izs  are the unit tangent and normal, resp. 1 then u = - S D ( z )  = 

- [ ( z ,  )z--~ - ½ \ z ,  / j(z-~'~2]. Thus, the area-preserving dynamics for z ( s , t )  becomes 

KdV for the SD, which is the basic invariant under (conformal) MSbius maps 
a z + b  

Z t-.-+ c z + d "  

(B) The equation n = - i 0 ,  logz, in (A) actually occurs if you implement 
the "QR algorithm" version of the MT: factor L = ((9, + n)(0, - ~) (this gives 
u = - n  2 - ~ ,  and can be viewed as an operator analog of the QR factorization for 
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matrices) and notice that  for any basis ~bl, ~b2 of solutions of L~b = 0 compatible 
with the factorization, namely such that  (0, - ~¢)~bx = 0, z = tbl/~b2 satisfies 

3 ~2 ~ - I  the "singular Krichever-Novikov equation": zt = z,~ - ~ % ~  ([Do], we follow 
[W3]). The group SL(2, C) is the differential Galois group of the extension C < 
u >C C < ~bl,~b2 >: here C < u > denotes the differential field generated 
by u, which in turn means the field of rational functions in the indeterminates 
u, u(J), j > 0, with the derivation acting as O,u(J) = u (j+l), and differential 
automorphisms are those which preserve derivatives. The extension C < u >C 
C < z > has Galois group G = PSL(2, C) and the intermediate extension 
C < v >C C < z > is the fixed field of the subgroup B C G of upper-triangular 
matrices (modulo 4-1). 

(C) We follow [Se]: A basis of solutions of the equation L,,y = (0~ + u)y  = 
0 gives a projective connection (cf. [D, 1.5]) on {s}, by: s ~ [~bx(s),~b2(s)]; 
conversely, a parametrization of pX can be so written and by multiplying ~bl 
and ~b2 by a function of s the Wronskian ~b~b2 - $~bx may be made to equal 
1; then ~b~'/~bl = ~b~'/~b2 so that  ~kl and ~b2 are solutions of an equation Lu. To 
render this independent of parametrization, we let the group PSL(2) of linear 
fractional transformations act on p1; indeed, a smooth map $: s ~ $(s) induces 
~b*L,, = L,~, where fi = u(fb(s))c~'(s) ~ + ½SD(~b); the SD is the only PSL(2)- 
invariant. [Se] goes on to show that KdV is reduction of "free motion" on the dual 
1)* of the lie algebra 1) = R @ I), a central extension of I; = Difl ~- ($1). Moreover, 
the space X(S  x) C 1)* of periodic KdV operators is then identified with the 
symplectic quotient under a G = PSL(2) action on the space of connections 
in a PX-bundle over 5:1; this seems to be the z-space, which under reduction 
for the action of the subgroup B defined in (B) will yield the v-space and the 
mKdV equation: thus, the perimeter/area preserving curve dynamics falls out 
of a variational principle. 

2. S q u a r e d  e i g e n f u n c t i o n s  

These objects, like the SD of §1, have also surfaced quite often, and in 
apparent isolation, in the theory of integrable equations: I would like to offer a 
thread through the maze: 

(A) Burchnall and Chaundy [BC]: really the fundamental idea. Introduce 

the formal adjoint Lt  of an ODO L to give a dictionary between algebraic and 
transcendental solutions to the BC problem (cf. 2.3.2). Via "trace formulae", 
one gets solutions to the PDE's; theta functions are then available in two ways, 
one a priori via the Krichever map, and one a posteriori by a knowledge of the 
divisors: Mumford uses this to characterize hyperelliptic period matrices! [Mu]. 

(B) Magnus and Winkler [MW, Ch.II]: the ODE satisfied by the "squared 
eigenfunctions" of Hill's operator gives the recursion operator (or the Lenard pair 
of Hamiltonian structures) because of the equation !b + (x)~b~-(x) = R~(x ,  z) ,  the 
kernel of the resolvent [cf. McK]. 

(C) The Hamiltonian model in which ~b +, ~b- are viewed as canonical vari- 
ables, and reduction of free motion yields classical problems (Neumann's con- 
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strained harmonic motion; Jacobi's geodesic on the ellipsoid, cf. [EF]) as related 
to KdV; mysteriously, this is capable of a "smearing" procedure on the line 
which allowed [DLT] to interpret the KdV (and other second-order) evolutions 
for rapidly vanishing potentials as hamiltonian flows for a symplectie structure 
on coordinates parametrized by the continuous spectrum. 

(D) The generalization of (h)  to a dual tau/Baker function on the Sato- 
Segal-Wilson Grassmannian; at the level of divisors, Cherednik's result: O ( D )  ~-~ 
O* ( n )  ® O ( K )  where K is the canonical divisor [C]. 

(E) The generalization of (B),(C) to any order (called the n-th generalized 
KdV equation in [SW]) was found by R. Schilling [S] in the context of classical 
ODE and in [AHP] by symplectie quotients in loop algebras. 

By and by, it became clear how the same objects could be given the various 
interpretations (A)-(E), but since a theoretic explanation of that would exceed 
the length allotted, we will just give concrete illustrations for the mKdV case. 

2.1 E igenva lue  p r o b l e m .  To get started, one needs to pull the Lax pair 
out of the blue: recall that  for KdV this was: Lt = [B, L] where L = 02 + u ,  B = 
4 a a +  6u0 + 3ux. More generally, the KP hierarchy is defined as the set of 
evolutions: 

Otk£ = [(£k)+, £] (KP) 

on the coefficients uj (t) of a formal pseudodifferential operator £ = ~1_o~ uj 0 / , 
with normalizations ul - 1, u0 = 0 (which are achieved by the two automor- 
phisms of the algebra ~D of differential operators, change of variables and conju- 
gation by a function.) For the definition and basic properties of operations in /7  
we refer the reader to [SW,§4]. The generalized nth KdV hierarchy is satisfied 
by those KP solutions £ for which (£n)+ = £ , ,  equivalently tk,  is a stationary 
evolution for all integers k _> 1. 

The AKNS method (ef. [AS]§I.2), a spectral problem for 2 × 2 matrix op- 
erators, gives both KdV and mKdV as follows: compatibility of y~ = Xy and 

Yt = Ty, where y = [Yl Y2] T, means X t  - T~ = [T, X]. The matrices X, T are 
assumed to have particular forms, for example 

{ y l ~ = - i ' y l + q y 2  and ~ y l t = A y l + B y 2  
y ~  = i~y2 + ryl  [, Y2t Cy l  + Dy2 

with A, B, C, D scalar functions independent of t; it turns out to be useful to 
expand them in powers of the spectral parameter (: if 

A = 4i~ 3 - 2iqr(  - (qr~ - qxr) = - D  
B = 4q~ 2 + 2iqr~ + 2q~r - q ~  
C = 4r~ ~ - 2ir~=~ + 2qr 2 - r~r 

then the "constraint" r = - 1  gives qt + 6qq~ + qr~: = 0 (KdV) and r = =Fq 
gives qt + 6q2qr + qxrr = 0 (mKdV). Now let us rework and explain them (after 
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[Wl]) in terms of differential rings. We can rewrite the AKNS compatibility in 
the form of a 2 × 2 matrix Lax pair: 

[ O r - ~ ]  [ 0 0 3 ] [ O  Qq qr q ~ ] o - 3 [ ( q r ) x  qx~ ] L = B -- 4 -v - 6 
' r x  q r  [ r x ~  ( q r ) ~  " 

The form of B is explained by the fact that a sequence of commuting flows in 
A4 (the algebra of formal expressions ~-~¢0 uj 0 j where uj are 2 x 2 matrices of 
analytic functions) is given by equations 0jL = [(Pj)+, L] where Pj belongs to 
the centralizer of L C~(L),  and there is a unique such element homogeneous of 
any (positive) degree j (for a precise statement, see [W1,2.19]). 

The next item is the implementation of algebraic geometry to get exact 
solutions; there are two approaches and we describe first the Krichever method, 
then the one inspired by Inverse Scattering. 

2.2 Kr ichever  m e t h o d .  As opposed to the KP (scalar) case, in which the 
solution was provided by a Baker function, we need to construct a Baker vector 
which have 2 components; geometrically, this is achieved by picking 2 (smooth) 
points on a curve C rather than 1 point Po~; the osculating vectors to the curve 
inside Jac C at those points give rise to 2 sequences x~ a) ((~ = 1,2; j > 1) of 
"multicomponent" KP flows, cf. [DJKM§4]. The amazing thing is that you can 
impose constraints on the curve and the point so as to obtain the very equa- 
tions of applied mathematics. The amusing thing is that the algebro-geometric 
description of the orbits changes, however slightly. The prototype situation (gen- 
eralized) KdV, is the simplest: the fact that tkn be stationary flows for all positive 
integers k means that there exists a function with pole of order n at Poo and 
regular elsewhere: indeed, if the nth root of that function is taken to be the 
local parameter (inverse) z corresponding to the operator £ (as in [SW]§4-6), 
then (£n)+ __ ~:n. For the 2-point case, we set up the general situation first. Let 
P1, P2 be smooth points on a curve C, which too will be smooth in most of our 
considerations for the sole purpose of making the exposition simpler. The geo- 
metric ingredients for solution will be: (a) a choice of local parameter (inverse) 
tci at P~ (i = 1, 2); (b) an element of the C* extension G of Jac C which is the 
generalized Jacobian of the curve obtained by identifying P1 and P2; in practice, 
a line bundle associated to a sheaf E on C, plus an identification of the fibres 
Cp 1 and Ep2; with the additional condition that the divisor associated to C be 
Q1 + . . .  + Qg+l, where g --genus C, and Q1 + .-- + Qg+l - P1 - P2 have no 
sections; (c) a deformation of C, given by l)atching functions ¢i (i -- 1, 2) with 
the following properties: ¢i is meromorphic on C\{P1, P2} with poles bounded 
by ~-~+1 Qj; and ¢i has an essential singularity at ~ j  with local expansion: 

c~  

¢i(x, tk, ~:j) = exp(x~¢i + tkRj(~j))( Z ~J(x, t~)~-~'), 
s----0 

the Rj being suitable polynomials. Corresponding to these flows, we obtain the 
differential operators (Pj)+ referred to in 2.1. For reasons which will become 
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clear below, we compute two examples: after normalizing the Baker vector so 
that ~ -- 6ij, we can find "unique" (up to some normalizations) operators 

L =  [O 0 ? O ] +  [O r o q ] ,  B2= [ 02 0 _~2] + [O r O q ] 0 +  [7  ~ ] '  

003 -2 r~ qr -4 [ rxz qxr -I- qr~: B3 = 

such that 

¢[p.], where ¢ = T and the "time" defor- 

mations of the line bundle are imposed by a suitable choice of the polynomials 
hi: 

2.2.1 R e m a r k .  The choices are not so obvious from an algebraic point 
of view, see also Remark 2.2.2. Why not seek (nontrivial) Lax pairs for L = 

[0 o ~ J +  [~ 0 ] ?  This follows from the (only)assumption made in [Wl] on 

the form of the matrices, namely: the leading coefficient is an invertible diagonal 
matrix un = diag(cl , . . . ,  cl) and the next coefficient u,~_ 1 is a matrix of functions 
with un-l,ij = 0 if ci = cj. To quote [W1], "The purpose of this assumption is 
to ensure that we can conjugate L into its leading term by a suitable 'integral 
operator.' The assumption is true for all the operators L that have arisen in 
applications, though this may be partly because the examples were found using 
the construction [given below]." However, the geometric meaning is clear: we ask 
that the line bundle be deformed linearly (thus the transition exp(SRj (~¢j)tj)). 
Let's call Vi the (translation invariant) flow on G corresponding to the tangent 
vector 0,:~ to C at Pi; the various Lax operators Bj are simply the matricial 
representation of these deformations on a normalized set of transition functions 

¢2: thus L¢ = 0~¢ = ~ L =  r~0 -~[. L C = O y ¢  is the deformation ~71- ¢1 ' 0 ' 
I .  1 

Us, etc. As per Krichever's construction, a flow is trivial ¢~ the corresponding 
deformation comes from a global function regular on C\{P1, P2}. Thus, if C is 
hyperelliptic, P1 + P2 is the hyperelliptic divisor, and f is a function whose only 
(simple) poles are Px and P2, then the choice ~¢1 = f = -~2 will produce a y- 
independent hierarchy, the spectral equation L¢ = Oy¢ will become L¢ = f ¢  = 

[ O1 --~20 ][¢p1¢ [ P2 ]and theLaxpair[L l 'B-Ot2]=Owi l lg ive thec°up led  

NLS (=nonlinear Schrbdinger)(the "reality conditions" ~ = =t:r give the usual 
qxx 

qt -- q~r 
NLS) 2 Notice that if this is the case the flow [t2nl 2, t2~]  is rxx rt = ~ + r2 q 
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trivial as well as [t'3~1 a, -t'a~aa], which is why we chose B2, B3 the way we did. In 
fact, under the same assumptions, [L, -4B3-0¢]  yields mKdV: qt+6q~qr+qx~: = 
0 = qt 4- 6q~q 2 + q~:~:~ for q = +r .  However, if we don't  impose restrictions 
on the curve, we obtain the Davey-Stewartson equation1! Indeed, the Lax pair 
[L - 0~, B2 - (gt] yields 

together with 

q~:x qyy 
qt = y + ~ + q ( o ~ - 6 )  

r t -  2 2 

ix : - -  o~ -- (qr)x (qr)y 
2 2 

6= + 6~ = (q")= (qr)~ 
2 2 

so that l e t t i n g a - 6  = Q -  qr one obtains qt = ~2 + ~ - qur + qQ, where 
Qzx + Qy~ = 2(qr)uy, which becomes exactly Davey-Stewartson [AS (2.1.59)] 
under the reality conditions ~ = :t:r. As a last remark, we offer an algorithm 
for writing (in the general-curve case) the (formal) pseudodifferential (matrix) 
operator £ such that L:¢ = d i a g ( g l , - g 2 ) ¢  hence such that (/2)+ = L; it is 
nothing hut the Euclidean algorithm adapted to noncommutative rings, cf. [P3]. 

2.2.2 R e m a r k .  There is of course a dictionary which takes scalar to matrix 
operators, though not in general the other way around, so that  (generalized) 
KdV has been presented as a matrix problem. I would like to explain a point 
of potential confusion (for me at least), which is also pertinent to the mKdV 
situation. There are 2 essentially different 2 x 2 matrix models for KdV: [DS] 

set it up for L : [0  0 ~ ] q - [ 0  0 ~] and [AS] for L = [(90 __0(9]-[01 ~ ] . Y o u  

may recall that  the L-format was excluded in 2.2.1, unless q ~ 0; however, the 

corresponding spectral problem is Ly = Z_y where a is the matrix [ 0 ~] ; thus, 

this is nothing but  the scalar ~ matrix isometry defined in [SW] and explained 
thereby as a correspondence between Gr (2) C Gr  and a homogeneous space 
for the loop group L(SL(2)). In particular, the corresponding scalar equation is 
((92 + q)Yl = Xyl, so that X is still the square of a local parameter g at P ~  on C. 

On the contrary, the [AS] format of L a n d B = - 4  0 <93 - 6  (9-  q 
r "1 

a | ~  ~ -q=~| does correspond to the 2-point geometry described above. Now 
t u  qx 1 

this is puzzling: we saw that the line bundle flows on a generalized Jacobian, 
whereas if we present KdV as a scalar Lax pair the line bundle flows on a 

1 I am grateful to J. Harnad for telling me about this "2+1" (i.e. (x, y) and t) version 
of NLS a few years ago. 
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compact Jacobian. The explanation is the following: the curve 6" where the 2- 
point construction is implemented is a 2:1 cover of a 1-point curve C (P~ is 
a branch point for the hyperelliptie involution); the constraint r -- - 1  for the 
solution is achieved on a subvariety of G which can he identified with Jac C. 
For example, in genus 1 (i.e., [L, B] -- 0 with a third-order B of the kind given 
above) the curve C is calculated as the resultant of L - ~, B - ju given by the 
determinant of a 6 x 6 BC matrix as in [P3]; the equation is/,2 = ha + aA2 + b, 
obviously a 2:1 cover of a KdV curve. More instances of this phenomenon will 
be illustrated in 2.3.3 (sine-Gordon, mKdV). 

Before leaving this subsection we should say that  Krichever's construction 
gives explicit solutions in terms of theta functions. In view of that, we record 
what the mKdV/Davey Stewartson functions are in terms of the coefficients of 
the Baker vectors: q = 2{~ 2, r = 2{~ 1, {~1+~1~ = {1=~+{~ = ~ .  Using 
formulas of J. Fay's it is possible to check directly that  the corresponding theta- 
function expressions, though transcendental, satisfy the given PDE (of. [Mu,P1]). 
However, imposing reality conditions and constraints becomes easier if we use 
algebraic functions on C, as explained in 2.3. 

2.3 Class ica l  i n t e g r a b l e  H a m i l t o n i a n  sy s t e ms .  I would like to present 
three manifestations of these. The first to be discussed, because the most mys- 
terious for me, is a continuum of harmonic oscillators; the second, the residue 
theorem for a given differential on C; the third, a moment-map construction 
which produces a matrix Lax-pair polynomial in the curve parameter, as op- 
posed to the differential-operator Lax pair of 2.2. 

2.3.1 [DLT] used Jost eigenfunctions labeled by k E R as symplectic coor- 
dinates to write the evolution of several second-order problems as constrained 
harmonic oscillators via the IST (Inverse Scattering Transform). Their formulas 
are extremely (and mysteriously) inspirational for the finite-dimensional model, 
which they often yield by a simple renormalization and by letting k = 1 , . . . ,  n. 
Here we just want to exhibit the squared eigenfunctions. It so happens that  
the analytic formalism (Poisson brackets and trace formulas/constraints) hasn't  
been worked out for mKdV. It may be worth pursuing this Hamiltonian inter- 
pretation of the scattering data, in view of the result of [AKS] to the effect that  
rapidly vanishing KdV potentials produced by MT from rapidly vanishing mKdV 

potentials are sparse. The scattering problem for L = [O r - ~ ]  is the following: 

¢ = [¢1¢2] T and ¢ = [¢1¢2] T are 2-vectors of functions x and i~, solutions of 
rl, -i~* [ Ol]ei~x Ly = ilcy, satisfying the asymptotic conditions: ¢+ -,- t0je , ¢_ ,,- _ 

as z ---* - c ¢  and ¢+ ,,~ [°]ei~*, ¢_ ,,~ [01]e -i~* as z ~ c¢, and are there- 

[b+ b - ]  Theen-  fore linked by an x-independent matrix: [¢+¢_] = [¢+¢_] a+ a_ " 

tries of the scattering matrix are "Wronskians" W [ u v ]  = u lv2  - u 2 v l ,  indeed: 

] ¢+ = a+¢_ -I- b+¢+ --* b+ei~X as z --* oo, ¢_ = b_¢_ - a_~+ ---* 
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[ b-e-i'~x ] 
_a_ei~ ~ as x --~ oo and {L traceless =~ constant Wronskian} , imply 

a+ = a_  = W ( ¢ _ , ¢ _ ) ,  b+ = - W ( ¢ + , ¢ _ ) ,  b_ = W ( ¢ _ , ¢ + ) ;  
and W ( ¢ + , ¢ _ )  = - 1  =¢, a+a_ + b+b_ = 1. Assuming that  a+ and a_ are root 
free (analogous to requiring absence of bound stakes for a SchrSdinger poten- 
tial), and letting r+ = b+/a+, r_ = b_/a_,  z-translation becomes constrained 

harmonic motion for the canonical variables: x+~ = r ~ - ~  Cq.l(O , ~:), y+~ -- 

v f r r r ~  ¢+2(0 , ~¢), etc.; higher times of the hierarchy are also given by com- all 
muting hamiltonians. 

2.3.2 We shall use the scalar (KdV/Neumann)  case for illustration; we would 
have worked out the (philosophically similar) matr ix  case but  for lack of time. 
The idea goes back to [BC] and is one of their major  breakthroughs-the other 
is the introduction of the "transference" operation on a commutat ive algebra 
of ODO's, the identification of transference with the abelian sum and the proof 
that  g transferences produce the general solution associated to a fixed spectral 
curve of (arithmetic) genus g. We start  with a commutative pair of ODO's, L 
and B, of coprime orders n and m, normalized as usual: L = on+  lower-order 
terms. Without  detracting from the main ideas, we keep the presentation simple 
by assuming that  Cv(L) defines the affine part of a smooth curve C, given by an 
equation f(A, p) = 0, and the functions A ~ L, /~ ~-* B generate this ring. The 
genus of C is ½(rn - 1)(n - 1). Note that  this is the typical KdV situation (n = 
2, m = 2g + 1). Now let ¢(x,  P ) ( =  ¢(x,  ~) near Boo) be the Baker function and 

¢ be the dual Baker function, associated to the ring of formal adjoints, Cv(Lt )  
where Lf  = (-O) n + (0)n-2un_2(x)  --~-... '1- u0(x) = "1"[19 n At- u*_2 0n-2 "at-... + u~]. 
What  [BC] realized was that  the line bundle (whose linear flow on Jac C gives 
the solution!) can be given in its algebraic manifestation (i.e. as a set of points 
satisfying f()t, ~) = 0) by quadratic functions in the ¢, ¢ and their x-derivatives. 
We quote two results and then switch to the n = 2 case. 

(A) Let (,~,/~) be a point on the curve and f (L ,  IJ) = T(L  - A)(B - #) + 
(aO n-2 + alO n-3 + . . .  + an-1)(B - i~), with (b, b l , . . . ,  bn-1) playing the role of 
the a's for the adjoint equation. Then a = b = ¢¢  generically cuts the curve C in 
2g points, half of which lie on al and the other half on bl. Using the differential 
equations L¢  = A¢, etc., the motion of the divisor Q1 + . . .  + Qg common to 

a and al ,  say, is computed in terms of the Abel coordinates S f ~  w, where 

0.~ "-  ~, IJ I x  ) n b + r n a < 2 9 - 2 '  and is shown to be linear. 

(B) [P3] The n × n "BC matrix" A which represents the action of B - # 
on the eigenspace of L - A has (generically) the following property: the divisor 
Q1 + . . .  + Qg + Poo defined by the first row of adj A (namely the points which 
satisfy the n simultaneous equations) is linearly equivalent to the divisor $1 + 
• .. + Sg+l defined by the second row (and so forth), which gives a geometric 
construction of the abelian sum. 
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Finally, we follow [EF] for the case n = 2. The dual Baker function is most 
explicit precisely because the curve is hyperelliptic: if we write the equation of the 
curve as ~2 = f ( A )  = yI~g+l(A - el)  and if ¢ satisfies £ ¢  = g¢ with t: = All 2, 
then ¢ = ¢( tP) ,  where t is the hyperelliptic involution; ¢ , ¢  are independent 
solutions of L y  = )~y except at the branchpoints, and ¢¢ is a meromorphic 
function which comes from the base (i.e., a function of A E p1 only): ¢¢  = 
yIg(A - A ( Q i ( x ) ) ) / ( A  - A(QI)). We can push the poles to A = c~ by defining 
the differential I2 = ½ 1-Ia(A- A(Qi))~;  then U = ¢¢I2/dA, w = ¢ ~ ¢ z l 2 / d A ,  

V = ½(¢¢, + ¢,¢)I2/dA are polynomials in A and U W  + Y 2 = - W r 2 ( ¢ ,  ¢) = 
f(A) independent of z (notice that  it equals zero precisely when A is a branch 
point). The first g coefficients of f are constants of motion and by the Liouville 
method one gets action-angle variables for a completely integrable system [FN]. 
However, there is quite a different way to construct a symplectic manifold using 
these objects which is formally analogous to the continuous model described in 
2.3.1: choose g + l  among the branch points, say Ei = (el, 0), i = 1 . . . .  , g + l  and 
let h = ~ / H ~ ' t ' I ( , ~ -  el).  Define Pi "- res(e,,o)hl2 and z i  = vr~¢(z ,  El) .  Then 

by the residue theorem ~ + 1  ~ ~ a + l  z i = 1 is x-independent; U = ~' " A--e i  ' Yi  = X i  

and u = /_.., t e l z  i + y~) yield the Neumann system of harmonic oscillators 
constrained to the unit sphere: ~:i + uz i  = e ix i  (i = 1 , . . . ,  g + 1). The finite- 
dimensional analog of the trace formula of [DLT] gives the algebraic solution to 
the inverse problem (as opposed to the transcendental of 2.2): the equation for 
the squared eigenfunctions (03+ 4uO + 2u')¢¢ = 4A(¢¢)', when expanded in A, 
gives u ( z )  = V'2g+l e ,  - 2 

2.3.3 Lastly, we use the moment map of [AHP] to present the hamiltonian 
flows of 2.3.2 as a reduction of Adler-Kostant-Symes flows for an sl(2) loop 
algebra; here we do the mKdV case. We refer to [AHP §6D] for all definitions 
and here present only the result, and its geometric interpretation which had 
not appeared in [AHP]. On a symplectic space M with canonical coordinates 
x ] , . . . ,  Xn; Y l , . . . ,  Yn one defines a moment map whose image is the matrix 

/ ._% Y:? 

L - -  Z-..~l A ~ - a  - -  A_..,1 A " - a ~  .I 

If we let a(A) = l-I~ ( A~ - a~), the matrix £(A) = ~ J = Z0 + ~ L:l + - . .  + ~2~-~ 
l:2n-1 defines the Lax-pair flows 

for which the curve C: /z 2 = det(~-~-~ J) (compactified by adding the points P~ 
and P2 over A = o¢) is isospectral. If the following (time-invariant) functions 
are fixed: Z x i y i  = O, E a i x ~  = ~ a i y ~  = 1, v ~ +  ½ ( q - p )  = 0 where: Z2 = 

Iv0 L ] '  / : 3 =  [ :  ~] ,  then v s a t i s f i e s m K d V f o r z = t l  a n d t  = t 2 .  Note: 

the curve is invariant under the transformation: v ~ -v .  
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We articulate the geometric interpretation into a series of remarks, and pre- 
cede them by asking the natural questions which arise from bringing together the 
flow descriptions of 2.1 and 2.3.2. The questions are: does the mKdV hierarchy 
linearize on the generalized Jacobian of the curve C which we found, as does the 
2-point Baker vector of 2.2, or does it stay away from the C* extension? What  
is the dimension of the orbit of the integrable Hamiltonian system, analogous 
to the Neumann system of 2.3.2, and how are the "action" variables described? 
The potentially confusing feature is the following: KdV (Neumann) evolves on a 
hyperelliptic Jacobian, with a corresponding 1-point Baker function, as we saw. 
Geometry, unlike analysis which has to reckon with special classes of solutions 
[AKS], can find an mKdV for any KdV, so that  u = M T ( v )  = - v  2 - v x ;  in fact, it 
finds a 1-dimensional fibre of such v, as we will see in §3; and they correspond to 
a generalization of the transferences of 2.3.2: indeed, they correspond to a choice 

u'. 
of solution y of Ly  = 0 (L = 02+u) ,  or a factorization L = ( O + v ) ( O - v ) ,  v = y ,  

this is a p1 (since we must assume y(0) # 0) because y and cy for a nonzero 
constant c give the same v. Ehlers-Knhrrer [EK] interpret this geometrically: if 
C:/j2 = l-i2g+l(A_ei) was the KdV curve, then the various v correspond to a C* 
extension of Jac C, obtained by imposing the singularity/j2 = A2 ri2g+l(A _ ei) 
(more details in §3). It is tempting to think that  by resolving the node we get the 
curve of the 2-point model, and the mKdV hierarchy possesses the 2-point flow 
of the matrix model (2.2) along C*, thus producing a Neumann-like system with 
one extra "angle" variable which projects to a conventional Neumann system. 
This is not quite so, as I shall show by a sequence of examples and remarks; the 
conclusion is summarized in (v) below. 

(i) T h e  s ingle  wave.  The 1-soliton KdV solution was found classically, and 
1-wave solutions to several integrable PDE's can also be found quite effortlessly. 
The method is not powerful enough to suggest higher-genus solutions, but it 
may point quite clearly to its geometric interpretation, as in the case of NLS. We 
follow [SCMcL]. KdV is solved by integrating twice the equation which results 

u ~ _ U 3  c 2 f r o m t h e O D E u ' " - c u ' + 6 u u '  = O f o r u ( z - c t ) ; i n d e e d ,  --U = -~u + a u + b  
(a, b are the integration constants) can be solved by the Weierstrass p-function 
and its singular (elementary) limits. NLS requires two velocities (envelope and 
carrier): q = ¢(x - ct)e i°(x-dt), ¢ and 0 real; the real and imaginary parts of 
q== + iqt + klq]2q = 0 give 

¢" - ¢ 0  '2 + d¢O' + k ¢  3 : 0 

¢0" + 2¢'0' - c¢' : 0 

The second equation integrates to ¢2(20' - c) = const, and the choice 0' = c/2  
integrates the first: ¢,2 = __~ ¢4+ ¼(c 2 - 2cd)¢2 + a. This is again an elliptic curve 
(or a singular limit) but has 2 points at infinity and the form of the solution q is 
indeed its generalized theta function! Now for mKdV (not in [SCMcL]) the ansatz 

v = e ~ - ~ w ( z  - ct) is not integrable in general, whereas v(x  - ct) yields ~'--Z2 
2 = 

I v  4 + c ~  - av - b. The choice c = a = b = 0 gives v = - ~ ,  which corresponds 
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to the rational KdV, MT(v) = -T~ 2 , obtained from the cuspidal cubic/ ,2 = A3. 

The choice a = b = 0 gives a nodal cubic and, indeed, a 1-soliton v = - x / ~  sech 
v I~ --. lV4 v 2 V/~(x - ct + const). E x e r c i s e  1: Given v such that  ' V  - + c - y  - av  - b, 

a 2 , 
show that  the curve of u = M T ( v )  is - ' i -  u'~ = - u 3  + -~u* ~ - 2bu  + bc + - y ,  explain 
why replacing v by - v  changes the mKdV curve (a ~ - a )  but not the KdV 
curve (this will be explained in §3). E x e r c i s e  2: Show that  all v's corresponding 
to u = - ~  are of the form _ _ 1  (this will be explained in §3). 

(ii)  P a r a m e t e r  c o u n t .  The Hamiltonian systems which give evolutions 
for second-order Lax pairs were unified by J. Moser under the model of "rank 2 
perturbations." In a way very reminiscent of mKdV, to produce the sine-Gordon 
flows we need to introduce a symmetry in the rank 2 perturbation, which has 
the effect of linearizing the flows on the Jacobian of a curve different from the 
spectral curve of the system. We showed in [P2] that on certain orbits of a rank 
2 perturbation of a matr ix  diag (a l  . . . .  , an ,  - a l , . . . ,  - a n )  the flows preserve an 
"even" curve C: pS = ¢(A2) and evolve on Jac C where the covering C --+ C 
is given by (A, p) ~-~ (r/ = A 2, u = p/A) and C has equation u 2 = r/¢(9). 
has genus 2n - 3 and the flows span its generalized Jacobian (the C* extension 
corresponds to it 2 points over A = oo), but the n - 1 "even" flows span the 
Jacobian of C. E. Date writes the sine-Gordon solution using generalized theta 
functions on C, while D. Mumford uses theta functions on C; geometrically, 
is the fibre product: 

C H p1 

\ l / 

p 1  

2 b~,... 2 for the maps r}:C p1, branched at a~, a n ---* . . . ,  , , b n _  2 and 0; and 
A2:p1 ._~ p1. For the same rank 2 perturbation, the symmetry we impose to get 
mKdV flows is the following: we start with canonical coordinates 
( w l ,  . . . ,  w n ;  W n + l , . . . ,  w2n ) ,  ( z l , . .  . ,  zn; Zn+l ,  . . . ,  z2,~) and form the polynomi- 

( tv2~+"~ a(A), where a(A) -- yL(A 2 a~) similarly, a l s  U ( A )  : Z i = l n  ~A-ai + A + a t ]  

V(A) by substituting w/2 ~-~ zi 2 and Z(A) by w~ ~ w ,  z i ,  so that the coef- 
ficients of ¢(A) - U V  - Z ~ are invariants; notice that ¢(A) is divisible by 

- -  W n + j )  = = = X a j ( w j  a(A), and the constraints ~ j = l  w j z j  w ]  z ]  2 
_ E n  2 2 n - a j ( z  3 - z , ~ + j )  = O, ~ a j ( w i z  i - w n + j z , ~ + i  ) =i, ¢ is monic of degree 4 n - 4 .  
We get an mKdV solution as u = :l=v, where u u 2 , - 3  w , + j )  is 
the leading coefficient of U, v = v20-3 of V, and alternate this condition down 
the coefficients, u2, -4  - -t-v2,-4, etc. This symmetry is achieved on the manifold 
wn+i =izj and zn+j = - i w j  so that 



57 

n 

i i#j 

n 

$,'t 

z = I I ( :  
1 iCj 

Indeed, the transformations ~i -- wi - zi, Yi = wi + zi, and T -- U-v R = 
2 , 

- Z + - ~  -K, S = - Z  + ~ bring the curve U V  - Z 2 to 

x °': ] 
R S - T  2 - ( a ( A ) )  ~det [ ~' a , , '  

L- 

R e m a r k .  The base change [ Y : ] =  [ 1 1 1 1 ]  [ : : ]  conjugates the Lax operator 

[-0v -0v ] int° [ 00+v O-V]o  , with the effect of interchanging the role of two 

Cartan subalgebras of s/(2), the diagonal matrices and the circulants. 

(iii) E x a m p l e :  genus  1. A parameter count shows that  in general the 
flows of the Hamiltonian system span the generalized Jacobian of the curve 
lU 2 = U V  - Z 2 = ¢($ 9) (which has dimension 2n - 2), but the "even" flows 
span the Jacobian of/~2 = ~/¢(~/). For example, for n = 2 the constraints we 
imposed leave one degree of freedom, which is a direction on the generalized 
Jacobian of the curve (~: (A s + p)(A 2 + q) - A2v 2 = a(A)/~ 2, or the Jacobian of 
C: t/(r/+ p)(r/+ q) - 7/2v 2 = T/(q - a~)(r / -  a~) = v 2. Calculating the z-flow gives: 
+v~:-v  2 = - p ,  - v ~ : - v  ~ = - q .  Conclusion: C hosts both the KdV and the mKdV 
flows; (~ gives a different way to write solutions in terms of theta functions; unlike 
the mKdV curve found in (i), it is insensitive to the transformation v ~ - v .  We 
give the theta-function recipe as the next item because it holds for any genus: 

(iv) T h e t a  f o r m u l a s .  The solution for the 2-point hierarchy, as per 
Krichever's construction, is worked out in [P1] and involves a periodic func- 
tion eZ°O(z + P2 - P1) /O(z ) ,  with an extra "Abel coordinate" z0 which cor- 
responds to a logarithmic differential wP~-e~. But, as in the sine-Gordon case, 
the solution can be written using only theta functions of the curve C, which 
is to be expected as a consequence of (ii), in that  the flows are linearized on 
Jac C. The representation-theoretic construction which will be briefly sketched 
in §3 provides the formula v = 0~ log ~ for two different tan functions: but 
that  appears as simply a translation in t~he algebro-geometric set-up, since the 
KdV solution is u = 20~ log0(z)+const. ,  with the constant depending only on 
the curve; the "transference" operation shows fi = 20~ log 0(z + P); and finally 
vz = ½(fi - u) = 0~log(0(z + P ) / O ( z ) )  and v = 0xlog(0F/0)  (the mKdV 
equation constrains the integration constant). It is satisfying to compare these 
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formulas directly in the genus 1 case: start  with a commuting pair (L, B) as 
in 2.1, with q = - v  - r. Write the 4 x 4 Burchnall-Chaundy matr ix  as per 
recipe in [P3] and compute its determinant; this is the curve, which you find 

= c~ (L = ,~, B #). Now use the to have the form: (# - ~)2 A 4 + cA 2 + a + "T = 
abelian coordinates of the flow computed in [P1, Th. 1.7] and you will see that  
the coordinate in the C* direction is zero because of the particular value of the 
coefficients of the curve. Lastly, use Jacobi's functions [DV] for ~1/2 (~ of the 

c 2 curve v 2 = ~(~]2 + c~ + a + -~), T/= ~2, v = #,X) to compare the 2-point formula 
for the theta function of the half-period lattice 0[c](2z, 2r) with the 1-point for 
0(2, 7"). 

(v)  C o n c l u s i o n .  To complete the picture of linearization of mKdV flows 

we return to the relationship between the 3 curves we encountered: X: ~,2 - T =  
~ V  4 v 2 _._, 

- + c - ~ - a v - b  in (i), and C" C in (iii) (all statements go over unchanged for 
higher genus). The issue to be dealt with was this: the Lax-pair mKdV problem 
2.1 seemed to indicate a 2-point situation, and so did the Moser-system solution 
2.3. However, the flows do not require the generalized Jacobian of C but linearize 
on the Jacobian of the KdV curve C. 

3. T h e  f l a g  as  a s p a c e  o f  D a r b o u x  t r a n s f o r m a t i o n s  

In this section we simply put  together the language of [EK] with that of [W2] 
which shows how to view the C* of Darboux transforms of a given KdV operator 
as the fibre of a projection from a flag variety to a Grassmannian. Originally we 
had intended to translate the classical flag-analog of the Pliicker equations into 
the mKdV equations using finite-dimensional flags, in analogy to what is done 
in [E], but for lack of time we state that as an exercise in the next section. 

3.1 We recall that  a Darboux transformation is the conjugation of an oper- 

ator L by D = 0 -  ~ where ~b E Ker L and ~b(0) # 0, so that L is divisible by D 
W 

on the right and the new L = D L D  -1 is still regular at x = 0 (a reference point). 
If L: and ¢ evolve according to the KP hierarchy, then Z~ = DF..D -1 does too and 
in the PDE context this transformation is named after B~icklund. [EK] described 
the effect of such a B~icklund transformation on the geometric data  of the KdV 
equation. There are three possible cases, according to the properties of the com- 
mutative algebra A = C~(L). (1) If D A D  -1 is not maximal commutative, then 
the curve C of A was singular and the new KdV potential is associated to a curve 
where the singularity is of order one less. (2) If D A D  -1 contains some pseudod- 
ifferential operators, then the curve corresponding to 7 ) N D A D  -1 is singular. (3) 
Finally, if D A D  -1 is again maximal commutative, then the new KdV potential 
corresponds to the translation on Jac C by a point on the curve (if we start with 
the operator L - c, the point has h-coordinate c). Now recall that  the space of 
Darboux transformations is in 1:1 correspondence with the p1 of solutions y to 
L y  = 0, with y(0) # 0 and regarded up to nonzero multiplicative constant. [EK] 
also identify these as the C* direction of the generalized Jacobian of the singu- 
lar curve (the solutions corresponding to the two points P, ~P with h-coordinate 
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= e are deleted from p t  to give the C*). Lastly, the space of eigenfunctions of 

L is in 1:1 correspondence with the factorizations L = (0 + v)(O - v), v = ~ ,  
namely with the mKdV solutions whose MT(v) = u; the Darboux transform 
of u is M T ( - v ) .  Thus, the extra (fibre) direction of mKdV potentials which 
give the same KdV lies indeed in the span of the KdV hierarchy, but  in fact of 
the hierarchy which belongs to the singular curve of a Darbouxed potential (cf. 
comments preliminary to 2.2.30) ) . 

E x a m p l e : u  = 0 ,  ~ = - - ~ 2  for ¢ = x; MT(v = ~) = O, MT(v = - ~ )  = 
2 o -~-~, the other v which project to u = 0 are 1.___~, in fact (as a singular limit of 

the transference result): if (31, at-~)is a point on/~2 = ha, then L -  ~ Darboux 
transforms into 02 - ~ y ~  - ~ .  This clarifies the remarks in 2.2.3: u = 0 "flows" 

1 on Jac Co, fi = -x--~ 2 on Jac C, :t=v = +~  "flows" on Jac C (by ~ ~-~-a), 
thereby demonstrating that  the C* direction corresponding to a fixed u = 0 is 
a KdV direction for any other Darboux transform fi, except the transferenced 
ones which are a translate of u = 0 on the same curve (in this case the choice 

= 0 corresponds to a branch point). 

3.2 [DS] interpreted the mKdV solutions corresponding to a fixed KdV 
solution as a set of upper triangular matrices of the form 

° [°1 [o :] 
modulo the action of the group of gauge transformations, NLN -1, for N an 
upper-triangular matr ix  of functions with 1 on the diagonal. The KdV solution 
appears for w = t = 0, z -- u while the diagonal case z = 0 has the mKdV 
diagonal terms w = v, t = - v  [DS, 3.23]. With one more switch in conventions 

(to follow [W2]) we replace by . 2  which amounts to replac- 
1 0j '  

ing the standard with the principal realization of the group G of smooth maps 
S 1 --~ SL(2, C), via the isomorphism: 

a(z) b(z)] [ a(z 2) zb(z 2)] 
c(z) d(z)]  ~ [z- lc(z  2) d(z 2) 1" 

We define several subgroups of G: first of all we let G act on the (2-) vector 
Grassmannian by the rule: g o ¢ = [¢0¢1]g-1; we then interpret the action on 
the scalar Grassmannian by the usual isometry ¢(z)  = ¢0(z 2) + z¢l(z2) .  As 
usual A is the subgroup of diagonal constant matrices and U+ the elements 
whose constant term is the identity and which extend holomorphically to the 

i n t e r i ° r / ex t e r i ° r ° f t hed i scD°={z : l z '< l } ' I fF i s thecen t ra l i z e r ° f [~  O] 
in G, we let F+ = FNU+. If H+ is the usual reference space of boundary values of 
functions holomorphic in Do, we define P0 and P1 as the stabilizers of H+, zH+, 
resp., and B as the subgroup AU+. In other words, B is the set of elements of G 
that  extend holomorphically to Do and Pe of those that  extend in the standard 
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realization. The difference is that for a Fourier expansion f ( z )  = ~,o°° aizi, an 
f E P0 is in B iff a0 is upper triangular; moreover, B = PoNP1. Modulo technical 
exceptions, the Grassmannian Gr (2) is the orbit of H+ under G, namely the 
homogeneous space G/Po; the projection to the flag manifold G / B  (=the G 
orbit of H(+ 2)) has fibre p1. The usual construction of KdV solutions associated 
to points of Gr (2) generalizes as follows: 

3.3.1 [W2, Prop. 2.5] There is an injective map 
F _ \ G / B  ~ {mKdV solutions}, under which the mKdV flows are given by the 

n a t u r a l a c t i o n o f F + = { e x p ~ o d d t ~  [0.z, 01] }" M°re°ver' the f°ll°wing diagram 

is commutative: 
G / B  --* {mKdV solutions} 

1 I MT 

G/Po -'* {KdV solutions} 

Lastly, since B = P0 N P1, the elements of G / B  can be identified with 
flags F = (W0, W1) of pairs of elements Wi E Gr (2) such that z2Wo C zW1 C 
W0. The KdY solutions associated to W0, W1 resp. are MT(v), MT(-v); the 
Baker function of W0 is obtained by adding the two entries of the Baker vector 
corresponding to F. At the differential operator level, this corresponds to: L¢ = 
z2¢ for Lo = ¢02+u = (O+v) (O-v ) ,  the KdV operator of W0; L1 = (O-v ) (O+v)  
corresponds to W1; and 

(O -- V)~)0 ---- Z¢ l  (a+v)¢l z¢0 
[0 O+v] 

Writing this as a matrix N_¢ = z_C, N = O - v 0 = 

1 M 1 where M = . When setting up an analog 

of the Burehnall-Chaundy theory, we obtain a curve (see 2.3.3 (iv)) with anne 
ring given by the centralizer of N in the ring 3d of matrix differential operators, 
as defined in 2.1. 

4. Questions 

In the context of a summer school, we feel justified in stating some questions 
which are readily workable, together with open-ended ones: this is indicated at 
the end of each question. We take them up in the same order as the exposition. 

4.1 In 1.2 we stated the conditions U = O s f , - W s  -- ~:U -- c98g for certain 
conservative curve motion. [GP1] remark that there are other obvious solutions 
besides the one which gives mKdV (e.g. U = ~ng, and W --- -~'~+2/(n-F 2)) 
and ask whether these lead to integrable hierarchies. (I would label this question 
as open-ended) 
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4.2 The Schwarzian derivative representation of a KdV solution in 1.2(B) 
has been generalized in [DN] for KP/modified KP; it may be interesting to have 
a curvature-dynamics interpretation for that. But a more far-reaching question 
is an understanding of the singular Krichever-Novikov (KN) equation and its 
generalized version in [DN] within the theory of rational KP solutions. The non- 
singular KN equations have never been solved explicitly; they appear (quite 
mysteriously, so far) in the construction of higher-rank KP solutions (the geo- 
metric data of a line bundle over a curve is replaced by a rank r bundle) over 
curves of genus 1 [KN]. In [LP] a (Darboux) transformation is given, which re- 
duces them to the KdV equation exactly when the curve becomes singular. The 
most difficult and important question would be a nonsingular generalization of 
the KN equation for the KP case; a step in the direction of generalized KdV has 
been taken in [M], where the 2 × 2 Boussinesq system is obtained. (Very open, 
concrete) 

4.3 In 1.2(C) we indicated the appearance of the Schwarzian derivative in 
the context of a projective connection (in the ~-variable). Actually, a projective 
connection in the spectral parameter also arises in the KdV/KP theory, and I 
believe that finding a link between the two would be quite worthwhile, espe- 
cially in view of the two appearances of Virasoro algebras in KP theory (one in 
x, of. [Se], the other in the spectral parameter of T, cf. [SW]). The projective 
connection in the spectral parameter is to be found in [Du]: if a KP solution 
u = 2(92 log0(() + c is viewed as function of the choice of local parameter at 0% 
then 

sl  

3c(P) - "Uwi (P)Oi(~) 
Zwi(P)gi({) 

\ ] 

3 
2 ( x°~(P)Oi(¢)'~ 2 

2 

' 

This projective connection also appears in [Fa], p.19 formula 27. (Open; less 
focused than 4.2) 

4.4 For the Davey-Stewartson solutions constructed from curves as in 2.2 
to be of physical interest, a theory of reality conditions needs to be developed. 
Some special cases would probably come for free (much as was the case for NLS 
in [P1]) from an identification of the algebraic description of the flows, i.e. by 
putting together 2.2 and 2.3. Some properties would be a lot harder to detect, 
as demonstrated by KP versus KdV. (Workable) 

4.5 In 2.3.1 we indicated a mysterious analogy between Poisson brackets of 
Jost solutions and finite dimensional Hamiltonian systems. The formal reasons 
for this are the equations satisfied by squared eigenfunctions. A closer analytic 
investigation of the scattering matrix as a limit of monodromy matrices for 
the periodic problem is a very commonplace thing to suggest. The specifics of 
the mKdV example, which brings together AKNS models and Hill's equation 
would be a nice starting point; one gain would be that the finite dimensional 
model of 2.3.3 would yield the continuous model (rather than the other way 
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around) and perhaps enhance some spectral properties investigated in [AKS]. 
(Open/Workable) 

4.6 In 2.3.2(B) we identified the Burchnall-Chaundy (BC) matrices as ob- 
jects of rank-2 perturbations; through the BC theory every abelian flow on a 
Jacobian can be written as a Lax pair; but thanks to the Jacobi-Mumford model 
for hyperelliptic Jacobians, in that case the Lax pair has an especially simple 
universal expression with applications to integrable systems [F]. The generalized 
BC matrices of [P3] could be used for analogous purposes in the nonhyperelliptic 
case. (Readily workable) 

4.7 In 2.3.2 we indicated the relationship found by Flaschka between KdV 
eigenfunctions and the Neumann system in n variables, namely n transferences 
by branch points. On the other hand, the "duality" between the two representa- 
tions of the system (the 2 x 2 BC matrix and the n x n Baker-vector problem) has 
been given a group-theoretic interpretation in [AHH]. The picture is especially 
worth generalizing since many other integrable systems, such as Toda, occur by 
implementing KP flows on a finite set of suitably transferenced Baker functions. 
(Recommended work!) 

4.8 The representation-theoretic viewpoint of §3 is full of profound open 
problems, but one small interesting question would be the quest for alternative 
representations of solutions of mKP given by flag manifolds (cf. [HH]) by using 
one I" function rather than a sequence v l , . . . ,  v~. [W2] explains why this is not 
possible in general, but as we saw in the specific case of mKdV, it can be done 
by using the 0 solution for a 2-point problem. (Workable) 

4.9 The Hirota equations were shown, again via representation theory, to be 
an (infinite-dimensional) analog of the P1/icker relations; however, for the specific 
case of a grassmannian point which belongs to a finite dimensional Gr(m, 2m) C 
Gr0, the classical Plficker relations are the Hirota equations, as worked out by 
[E]. It would be pleasant to do the same by using the projective equations of 
flag manifolds (the corresponding Hirota equation [AS 3.4.45a] depends on an 
additional parameter!) (Readily workable) 
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1. 2 D  Q u a n t u m  G r a v i t y  

Euclidean quantum gravity tries to make sense of the following problem. Let M 
be a smooth manifold, which we will assume to be compact and without boundary, 
and let MetM be the space of all Riemannian metrics h on M. We wish to consider 
the integral 

= J [dh]. e -s, (1.1) ZM 
MetM 

where [dh] is the natural measure on MetM and S[h] is some suitably chosen weight 
function. Since we integrate over all Riemannian structures, ZM is by definition 
a topological invariant. Of course, since the integral is infinite-dimensional, it is a 
highly nontrivial problem to make mathematical sense out of this definition. 

As it stands, the expression for ZM already suffers from severe problems due to the 
following phenomenon. We have a natural action on MetM of DiffM, the group onpf 
diffeomorphisms of the space M. E!ements of DiffM relate equivalent Riemannian 
structures. Since the actions S that we will consider are in general invariant under 
this action, the path-integral ZM will contain a factor proportional to the volume of 
DiffM, which is clearly infinite. So a first step is to define ZM by integration over the 
orbit space MetM/DiffM 

= J [dh].e -s. (1.2) ZM 
MetM/DiffM 

For the action S one usually choses the Einstein-Hilbert action 

S[h] = ~ /M x/-h(R + #), (1.3) 

with R the scalar curvature of the metric h, ~ Newton's contant, and # the cosmo- 
logical constant. The critical points of this action are given by the metrics h that 
satisfies Einstein% equation in the absence of matter. 

Unfortunately, for arbitrary dimensions, this definition of Euclidean quantum grav- 
ity suffers from grave difficulties. One simple indication of the many problems sur- 
rounding this issue is that in general S is not positive-definite. 

However, the situation improves dramatically if we descend to two dimensions 
and consider a surface ~. Here the first part of our action S is actually a well-known 
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topological invariant, the Euler characteristic 

d__.~ v~ R 
/x47r = 2 2g, (1.4) 

where g is the number of handles of the surface, the genus. So we have 

(i.5) 

with A, the so-called string coupling constant, related to Newton's constant ~ by 

log A ~ ~ (1.6) 

The second term gives the total area A of the surface 

t 

J~. V~ ---- A (1.7) 

f 

So, if we restrict to surfaces of a given topology, i.e. fixed genus h~ the path-integral 
simply reduces to an integral over all metrics weighted by their area A = f~ V~, 

Zg = f [dh]. e -"A. (1.8) 
Met~ /Di f f~  

Quite remarkably this path-integral can be exactly evaluated! 
Our first observation is, that, although the space Met~/Diff~ is infinite dimen- 

sional, it can be contracted to the moduli space .Aria of inequivalent complex struc- 
tures on the surface. This is a finite dimensional space of dimension 6g - 6 (for g > 1). 
One understands this fact by the result that any metric can be written as 

h.~ = e ~" • L v ,  (1.9) 

where ]zuv is a fixed representative df a conformal class, for example a metric of 
constant curvature R = -1 .  A conformal class of metrics uniquely determines a 
complex structure through 

s / =  v'~,.~h ~. (1.1o) 
Adg is a rich mathematical object that plays a crucial role in our understanding of 
two-dimensional quantum gravity and string theory. Our knowledge of this space 
has also benefited from the recent developments in string theory [11, 12], see e.g. the 
review [13]. 

So we expect that the path-integra2 can be reduced to an integral over the confor- 
mal factor ¢ and a residual finite-dimensional integral over the moduli space .A/f,: 

Z,  = f ~ , , f  [dC] . ~ -S' (1.11) 
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Of course, the problem here is to determine the action S I. We will state here just the 
answer. It is given by the so-called LiouviUe action (we ignore ghosts for a moment) 

S ' =  f 8~/r~(3]zu"0.¢0.¢ + 5R(h)¢ + 3#12¢') (1.12) 

A simple scaling argument show that the #-dependence is given by 

= co. (1.13) 

Indeed we can redefine ¢ --* ¢ + c in the path-integral. This gives the identity 

[ 5c_.__4 Jz dZZhR] e ' ( ' -1 ) .  (1.14) z , ( # )  = z , [ , .   2°].exp /_  = 

1.1. M a t r i x  models  

To go one step further and calculate the absolute normalization %, and more 
importantly, also the correlation functions, one has to make use of the formalism of 
matrix model [1] and their solutions in the double-scaling limit [2], see e.g. the reviews 
in [3]. These models can be completely solved within the framework of integrable 
hierarchies [4, 5]. We will not be in a position to explain this development here in any 
detail. The crucial idea is to approximate the integral over metrics by a summation 
over triangularizations of the surface, The combinatorics of these summations can be 
very conveniently be encoded in matrix integrals. One considers these matrix integral 
for variable size N x N and then studies the asymptotic expansion in 1/N. The result 
of all this is the following answer. 

Let Z(#) be the partition function where we also sum over topologies 

Z(#) = ~ A2"-2Zg(#), (1.15) 
g=0 

(in general this should be regarded as an asymptotic expansion) and let 

= A= a2~ (1.16) 

be the second derivative with respect to #. Then u satisfies the nonlinear Painlev6 
equation 

A2 
u 2 + T u "  = #, (1.17) 

where primes denote differentiation with respect to #. This can be reformulated as a 
recursion relation for the coefficients c o after we normalize, say co = 1. 
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Actually, the solution of the matrix model is much more powerful. 
consider correlation functions 

[dh]" • e -s .  O'nl 

M e t  M / D i f f  M 

O n e  can alSO 

(1.1s) 

All these correlation functions can also be exactly calculated. The final result cart be 
formulated as follows. Let 

oo 

Z(to, t , , . . . )  = ~ A2g-2{exp f i  t j , ) g  
g=O n = 0  

be the generating functional of all correlation functions. We see immediately that  
to --/2, tl = ~. Consider again the object u = A~Z ". It  is now a function of infinite 
many variables t0~ t l , . . ,  and satisfies two equations: 

1. u(t) is a solution of the KdV hierarchy. That  is, we have equations of the type 

or more general 

Ou 0 (1.22) 

Here R~[u] is a polynomial in u and its derivatives u ' , u " , . . ,  with respect to the 
cosmological constant to = # given by 

('~- 1)! [~.~Z~ ~ + ,, + D - ' , ,D ]" -  1, (1.23) 

with D = O/Oto. An equivalent statement reads 

~(t) = exp Z( t )  (1.24) 

is a tau-function of the KdV hierarchy. 
2. u(t) satisfies the so-called string equation 

oo 

t .R . [u ]  = to (1.25) 
t l = o  

Ou A 2 
- -  = - - u ' "  ( 1 . 2 1 )  
Ota uu' + 3 

(1.20) 

,,, o . ,o /  

where the expressions an, n -- 0,1, 2 . . . ,  are certain expressions in the metric h on a 
surface of genus g. For example 
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which can be seen as a generalization of (1.17). 
This beautiful solution has been generalized to more complicated ssytems that also 

include two-dimensional matter fields. In this way we are naturally led to (noncritical) 
strings. 

2 .  N o n - C r i t i c a l  S t r i n g s  

Recent years have seen an enormous increase in our understanding of a particular 
class of string theories - the so-called non-critical bosonic strings. Most of this progress 
is due to the advent of matrix modelsl 

A special role is played by the so-called c = 1 model. In many aspects this is 
the most physical and richest non-critical model. It also can be solved using matrix 
model techniques [6], but the determination of its correlation functions has been rather 
complicated [7, 8, 9]. In [10] the explicit construction of these scattering amplitudes 
has been clarified and the relation between integrable hierarchies and the c = 1 model 
has been explained, thereby completing in a sense the unification of all solvable non- 
critical string models. In these notes we will give a more leisurely account of all 
this. 

2.1. E l e m e n t a r y  i n t r o d u c t i o n  to  s t r ing  t h e o r y  

Before we plunge into the details of the explicit solutions of these string theories, 
let us start with some very general remarks to place this work in the relevant context. 
Recall that  from a perturbative point of view a string theory is a quantum theory of 
excitations (particles) in some space-time X that has an interpretation in terms of 
surfaces, i.e. in terms of maps 

x : X ,  (2.1) 

with ~ a surface of a particular genus. Indeed the 'central dogma'  of string theory 
(see fig. 2.1.) equates (connected) S-matrix elements in space-time with correlation 
functions in a two-dimensional field theory 

g=O 
(2.2) 

Here the object on the LHS is a scattering amplitude in the space-time X whose 
expansion in terms of the string coupling constant A is given by correlation functions 
of vertex operators V °~t, V ~" in a two-dimensional quantum fe ld  theory defined on 
a surface ~ of genus g - -  the world-sheet. Since the correlation functions on the 
RHS should not depend on intrinsic properties of the surface, like the metric and the 
position of the vertex operators, the world-sheet field theory should include in some 
form an integrM over all metrics on the surface, and thus we are naturally lead to 
consider two-dimensional quantum gravity. 

The analogue idea in quantum field theory is well-known: amplitudes in field 
theory can be written as correlation functions in a one-dimensional field theory, i.e. 
quantum mechanics. For example, the usual propagator of a massive scalar field ¢(x) 
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SPACE-TIME 

EFFECTIVE FIELD THEORY 

Fig .  2.1: The 'central dogma' of string theory expresses 
the space-time scattering amplitudes in terms of correla- 
tion functions in a quantum field theory defined on a world- 
sheet surface. In the effective field theory limit, these string 
perturbation contributions correspond to (sums of) point- 
particle Feynman diagrams. 

X 

X 

on X = R d with Lagrangian 

L = ( r e )  ~ + , : 4 ~  (2.3) 

is given by the ampli tude of a part icle to propagate  from x to y, and can be wri t ten 
as one-dimensional path-integral  over a field x(t)  e R a and a metr ic  g(t) on the 
world-line 

1 
x ~ y = ~ x l o ~ - V - ~ l y  ~ 

J I ~ L 

= f[d.][dg]:fd'~('-':+~'). (2.4) 

The path-integral  is subject  to the boundary conditions x(0) = x and x(1) - y. The 
integral over the one-dimensional metric g(t) modulo diffeomorphisms is not very in- 
teresting, and reduces to an integral  over the to ta l  length T of our one-dimensional 
world. In this way we recover the familiar Schwinger parametr iza t ion of the propaga- 
tor 

f [d.l[da]e-: d'~(:':+~2) = ]o ~ dT ( z i : T ( ° ' + ~ ' ) f y ) .  (2.5) 

More complicated Feynman diagrams are t reated by considering maps of graphs P 
into space-time, with overlap integrals for the vertices. 
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In string theory we consider maps x : S 1 --4 X instead of points x E X.  
analogue of the propagator is the two point function 

The 

x(a) ~ y(a) =/[dx][dg]e - f a2"v?(g"'°'~°'x+") , (2.6) 

where x(~r, r )  and 9u~(g, T) axe now a field and a metric on a two-dimensional surface, 
which for a propagator has the topology of a ¢yfinder. We also introduced a two- 
dimensional cosmological constant # that is in some sense the analogue of the mass 
of the string field. 

This definition can now be very naturally extended to include all interactions, just 
by considering the two-dimensional field theory on surfaces ~ with more complicated 
topology 

So, in string theories the two-dimensional metric guy is a fundamental variable 
and the path-integral should include an integral over all inequivalent Riemannian 
structures, i.e. metrics modulo diffeomorphisms. 

The string theories with target space R a (with a flat metric) cast be most easily 
quantized in conformal gauge. One finds the action 

t d2z i -  
S = J %j(a  ax + + + + + (2.8) 

with some appropriate constants al [14] chosen such that the total central charge of 
the z-field and the Liouville field equals 26 and thereby cancels the central charge 
c = - 2 6  of the ghosts b, c. For d arbitrary the Liouville field does not decouple and 
represents an extra degree of freedom. It is a remarkable effect that  the Liouville field 
forms essentially an extra embedding dimension if d ~ 26. Although this effect would 
be an embarrassment for, say, a four-dimensional string describing QCD flux tubes, 
it is a very welcome phenomenon in the case d = 1 that we will be interested in the 
subsequent. For d = 26 the Liouville field decouples, ai = 0, and we obtain a critical 
string. 

2.2. c = 1 s t r i ng  t h e o r y  

The c = 1 string is perhaps the most simple bosonic string theory, and and yet it 
has a very rich structure. We are naturally led to this model, since the class of bosonic 
strings that we wrote down in (2.8) with target space R a is actually inconsistent if 
d > 1. This is a consequence of the famous tachyon instability. The zero-mode of the 
string 

(2.9) 

gives rise to a scalar particle whose mass can be calculated to be 

1 - d  
- (2.1o) 

24 
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This is indeed a tachyon for dimensions larger than one. The worM-sheet interpreta- 
tion of this instability is conjectured to be the formation of long, thin tree-like surfaces 
(branched polymers). However we see that this tachyon field is actually massless in 
dimension d = 1 and massive in d = 0. So here we stand a chance of constructing 
consistent bosonic string theories. We will concentrate on the case d = 1 where the 
space-time physics is more clear. 

This model consists of one free field x that  we couple to two-dimensional gravity. 
So our action reads 

f ~ Z  ~v 
s = J 0.x0  . (2.11) 

Here the field x might be compactified, i.e. , we also consider the case where x is a 
periodic field 

x ~ x + 2~rfl. (2.12) 
Since one scalar field gives a conformal field theory of central charge c = 1, we will 
refer to this model as the e = 1 string. 

As explained above, the Liouville field ¢ does not decouple in this case. With the 
appropriate constants the action reads (not including the ghosts) 

[½h.:(o.:o:x + + Rh¢ + , e  S = f  2r (2.13) 

This Lagrangian effectively describes a sigma model with a two-dimensional target 
space, with the Liouville field regarded as a spontaneously generated extra dimension. 
So we are dealing with a two-dimensional critical string (critical in the sense that  the 
total mat ter  central charge is 26). Of course, because of the background charge and 
the exponential potential, we do not have translation invariance in the ¢-direction. 
The Hilbert space of the model is simply given by the tensor products of the state 
spaces of the free field x, the Liouville field ¢ and the ghosts b, c. 

Physical modes in this model are limited. Since for a string in n dimensions we 
expect n - 2 transverse oscillations, naively only the zero-mode of a two-dimensional 
string theory can be expected to lead to a physical excitation. This field is the massless 
scalar field known as the tachyon. The world-sheet vertex operators that  describe the 
emission/absorption of tachyons of energy w simply read (here and in the subsequent 
w > 0 )  

(2.14) = 

With the explicit factors of a inserted, we see that a genus g correlation function 

T ~- T± < ~ . . .  ~°>~ (2.15) 

scales simply as #2-2g. (This can be seen most easily by shifting the Liouville field by 
¢ --* ¢ - ½ log #. ) Consequently we can identify the string coupling constant A with 
the inverse of the cosmological constant 

1 
= - .  (2.16) 

# 
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If we compactify x, the energies w will be quantized 

z +. (2.17) 0)n = ~ ,  n E  

We will write T, instead of T~.. The point fl = 1 is very special, since it is the 
invariant point under the duality transformation 

--* 1//~, (2.18) 

that  interchanges a large and a small radius of compactification. 
Clearly the 'holy grail' in c = 1 string theory would be the generating functional 

of all connected scattering amplitades. For the compactified case it would read 

F(t,t-) ~ ~ A2~-2{exp ~ ( t , T +  + t~T~-))g 
g=O n 

(2.19) 

In terms of space-time field theory we would have incoming states Ikl,k2,...) with 
k~ tachyons of energy wi and corresponding outgoing states (k l ,k2 , . . .  I, and ~- = e F 
would be the generating function of all matrix elements 

r ( t , ~ ) =  x-" r l  ~ ~ /k z_, 
{k~,~Iid • • 

(2.20) 

Actually there are more degrees of freedom than just the tachyons, but  these so-called 
discrete states appear at very particular energy and momentum [15]. Consequently, 
they do not have an interpretation as propagating particles, but are more analogous 
to quantum mechanical degrees of freedom. 

2,3. M i n i m a l  m o d e l s  

Before we go on and discuss the solution of the c - 1 string theory, we want to 
turn briefly to another interesting class of models, the so-called c < 1 models. These 
models are the unique CFTs with a finite number of irreducible representations of the 
Virasoro algebra. They are labeled by two integers (p, q) which should be coprime. 
It is rather difficult to write a Lagrangian for these models, but  roughly they can be 
described as a c = 1 model with an extra background charge for the scalar field x 

S = / Ox-6x + QRx. (2.21) 

So we loose all translation invariance. Furthermore, the occurrence of screening oper- 
ators and an extra BRST charge make the analysis of the correct physical states much 
more complicated. Nevertheless, these string theories have been completely solved, 
again due to the magic of matrix models. We will just give a brief account of the 
nature of the solution as found in [4, 5]. 



76 

First of all, the spectrum is extremely simple and universal for all (p, q) models 
and the massive deformation that can be obtained of them. For every positive integer 
we have a physical state, so we have vertex operators 

V = O1, O2, O3,. . .  (2.22) 

(The (2, 3) model corresponds to the trvial matter theory and thus gives pure quantum 
gravity as discussed in §1. The operators a~ of (1.19) correspond to O2,+1.) 

According to our discussion above, the string theory correlation functions of these 
operators are on general grounds given by a (complicated and in general unknown) 
integral over moduli space, where the volume form is a correlator in a CFT consisting 
of the minimal model coupled to ghosts and Liouville theory 

(o,~ . . .  o . , ) ,  = f~,,,.(...)o~r (2.23) 

The matrix model techniques give an alternative route to the calculation of these 
correlators, and this result can be summarized as follows. The generating functional 
of correlation functions for the (p, q) model 

o o  

r.,q(t) = exp E ~-~"(exp Z: t -O- ) ,  (2.24) 
g = 0  n 

is a tan-function of the KP hierarchy and all (p, q)-generating functions for fixed p lie 
on one orbit. More precisely, relative to a convenient choice of origin, the (p, q) model 
is obtained as 

rp,q(tk) = rp(tk + 5k,p+q). (2.25) 

Furthermore, the KP hierarchy reduces to the pth KdV hierarchy, which implies that 
all correlation functions of the operators On with n - 0 (rood p) vanish. 

At the point (p, 1) we also have a very explicit representation of the r-function due 
to Kontsevich [12] (for more details "see e.g. [13, 16]). Let Z be an N x N Hermitian 
matrix, and choose particular values for the KP times t .  given by 

t ,  = i T , z - " .  (2.26) 
n 

With this parametrization, the r-function is given by the following matrix integral, 
where Y is also an N × N Hermitian matrix 

r,,l(t) c -1 f d Y .  e ITr(z~Y-~'+'~l~ * p + l  / l  • (2.27) 

Here the normalization eonstaalt is given by 

c = (2~ i /~ )T det(Z ~ ) .-:-=-:, ~'~+, 
A(zp) 

(2.2s) 
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and A(z) is the Vandermonde determinant 

A( z) = det d - '  = I I  (z, - zj). (2.29) 

This rather formidable looking expression for the normalization constant is actually 
very natural. The integral (2.27) can be expanded around the critical point Y = Z of 
the action 

yp+i 
Tr ( Z P Y -  P + 1). (2.30) 

The normalization constant is now just the classical value of the action plus the 
gaussian (one-loop) contribution to the integral 

i . 2 - r , . zp+ , /x  (2.31) e ~ e p + t  - . c /  

where c~ is defined by the Gaussian integral 

= x.l. Y z~ - ze 
t ,3 I - ~  3 

(2~-i/;,)~ A(~) 
= act Z ~  A(zp) ' 

and 

(2.32) 

p - 1  

s (v ,  z )  = ~ Tr [ r z k r z p - ' - ~ ] .  (2.33) 
k : 0  

This representation makes clear that rpj(t) can indeed have an asymptotic expansion 
in the variables t , .  

3.  I n t e g r a b l e  H i e r a r c h i e s  a n d  Q u a n t u m  F i e l d  T h e o r y  

In order to understand better the integrable hierarchies that naturally appear 
in non-critical string theory and in particular the remarkable integral representation 
(2.27), we will now review some relations between quantum field theory and integrable 
systems. We follow the standard exposition of the KP hierarchy [17]. 

3.1. 2d Chira l  q u a n t u m  field t h e o r y  

Consider a two-dimensional free chiral scalar field ~(z), with the usual mode ex- 
pansion 

O~(z)  = E ] ' ~ - z - ~ - ~  • (3.1) 
r l  

Here z = e ;~-~ is a coordinate on a cylinder, with x the periodic space variable and 
r Euclidean time. We have standard commutation relations Inn, am] = n6n+m, and 
a vacumn 10) satisfying ~,10) = 0, n _> 0. The Hilbert space 9t can be considered as 
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the completion of the Fock space spanned by states a - m  - - -a - - . ]0 ) .  The reader is 
encouraged to think about this two-dimensional scalar field as the tachyon field living 
in the space-time with coordinates (x, ¢). Here we roughly have ¢ = r.  

As in the case of a harmonic oscillator one can consider coherent states~ 

It) = exp it.c~_. IO), 
k n= l  / 

(3.2) 

and their Hermitian conjugates 

(t[ = (Olex p -- i t .c~. .  (3.3) 

Now to any state ]W) in the Hilbert space 9i we can associate a coherent state wave- 
function rw(t) by considering the inner product 

~ , , ( t )  = ( t l W )  . (3.4) 

This function is a tan-function of the KP hierarchy if and only if the state [W) lies in 
the so-called Grassmannian. 

To explain the concept of the Grassmannian we have to turn to the alternative 
description of the chiral boson in terms of chiral Weyl fermions ¢(z),  ¢(z) by means 
of the well-known bosonization formulas 

i o ~  = -~¢ ,  ¢ = e'~', -~ = ~-'~" . (3.5) 

These free fermions have mode expansions 

¢(z) = ~ ¢oz-°-+,  
af iZ+~ 

- -  _ a _ l  

af iZ+~ 

and canonical anti-commutation relations 

(3.6) 

(3.7) 

[ fo ,¢b]+ = *o+b, [fo,Cb]+ = [¢o,¢b]+ = 0. (3.8) 

Loosely speaking, the Grassmannian can be defined as the collection of all fewmionic 
Bogoliubov transforms of the vacuum 10). That is, the state IW) belongs to the 
Grassmannian if it is annihilated by particular linear combinations of the fermionic 
creation and annihilation operators. 

(¢,+½ - ~ A.,..~b_,,,+~)IW ) = O, n > 0 , (3.9) 
ra=l 
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or equivalently, 

[W) = S[0), S = exp ( , ,~ A,m~_,_~¢_, ,+~)  . (3.10) 

Note that the operator S can be considered as an element of the infinite-dimensional 
linear group, S E GL(oo, C). 

By replacing the vacuum [0) by the state ]W), we simply made another decompo- 
sition into positive and negative energy states, and filled these new negative energy 
states. The positive energy wave-functions are no longer given by 

z° , z l , z2 , . . .  (3.11) 

but are now replaced by the functions 

Vo(Z),Vl(Z),V2(Z),... (3.12) 

with 

v , ( z ) = z " -  ~ A ~ m z  -m . (3.13) 
m = l  

If one prefers the language of semi-infinite differential forms, we have a formula 

IW) = V o  ^ va ^ . . .  (3.14) 

which should be contrasted with 

Io) = z ° ^ z  ' ^ . . .  (3.15) 

We want to mention at this point one important generalization. In the above fash- 
ion one generates solutions to the KP hierarchy. This construction can be extended 
to give a tau-function for the two-dimensional Toda Lattice hierarchy by considering 
a second set of times tk, as discussed in detail in [18]. In terms of our conformal field 
theory, the Toda tau-func~ion is simply obtained as 

,(t,~) = <~Is, l~) , (3.16) 

with [3) and (t I the coherent states (3.2) and (3.3) and S a general GL(oo, C) element, 
i.e. an exponentiated fermion bilinear of type (3.10). We will return to the Toda 
hierarchy in §3. 

Instead of taking the inner product of the state IW) with a coherent bosonie state, 
one can also consider fermionic N-point functions. In fact, one finds in this way a 
simple expression in terms of an N × N determinant of the wave-functions (3.13) 
[13, 16] 

(g ]¢(z l ) . . .  ¢(zN)]W) = det v j - 1  ( z , ) .  (3.17) 



80 

Using the bosonization formulas, one recognizes this correlation function as a special 
coherent state wave-function (tlW) where the parameters t ,  are given by 

t .  = . ( 3 . 1 s )  
i=1  n 

With this choice of parameterization, and after taking into account a normal ordering 
contribution, the tan-function can be written as 

det  (3 .19)  ' 

with A(z) the Vandermonde determinant. 

3.2. Kon t sev i ch  in tegra ls  and  the  c < 1 mode l s  

We are now in a position to understand the integral representation that we gave 
for the minimal models partition functions rp,q(t). The state IW) corresponding to 
this orbit is most simply described at the (p, 1) point, where a description in terms 
of topological field theory can be given. In the Lax operator description of the KdV 
hierarchies [17], this point can be very efficiently characterized by the following initial 
value for the pth Order linear differential operator L 

L = D p + x. (3.20) 

For an expLicit basis for the state [W) one can take the wave-functions 

/ p ~ l  ~-~-:+"A /.oo .y"  ei(:Y-Pr~ :t)/x (3.21) 
= V -2- Y e'+' " dy " 

where the normalization is chosen such that we have the appropriate asymptotic 
expansion 

Vn(Z) = zn(1 + O(z-1)) . (3.22) 

Since the wave-functions are moments in a Fourier transform, the fermionic determi- 
nant formula can be explicitly evaluated. This is due to the following identity, first 
given by Harish-Chandra, for the integral over the unitary group U(N) [19] 

f det e 'x~yj dUe iTr[UxUtY] = c. A(x)A(y) '  (3.23) 

with dU the Haar measure and zi, yi the eigenvalues of the Hermitian matrices X and 
Y and c some normalization constant. As a special application of the above equation 
consider the matrix Fourier transform, i.e. the integral over a Hermitian matrix Y 
in an external field X,  both N × N matrices, of the form 

"r = [ dY  e i~[xv+v(r)]. (3.24) 
d 
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By conjugation invariance, this is only a function of the eigenvalues x a , . . . ,  xg.  We 
can use (3.23) to integrate out the angular variables U in the decomposition 

Y = U .  d iag (y l , . . . ,  YN)" U t, (3.25) 

which also introduces a 3acobian 

d Y  = A ( y )  ~ . d U  . [dy]. (3.26) 

This leaves us with an integral over the eigenvalues yi of the form 

(3.27) 
J 

Now the Vandermonde determinant A(y) is a sum of terms of the form 

• ,N (3.28) =k Yl . . . .  YN , 

and for each of these terms the integral v factorizes in separate integrals over the 
individual eigenvalues y~. If we introduce the function 

w(x) = / d y .  e '~y+'v(y) (3.29) 

and its derivatives 
= / dy. yk. e,~y+iv(,), (3.30) Wk(Z) 

the contribution of (3.28) is simply 

+ wfi (x l ) . . .  WiN(XN). (3.31) 

So we can evaluate r ( X )  straightforwardly as 

T = det (wi- l (z l ) )  (3.32) 

If we apply this method to the determinant (3.19) of the wave-functions (3.21), we 
find the matr ix  integral (2.27). 

This result can be generalized to the 'generalized Kontsevich model '  [13, 16] which 
features an arbi trary potential V(z) 

~(t) = c .  / D Y .  eiTr(V'(Z)Y-V(Y))/A . (3.33) 

with 
A(Vt(z))  . eiTr(V(Z)_V,(Z)Z)/,X . (3.34) 

c = ( 2 ~ i / ~ ) - - ~  • det V"(Z).  A(z) 
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It has been noticed by many authors that the case p -= - 1 (i. e. a logarithmic potential 
V(z) = log z) is likely to be associated with the c = i model. In the next section we 
will proceed to show that this is indeed the case. 

4 .  T h e  c = 1 S t r i n g  

We will now return to the c = 1 string and discuss its solution within the matrix 
model framework. 

4.1. T h e  c = 1 m a t r i x  m o d e l  

Matrix models have been introduced in two-dimensional quantum gravity to de- 
scribe discretizations of smooth surfaces [1]. We will not explain this method here in 
any detail. The basic idea is that  the path-integral over all metrics on the surface 
can be approximated by a summation over triangularizations. The combinatorics of 
these tesseUations of surfaces by regular polyhedra is organized very efficiently by 
considering the perturbative expansions of Hermitian matrix integrals. 

The coupling of matter fields to theories of quantum gravity, or equivalently ran- 
dom surface models, proceeds by making the matrix variables depend on other (dis- 
crete or continuous) variables. In this fashion the c = 1 matrix model describes the 
quantum mechanics of an N x N hermitian matrix A(x). The real v~iable x should 
be considered as (Euclidean) time. In particular we can opt to compactify x with 
period 2~rfl. This essentially means we consider matrix quantum mechanics at some 
finite temperature 1~ft. As our Lagrangian we choose a simple kinetic term plus a 
potential Tr U(A) with U some polynomial. The partition function is thus given by 

Z(N, fl) = f d A  exp - N / o  dxTr + U(A) . (4.1) 

This model has a nontrivial double scaling limit N ~ oo if we fine-tune the potential 
U to a critical point [6]. The model can consistently be reduced to the eigenvalues A~ 
of the matrix A. The wonderful simple result is that  in the double scaling limit all 
the interesting dynamics is reproduced by considering free fermions ¢(A) moving in a 
potential [6] 

U(A) = - A  2. (4.2) 

This is the famous inverted harmonic oscillator. The physical model is obtained by 
filling, say, the right-hand side of the Fermi sea to a level # from the top of the 
potential (see fig. 4.1. ). This parameter has naturally the interpretation of the 
cosmological constant. All tunneling effects (leaking through the barrier) are thus 
e -u effects. When we recall that  for the two-dimensional string it = l /A, we see that 
all these effects are also non-perturbative in the string coupling constant. They can 
consequently not be given an interpretation in terms of surfaces. 

Of course, the Hamiltonian 

d ~ 
- A ~ ( 4 . 3 )  H d),2 
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Fig. 4.1: The c = 1 matrix  model reduces to a collection o f  
non-interacting ferraions in an inverted harmonic  potential  

has a continuous spectrum. Its eigenfunctions 

H ¢ ~  = w¢~ (4.4) 

can be expressed in parabolic cylinder functions [7]. These functions have the following 
interesting asymptotic  behaviour. In the limit A --~ oo they behave as 

¢~(~) ~¢o(~)e'~(~*-~) (4.5) 

where the new variable r is defined as 

A = 2Vrff cosh r. (4.6) 

Tha t  is, in (x, r)-coordinates we find at spatial infinity (up to a factor) relat iv is t ic  

fermions. 
Of course, the incoming and outgoing wave functions are not independent.  They  

are related by a one-particle scattering process. Tha t  is, in general we will have 

¢Y' = ~. eL" (4.7) 

where / ~  is the reflection factor that  is fully determined by the shape of the po- 
tential. In this case the potential is the inverted quadratic,  and the factor R~ can 
be determined by a straightforward, but non-trivial, calculation. The  outcome of 
the calculation certainly depends on how we treat  the LHS of the potential.  In the 
symmetr ic  case we find [9] 

. . . . .  r ( i  - i , + ~ )  
n ~ =  ~-~)  ~ ( T _ i ,  ) (4.8) 

In some sense, this function is all one should know about  the c = 1 mat r ix  model 
in order to understand the scattering of tachyons. One verifies easily per turbat ive  
unitari ty 

/~,R*_~ = 1 + O(e-") .  (4.9) 
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••outgoing tachyons 

bosonization 

outgoing fermions 

( ~  scattering 

~ N ~ n c o m i n g  fermions 

fermionization 

~ coming tachyons 

Fig. 4.2: The calculating of tachyon scattering amplitudes 
proceeds through fermionization and bosonization. 

In the Euclidean case we cannot really speak about scattering~ since there are no 
separate past and future null infinities. We simply have a mixing of left and right- 
movers, given again by the factor R~. In the compactified case, to which we will 
restrict for the remainder, the energies will be furthermore quantized and are given 
by (recall the fermions are naturally anti-periodic) 

1 1 
~ .  = ~(n  + ~), n e z .  (4.10) 

The fermion S-matrix is now defined by 

¢ ' - ( z )  = s¢o~'(=)s -', Tn(= )  = s ~ O . , ( . ) s _ , ,  (4.11) 

with 
S =: exp [ ~ log r~ .1.out .-7:0. ut ] ~,~.W_(m+½)Wm+½j : (4.12) 

mEZ 

In order to calculate the tachyon scattering amplitudes we can now adopt the following 
simple strategy described in [9] (see fig. 4.2. ). At spatial infinity the incoming and 
outgoing tachyons can be expressed in fermions through the standard formulas of 
relativistic fermionization and bosonization in two dimensions. The fermions have 
very simple scattering properties. Individual fermions just scatter with a reflection 
fac tor /~ .  In particular the number of fermions (and not only the fermion number) is 
conserved. After the scattering process the fermions propagate to infinity where they 
can be reassembled into bosons. 
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Thus we may write the full generating functional for connected Green's functions 
in terms of a single free boson 

X-'a z - n - 1  (4.13) o ~ ( ~ )  = z._, - 
71 

This scalar field should be thought of as the asymptotic limit of the tachyon field at 
r~ or equivalently ¢,--~ co, where the Liouville interaction can be ignored. We now 
have a very simple representation for the generating function of all amplitudes [10] 

~(t ,  3) = (~lSl~), (4 .14)  

where the S-matrix is given by (4.12) and the coherent states now include an extra 
factor of # 

It-) = exp i . L ~ _ .  10), (tl = (0[exp - - i t L t , a ,  . (4 .15)  

This formula is an enormous simplification over previous expressions for c = 1 ampli- 
tudes. It emphasizes the analogy with the c < 1 results which we recall were of the 
form 

r ( t )  = ( t l w )  = ( t l s lo} .  (4 .16)  

In particular we observe immediately from (4.14) that the c = 1 string forms a real- 
ization of the Toda Lattice hierarchy. 

4.2. T h e  K o n t s e v i c h - P e n n e r  m o d e l  

As we have seen the partition function of the c = 1 string is a solution of the Toda 
Lattice hierarchy. For fixed values of the incoming times tk, the partition function 
r(t,t-) becomes a solution of the KP hierarchy. We want to determine in more detail 
the element W~ in the Grassmannian that parametrizes this particular orbit of the 
KP flows. To this end we have to consider the state 

[W~) = S .  U~I0), U? = exp f i  i # l . a _ ,  . (4.17) 
r t = l  

We will describe IWr) by giving a basis vk(z;t), k > 0, of one-particle wave-functions. 
First we observe that  the operator U~ acts on the wave-functions z n by simple multi- 
plication 

v~: 2o - ~  exp (5 :  ~"~'z-k) " Z n " (4.18) 

Similarly we have for the action of S a multiplication 

S : z ~ -~ _~ .  z" . (4.19) 
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We have already seen that  the reflection factors Rn contain all the relevant information 
of the c = 1 matrix model. At radius fl they can be chosen to be 

- i u +  ~1 
R. = ( - i u ) - ~  r(~r(  ½ _ i~) (4.20) 

(Recall, we are only interested in the perturbative part  in #-1 of this expression.) 
The usual vacuum 10) is spanned by the non-negative powers z k. Therefore the basis 
elements vk(z; t) of W~ are simply determined as 

vk(z;~) = c~ . s u ~?  , (4.21) 

with a normalization constant ck such that  vk(z; O) = z k. (This corresponds to the 
normal ordering of the S-matr ix  in (4.12).) Since the reflection factor is basically a 
gamma function, the result can be expressed as a Laplace transform 

vk(z;t) = c ' (z) ,  fo°°dy .y  k .y-iUZ+(~-l)/ZeiV(v/Z)aexp (~ ,  ilttky -k) (4.22) 

Here the constant c'(z) is given by 

c'(z) = n ( - i ~ / z ~ ) ~ - ' .  (4.23) 
v q r ( ~  - i~) " 

These integral representations are of Kontsevich type if and only if/3 = 1, tha t  is, 
only at the self-dual radius. Indeed in that  case we have 

v k ( z ; ~ ) = c ' ( z ) ,  f o ° ° d y . v k . e x p i u ( y l z - - l o g y +  ~ ,~ky -k )  . (4.24) 

Therefore, following the procedure of §2.2 we can write the following matrix integral 
representation for the generating functional. Define the integral 

o'(Z, t) = [ dYe ivTr[yz-~+v(Y)] , (4.25) 
d 

where 
V(Y)  = - log Y + ~ tkY -k , 

and we integrate over positive definite matrices Y. Then we have 

with the parameterization 

(4.26) 

]2 - 1  
t ,  = TrZ-"  . (4.28) 

n 

~(z ,  ~) (4.27) T(t,~) - : ( z ,  o) ' 
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Note that with tMs normalization r(t, 0) = 1, which is appropriate since we consider 
normalized correlation functions. In order to write down the result we had to treat the 
incoming and outgoing tachyons very differently, paxametrizing the outgoing states 
through whereas the coupling coefficients to the incoming states enter the matrix 
integral in a much more straightforward fashion. 
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A geometr ic  construct ion  of so lut ions  
of the  Toda latt ice hierarchy 

G.F. Helminck 

University of Twente, Faculty of Applied Mathematics, P.O.Box 217, 7500 AE Ensehede 

A b s t r a c t .  In this paper we present an analytic and geometric framework for the construction 
of solutions of the Toda lattice hierarchy. 

Introduction. In JUT] , Ueno and Takasaki introduced the Toda lattice hierarchy, a system 
of nonlinear differential difference equations. Their approach is of a formal character and 
does not consider convergence questions for the objects they are dealing with. Here we will 
describe a convergent setting in which one can construct solutions of the system mentioned 
above. A more detailed description of the different sections is as follows: the first section 
contains the algebraic formulation of the hierarchy in Lax-form and the reduction of the 
system to a set of equations for so-called "wavematrices". In the second section we give the 
geometric setting for the construction of the convergent solutions. The final section gives the 
construction of the wavematrices and the proof that they satisfy the equations discussed in 
the first section. 

§1 The equations. 

1.1 Since the Toda lattice hierarchy is defined as a system of differential equations for the 
matrixcoefficients of a number of Z x Z-matrices, we first introduce some notations. 
Let R be a commutative ring. Then we write Mz(R) for the R-module consisting of Z x Z- 
matrices with coefficients from R. If A = (Aij) and B = (Bij) belong to Mz(R),  then the 
product A.  B in Mz(R), where 

(A. B)ik = ~ AijBjk, 
jET~ 

is only defined for special A and B. It always exists if A or B belongs to the diagonalmatrices 

T)(R) = {A[A e Mz(R),  Aij = 0 i f i  ¢ j}.  

Moreover an element A of 79(R) is invertible if and only if all the Aii a r e  invertible in R. In 
the sequel, an important  role is played by the element A of Mz(R) given by 

l i f j  = i - 1  
A i j =  0 i f j ¢ i - 1 .  
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It has an inverse A -1 with entries given by 

( A - 1 ) i / =  i f j  ¢ i + 1. 

The matr ix A acts on Z)(R) by conjugation: (AdA-")Z = dj_~_, for all d C T)(R) and 
all j E Z. Moreover, for each k E Z and each d E ~(R) ,  the element dA k, has only on the 
"kth-diagonal" possibly non-zero entries, i.e. 

(dAk)i j = ~ dj+kj+k if i = j + k 
( 0 ifiT~ j +k .  

Therefore we can write each element A in Mz(R) uniquely as 

1.1.1 A = E akAk' with ak E :D(R). 
kEZ 

To the decomposition (1.1.1) we link some notations: if A is as in (1.1.1) then we write 

1.1.2 A+ = E akAk and A -  = E akAk" 
k_>O k<o 

Inside M'z(R) we consider 2 subspaces that form an algebra w.r.t, the product. 

1.1.a Def in i t ion .  An element A E Mz(R) is called uppertriangular of level k, if it can be 
written as 

A = E atAl' with at E :D(R). 
l>_k 

The collection of all these elements we denote by UTk. It is a direct verification that 
UT := U UTk is an algebra with the product introduced above and that  an element of 

kEY~ 
UT is invertible if and only if the leading diagonalcomponent is invertible. Likewise one can 
introduce 

1.1.4 D e f i n i t i o n  An element A C Mz(R) is called lowertriangular of level k, if it can be 
written as 

A = E alAl' with el E Z)(R). 
t_<k 

The collection of all these elements we denote by LTk. If we put again LT := U LTk, then 
kEZ 

LT is an algebra and an element is invertible in LT if and only if its leading diagonal part is 
invertible. 
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1.1.5 R e m a r k  The product of an element in LT and an element in UT is in general not 
defined and requires some convergence conditions on both factors in order to make sense. 

1.2 The hierarchy we are interested in can conveniently be formulated in terms of a matrix 
in LT1 and a matrix .~I in UT_1 of the form 

1.2.1 L = A + Z "[jA-j and 3~¢ : ~ r~iA i with rh-a invertible. 
j>0 i_~--I 

For all relevant j and s, we will write [j(s) and ~j(s)  instead of ([j),, and (rhj) , . .  To a pair 
(L,/~/) as in 1.2.1 we associate for all n > 1 the elements B~ and C~ in UT N LT defined by 

B .  = (L")+ and c .  = (M")_. 

The equations of the hierarchy will consist of a system of differential difference equations for 
the elements {/j(~), ff~(s)). In order to give the algebraic description of the hierarchy, we 
consider the {/j(s), r~q(s)) first as free commuting variables and we take for R the algebra 
B = C[~] (~) ,  ~ '~(~),  ~-~,(~)-~ ' ] ,  where j C N, ']  E Z , ' ]  > _~z, and s G Z. Clearly, one can 
define a C-linear derivation of B by simply prescribing the image of all the Ij(s) and all the 
rh~(s). In Mz(B) the following commutators exist and belong to the indicated subsets 

[Bn, L] = [-(L)"_,L] e LTo 

[c., ~1 = [- (~")+,S¢]  e UT-1 

[B,. f¢l e UT_~ and [C., L]e  LT0 

In the light of the foregoing remark, we can define C-linear derivations 0,, and c~, of B by 
the equations 

1.2.2 O,. L = lB., g], O,° ~ = [B., M], 

1.2.3 b~°L = [ c . , L ] ,  b~°F~ = [ c . , ~ ] .  

Let R be a general C-algebra and let (L, M) be a pair of elements in Mz(R) of the form 1.2.1. 
These data  are the same as giving a C-algebra homomorphism c~ : B --~ R by the prescription 

1 .2 .4  ~(~j(~))  = ( t j ) .  and ~ ( ,~ , (~ ) )  = ( . ~ , ) . .  
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The map a defines by coefficientwise action a C-linear map a : A4z(B) ~ Mz(R) and we 
have L = a(L)  and M = a(.~/). Now we would like to have derivations 0t. and 0 , . ,  n _> 1, of 
R that are prolongations of the derivations 0t. and 0~. defined by 1.2.2 and 1.2.3, i.e. they 
should satisfy for all n _> 1, 

1.2.5 a o Ot. =Or. o a and a o Os. = Os. o a. 

One directly verifies that condition 1.2.5 is equivalent to showing that the pair (L ,M)  and 
the derivations {Or., Os., n > 1} satisfy the equations 

1.2.6 i rl Ot.L = [( )+,L],Ot.M = [(L")+,M], 

1.2.7 O~ M = [(M)"_,M] and Os.L = [(M)"_,L]. 

The equations 1.2.6 and 1.2.7 are called the equations of the Toda lattice hierarchy, since 
the simplest non-linear equations contained in it are that of the generalized Toda lattice, see 
[UT]. The data (R, 0t . ,  0~., a ( L ) , , ( M ) )  we call a solution of this hierarchy. 
LFrom now on, we assume that R is a C-algebra of functions in the parameters {thin >_ 1} 
and {shin >_ 1}, that it is stable under taking the partial derivative 0¢. resp. 0s. w.r.t. 
t,~ resp. s , ,  and that R contains C [ ~ , ~ ,  ~ _> ~z]. We will now comment on the linear 
problem associated to (1.2.6) and (1.2.7) in [UT]. There they considered "operators" W (°°) 
and W(°) of the form 

i¥(~)  ---- ~(oo) . exp( E t,A/) := { Id T E w ~ ) A i }  e x p ( E  tiAi) and 
i > 0  i<0  i > 0  

IV(0) = ~ ( 0 ) .  exp( E s iA - i ) :=  { E w ~ ° ) A i ) e x p ( E  s iA-i ) '  with w~ °) invertible, 
i > 0  i_>0 i>0  

where all the w~ °~) and w~ °) belong to :D(R) and such that w~ °) is invertible in 79(R). 
Since W (~) and W (°) are products of an element in UT and in LT,  these products make in 
general no sense in Mz(R)  and one must give some convergent context such that W (°~) mad 
W (°) can be seen as elements of AIz(R). This will be done in the second and third section. 
In that case one notes that both W (c¢) and W (°) are invertible in Mz(R).  
If W ~ and W ° are well-defined elements of Mz(R), then we will call them wavematrices in 
Mz(R).  The linear system associated with (L, M) consists of the following equations that 
couple the wavematrices to the pair (L, M), 

1.2.8 L W  (°°) = W(~)A and M W  (°) = W(°)A -a, 
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0t, W (°~) = B n W  (~) and Or, W (°) = B,~W (°) for all n _> 1, 

1.2.10 Os W (°°) = CnW (~) and Os W (°) = C,~W (°) for all n > 1. 

Since W (~) and W (°) axe invertible, equation (1.2.8) lead to 

1.2.11 L = W ( ~ ) A W  ( ~ ) - '  and M = W(°)A-aW(°) - ' .  

By differentiating the equations in (1.2.8) w.r.t, the variable tn resp. sn and by substituting 
(1.2.9) resp. (1.2.10), we get that L and .~1 defined by (1.2.11) satisfy the equations (1.2.3). 
In the rest of this paper we present a geometric context from which one can construct wave 
matrices W (~) and W (°) in Mz(R)  that satisfy (1.2.9) and (1.2.10). The operators L and M 
defined by (1.2.11) are then the solutions of the Toda lattice hierarchy. 

§2The g e o m e t r i c  se t t ing .  

2.1 Let H be a complex Hilbert space with orthonormal basis {ei[i E Z} and innerproduct 
< -[. >. The space of bounded linear operators from H to H, we denote by B(H)  and we 
assume it to be equiped with the operator norm. Its group of invertible elements is denoted 
by Gl(H). The group GI(H) is an open part of B(H)  and as such, it is a Banach Lie group 
with Lie algebra B(H). 

2.1.1 N o t a t i o n  To each operator g in B(H)  we associate a Z x Z-matrix [g] = ([g]i j)  in 
Mz(C) by putting [g]ij = <  g(ej)lei > , i , j  e Z. 

Next we introduce some Lie subgroups of Gl(H) and their corresponding Lie algebras. First 
of all we have the Borel subgroup B+ and the "opposite" Borel subgroup B_ given by 

B+ = {gig • GI(H), [g]ij = 0 = [g-lliy for all i < j} ,  

B_ = {gig • GI(H), [glij = 0 = [g-alij for all i > j}.  

Their Lie algebras L(B+) and L(B_)  satisfy 

L(B+) = {bib • B(H),  [b]ij = 0 for all i < j}  

L(B_)  = {bib e B(H),  [b]ij = 0 for all i > j} .  

As in the finite-dimensional case, B+ and B_ are the semi-direct product of a diagonal group 

D = {gig • GI(H), [g]ij = 0 for all i ¢ j}  

and the unipotent subgroups U+ respectively U_ given by 
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U+ = {gig E B+, [g]ii = 1 for all i E Z} and U_ -- {0115 E 1I$_, [15]-~m = ~ for all ~ E Z}. 

Their Lie algebras are denoted respectively by L(D), L(U+) and L(U_). Since B(N) decom- 
poses as 

B(H) = L(U_) ® L(D) @ L(U+ ) 

and exp is a local diffeomorphism around zero, we see that 

O1 = B + U -  and 02 = U - B +  

are open subsets of GI(H). We will give another characterization of O1 and 02. For each 
n E Z, let H ,  be the topological span of the {ei[i >_ n} and let p ,  be the orthogonal projection 
onto Hn. If one decomposes an operator g E O1 and h E 02 w.r.t. H = Hn G H~,  then one 
computes directly that for all n E Z 

2.1.2 (g~l(~) m2(~)) with g:~(~) e az(H~) and 

2.1.3 h = / th l l (~ ' )  h12(71)'~ with hll(n) E Gl(Hn). 
~, h21(n) h22(n)7 

Reversely, these properties characterize the sets O1 and 02, for we have 

2.1.4 P r o p o s i t i o n  The sets O1 resp. 02 consist of all g resp. h in Gl(H) satisfying (2.1.2) 
resp. (2.1.3) for all n E Z. 

P r o o f  We give the proof for 02, the one for O1 is similar. Take any n E Z then one has 

Id 
h = \ ffh21(n)h~1(n)_ 1 0 i d )  ( h l ~ n )  h12(n) "~ 

h22(n) - h21(n)hll(n)-lh12(n) ]" 

Hence we may assume h21(n) = 0. With respect to the decomposition H,~ = <  en > @H,+I 
we have that 

h ~ ( n ) =  ( h 1 1 ( ; + 1 )  5 f l )=  ( T h ~ l ( I d l ) _ ~ l  Od) ( h l ~ ( , : + l )  , ) .  

Continuing in this fashion we can find an Ul in Gl(Hn) and a b~ in Gl(Hn) such that h~l(n) = 
Ulbl and their matrices w.r.t, the {ek]k > n} have the form 

Ul] --~ 1 and [bl] = 0 * 
",. " .  " ,  

• 0 . . .  0 
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Since h belongs to 02 and since we may assume h2,(n) = 0, one sees that h22(n) decomposes 
w.r.t. H ~  = <  e~-i  > (~H~_, as 

h 2 2 ( n ) = (  c~'% h22(n/3'-l)) w i t h a l ~ i 0 "  

Hence we can solve by a step by step procedure that there is a u2 and a b2 in GI(H~) such 
that h22(n) = u262 and such that their matrices w.r.t, the {ek[k < n} have the form 

(i 0 
[ u 2 ] =  1 

@ ". 

" -  . .  

and [~2] = 

0 " ' -  

By combining the ul, u2, ha, b2 and h,2(n) and h21(n), one finds the desired decomposition of 
h. This concludes the proof of the proposition. [] 

2.2 Next we introduce the flows that play a role in the Toda lattice hierarchy. For each open 
neighbourhood U of {,~IA ~ C, [AI = 1¢}, consider 

F(U)=(Eai'ki I 2ezE~zAZisah°l°m°rphie~function: U ~ C *  J 

with the topology of uniform convergence on compact subsets. It is a group w•r.t, point wise 
multiplication. Let F be the direct limit of the F(U) with the corresponding topology• Inside 
[" we have the subgroups f'+ and f'_ given by 

f'+ = { e x p ( ~  t # )  e t'} and f'_ -- {e : ,p (~  ~ja-i)  e f'}. 
i>0 j>0 

According to [HP], each element 3' in F can be decomposed uniquely as follows 

2.3.1 7---- 7+7 -Aka, with 7+ E F + , 7 -  E F _ , k  E Z and D E C*. 

Let F(o) be the subgroup of P consisting of all 7 in F with k equal to zero. The group 
maps continuously into GI(H). For, let A : H --~ H be the shift operator defined by 

= E ,oi+l 
i 

Then we define a continuous embedding M : F --~ GI(H) by 

M(.y) = M ( ~  a,~') = ~ a,a'. 
iEZ iEZ 
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The image under M of r , F + , F _  and F(o), we denote respectively by F , F + , F _  and P(o). 
Note that  F(o) corresponds exactly with the intersection of P with the open sets O1 and O2. 

2.2.2 R e m a r k  Since the Z × Z-matrix of 3_ is exactly the matrix A from section (1.1), it 
will be clear that the matrices of elements of F+ and P_ are exactly the matrices occurring 
in the wavematrices of section (1.2). 

§3 The construct ion  of  the  solutions.  

3.1 Inside GI(H) we consider the open subset f~ defined by 

a = r ( o ) o ~ r ( o )  

Since F(o) is the union of the a r + F _ ,  with a E C*, and since the open set 02 can be written 
as U_B+, we see that 

f / =  F+O2F_. 

The set f2 is not equal to GI(H), for if one considers for example the orbit F+AkF_,  with 
k ~ 0, then it has empty intersection with 02. For, each g in F+AkF_ decomposes w.r.t. 
H = H .  G H .  x a s  

gli  ~ with gll  a Fredholm operator of index - k. g12 
g = \g21 g22] ' 

Hence, by ]emma (2.1.4) these elements do not belong to 02. Now we take elements 7+ in 
F+ and 7 -  in F_ such that  

7+ = ~+(t) = e x p ( ~  tih_ i) and 7_ = Z-(s)  = e x p ( ~  s jA-J) ,  
i>0 j>o 

and we consider the left F+-fiow and the right F_-flow in fL That  is to say, we choose a g i'll 
f~ and we look at 

G(t, s) = 7+9,~ -1. 

Clearly G is a holomorphic map from P+ x F_ to Gl(H) and since g belongs to f~, we have 
that G-1(02) is a non-empty open subset of P+ x P_. For the ring R in the first section we 
take now the ring of holomorphic functions on G -a (O2). For all (7+(t), 7 - ( s ) )  in G -1(O2), 
we have a decomposition 

3.1.1 G(t, s) = W(~)(t, s) -1W(°)(t, s), 

with W(~)(t ,s)  E U- and W(°)(t,s) C B+. If we write W(~) resp. ~(0)  for the matrices of 
~(oo) resp. ~'(0), then the coefficients of these matrices belong to R, and they decompose as 
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W(00) = A ° + E ~_~00)A j,  with ~ °~) E D(R)and 

~(0)  = ~X~-~ w!°)A i _ ,  , with w--i(°) E D(R) and~_~(°)invertibleinD(R). 
i > 0  

Next we introduce the operators )4;(00) and )'V (°) in Gl(H) by 

W(oo) = ~(o~) .  7+ and VV (°) = ~ ( 0 ) .  7- -  

Denote the matrices of )IV (00) and W (°) by W (°~) resp. W (°). The set-up has been chosen 
such that in Mz(R) the products of ~o~) and [7+] and of ~(0)  and [7-} are well-defined and 
that they are equal to W(00) resp. W (°). Again the coefficients of W(00) and W (°) belong to 
R. Moreover they have the form of a "wavematrix" as considered in section (1.2). 
To W (~) and W (°) we associate the Lax-matrices L and M according to 

3.1.2 L a = W ( ~ ) A W  (¢~)-1 = W ( ~ ) A W  (00)-~ and Mg = W(°)AW (°)-1 = W(°)AW(°)-a. 

We are now ready to prove the main result. 

3.1.3 T h e o r e m  (a) If g belongs to f/, then the matrices L 9 and Mg constructed in (3.1.2) 
are solutions of the Toda lattice hierarchy. 
(b) If (f_ E F_,6+ E F+ and a E C* then the constructed solutions of the Toda lattice 
hierarchy corresponding to g and 6_ga~+ are the same, i.e. 

Le_ga6+ = L~ and Me_ga~+ = ~Ig. 

P r o o f  First of M1 we note that W (°) and )4; (°~) are constructed in such a way that W(00)[9] = 
W (°). Hence, if we can proof 

Ot. W (00) = B , W  (°°) for all n > 1, 

then the same equations holds for W (°). Analogously, it suffices to prove 

08. W (°) = CnW (°) for all n > 1, 

to get these equations for W (°~). Consider first the equations (1.2.9). On one hand we have 

at. IV (°°) --- at, (~  -'7(°°) ) exp( E tiA i) + I'~(°°)An exp( E tiA i) 
i > 0  i > 0  

= {a,°(~(00)) + ~(~)A"}~(00)- '  W(00) 

= { a , ° ( ~ > ) f ~  (¢~)-1 + r"}w(00). 

On the other hand, if we differentiate W(°)[9] -1, w.r.t, tn, we get 
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0t. W (°)[g]-I = Or. (~(o))  exp( E s/A-J)[g]-I  
j>o 

= {a,o (f#(o))~(0)- '  }~(o0) 

= { ~  ~kAk}~ (~). 
k>O 

In particular we may conclude that 

b~A ~ = {O,o(~(~))~(~)-' + Z~}+ : (z~)+ : Bo. 
k>O 

The second equality in this equation follows from the fact that 0~, (~(oo)) is lowertriangular 
of level -1 .  The equations (1.2.10) are also obtained by differentiating once W (°) and once 
w(~)[g]: 

(9,,,(W (°)) = {as. (W (°>) + W(°)A -1 ] exp( E sjA -j) 
j>o 

= {o,o(W(o))W(o)-' + Mn}W (o) 

o,. (~(~)[g]) = o,o (~)) exp(~ t~A ~) 
{>o 

= { o , o ( W ( ~ ) ) W  (~)-' }W(~)b]. 

Since 0~, (W (°°)) is  lowertriangular of level - 1  and 0,,  (~(0))  is uppertriangular of level 0, 
we get that 

{o ,o(~(o¢))W (~)- '  ] = { o , o ( W ( ° ) ) ~  (°)-' + M U -  = (M")_ = C~. 

This proves the equations (1.2.9) and (1.2.10) for L a and A{rg and the first part of the theorem. 
Next we consider ~ -- 6_ga6+, with a 6 C*,6_ 6 ~<-,(~+ 6 .<+ and g 6 fL It belongs again 
to f~ and, since 6_, 7+, 6+ and 7-  commute the corresponding wavematrices are easily seen 
to have the form W(°°)[~_] -1 and W(°)[6+]a, where W (°°) and W (°) are the wavematrices 
belonging to g. This implies that L# and M# are given by 

L~ = W(~)[O_l-'a[o_]fY (~)-' = L, and 

M~ = W(°) [0+]aA-'a -1 [0+]-' W( °)-' = W(°)AW (°)-' : M,. 

This concludes the proof of the theorem. [] 
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These notes provide an introduction to the theory of random matrices. The central 
quantity studied is r(a) = det (1 - K) where K is the integral operator with kernel 

1 sin r (z  - y) XI(Y). 
7r x - y 

Here I = [-Ji (a2j-l,a2J) and XI(Y) is the characteristic function of the set I .  In the 
Gaussian Unitary Ensemble (GUE) the probability that no eigenvalues lie in I is equal 
to v(a). Also v(a) is a tau-function and we present a new simplified derivation of the 
system of nonlinear completely integrable equations (the aj's a r e  the independent 
variables) that were first derived by Jimbo, Miwa, M6ri, and Sato in 1980. In the 
case of a single interval these equations are reducible to a Painlev~ V equation. For 
large s we give an asymptotic formula for E2(n; s), which is the probability in the 
GUE that exactly n eigenvalues lie in an interval of length s. 

I. INTRODUCTION 

These notes provide an introduction to that aspect of the theory of random matrices 
dealing with the distribution of eigenvalues. To first orient the reader, we present in 
Sec. II some numerical experiments that illustrate some of the basic aspects of the sub- 
ject. In Sec. III  we introduce the invariant measures for the three "circular ensembles" 
involving unitary matrices. We also define the level spacing distributions and express 
these distributions in terms of a particular Fredholm determinant. In Sec. IV we explain 
how these measures are modified for the orthogonal polynomial ensembles. In Sec. V we 
discuss the universality of these level spacing distribution functions in a particular scaling 
limit. The discussion up to this point (with the possible exception of Sec. V) follows the 
well-known path pioneered by Hua, Wigner, Dyson, Mehta and others who first developed 
this theory (see, e.g., the reprint volume of Porter [39] and Hua [18]). This, and much 
more, is discussed in Mehta's book [27f--the classic reference in the subject. 

An important development in random matrices was the discovery by Jimbo, Miwa, 
M6ri, and Sato [22] (hereafter referred to as JMMS) that  the basic Fredholm determinant 
mentioned above is a r-function in the sense of the Kyoto School. Though it has been 
some twelve years since [22] was published, these results are not widely appreciated by the 
practitioners of random matrices. This is due no doubt to the complexity of their paper. 
The methods of JMMS are methods of discovery; but now that  we know the result, simpler 
proofs can be constructed. In Sec. VI we give such a proof of the JMMS equations. Our 
proof is a simplification and generalization of Mehta's [29] simplified proof of the single 
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interval case. Also our methods build on the earlier work of Its, Izergin, Korepin, and 
Slavnov [19] and Dyson [13]. We include in this section a discussion of the connection 
between the JMMS equations and the integrable Hamiltonian systems that appear in 
the geometry of quadrics and spectral theory as developed by Moser [35]. This section 
concludes with a discussion of the case of a single interval (viz., probability that exactly 
n eigenvalues lie in a given interval). In this case the JMMS equations can be reduced to 
a single ordinary differential equat ion-- the Painlev4 V equation. 

Finally, in Sec. VII we discuss the asymptotics in the case of a large single interval of the 
various level spacing distribution functions [4, 43, 31]. In this analysis both the Painlev4 
representation and new results in Toeplitz/Wiener-Hopf theory are needed to produce 
these asymptotics. We also give an approach based on the asymptotics of the eigenvalues 
of the basic linear integral operator [15, 27, 40]. These results are then compared with the 
continuum model calculations of Dyson [13]. 

II. NUMERICAL EXPERIMENTS 

The Gaussian orthogonal ensemble (GOE) consists of N x N real symmetric matrices 
whose elements (subject to the symmetric constraint) are independent and identically 
distributed Gaussian random variables of mean zero and variance one. Pioneers in the 
simulation of random matrices were Porter and Rosenzweig (see, e.g., pgs. 235-299 in 
[39]). Today one can easily use a Gaussian random number generator to produce a 
"typical" such matrix. Given this matrix we can diagonalize it to produce our "random 
eigenvalues." Using the software MATHEMATICA, 25 such 100 x 100 GOE matrices were 
generated and Fig. 1 is a histogram of the density of eigenvalues where the x-axis has been 
normalized so that all eigenvalues lie in [ -1 ,  1]. Also shown is the Wigner  semicircle law 

p w ( x )  = "~x/'l - x 2. (2.1) 
T" 
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FIG. 1. Density of eigenvalues histogram for 25, 100 x 100 GOE matrices. Also plotted is 
the Wigner semicircle which is known to be the limiting distribution. 
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FIG. 2. Density of eigenvalues histogram for 25, 100 x 100 symmetric matrices whose ele- 
ments are uniformly distributed on [-1,1]. Also plotted is the Wigner semicircle distribution. 

Given any such. distribution (or density) function, one can ask to what extent is it 
"universal." In Fig. 2 we plot the same density histogram except we change the distri- 
bution of matrix elements to the uniform distribution on [ -1 ,  1]. One sees that  the same 
semicircle law is a good approximation to the density of eigenvalues. See [27] for further 
discussion of the Wigner semicircle law. 

A fundamental quantity of the theory is the (conditional) probability that  given an 
eigenvalue at a, the next eigenvalue lies between b and b+db: p(0; a, b) db. In measuring this 
quantity it is usually assumed that the system is well approximated by a translationally 
invariant system of constant eigenvalue density. This density is conveniently normalized to 
one. In the translationally invariant system p(0; a, b) will depend only upon the difference 
s := b -  a. When there is no chance for confusion, we denote this probability density 
simply by p(s). Now as Figs. 1 and 2 clearly show, the eigenvalue density in the above 
examples is not constant. However, since we are mainly interested in the case of large 
matrices (and ultimately N --+ c¢), we take for our data the eigenvalues lying in an interval 
in which the density does not change significantly. For this data we compute a histogram 
of spacings of eigenvalues. That is to say, we order the eigenvalues Ei and compute the 
level spacings Si := Ei+1 - Ei. The scale of both the x-axis and y-axis are fixed once 
we require that the integrated density is one and the mean spacing is one. Fig. 3 shows 
the resulting histogram for 20, 100 x 100 GOE matrices where the eigenvalues were taken 
from the middle half of the entire eigenvalue spectrum. The important aspect of this data  
is it shows level repulsion of eigenvalues as indicated by the vanishing of p(s) for small s. 
Also plotted is the Wignev surmise 

pw(s) = ~sexp -- s 2 (2.2) 
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FIG. 3, Level spacing histogram for 20~ 100 × 100 GOE matrices. Also plotted is the Wigner 
surmise (2.2). 
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FIG. 4. Level spacing histogram for 50, 100 × 100 symmetric matrices whose elements are 
uniformly distributed on [-1, 1]. Also plotted is the Wigner surmise (2.2). 

which for these purposes numerically well approximates the exact result (to be discussed 
below) in the range 0 < s < 3. In Fig. 4 we show the same histogram except now the data 
are from 50, 100 x 100 real symmetric matrices whose elements are iid random variables 
with uniform distribution on [-1,  1]. In computing these histograms, the spacings were 
computed for each realization of a random matrix, and then the level spacings of several 
experiments were lumped together to form the data. If one first forms the data by mixing 
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tion. 
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Level spacing histogram for mixed data sets. Also plotted is the Poisson distribu- 

-together the eigenvalues from the random matrices, and then computes the level spacing 
histogram the results are completely different. This is illustrated in Fig. 5 where the 
resulting histogram is well approximated by the Poisson density e x p ( - s )  (see Appendix 
2 in [27] for further discussion of the superposition of levels). There are other numerical 
experiments that  can be done, and the reader is invited to discover various aspects of 
random matrix theory by devising ones own experiments. 

III. INVARIANT MEASUI~ES AND LEVEL SPACING DISTRIBUTIONS 

A. Preliminary Remarks 

In classical statistical mechanics, the microcanonical ensemble is defined by the measure 
that  assigns equal a priori probability to all states of the given system (which in turn is 
defined by specifying a Hamiltonian on phase space) of fixed energy E and volume V. 
The motivation for this measure is that after specifying the energy of the system, every 
point in phase space lying on the energy surface should be equally likely since we have 
"no further macroscopic information." In the applications of random matrix theory to 
quantum systems, the Hamiltonian is modeled by a matrix H. However, in this case we 
give up knowledge of the system, i.e. H itself is unknown. Depending upon the symmetries 
of the system, the sets of possible H's  are taken to be real symmetric matrices, Hermitian 
matrices, or self-dual Hermitian matrices ("quaternion real") [10, 11, 27]. The question 
then is what measure do we choose for each of these sets of H's? 

What we would intuitively like to do is to make each H equally likely to reflect our 
"total ignorance" of the system. Because these spaces of H 's  are noncompact, it is of 
course impossible to have a probability measure that assigns equal a priori probability. It 
is useful to recall the situation on the real line R. If we confine ourselves to a finite interval 
[a, b], then the unique translationally invariant probability measure is the normalized 
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Lebesgue measure. Another characterization of this probability measure is that it is the 
unique density that maximizes the information entropy 

Sip] = - f ~  p(x)log p(x) dx. (3.1) 

On R the maximum entropy density subject to the constraints E(1) = 1 and E(x 2) = a 2 
is the Gaussian density of variance a 2. The Gaussian ensembles of random matrix theory 
can also be characterized as those measures that have maximum information entropy 
subject to the constraint of a fixed value of E(H*H) [1, 41]. The well-known explicit 
formulas are given below in Sec. IV. 

Another approach, first taken by Dyson [10] and the one we follow here, is to consider 
unitary matrices rather than hermitian matrices. The advantage here is that the space 
of unitary matrices is compact and the eigenvalue density is constant (translationally 
invariant distributions). 

B. Haar Measure for U(N) 

We denote by G = U(N) the set of N × N unitary matrices and recall that 
d imRU(N ) = N 2. One can think of U(N) as an N2-dimensional submanifold of R 2N2 

under the identification of a complex N × N matrix with a point in R 2N2. The group G 
acts on itself by either left or right translations, i.e. fix go C G then 

Lgo : g--* gog and Rgo : g--* ggo. 

The normalized Haar measure it2 is the unique probability measure on G that is both 
left- and right-invariant: 

,u2(gE) = #2(Eg) = p2(E) (3.2) 

for all g E G and every measurable set E (the reason for the subscript 2 will become clear 
below). Since for compact groups a measure that is left-invariant is also right-invariant, we 
need only construct a left-invariant measure to obtain the Haar measure. The invariance 
(3.2) reflects the precise meaning of "total ignorance" and is the analogue of translational 
invariance picking out the Lebesgue measure. 

To construct the Haar measure we construct the matrix of left-invariant 1-forms 

f~a =g-ldg,  g C G, (3.3) 

where ~g is anti-Hermitian since g is unitary. Choosing N 2 linearly independent 1-forms 
wlj from ~g, we form the associated volume form obtained by taking the wedge product 
of these wlj's. This volume form on G is left-invariant, and hence up to normalization, it 
is the desired probability measure. 

Another way to contruct the Haar measure is to introduce the standard Riemannian 
metric on the space of N × N complex matrices Z = (zq): 

N 

(ds) 2 = tr(dZdZ')  = ~ Idz,jl ~. 
j,k= l 

We now restrict this metric to the submanifold of unitary matrices. A simple computation 
shows the restricted metric is 

(ds) 2 = tr (ftgf~;). (3.4) 
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Since f~9 is left-invariant, so is the metric (ds) 2. If we use the standard Riemannian 
formulas to construct the volume element, we will arrive at the invariant volume form. 

We are interested in the induced probability density on the eigenvalues. This calcu- 
lation is classical and can be found in [18, 42]. The derivation is particularly clear if we 
make use of the Riemannian metric (3.4). To this end we write 

g = X O X  -1 ,  g e G ,  (3.5) 

where X is a unitary matrix and D is a diagonal matrix whose diagonal elements we write 
as exp(i~k). Up to an ordering of the angles c2k the matrix D is unique. We can assume 
that the eigenvalues are distinct since the degenerate case has measure zero. Thus X 
is determined up to a diagonal unitary matrix. If we denote by T(N) the subgroup of 
diagonal unitary matrices, then to each 9 E G there corresponds a unique pair (X, D), 
2( E G/T(N) and D e T(N). The Haar measure induces a measure on G/T(N) (via the 
natural projection map). Since 

we have 

X*dgX = f x D -  D~x + dD, 

(ds) 2 = tr ( f ig f ; )  = tr (dg dg*) = tr  (X*dgXX*dg*X) 

= tr ([fix, D] [fix, D]*) + tr (dD dD*) 
N N 

= ~ 16xk, (exp( iW) - e x p ( / ~ ) ) l  ~ + ~ ( d ~ )  ~ 
k,g=l k=l 

where f x  = (6Xke). Note that the diagonal elements/~Xkk do not appear in the metric. 
Using the Riemannian volume formula we obtain the volume form 

0)g • CO X H lexp(ictPJ) --  exp(i~r~k)l 2 d¥~l "" '  d ~ N  (3 ,6)  
j<k 

where wx = const l-]j>~ ~Xj~. 
We now integrate over the entire group G subject to the condition that the elements 

have their angles between ~k and ~ + d~k to obtain 

T h e o r e m  1 The volume of that part of the unitary group U(N) whose elements have 
their angles between ~k and ~k + d~ok is given by 

PN2(~01,..., ~N) d~l""  dcpN = CN2 H [exp(i~j) -- exp(icpk)]2 dCpl " " • d~N (3.7) 
j<k 

where CN2 is a normalization constant. 

We mention that there exist algorithms [8] to generate unitary matrices that are Haar 
distributed. The algorithm of Diaconis and Shahshahani [8] is of order N 3 and is easily 
implemented on a computer. 

C. Orthogonal and Symplectic Ensembles 

Dyson [11], in a careful analysis of the implications of time-reversM invariance for phys- 
ical systems, showed that (a) systems having time-reversal invariance and rotational sym- 
metry or having time-reversal invariance and integral spin are characterized by symmetric 
unitary matrices; and (b) those systems having time-reversal invariance and half-integral 
spin but no rotational symmetry are characterized by self-duM unitary matrices (see also 
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Chp. 9 in [27]). For systems without time-reversal invariance there is no restriction on 
the unitary matrices. These three sets of unitary matrices along with their respective 
invariant measures, which we denote by E~(N), fl -- 1,4, 2, respectively, constitute the 
circular ensembles. We denote the invariant measures by #~, e.g. #2 is the normalized 
Haar measure discussed in Sec. III  B. 

A symmetric unitary matrix S can be written as 

s = vTv, V C U(N). 

Such a decomposition is not unique since 

V--*RV,  R E O ( N ) ,  

leaves S unchanged. Thus the space of symmetric unitary matrices can be identified with 
the coset space 

U(N)/O(N).  

The group G = U(N) acts on the coset space U(N)/O(N), and we want the invariant 
measure #1. If 7: denotes the natural projection map G ~ G/H, then the measure #1 is 
just the induced measure: 

~I(B) = ~2(~-1(B)),  

and hence Ea(N) can be identified with the pair (U(N)/O(N), #~). 
The space of self-dual unitary matrices can be identified (for even N) with the coset 

space 

U(N)/Sp(N/2) 

where Sp(N) is the symplectic group. Similarly, the circular ensemble E4(N) can be 
identified with (U(N)/Sp(N/2), #4) where/~4 is the induced measure. 

As in Sec. III  B we want the the probability density PNO on the eigenvMue angles that 
results from the measure #3 for fl = 1 and fl = 4. This calculation is somewhat more 
involved and we refer the reader to the original literature [10, 18] or to Chp. 9 in [27]. The 
basic result is 

T h e o r e m  2 In the ensemble E~(N) (fl = 1,2, 4) the probability of finding the eigenvalues 
exp(iwj) ors  with an angle in each of the intervals (~j, Oj + dOj) (j = 1,. . .  ,N) is given 
by 

PN3(O1,...,ON)dOI'''dON = CN~ 1-I lexp(iO,)-exp(iOj)l~ dO1...dON (3.8) 
l<g<j<N 

where CNfl is a normalization constant. 

The normalization constant follows from 

T h e o r e m  3 Define for N C N and fl C C 

~N(fl) = (2~r) -~v f02~ ' ' '  fo ~ l ' I  lexp(iOj) -- exp(iOk)l ~ dOa.., dON (3.9) 
j<k 

then 
tpg(3) _ F(1 + 3N/2) 

(F(1 + fl/2)) N (3.10) 

The integral (3.9) has an interesting history, and it is now understood to be a special case 
of Selberg's integral (see, e.g., the discussion in [27]). 
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D. Physical Interpretation of the Probability Density PNZ 

The 2D Coulomb potential for N unit like charges on a circle of radius one is 

WN( 01'''" 'ON) = -- E log [exp(i0j) - exp(iOk)[ , (3.11) 
l<_j<k<_N 

Thus the (positional) equilibrium Gibbs measure at inverse temperature 0 </3  < c~ for 
this system of N charges with energy WN is 

exp (--/3WN( Oi, . . . , ON)) (3.12) 
~N(/3) 

For the special cases of/3 = 1, 2, 4 this Gibbs measure is the probability density of The- 
orem 2. Thus in this mathematically equivalent description, the term "level repulsion" 
takes on the physical meaning of repulsion of charges. This Coulomb gas description is 
due to Dyson [10], and it suggests various physically natural approximations that  would 
not otherwise be so clear. 

E. Level Spacing Distribution Functions 

For large matrices there is too much information in the probability densities 
PNz(O:, . . . ,ON) to be useful in comparison with data. Thus we want to integrate out 
some of this information. Since the probability density PN~(O:,. . . ,ON) is a completely 
symmetric function of its arguments, it is natural to introduce the n-point correlation 
functions 

N! 2. 2. 
R , ~ ( O , , . . . , O , , ) -  (3 fSn) ! foo  " " f o  PN,(O:, . . . ,ON)dO,~+:' ' 'dON. (3.13) 

The case/3 = 2 is significantly simpler to handle and we limit our discussion here to this 
c a s e .  

L e m m a  1 

where 

' ( ) PIv2(O1,...,ON) = ~.T det KN(Oj,Ok j,k=l 

i s in(N(0j  - Ok)/2) 
I<N(Oj' Ok) ~--- 27I" sin ((0j - 0k)/2) 

(3.14) 

(3.15) 

Proof: 
Recalling the Vandermonde determinant we can write 

YI  ]exp(iOj) - exp(i0k)] 2 = de t (M T) det(M) (3.16) 
j < k  

where M~k = exp (i(j  - 1)0k). A simple calculation shows 

(M~-~)s ~ = 2~D~si~(Oj, O~)L)~ (3.17) 

where D is the diagonal matrix with entries exp ( i (N  - 1)0j2) .  Except for the normaliza- 
tion constant the lemma now follows. Getting the correct normalization constant requires 
a little more work (see, e.g., Chp. 5 in [27]). • 
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From this lemma and the combinatoric Theorem 5.2.1 of [27] follows 

T h e o r e m  4 Let t~2(01,..., On) be the n-point function defined by (3.13)for the circular 
ensemble E2(N); then 

• ( )1 ° ) P~2(01,.. ,On) = det KN(Oj,Ok j.k=l 

where KN(Oj, Ok) is given by (3.1@ 

We now discuss the behavior for large N. The l-point correlation function 

R~'2(01) = N (3.19) 
' 2/r 

is just the density, p, of eigenvalues with mean spacing D = lip. As the size of the 
matrices goes to infinity so does the density. Thus if we are to construct a meaningful 
limit as N --, co we must scale the angles Oj. This motivates the definition of the scaling 
limit 

p ~ o o ,  Oj-~O, such that x j : = p 0 j E R  is fixed. (3.20) 

We will abbreviate this scaling limit by simply writing N ~ oe. In this limit 

R~2(x~,... xn)dxl. . .dx~ := lim R~(O1,...,O~)dO~...dO~ (3.21) 
' N ~ o o  

where we used the slightly confusing notation of denoting the scaling limit of the n-point 
functions by the same symbol. From Theorem 4 follows 

T h e o r e m  5 In the scaling limit (3.20) the n-point functions become 

n R~2(zl,...,z~)=det(h'(zi, xk)lj,k=l) (3.22) 

where the kernel K(x, y) is given by 

K(x, y) - 1 sin ~r(x - y) (3.23) 
7r x - y 

The three sets of correlation functions 

CZ := {R~z(xl, . . . ,xn);xj e R}~°°_,, /3 = 1,2,4, (3.24) 

define three different statistics (called the orthogonal ensemble, unitary ensemble, sym- 
plectic ensemble, respectively) of an infinite sequence of eigenvalues (or as we sometimes 
say, levels) on the real line. 

We now have the necessary machinary to discuss the level spacing correlation functions 
in the ensemble C2. We denote by Z the union of m disjoint sub-intervals of the unit circle: 

.2. = .2.1 U " *  U -~"rn. (3 .25)  

We begin with the probability of finding exactly nl eigenvalues in interval 2"1,..., nm 
eigenvalues in interval Zm in the ensemble E2(N). We denote this probability by 
E2N(nl,... ,nm;2") and we will let N --* ev at the end. 

If XA denotes the characteristic function of the set A and n := nl + ' "  + nm, then the 
probability we want is 
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., dOl'." dON PN2(01 . . .  ON) 
n l . . . n m N - n  ' 

n l  n l  +n2 n l  + ' " + ~ m  

× IIx~,(os,) II x~(o~#... II x~..(os~) 
Jl =1 3"2 =n l  +1 jm=n ,  +.**+1 

N 

x 1"I ( 1 - x z ( O j ) ) .  
j = n + l  

We define the quantities 

r~,. . . . .  = fo2~ d01 " " " fo2~ dO~ R~2( Oa , . . . , 0~ ) 

(3.26) 

where 

D(I;A)=det(1-~AjK(x'y)xIJ(Y)) ' j = l  
K ( z , y )  is given by (~.2~), ~nd n := n, + " "  + n~. 

(3.30) 

nl nl +n2 n l  + ' " + r i m  

× II x~,(os,) Yi x~(oj2)... H ~(0~m). (3.27) 
j ,  =1 j 2 = n l  +1 j m  = n l  + . . .+1  

The idea is to expand the last product term in (3.26) involving the characteristic function 
X~ and to regroup the terms according to the number of times a factor of X~ appears. 
Doing this one can then integrate out those Ok variables that do not appear as arguments 
of any of the characteristic functions and express the result in terms of the quantities 
r ,  2 ..... . To recognize the resulting terms we define the Fredholm determinant 

Dg(g;  A) = det 1 - A~KN(O, O')xz, (0' 

where "~j~--1 AjKN(O, O')Xz,(O')" means the operator with that kernel and A is the m-tuple 
(A1,... ,  Am). A slight rewriting of the Fredholm expansion gives 

M ~ . • • M "  
DN(Z; A) = 1 + E ( - 1 )  j E r.~. . . . .  . 

j=~ ,~>o j l ! ' - ' j r , !  
J1 +- "+3m=3 

The expansion above is then recognized to be proportional to 

O"DN(Z; A) [ 
D 

The scaling limit N ~ ~ can be taken with the result: 

T h e o r e m  6 Given m disjoint open intervals Ik = ( a ~ - l ,  a2k) C R ,  let 

I :=/1  U. . -  U I,~. (3.28) 

The probability E2(nl , .  . . , nm; I)  in the ensemble ~2 that exactly nk levels occur in interval 
I~ (k = 1 , . . . , m )  is given by 

E~(~ .. n ~ , / ) =  (_-))L ~D:I;~ (3.2o) 
' "' n l ! ' . ' n , J O A  ~ . . . O A  ~ A . . . . . .  Am=~ 
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In the case of a single interval I = (a, b), we write the probability in ensemble £'Z of 
exactly n eigenvalues in I as Ez(n; s) where s := b - a. Mehta [27, 28] has shown that if 
we define 

D+(s; A) = det (1 - AK+) (3.31) 

where K± are the operators with kernels K(x,  y) 5= K ( - x ,  y), and 

E±(n; s) - ( -1)~ O'~D±(s; A) I (3.32) 

then E,(0; s) = E+(0; a), 

E+(~;~) = < ( 2 n ; , ) + E l ( 2 n -  1;.~), ~ > 0 ,  (a.33) 

E_(n;s) = El(2n;s)  + El(2n + 1;s), n > 0 ,  (3.34) 

and 

E4(n;s) = 2(E+(n;2s)+ E_(n;2s)) ,  n _> 0.  (3.35) 

Using the Fredholm expansion, small s expansions can be found for Ez(n; s). We quote [27, 
28] here only the results for n = 0: 

~2S3 T:4S 5 

E l ( 0 ; s ) = l - s +  36- 120~ + O ( s 6 ) '  
7r28 4 71-4q 6 

E~(0;~)= 1 - ~ + 3~- 675 ~ O ( s g ,  
87/'486 

/{?4(0; s) = 1 - s + ~ + O(sS). (3.36) 

The conditional probability in the ensemble SZ of an eigenvalue between b and b+ db given 
an eigenvalue at a, is given [27] by pz(0; s) ds where 

d~E~(o; s) (3.37) 
pz(0; s) -- ds 2 

Using this formula and the expansions (3.36) we see that pz(0; s) = O(sZ), making con- 
nection with the numerical results discussed in Sec. II. Note that the Wigner surmise 
(2.2) gives for small a the correct power of s for pl(0; s), but the slope is incorrect. 

IV. ORTHOGONAL POLYNOMIAL ENSEMBLES 

Orthogonal polynomial ensembles have been studied since the 1960's, e.g. [14], but 
recently interest has revived because of their application to the matrix models of 2D 
quantum gravity [7, 9, 16, 17]. Here we give the main results that generalize the previous 
sections. 

The orthogonal polynomial ensemble associated to V assigns a probability measure on 
the space of N × N hermitian matrices proportional to 

exp ( - T r  (V(M))) dM (4.1) 

where V(x) is a real-valued function such that 

~(~) = exp (-V(x)) 
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defines a weight function in the sense of orthogonal polynomial theory. The quantity dM 
denotes the product of Lebesgue measures over the independent elements of the hermitian 
matrix M. Since Tr (V(M)) depends only upon the eigenvalues of M, we may diagonalize 
M 

where 

M = X D X ' ,  

and as before integrate over the "X" part of the measure to obtain a probabili ty measure 
on the eigenvalues. Doing this gives the density 

P ~ ( z ~ , . . . , ~ )  ; I I .  (x~ - x ~ ) ~ e x p  - V(:~j)  . (4 .2 )  

If we introduce the orthogonal polynomials 

f t  pm(x)p,~(x)wv(x)dx = ~m,~, m,n = 0 ,1 , . . .  (4.3) 

and associated functions 

~,~(x) = exp (-V(x)12) p~(x) ,  

then the probabili ty density (4.2) becomes 

1 (det N 2 tgN(Xl , . . .  ,XN) = ~ x (~J-l(X'k))lj ,k=l) 

1 
= ~ .  det (KN(xj, xk)) (4.4) 

N-1 
Ku(~,u) = ~ ~j(~)~j(y) 

j=o 

kN-1 
kN 

kN-~ 
k~ 

~N( X )~N_I  (y ) -- ~N_I (.T. )~gN(y ) 
for x e y  

x - y  

(~N(X)~N-x(x) - (yg_l(x)cpN(x)) for x = y. 

The last two equalities follow 
by 

p,,(x) = k,~z ~ + . . . ,  k,~ > O. 

Using the orthonormality of the ~j(x) ' s  one shows exactly as in [27] that  

NI 
: -  ( , 4 :  

= d e t  • 

In particular, the density of eigenvalues is given by 

pN(TC) = KN(x, x).  

(4.5) 

from the Christoffel-Darboux formula and the k~ are defined 

(4 .6 )  

(4 .7 )  

Arguing as before, we find the probability that an interval I contains no eigenvalues is 
given by the determinant 

det (1 - KN) (4.8) 
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where KN denotes the operator with kernel 

KN(x,y)x,(y) 
and I(N(X, y) given by (4.5). Analogous formulas hold for the probability of exactly n 
eigenvalues in an interval. We remark that the size of the matrix N has been kept fixed 
throughout this discusion. The reader is referred to the work of Mahoux and Mehta [30, 
32] for further discussion of integration over matrix variables. 

V. UNIVERSALITY 

We now consider the limit as the size of the matrices tends to infinity in the orthogonal 
polynomial ensembles of Sec. IV. Recall that we defined the scaling limit by introducing 
new variables such that in these scaled variables the mean spacing of eigenvalues was unity. 
In Sec. III the system for finite N was translationally invariant and had constant mean 
density N/27r. The orthogonal polynomial ensembles are not translationally invariant 
(recall (4.7) so we now take a fixed point z0 in the support of pN(x) and examine the 
local statistics of the eigenvalues in some small neighborhood of this point x0. Precisely, 
the scaling limit in the orthogonal polynomial ensemble that we consider is 

N ~ oo, xj ~ xo such that 4j := pN(Xo)(Xj - -  Xo) is fixed. (5.1) 

The problem is to compute Kg(x, y) dy in this scaling limit. From (4.5) one sees this is 
a question of asymptotics of the associated orthogonal polynomials. For weight functions 
wy(x) corresponding to classical orthogonal polynomials such asymptotic formulas are 
well known and using these it has been shown [14, 36] that 

1 s in~(~  - g )  
KN(x,y)@ --* ~ ~ _  ~, dg.  (5.2) 

Note this result is independent of x0 and any of the parameters that might appear in the 
weight function wy(x). Moore [34] has given heuristic semiclassical arguments that show 
that we can expect (5.2) in great generality (see also [23]). 

There is a growing literature on asymptotics of orthogonal polynomials when the weight 
function wv(x) has polynomial V, see [25] and references therein. For example, for the 
case of V(x) = x 4 Nevai [37] has given rigorous asymptotic formulas for the associated 
polynomials. It is straightforward to use Nevai's formulas to verify that (5.2) holds in this 
non-classical case (see also [30, 32, 381). 

There are places where (5.2) will fail and these will correspond to choosing the Xo at 
the "edge of the spectrum" [6, 34] (in these cases x0 varies with N). This will correspond 
to the double scaling limit discovered in the matrix models of 2D quantum gravity [7, 9, 
16, 17]. Different multicritical points will have different limiting KN(x, y) dy [6, 34]. 

VI. JIMBO-MIWA-MORI-SATO EQUATIONS 

A. Definitions and Lemmas 

In this section we denote by a the 2m-tuple (a l , . . . ,  a2m) where the aj are the endpoints 
of the intervals given in Theorem 6 and by da exterior differentiation with respect to the 
aj (j = 1 , . . . ,  2m). We make the specialization 

Aj = A for j 
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which is the case considered in [22]. It is not difficult to extend the considerations of this 
section to the general case. 

We denote by K the operator that  has kernel 

.~K(x,y)xt(y) (6.1) 

where K(x,  y) is given by (3.23). It is convenient to write 

Mr(x, y) = a(x)A'(y) - A'(x)A(y) (6.2) 
x - y  

where 

A(x) = - -  sm 7rx. 
7r 

The operator K acts on L2(R), but  can be restricted to act on a dense subset of smooth 
functions. From calculus we get the formula 

0 
- - K  = ( -1 ) J K(x ,  a3)6(y - aj) (6.3) 
Oaj 

where 6(x) is the Dirac delta function. Note that in the right hand side of the above 
equation we are using the shorthand notation that "A(x,y)" means the operator with 
that  kernel. We will continue to use this notation throughout this section. 

We introduce the functions 

Q(x; a) = (1 - K)- 'A(x)  = .f, p(x, y)A(y) dy (6.4) 

and 

P(x; a) = (1 - K)-iA'(x)  = / I t  p(x, y)m'(y) dy (6.5) 

where p(x, y) denotes the distributional kernel of (1 - K)  -1. We will sometimes abbreviate  
these to Q(x) and P(x), respectively. It is also convenient to introduce the resolvent kernel 

n = ( 1  - 

In terms of kernels, these are related by 

p(x, y) = ~(x - y) + n (x ,  y) .  

We define the fundamental  1-form 

w(a) := d~ log D(I; .~). (6.6) 

Since the integral operator K is trace-class and depends smoothly on the parameters  a, 
we have the well known result 

w(a) = - T r  ((1 - K ) - l d o U )  . (6.7) 

Using (6.3) this last trace can be expressed in terms of the resolvent kernel: 

2m 

w(a) = - ~_,(-1)J R(aj, a j)daj (6.8) 
j = l  

which shows the importance of the quantities R(aj, a j). A short calculation establishes 
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~a~ K)  -1 (-1)JR(x, aj)p(aj, y) - = 

We will need two commutators  which we state as lemmas. 

L e m l n a  2 If D = d denotes the differentiation operator, then 

2m 
[D, (1 - K)  -I]  = - ~--~(-1)/R(x, aj)p(ai, y).  

j=l 

Proof: 
Since 

(6.9) 

[D, (1 - K)  -1] = (1 - K)  -1 [D, K] (1 - K )  -1 , 

we begin by comput ing [D, K]. An integration by par ts  shows tha t  

[D, K] = - ~--~(-1)JK(x, aj )~(y - aj ) 
J 

where we used the proper ty  

OK(x, Y) + 0 K ( x ,  y) = 0 
Ox Oy 

satisfied by our K(x ,y )  and the well known formula for the derivative of XI(x). The 
]emma now follows from the fact that  

n(x,  y) -= ] ,  p(x, z)U(z, y) dz = ]~ K(x ,  z)p(z,  y) dz .  

L e m m a  3 If M~ denotes the multiplication by x operator, then 

I/x, (1-  1~-) -1] : Q(X) (1-  I ( t ) - lAtxi(y)-  ~9(x) (1 -  I(t)-IA~I(y) 

where K t denotes the transpose of K, and also 

[Mx, (1 - K ) - ' ]  = (x - y )R(x ,  y ) .  

Proof: 
We have 

[Mx, K] = (A(x)A'(y) - A'(x)A(y)) xI(y) (1 - K )  -1 . 

From this last equation the first part  of the l emma follows using the definitions of Q and 
P.  The al ternat ive expression for the commuta tor  follows direct ly  from the definition of 
p(x, y) and its relationship to R(x, y). • 

This l emma  leads to a representat ion for the kernel R(x, y) [19]: 

L e m m a  4 / f  R(x, y) is the resolvent kernel of (6.2) and Q and P are defined by (6.4) 
and (6.5), respectively, then for x ,y  C I we have 

R(x, y) Q(x; a)P(y; a) - P(x; a)Q(y; a) = , x # y ,  x--y  
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R(x ,x )= ~x (X;a)P(x;a) -~x  (X;a)Q(x;a ). 

Proof: 
Since K(x, y) = K(y, x) we have, on I ,  

( 1  - -  I(')-IAx1 = ( 1  - I()-IAx, = ( 1  - K ) - I A  

(the last since the kernel of K vanishes for y ~ I). Thus (1 - Kt)-IAxz = Q on I,  and 
similarly (1 - Kt)-IA'xI  = P on 1. The first part of the lemma then follows from Lemma 
3. The expression for the diagonal follows from Taylor's theorem. • 

We remark that Lemma 4 used only the property that the kernel K(x, y) can be written 
as (6.2) and not the specific form of A(x). Such kernels are called "completely integrable 
integral operators" by Its et. al. [19] and Lemma 4 is central to their work. 

B. Derivation of the JMMS Equations 

We set 

qj=qj (a)= =-olim Q(x;a) and p j=pj (a )= .=_l i~P(x ;a ) ,  j = l , . . . , 2 m .  (6.10) 
xfil x~I 

Specializing Lemma 4 we obtain immediately 

R(aj, ak) - -  qjPk - -  P~q~ 
aj  - -  ak 

Referring to (6.9) we easily deduce that 

and 

Thus 

Now 

Similarly, 

, j C k .  ( 6 . 1 1 )  

Oq.j = (_l)kR(aj,ak)qk, j ¢ k 
Oa k 

OP----i = (--1)kR(aj,ak)pk, j # k. 
Oak 

d._QQ ___ D (1 - K)- '  A(x) 
dx 

= (1 - K) -1 DA(x) + [D, (1 - K) -1] A(x) 

= (1 - K) -1A'(x) - ~_,l--1)kR(x, ak)qk. 
k 

~x (aJ; a) = pj -- E(-1)kR(aj ,  ak)q~. 
k 

d._ffP = (1 - K) -1 A"(x) + [D, (1 - K) -1] A'(x) 
dz 

= _~2 (1 - K ) - '  A(x) - ~ ( - 1 ) k n ( x ,  ak)p~. 
k 

(6.12) 

(6.13) 

(6.14) 
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Thus 

d P ( ~ ;  a) = - ~ %  - ~ ( - 1 ) ~ n ( ~ j ,  a~)p~. (6.15) 
dx 3 k 

Using (6.14) and (6.15) in the expression for the diagonal of R in Lemma 4, we find 

n ( ~ , a j )  ~ ~ ~ ~2(-1)~n(aj ,  (6.16) = 7(" qj +p~ + ak)R(ak, aj)(aj --ak).  
k 

Using 

~;" OQ(x; a) OajOq-JJ = dQ ,a)lx_~ + ~ , = ~  , 

(6.12) and (6.14) we obtain 

Similarly, 

Oqj 
Oaj = pj - ~ ( - 1 ) k n ( a j '  ak)qk. (6.17) 

k¢j 

Opj _ 
Oaj ~r2qj - ~(--1)kR(aj ,  ak)pk. (6.18) 

kgj 

Equations (6.11)-(6.13) and (6.16)-(6.18) are the JMMS equations. We remark that 
they appear in slightly different form in [22] due to the use of sines and cosines rather 
than exponentials in the definitions of Q and P. 

C. Hamiltonian Structure of the JMMS Equations 

To facilitate comparison with [22, 35] we introduce 

i 1 
q2j  = - - ~ x 2 j  , q 2 j + l  ~--- ~ x 2 j A - 1  

P ~ j  = - - i y 2 j  ~ P 2 j + I  = Y 2 j + I  , 

1 

71.2 2m 
a~(~, y):= - ~  + g - E M~_ 

4 ~ k=l a j  - -  a k " 
k¥3 

In this notation, 

(6.19) 

w(a) = ~ Gj(x, y) daj. 
J 

If we introduce the canonical symplectic structure 

{xj,xk} = {Yj, Yk} = O, {xj,yk} = 5jk, (6.20) 

then as shown in Moser [35J 

T h e o r e m  7 The integrals Gj(x, y) are in involution; that is, if we define the symplectic 
structure by (6.20) we have 

{Gj, Gk}=O forall j , k = l , . . . , 2 m .  

Furthermore as can be easily verified, the JMMS equations take the following form [22]: 
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T h e o r e m  8 I f  we define the Hamiltonian 

2m 

~(a) = E as(~, y)das, 
j= l  

then Eqs. (6.12), (6.13), (6.17) and (6.18) are equivalent to Hamilton's equations 

d~xj = {x j ,w(a)}  and d~yj = {yj ,w(a)}  . 

In words, the flow of the point (x, y) in the "time variable" aj is given by Hamilton's 
equations with Hamiltonian Gj. 

The (Frobenius) complete integrability of the JMMS equations follows immediately 
from Theorems 7 and 8. We must show 

d ~ { x j , w } = O  and d~{yj ,w} =0 .  

Now 

~o {~,,~) = {~o~J,~)  + { ~ s , ~ o ~ } ,  

but d,w = 0 since the Gk's are in involution. And we have 

{d~xj, w} = E ({{xj, Gk} , Gt} - {{xj, Gt},  Gk}) dak A dae 
k<£ 

which is seen to be zero from Jacobi's identity and the involutive property of the Gj's. 

D. Reduction to Painlev~ V in the One Interval Case 

1. The a(x;,k) differential equation 

We consider the case of one interval: 

r n = l ,  a l = - t ,  a s = t ,  with s : = 2 t .  (6.21) 

Since p(x ,y)  is both symmetric and even for x ,y  E I ,  we have q2 = - q l  and p2 = Pl- 
Introducing the quantity 

f / p (  ) p( )d  r 1 -- - t ~ x  ex -iTcx x 
t 

we write 

~ _  v~ 
ql = 7 ~ / ( r l - r l )  and pl = -~-(<+~). 

Specializing the results of Sec. VI B to m = 1 we ~ have 

w(a) = - 2 R ( t ,  t) dt , (6.22) 

1 ~ 2 R ( - t , t )  = -yq ,p~  = ~-~7( , ,  - ~ ) ,  (6.23) 

dql Oql Oql 
dt Oal + ~a2 = -Pl  + 2 R ( - t ,  t )ql ,  

d--i- = 7r2ql + 2 R ( - t ,  t)pl , 

dr--A1 = i~rrl + 2 R ( - t ,  t)V1, (6.24) 
dt 
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R(t, t) = ~r2q~ + p~ - 2 tR(- t ,  t) 2 

AFlrl + 8 - ~  (F~ - r~) 2 . (6.25) 

A straightforward computation from (6.23)-(6.25) shows 

d 
d-t ( tR( - t ,  t)) = A~(r~), (6.26) 

d ( t R ( t ,  t)) = Alrx[ 2 , (6.27) 

d 
-~ R(t, t) = 2 ( R ( - t ,  t) ) 2 . (6.28) 

Eq. (6.28) is known as Gaudin's relation and Eqs. (6.26) and (6.27) are identities derived 
by Mehta [29] (see also Dyson[13]) in his proof of the one interval JMMS equations. Here 
we made the JMMS equations central and derived (6.26)-(6.28) as consequences. 

These equations make it easy to derive a differential equation for 

a(x; A) := -2 tR( t , t )  = x log D(~; A), where x = 27rt. (6.29) 

We start with the identity 

Jr iJ ' - -  + , 

and define temporarily a(t) := tR(t , t)  and b(t) := tR ( - t , t ) ;  then (6.23), (6.26), and 
(6.27) imply 

at ] = \ g i  ] + 4~b~ " 

Using (6.28) and its derivative to eliminate b and db/dt, we get an equation for a(t) and 
hence a(x; A): 

T h e o r e m  9 In the case of a single interval I -= ( - t ,  t) with s = 2t, the Fredholm deter- 
minant 

is given by 

D(s; A) = det (1 - AK) 

D(s;A) =exp (fo~" ~r(x"A) dz)  

where a(x; A) satisfies the differential equation 

(x~r") 2 + 4 (xa' - ~) ( x #  - a + (a') 2) = 0 

with boundary condition as x --* 0 

° ( 5 ;  A) = - 7 x  - ( ) ~  . . . .  

(6.30) 

(6.31) 

Proof: Only (6.32) needs explanation. The small x expansion of ~r(x; A) is fixed from the 
small s expansion of D(s; A) which can be computed from the Neumann expansion. • 

(6.32) 
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The differential equation (6.31) is the "a representation" of the Painlev$ V equation. 
This is discussed in [22], and in more detail in Appendix C of [21]. In terms of the 
monodromy parameters 01 (i = 0, l, ~ )  of [21], (6.31) corresponds to 00 = 01 = 0~ = 0 
which is the case of no local monodromy. For an introduction to Painlev$ functions see [20, 
24]. 

2. The a+(x; A) equations 

Recalling the discussion following Eq. (3.31), we see we need the determinants D±(s; ~) 
to compute E~(n; s) for/3 = 1 and 4. Let R~ denote the resolvent kernels for the operators 

l ± J  K + J  K± := = K 1----- , 
2 2 

where (J f ) (x)  = f ( - z )  and the last equality of the above equation follows from the 
evenness of K. Thus 

R± := (1 - K+)-IK± = 1(1 ± J)R ,  

which in terms of kernels is 

n±(x, y) = ~ (R(x, y) ± n(-x,  y)). 

Thus 

1 d t)  ( n _ ( t , t )  - n + ( t , t ) )  ~ = ( n ( - t , t ) )  ~ = ~ - ~ n ( t ,  . 

Introducing the analogue of a(x; A), i.e. 

a±(x;A) := x d x log D~(;; ~), 

the above equation becomes 

d (6.33) t ] x dx x 

Of course, a+(x; A) also satisfy 

a+(x; ~) + a_(x; ~) = or(x; ),). (6.34) 

Using (6.33) and (6.34) and integrating a.(x; A)/x we obtain (the square root sign ambi- 
guity can be fixed from small x expansions) 

T h e o r e m  10 Let D±(s; )~) be the Fredholm determinants defined by (3.31), then 

l ogD+(s ;£ )=  l o g D ( s ; A ) ± 2 f 0  - - ~ x  21°gD(x;A)dx" (6.35) 
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VII. ASYMPTOTICS 

A. Asymptotics via the Painlev~ V Representation 

In this section we explain how one derives asymptotic formulas for Ez(n; s) as s ~ 
starting with the Painlev~ V representations of Theorems 9 and 10. This section follows 
Basor, Tracy and Widom [4] (see also [31]). We remark that the asymptotics of E~(0; s) 
as s ---* cc was first derived by Dyson [12] by a clever use of inverse scattering methods. 

Referring to Theorems 9 and 10 one sees that the basic problem from the differential 
equation point of view is to derive large x expansions for 

g0(x) := g(x; 1) (7.1) 

°~g 1), ~=1,2, . . .  (7.2) ~(~) := ~5-z(~; 
0~g±" 1), n 1,2, (7.3) g±,~(~) := ~ - : (x ;  . . . . .  

We point out the sensitivity of these results to the parameter A being set to one. This 
dependence is best discussed in terms of the differential equation (6.31) where it is an 
instance of the general problem of connection formulas, see e.g. [24] and references therein. 
In this context the problem is: given the small x boundary condition, find asymptotic 
formulas as x --~ cc where all constants not determined by a local analysis at oc are given 
as functions of the parameter A. If we assume an asymptotic solution for large x of the 
form g(x) ~ ax p, then (6.31) implies either p = 1 or 2 and if p = 2 then necessarily 
a = -¼. The connection problem for (6.31) has been studied by McCoy and Tang [26] 
who show that for 0 < A < 1 one has 

as x --* ~ with 

~(x,A) = a(~)z  + b(~) + o ( 1 )  

1 1 
a(A) = log(1 - A) and ~(A) = ~a:(A).  

7I" 

Since these formulas make no sense at A = 1, it is reasonable to guess that 

-!x~. (7.4) g(x;1)~ 4 

For a rigorous proof of this fact see [43]. It should be noted that in Dyson's work he too 
"guesses" this leading behavior to get his asymptotics to work (this leading behavior is 
not unexpected from the continuum Coulomb gas approximation). Given (7.4), and only 
this, it is a simple matter using (6.31) to compute recurs±rely the correction terms to this 
leading asymptotic behavior: 

1 ~= ~-~'c~ (7.5) g 0 ( x ) = - 4  x 2 -  + x--*c~ 

(c2 = --¼, c4 = -~ ,  etc.). Using (7.5) in (6.30) and (6.35) one can efficiently generate 
the large s expansions for D(s; 1) and D±(s; 1) except for overall multiplicative constants. 
In this instance other methods fix these constants (see discussion in [4, 27]). In general 
this overall multiplicative constant in a T-function is quite difficult to determine (for an 
example of such a determination see [2, 3]). We record here the result: 

log D±(s; 1 ) =  - l~ r~s2  :F l~r~ - ~ log ~rs 4- 41- log 2 1 +  ~ log 2 + 23-('(-1)+ o(1)(7.6) 
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as s --+ oo where ( is the Riemann zeta function. We mention that  for 0 < ~ < 1 the 
asymptotics of D(s; ~) as s -+ ~ are known [5, 26]. 

One method to determine the asymptotics of as(x) as x --~ oo is to examine the 
variational equations of (6.31), i.e. simply differentiate (6.31) with respect to A and then 
set A = 1. These linear differential equations can be solved asymptotically given the 
asymptotic solution (7.5). In carrying this out one finds there are two undetermined 
constants corresponding to the two linearly independent solutions to the first variational 
equation of (6.31). One constant does not affect the asymptotics of a l (x)  (assuming the 
other is nonzero!). Determining these constants is part  of the general connection problem 
and it has 'not been solved in the context of differential equations. In [4, 43] Toeplitz and 
Wiener-Hopf methods are employed to fix these constants. The Toeplitz arguments of [4] 
depend upon some unproved assumptions about scaling limits, but the considerations 
of [43] are completely rigorous and we deduce the following result [4] for (r~(x) for all 
n = 3 ,4 , . . . :  

n! exp(nx) [ ~  [1 g(Tn-1 4)1_. + 1_~(7n7 2 _ 16) 1 ±1 
(7.7) 

as x --~ oo. For n --- 1, 2 the above is correct for the leading behavior but for n = 1 the 
correction terms have coefficients ~ and i~s, respectively, and for n = 2 the above formula 
gives the coefficient for 1/z but the coefficient for 1/x 2 is ~ .  See [4] for asymptotic 
formulas for o±,,~(X ). 

Since the asymptotics of EZ(0; s) are known, it is convenient to introduce 

E~(n; s) 
r~(n;  s )  . -  E z ( 0 ;  ~)" 

Here we restrict our discussion to fl = 2 (see [4] for other cases). Using (7.7) in (3.29) 
one discovers that  there is a great deal of cancellation in the terms which go into the 
asymptotics of r2(n; s). To prove a result for all n E N by this method we must handle 
all the correction terms in (7.7)--this was not done in [4] and so the following result was 
proved only for 1 < n < 10: 

r2(n; s) = 2,n 1 + + + 1~(4n4 + 48n 2 -}- 229) + O( ) 

(7.8) 

where 

B 2 , .  = 2 - " ~ - ~ / %  -~"~÷"~/2 (~  - 1)! (~  - 2)! . . .  2! 1 ! .  

In the next section we derive the leading term of (7.8) for all n C N. Asymptotic formulas 
for rz(n;s) (/3 = 1,4,4-) can be found in [4]. 

B. Asymptotics of r2(n; s) from Asymptotics of Eigenvalues 

The asymptotic  formula (7.8) can also be derived by a completely different method (as 
was briefly indicated in [4]). If we denote the eigenvalues of the integral operator K by 
.k0 > ~1 > "'" > 0, then 

o o  

det (1 - AK) = 1-I(1 - AA,), 
i=O 
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and so it follows immedia te ly  from (3.29) that  

r2(n;s)  : ~ ia ' ' "  hln 
Y~ (1 - h i , ) . . . ( 1  - AI.) " (7.9) 

i~ < ' " < i n  

(This is formula (5.4.30) in [27].) Thus the asymptotics of the eigenvalues hi as s --+ oo 
can be expected to give information on the asymptotics of r2(n; s) as s --+ oo. 

It is a remarkable  fact that  the integral operator K ,  acting on the interval ( - t , t ) ,  
commutes  with the differential operator £ defined by 

d 
t2)dd@ + t2x2f, s 2t; (7.10) £ f  = ~xx(X~ _ = 

the boundary condition here is that  f be continuous at + t .  Thus the integral operator  
and the differential operator have precisely the same eigenfunct ions-- the  so-called prolate 
spheroidal wave functions, see e.g. [33]. Now Fuchs [15], by an application of the W K B  
method to the differential equation, and using a connection between the eigenvalues A~ 
and the values of the normalized eigenfunctions at the end-points, derived the asymptot ic  
formula 

1 - hl ~ ~ri+1221+312si+1/2e-~/i! (7.11) 

valid for fixed i as s ~ ~z. Further terms of the asymptotic  expansion for the ratio of the 
two sides were obtained by Slepian [40]. 

If one looks at the asymptotics of the individual terms on the right side of (7.9), then 
we see from (7.11) that  they all have the exponential factor e ~ and that  the powers of 
s that  occur are 

s-~12-(i~ +--.+i,). 

Thus the te rm corresponding to i~ = 0, i2 = 1, . . . ,  i= = n - 1 dominates each of the 
others• In fact we claim this term dominates the sum of all the others, and so 

r2(n; s) ~ 1! 2! . . .  (n - 1)! ~r-~C"+l)/22-"'-~/2s-"2/2e'~, (7.12) 

in agreement  with (7.8). 
To prove this claim, we write 

Ai0"" .~io 
r2(n;s) = (1 - AO). . - (1  - ho) 

+ ~ ,  h h . "  h i .  

(I - hq)-.. (1 - h i . )  

• ' '0 where ,0 = 0, z ° = 1 , . . . ,  z= = n - 1 and the sum here is taken over all ( i l , . . . , i , )  
( io , . . .  , i  o) with il  < " "  < i~. We have to show that  

(1  - h~ , )  (1 - h ~ . ) / ~ - ' / ,  ~ 0 

as s ~ co and we know that  this would be true if the sum were replaced by any summand.  
Write ~ '  = ~21 + ~2  where in Y21 we have ij < N for all j (N to be determined later) 
and ~ a  is the rest of ~2'. Since ~21 is a finite sum we have 

enTrs 

so we need consider only ~2. In any summand of this we have ij _> N for some j ,  and so 
for this j 
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and by (7.11) this is at most 

1 1 

1 - A b - 1 - A N  

aN 8-N-l~ 2 erS 

for some constant a N ,  The product of all other  factors 

1 

1 - A 6 

appearing in this summand is at most 

and so by (7.11) with i = 0 at most 

b~ s -(n-x)/2 e (~-l)~s 

for another constant bn. So we have the es t imate  

E 2 <~ aNbn 8-N-n/2 en~rs E ~il "'" ~in 

where the sum on the right may be taken over all n-tuples ( i x , . . . , Q ) .  
precisely equal to (tr K)  ~ = s ~. Hence 

E 2  <- aNbn'S-N+n/2enrS " 

If we choose N > (n 2 -4- n)/2 then we have 

gnats 
EJ:  o 

as desired. 

This sum is 

C. Dyson's Continuum Model 

In [13] Dyson constructs a continuum Coulomb gas model  [27] for Ep(n;s). In this 
cont inuum model,  

E~(n; s) = exp ( - f lW-  (1- ~)S) 

where 

is the total  energy, 

t S = ] p(:) log p(:) dx 

is the entropy, ~(x) = p(x) - I and p(x) is a continuum charge distribution on the line 
satisfying p(.) -~ I as • -~ +oo and p(x) >__ 0 everywhere. The distribution p(.) is chosen 
to minimize the free energy subject to the condition 
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/2 
, /2 p ( z )  d z  = n .  

Analyzing his solution in the limit 1 < <  n < <  s, Dyson finds E~(n;s) ,,. exp(-/3Wc) 
where 

7r2s2~rs l n ( n  l n ( n  2~)[log(~-~)+ 1] (7.13) W e -  16 ~ (n+~5)+ + 3 ) +  + 

with ~ = 1/2 - 1~ft. 
We now compare these predictions of the continuum model with the exact results. 

First of all, this continuum prediction does not get the s -1/4 (for fl = 2) or the s -1/s 
(for /3 = 1,4) present in all Ez(n;s)  that come from the log~rs term in (7.6). Thus 
it is better to compare with the continuum prediction for rz(n;s).  We find that the 
continuum model gives both the correct exponential behavior and the correct power of s 
for all three ensembles. Tracing Dyson's arguments shows that the power of s involving 
the n 2 exponent is an enewy effect and the power of s involving the n exponent is an 
entropy effect. Finally, the continuum model also makes a prediction (for large n) for the 
the BZ,~'s (B2,~ is given above). Here we find that the ratio of the exact result to the 
continuum model result is approximately n -1/1~ for/3 = 2 and n -1/24 for/3 = 1,4. This 
prediction of the continuum model is better than it first appears when one considers that 
the constants themselves are of order n ~2/2 (/3 = 2) and n ~2 (/3 = 1,4). 
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Abs t rac t .  We evaluate the fundamental solution of the hyperbolic sys- 
tem describing the generation and propagation of elastic waves in an 
anisotropic solid by studying the homology of the so-called slowness hy- 
persurface defined by the characteristic equation. Our starting point is 
the Herglotz-Petrovsky-Leray integral representation of the fundamental 
solution. We find an explicit decomposition of the latter solution into 
integrals over vanishing cycles associated with the isolated singularities 
on the slowness surface. As is well known in the theory of isolated sin- 
gularities, integrals over vanishing cycles satisfy a system of differential 
equations known as Picard-Fuchs equations. We discuss a method to ob- 
tain these equations explicitly. Subsequently, we use these to analyse the 
asymptotic behavior of the fundamental solution near wave front singu- 
larities in three dimensions. Our work sheds new light on how to compute 
the so-called Cagniard-De Hoop contour which is used in numerical in- 
tegration schemes to obtain the full time behaviour of the fundamental 
solution for a given direction of propagation. 

1 I n t r o d u c t i o n  

Over the last few years, much at tention has been paid to the evaluation of 
the fundamental  solution (Green's tensor) of the hyperbolic system describing 
the generation and propagation of waves in generally anisotropic solids in n = 
3-dimensional space. One reason for this comes from the field of exploration 
geophysics; recently developed techniques in seismic surveys are powerful enough 
to reveal, in principle, anisotropic properties of rock in layers at great  depth.  
Knowledge of this anisotropy is important  to the oil and gas industries as some 
of the anisotropy is due to large joint systems (faults and fractures) in layered 
hydrocarbon reservoirs, which will affect the fluid and gas flows in production.  

Wave propagation in anisotropic media is very different from propagation 
in isotropic media. Typical for anisotropic media are the phenomena of shear- 
wave splitting and conical refraction. In addition, several types of 'singularities' 
appear,  for example, the self-intersections, cusps and swallow tails tha t  a shear- 
wave front in a generic anisotropic medium develops. Figure 1 shows the situation 
for a typical hexagonal medium frequently observed in seismic experiments. The  
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occurrence of a singularity affects the solution significantly and results in com- 
plicated propagation behavior; this cannot be described by standard 'asymptotic 
ray theory'. The latter approximation diverges in the vicinity of a singularity. As 
the physical solution at a wave front singularity is still regular, a more powerful 
theory is required to find this solution. 

A geometrical description of waves leads to a generally valid solution of the 
hyperbolic system, and opens the way to rigorously check (future) numerical 
techniques for wave simulations in 'realistic' media. Further, the understand- 
ing of the time behavior near a singularity is crucial to interpret it properly 
on measured seismograms. Different approaches to solve a 3-dimensional aniso- 
tropic hyperbolic system, all of them based on (spectral-domain) plane-wave 
expansions of either the particle velocity or the Lam~ potentials, have been ex- 
plored to find closed-form integral representations of the solution. We mention 
the Sommerfeld-Weyl representation [42], Riesz's method [37], and the Herglotz- 
Petrovsky-Leray (HPL) representation [10, 36]. The reduction of the number of 
integrals was independently achieved, employing the time-Laplace transform do- 
main, in the Cagniard-De Hoop method [12, 19, 22]; for particular symmetries 
the fundamental solution could be found explicitly (e.g., the work of Payton [34], 
Burridge, Chadwick and Norris [11]). In crystal acoustics (e.g., Musgrave [30]) 
and phonon focussing (see Every [16]) similar developments took place. However, 
most of these techniques lack a precise geometrical understanding of the features 
typical for the wave solution in anisotropic media. 

The HPL formula gives the fundamental solution in the form of an (Abelian) 
integral of a rational closed (n - 1)-form integrated over a complex (n - 1)- 
dimensional algebraic hypersurface [8]. From the latter integral the full Green's 
tensor of the problem can be constructed. The algebraic surface, known as the 
'slowness surface', is defned by the equation H(~) -- 0 of degree D -- 2n, the 
polynomial H being the complexified determinant of the symbol matrix of the 
hyperbolic operator. The integral is defined over a tube 7 of properly oriented 
cycles 0 V on the real slowness surface; the generic form of the integral is 

E = O~,,H' (1) 

where w(~) is the volume form on the slowness surface and ~, is the coordinate 
in slowness space along the direction of propagation of interest. The cycle 07 is 
later on shown to be directly related to the so-called Cagniard-De Hoop contour. 
The theory of such integrals is extensive and well established in the mathematical 
literature. In particular, the Maslov theory of rapidly oscillating integrals [15], 
which is a frequency- rather than a time-domain approach, in conjunction with 
singularities defined through the critical points of so-called phase functions, see 
e.g. [8], deals with integrals of the type (1) near singularities. 

This paper is a review and summary of our earlier work [41] in which we 
employ algebraic-geometrical techniques, known in complex singularity theory, 
to analyse integrals like (1) with the application to wave propagation in a 3- 
dimensional perfectly elastic anisotropic medium in mind. In particular, we are 
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interested in the asymptotic behavior of the solution near the singularities on 
the wave fronts. In this context, any direction of propagation corresponds to a 
singular point on the slowness surface, but most of them are of a trivial type. 
Our angle of attack is different from the usual Maslov theory, in tha t  we will 
derive this asymptotic behavior by analysing so-called P ica rd -~chs  differential 
equations. These are differential equations associated with the singularities on 
the wave front. As these equations can have at most regular singular points, an 
asymptotic analysis is straightforward. The advantage of this approach is that ,  
as the structure of the Picard-Fuchs equation is entirely fixed by monodromy 
around its regular singular points, it shows explicitly the geometrical content of 
the solution near the singularities on the wave front (which coincides with the 
high frequency limit; this relates to slowly varying medium properties). 

To be able to derive the Picard-Fhchs equation, we first need to rewrite 
the integral in terms of a linear combination of integrals over certain (n - 2)- 
dimensional cycles, called 'vanishing cycles' on the surface H = 0, which are 
directly associated with the singularities on the wave front. To be more precise: 
the cycle "y can be described in terms of the cohomology of its boundary 07, 
which has a precise meaning in terms of the so-called Milnor fibration of a sin- 
gularity in the Legendre transformation relating the slowness surface with the 
diffraction surface (wave front set). The fact that  isolated singularities on wave 
fronts of hyperbolic operators correspond to singularities of Legendre transfor- 
mations has been shown by Arnold [7]. The relation between a cycle 0"y and 
certain objects in singularity theory has been explored before by Vasiliev [43] 
and in fact been foreseen by Petrovsky, where the cycle was described in terms 
of a certain cohomology class, at present called the Petrovsky class, in relation 
with the recognition of lacunae in the fundamental solution of a hyperbolic op- 
erator. We will reestablish this relation, using the approach followed by Atiyah, 
Bott  and Ghrding [8]. We thus arrive at a canonical decomposition of the in- 
tegral into integrals over vanishing cycles, which we will compute explicitly in 
the case of an arbitrarily anisotropic medium in three spatial dimensions. This 
decomposition is entirely topological and, hence, also valid away from the sin- 
gularity. This is an interesting result in itself, as it reveals the geometry behind 
the so-called Cagniard-De Hoop contours used in numerical integration schemes 
to evaluate E in (1). In fact, we establish a classification of such contours near 
the singularities. 

The Picard-Fuchs equation is satisfied by each of the integrals over a van- 
ishing cycle. It arises from the fact that  the homologies of the vanishing cycles, 
which are dependent on the deformation parameters of the singularity, are locally 
constant in these parameters. If we define a suitable residue we can differentiate 
under the integral with respect to these parameters and conclude tha t  a suffi- 
ciently high-order derivative of the integrand must be a linear combination of 
the lower order ones. Applying standard results to the differential equation thus 
obtained, leads to the desired asymptotic behavior. As the coefficient functions 
in the equation are only depending on the monodromy of the regular singular 
points, the latter procedure encodes the topological content of the solution of 
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the wave problem near a singularity. This then shows some of the more salient 
features of the contours used in previous approaches to evaluate (1), such as the 
Cagniard-De Hoop method [19]. 

The  paper is organised as follows. In Section 2 we pose the seismic Canchy 
problem and resume some of its basic properties. In Section 3 we derive explic- 
itly the HPL representation of a general elastodynamic hyperbolic system from 
Gelfand's plane-wave expansion [17]. Along the way we discuss the geometrical 
properties of the slowness surface relevant to the later analysis. In Section 3 we 
also show how the HPL formula reduces to an integral over a (n-2) -d imens ional  
cycle on the slowness surface, which can be associated with the Cagniard-De 
Hoop contour. In Section 4 the lat ter  integral is decomposed into integrals over 
vanishing cycles associated with a singularity in the Legendre transformation. 
In Section 5, finally, we derive a Picard-Fuchs differential equation for the inte- 
grals over vanishing cycles and show how the asymptot ic  behavior in the high 
frequency limit follows from the monodromy properties around the regular sin- 
gular points. 

SLOWNESS VELOCITY 
Verllcal Cross-section Vertical C~oss-sectlon 

4 ~_..~J /// 
-6. ~ / /  

O. 2. 4. 6. 8. 10. 
r (kin) 

Fig. 1. Slowness surface and wave front for a typical hexagonM medium. 
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2 T h e  C a u c h y  P r o b l e m  

The teasorial Cauchy problem. 
In this section we introduce the tensorial Cauchy problem arising in seismics. 
We define the physical quantities and transform the tensorial problem into an 
associated scalar Cauchy problem, from which the full Green's tensor can be 
constructed. The scalar problem is completely equivalent to the tensorial problem 
but more suitable for our analysis. Since the procedure to arrive at this scalar 
Cauchy problem is not so well known, though standard in functional analysis, 
we will present the relevant steps explicitly. 

It is assumed that linear elasticity theory is applicable. Then the particle 
velocity vm, m = 1, . . - ,  n satisfies the system of equations 

[gk,nO~ - p - 'O ,  ck,m,O,] v,, = p - '  [Oth + O,(c~,,,~,hm,)], (2) 

where the summation convention applies and 

p = volume density of mass, 

C k r m 8  --~ stiffness, 

f~ = volume source density of force, 

hms  ---- ham = volume source density of deformation rate. 

Note that hms is related to the seismic moment density tensor, mkr say, according 
to 

(Ot77akr) ¢~(njxj) ~- Ckrmshrn., (3) 

where nj is the unit normal to the plane of dislocation. The (n x n) principal 
part of the tensorial wave operator on the left-hand side of (2) is given by 

$ k . ~  - C~O,O,,  (4) 

with 
= p-lc ,m,. (5) 

From the positive definite property of the strain-energy function it follows that 
the system is hyperbolic, that is, the system admits propagating waves as solu- 
tions; in general, the system is not strictly hyperbolic, which means that different 
modes may propagate with the same speed in a particular direction. The sym- 
metries of the stiffness yield 

= c ; 7  = = = (6) 
They follow from the condition that (angular) momentum is conserved and from 
the assumption that the processes of deformation are adiabatic. The macroscopic 
symmetry properties of the medium, collected in the 'point' group of transforma- 

• $1po 
tions O, say, simply reflect themselves in the relations O k , k O r n , r n O r , r O s , s C m ,  k, = 

C ~  n. How to obtain the tensor C from microstructure of rocks can be found in 
several papers amongst which the ones by Hudson [21], Schoenberg and Muir [40] 
and Nichols, Muir and Schoenberg [32]. For the medium in Figure 1 elasticities 
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are Cl l l l  = C2222 = 269.4, C3333 = 236.3, C2233 = C3311 = 66.1, C112~ = 96.1, 
C2323 = C1313 = 65.3, C1212 -- 86.1, in units of GPa; the density p = 2700 
kg/m a. For seismic applications the Green's tensor is introduced as the particle 
velocity due to a point body force (e.g., a vibrator) with signature H(t) (the 
Heaviside function; this yields a 5 behavior in time on the right-hand side of 
(2)). For mathematical  convenience a linear combination of the causal and the 
anti-causal Green's tensor is taken to constitute the fundamental solution; the 
latter reduces to the causal Green's tensor on the positive real time axis. Thus, 
using Duhamel's principle [23], the tensorial Cauchy problem to construct the 
fundamental solution is introduced: determine the solution gm of the homoge- 
neous tensorial wave equation 

- -  C; .OrO.] = 0 for {x, t} e 

satisfying the initial conditions 

(7) 

By taking for am the standard unit vectors, the columns of the fundamental  
solution are found. Later  on, we will ignore the separation between the space 
and time coordinates and set {x, t}  --¢ { x x , ' "  ,xn+l} e 2'. 

Through mutual elimination of the components of the system (7), it follows 
that  any component gm satisfies the D = 2n-degree equation in n dimensions 

in which 

a(ai, at) gm= 0, (9) 

with 

a(0i, Or) = det[SkmO 2 -- C~nOrOs], (10) 

with initial conditions 

I ak 0 , . . - ,  - 1, ( 1 1 )  ~gm = "¢'rnk ~ 2n 
t=O 

where, using our wave operator repeatedly, ¢(even) mk = 0 and 

(2£0--1) ---~ ([C:SOr(~s]£O)mkt~(Xl, . . ,Xn) ' t0 1 , ' " , n  (12) 
m k  " = 

f o r m =  1 , . . . , n .  
The scalar Cauchy problem. 
Now, consider the particular family of scalar Cauchy problems 

a(0i, at) E (e) = 0, (13) 

c~t'E (e) =Se ,eU(x l , . . . , x , ) ,  e ' = O , . . . , 2 n - 1  
t----0 

(14) 

gml = 0, COtgrn] --~ ame~(Xl,'''~Xn). (8) 
t=O t=O 
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for t = 0 , . - . ,  2n - 1. The solution is denoted as E (t)[U] to indicate the initial 
value function explicitly. Note tha t  for t = 0 , - . . ,  2n - 2, 

2n- - I  
E(t)[U]=O2n-I-~E(2n-1)[U] - ~ E(t')[~t'-to2tn-lE(2n-1)[U]]. ( 1 5 )  

£ '=£+1  

This way, the E (e), t = 0 , - . .  , 2 n -  2, follow from E (2"-1) by recursion. The 
fur ther  analysis will be focussed on the lat ter  function. Thus, set 

E • E ( 2 n - l }  [~] 

then 

T h e  * ~ t -  

Cauchy problem is associated with E (1). 
The function gm can be constructed from the E (~) using (11): 

where 

(16) 

E ~2"- ' ) [v]  = E , ~ °  V. (17) 

denotes convolution with U in ~ .  Note that  the 'physical' scalar 

sn } gin = ~ ,~i(2to-1) [ ~'7(2eo-1) 
/ z_~ ~ k  ~ [~1) , ak 
k t 0 = l  

(18) 

i 
A(r) = - -  (21) 

7~T 

is the analytic Dirac distribution (odd in 7-), 12 is the unit sphere and dS(~) 
is the volume form on this sphere. To employ this expansion, we introduce the 
family of analytic functions 

Xz(r) = F ( - z )  exp(--iTrz) 
ilr rZ' (22) 

where 

• ( 2 t o - 1 )  ( ,~ _ ,~(2to-1) (19) mk ~ ' /  - -  '~'mk *R~. '~ ., ~0 = 1 , ' ' "  , I t .  

In seismic applications the It = 3-dimensional problem is considered, al though 
the 2-dimensional problem arises as well namely from propagation in a plane of 
symmetry  in three dimensions. In tha t  case a line source rather  than  a point 
source is considered. 
Gel'land's plane-wave expansion. 
We will now employ Gel' land's plane-wave expansion (the inversion formula 
for the Radon transformation) of the J-source in the Cauchy problem to find 
a plane-wave expansion of the fundamental  solution. We will employ explicit 
distributions on ]R which are boundary values of functions analytic in the lower 
or upper  complex half-plane. According to Gel'land [17], we have 

i n - 1  . 

~(=,,...,x.)- 2.-~-, f~ a~"-l~(~j=j-i°lds(~) 
in-1 /~ 

-- 2n7rn_ 1 A(n-1)(~jxj+iO)dS(~), (20) 
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for z e C \ { 0 , 1 ,  2, .- .}.  (Note t h a t / "  has simple poles at 0, - 1 , - 2 , . . - )  This is a 
single-valued analytic function in the lower half-plane (Im{~'} < 0) but  likewise 
it is a single-valued function in the upper half-plane (Im{r} > 0). This family 
of functions satisfies the relation 

dx~ 
d r  = Xz-x(r). (23) 

The analytic Dirac distribution is contained as a member  in the family: 

X- , ( r )  = a ( r ) .  (24) 

Using the Laurent series of (22) in z about the simple poles at z = O, 1,2, .-- ,  
X~ can be defined for positive integer values for z as follows. Let m = O, 1, 2 ,- . .  
then 

Xm(r) --} CXm+¢(r)l¢=0 = ~ .  1 - -Tr ( log(v- ' )  + Cm r m, 

with 
m 1 

c 0 = F ' ( 1 ) ,  Cm=Co+Z~ for r e = l , 2 , . . .  
k=l 

The expression in (25) satisfies (23) with z = m. It is found that  

lim X . ~ ( r ) =  1 
Im{v}J,,O 

lim Xm(r)= 1 
lm{'r}3"0 ~.I 

(28) 

[ Isgn(r)+ 2 - ~ 1  i ( log( l r l_ , )+  cm)] r m, (27) 

[_  Izsgn(r) + 23 i (l°g(N-')+c')] r ' n ' -  Ir (28) 

for m = 0, 1, 2 , . . . .  Now, using (23) for m = 0, we find 

lim A ( r ) =  lim X _ , ( r ) =  8(r )+i (7 /~i ) ( r ) ,  
Im{v}~.0 Im{r}~.O 

lim A(T) = lim X-x(z) = - ( ~ ( r )  + i(7/~)(r), 
lm{r}t0 Ira{r}1"0 

where 71 denotes the Hilbert transform. 
Explicit evaluation reveals that  

L Re{x-n(~JxJ- i0)} d S ( ~ ) = 0  i f n  is even 

f lm{x-.(4jxi-io)} dS(~) = 0 i f n  is odd. 

Thus, in fact (20) can be written as 

(~(Xl, '* ' ,Xn) = 

(29) 

(30) 

(31) 

(32) 

in-1 
2n~n-I iImlft~x_n(~jx j i0) dS(~)~ 

if n is odd 

if n is even 

(33) 
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o r  

8(Xx,.." , x , )  = 2 , r , _ 1  Re i n - l x _ n ( ~ j x  j - iOldS(~) , 

but  everywhere X-n(~./x.~ - iO) can be replaced by 

(34) 

(1/2) [X-n(~jx j  - iO) - X_n(~ jx  i + i0)]. 

Given Gel'fand's plane-wave expansion of the J-function, it is now straightfor- 
ward to find the plane-wave expansion both  of gm in case of the tensorial problem 
and of E in case of the scalar problem. We will suppress the term - i 0  in all the 
arguments to simplify our notation. 

The plane-wave expansion of gm yields: 

i"-1 f• g m =  (35) 
p < 0 , p > 0  

Here, the ~p, p E {-I-1, -I-2, • . . ,  :t:n} are the phase velocities that  must satisfy the 
dispersion relation 

a ( ~ , , - ~ )  = 0, (36) 

while the e (p) are the polarization vectors corresponding with the particle veloc- 
ity; they satisfy the Christoffel equation 

where 

tCkm e(m p) -2 (p) (37) ~.  A p e  k , 

~6  ^ A 

Ickm = Ckmer~, (38) 

is the Christoffel matrix. Since this matrix is symmetric, the basis {e(P)}p>0 
can be  chosen to be orthonormal at every ~. Later on, we will group together 
the spectral-domain coordinates: ( ~ x , ' " ,  ~n, -A} -~ (~1 , " " ,  ~,+1 } e 2 ,  say. In 
view of the symmetry under time reversal of the tensorial wave operator,  we 
have 

)~-p = -)~p, (39) 

and we can choose 

e (-p) = e (p). (40) 

Hence, (35) must be cubic in A2p and the values for Ap can be found with the aid 

of Cardano's formula. Note the homogeneity of Ap: Ap(T~) ---- vAp(~), which also 
implies that  - A p ( - ~ )  --- Ap(~). 

The a (p) follow from the initial conditions (cf. (11)), 

E (--)~P)tCt(P)e('nP) 7(t) = ~mka~, g = O , . - . , 2 n - -  1, (41) 
p < O , p > O  
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where wmk~(e) follows from ~b(m e) by replacing Or with ~r, employing Gel'fand's for- 
mula. The resulting equations reduce to 

= 0 ,  (42)  
p~O,p>O 

-- E (e(mP))~P)a(P)=am" (43) 
p<O,p>O 

In view of the +p symmetry, the first equation implies 

a (-'p) = - a ( P ) ;  (44) 

then the second equation implies 

a(p) = 1 (e(P)ak)" (45) 
2£p 

The weighting functions a(P)e(m p) = -ak (2)~p)-X(e~ p) e(m p)) lead to the well-known 
dyadic form of the Green's tensor. Using that  the distribution Re{i n-I X-n+l(~jxj± 
Ap(~)t- iO)} is even in ~jxj ± )~p(~)t, the expression in (35) can be reduced to 
a sum over positive values of p's and integrals over the hemisphere of/2. 

Using the symmetry in time again, the plane-wave expansion of the scalar 
function E is found to be 

2nTrn-li"-X ~ /n E =  ~ A(P)(~) [Xn-,(~jxj -*kp(~)t)- Xn-l(gjxj + )~p(g)t)]dS(~ ). 

The initial conditions for E now lead to 

E(- - ) ip )  2t°-IA(p) = ~2£o--1,2n--1, eO = l , ' ' ' , n .  2 
p>O 

Since (39) implies 

= 1-I  - 
p>0 

the solution of (47) is given by 

A(P) = 

Using the homogeneity of a, viz., a(r~,-rA) = r2na(~,-A), it follows that  

and (49) can be written as 

A(p) = An 

(46) 

(47) 

(48) 

(49) 

(50) 
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3 T h e  H e r g l o t z - P e t r o v s k y - L e r a y  F o r m u l a e  

The slowness hypersurfaee. 
We begin with summarizing the basic properties of the varieties which will play 
a r61e in the further analysis. For a detailed discussion we refer the reader to 
Duff [14], Musgrave [30], and Payton [34, 35]. 

Let the slowness cone A C Z be defined through 

A :  a = 0. (51) 

The slowness or ray vector ~ is introduced as 

~ = ~p~j,  p = 1 , . . . , n .  (52)  

If ~ fi ~2 then ]~] = 1/[)~p[ equals the phase slowness. In fact, (52) represents the 
transition from 2 ~_ C "+1 to the projective space 3 Z -~ C P  n. Let the function 
H be given by 

H(~I,""" ,  ~n) = a(~l , ' ' ' ,  ~n, -1 ) .  (53) 

Then the slowness hypersurface is defined by 

A:  H = 0 (54) 

(this equals the intersection of the slowness cone A with the plane A = 1). In any 
local cone (with its vertex at the origin) the entirely real solution of the latter 
equation, Re{A}, consists of n sheets. Every sheet corresponds, in any local cone, 
with a (double) mode (+)p and can be covered with (two) almost everywhere 
holomorphic coordinate patches. 

In general, the sheets may have a finite number of isolated multiple points, 
where two ('kiss' singularity) sheets are tangent [13], or for points where two 
sheets intersect. Sheets can also have curves or higher-dimensionai surfaces of 
multiple points, in which case the space-time singularities are of a different na- 
ture: only a hypersurface of multiple points of codimension 2 leads to an ad- 
ditional arrival. There the coordinate patches cannot be holomorphic (for an 
analysis of the local slowness surface parametrization near a conical point in 
three dimensions, see Musgrave [31]). If points of tangency occur, the slowness 
surface as a whole is called singular; if the sheets are entirely disconnected, the 
surface is said to be regular. Each sheet is smooth and either locally convex or 
concave (elliptic points) or locally saddle shaped (hyperbolic points, Morse sad- 
dles) except at points or curves where (one ~ of) the principal curvatures vanish 
(parabolic points, e.g., inflection points in a plane through the origin of the slow- 
ness space). In this paper we will focus exclusively on the latter singularities and 
postpone the t reatment  of conical refraction and kiss singularities to a future 
paper. 
Integration over the real slowness surface. 
The sum over the modes combined with the integral over the unit  sphere can now 
be expressed as an integral over the real slowness surface (using local coordinates 

3 un-hatted variables are projective variables throughout. 
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in a small cone and the outward normal or group direction O¢H/IO¢HI). For a 
discussion see also Auld [9]. Let the volume form on Re{A} be denoted as dS(~). 
Then (see Figure 2) 

I l"-a d " dS(~) = ~ S(~), (55) 

where 0 is the angle between the group velocity and ray vectors. Hence 

dS(~)=  [~JO~JHI dS(~). (56) 

Further, the weighting function A (p) transforms as (cf. (50) and we extracted 
the positive phase velocities p > 0) 

IW--I A(P) (57) 

while (cf. (22)) 

Set 

Xz-l(~jzj - Ap(~)t) ---} I 1 - t). (58) 

dS(~) s_n, ~ t:') n x, da(~) = ~ H - - [  s LqJ ~j I" (59) 

upon substituting the latter results in (46) and taking the limit z --} n, we obtain 

i,-l{ReffRe{Al[X,_l(~jxj--t)--Xn_l(~jxj+t)]da(~)t n odd 

E= 2,rn_l iImlfae{A}[Xn_l(~jx j --t)--X,-I(~jxj -t-t)]da(~)~ n even. 

(60) 
This formula, known as the HPL formula, implies that the fundamental solution 
can be expressed in terms of so-called non-evanescent constituents only. Here, 
we made use of the fact that the system is non-dispersive. Note that the imag- 
inary part involves a logarithm, while the real part does not. Also, note that 
Re{i n-1Xn_l(~jXj -4- t - -  i0)} is even in ~ j X j  4- t. Hence, (60) may be written as 

in-1 { Relfae{A}[Xn-l(t-~jxj)-Xn_l(t4-~jxj)]d~(~)l n o d d  

E= 2,1r,_ 1 iIm~£e{A}[Xn_l(t--~jxj)--Xn_l(t+~jxj)]da(~)~ neven. 

We exploit the fact that the integrand is even in t 4- ~jxj further. It has been 
observed that Re{A} is invariant under the point reflection in the origin in ~- 
space. Now, choose a direction of preference, xn say, relative to the principal axes 
of symmetry of the medium. Set Re{A} = A+ U A_, such that A+ corresponds 
with the upgoing waves (identified by the wave front 27w = S+ U 27_ through 
the polar reciprocal of Re{A}) and A_ with the downgoing waves. The point 
reflection ~ -} - ~  maps A+ onto A_, hence (still omitting the argument - i0 )  

fA X._l(t--~¢z¢)d~(~)=fA X._l(t+~izi)da(~ ). (62) 
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Thus 

i , -1  L E =  2._17r._ x [X ._x ( t -~ jx j ) -X ._ i ( t+~j~ j ) lda(~  ). (63) 
+ 

This way we have introduced an orientation for Re{A}. Now choose coordinates 
on A+. For this purpose consider the orthogonal projection C of A+ on the plane 
{~n = 0} and let (~1, ' '" ,~n--1) be the coordinates. The parametric representa- 
tion of the slowness surface A+ is then given by {~1,"" ,~ , -1 ,  f ( ~ l , " " ,  ~n-1)}, 
where f represents a n-plet. Later  on, the direction of preference will become 
the direction of observation. At the singular points contributing to this direction 
of propagation, a principal curvature or its derivative may vanish. Thus, in the 
preferred coordinate system, the occurrence of a singular point on a particular 
sheet corresponds with multiple (ft > 1) roots of the equation 

0~,,...,~,_, f = 0. (64) 

At these roots the normal to the slowness surface, i.e., the group direction, must  
be parallel to the ~,-axis, which in turn translates into the condition 

O~I,...,~._tH = 0 with H = 0. (65) 

We have (see Figure 2) 
dS(~) 

IO HI 
and hence, restricting to A+, 

d~l • • • d~,_ 1 

10 .HI ' 
(66) 

Note tha t  this ( n -  1)-form has poles at the branch points of our parametrization 
f.  Cagniard Green's function. 
At this stage, to reduce the integral, E is written as 

i "-1 f )  Re ( t - t ' )"-I  i l m  {Ec(x,t')} dr' if n is odd E(x,t) = 2 " - l T r " - l ( n -  1)I =0 if n is even 
(68) 

which means that  

i - -1 
f /  Ec(x, t') dt'. (69) o~- lE(x ' t )=  2n--17rn--I =0 

Here, Ec is denoted as the Cagniard Green's function and is given by 

Ec(x, t') = Is+ [A(t' -- ~jxj -- iO) -- A(t' + Cjxj -- i0)1 da(~). (70) 

We will redefine E,  which will be the only form of the solution we will consider 
in the further analysis: 

f; E(x, t) = Ec(x, t') dt'. (71) 
=0 

d~l " "  d~.-1 (67) 
da(~) -~ O~.H 
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In Ec we may replace the integrand by 

A( t '  - ~jxj - iO) - A ( t '  + ~jxj -- iO). (72) 

Integration over the complex slowness surface. 
The surface A is invariant under complex conjugation in ~-space (enabling the 
use of Schwartz' reflection principle in the holomorphic extension of the slowness 
integral). Thus, a complexification equivalent with the so-called causality 'trick' 
(Hubral and Tygel [201) applies. 

The n-plet [ and the form da(~) have holomorphic extensions with preser- 
vation of orientation so that the integration over the compact regions C C 7~ "-1 
can be extended over the full (level) plane 

X0 : ~ , x , = 0 ,  x , > 0 .  (73) 

The holomorphic extension is carried out according to the condition Im{f} > 0. 
In fact, we only need analytic function theory in one variable. For example, 
introduce polar coordinates 

~.-1 = qs in(¢ , -2) ,  ~n-2 = qcos(¢ , -2 )s in(¢ ,_3) ,  
~._~ = q cos(¢,_2) cos(¢._3) s in(¢ ,_ , ) ,  . . . ,  (74) 

~2 = q cos(¢n-2) . . ,  cos(¢2) sin(C1 ), ~1 = q cos(Ca_2)-. ,  cos(¢2) cos(¢1 ), 

with ¢1 E [0,271") and ¢ 2 , " " ,  ¢n-2 E [0, 7r). We will use the shorthand notation 
¢ = ( ¢ 1 , ' " ,  ¢,,-2) and d0r(~) --~ da(q, ¢). If we also introduce polar coordinates 
(r, ¢) for (Xl , ' . ' ,  xn-1)-plane, we can set ~jxj = qr cos(r/) +~nxn where r/can be 
expressed in the angles ¢ and ¢. Then C = U¢I¢, where I¢ denotes the collection 
of intervals on the positive real axis in the complex q-plane (the endpoints of 
which are branch points, where O ~ H  = 0) at the angle (azimuth) ¢. Note 
that there may be branch points in the q-plane off the real axis. (They follow 
directly from the f2 vs. q2 relations.) Upon integrating over the full slowness 
hypersurface, however, it follows that contributions from the associated branch 
cuts cancel. 

Consider the n-plet f (q ,  ¢) with Re{f(0, ¢)} > 0. Set i¢ - T~>0 - I¢ and 
= U¢i¢. There exists a holomorphic extension of f (q ,  ¢) on i¢ + i0 in the 

complex q-plane. This defines .4+ = f~_i¢,_¢) C A. In a similar way A_ is 
defined. Under the transformation ~ --~ ~, A+ maps onto 4_ .  Thus, E is also 
given by 

IlL E = [A(r -- ~jxj) -- A ( r  + ~-'~)] da(~) dr. 
--0 +O~.+ 

(75) 

(This expression follows more directly from the Sommerfeld-Weyl representation 
of the fundamental solution.) The first term on the right-hand side generates 
the causal component of the fundamental solution, whereas the second term 
generates the anti-causal component. We will denote A+ U A+ by A~.. In view 
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of (18)-(19) we also have to consider partial derivatives with respect to space of 
E. In general they yield 

0~" E = f [(-~i)~ X - l - ~ ( t  - ~jxj)  - ~ X - l - ~ ( t  + ~jxj)] da(~). (76) 
JA 

It is observed that the integrals of the type (76) have integrands which are strictly 
rational in the slowness variables (in this respect note that 0~. H is polynomial). 
Cycles. 
At this stage the relation between cycles on the complex slowness hypersurface 
and the modified Cagniard contours will be established. Introduce the hyper- 
planes 

n--1  

X~- : ~jxj - v = E ~jxj + f x ,  - r = O. (77) 
j=l 

Later on, we will employ the notation 

n - - I  

~jxj = ~ Gx j  + f x n  = x , F ( ¢ l , ' "  ,~n--l,Xl,''" ,Xn--1). (78) 
j=l 

Now, following Petrovsky, introduce the n-plet of cycles 07 = 07+ U 03'- on A 
through 

07±(x , r) = A*~ n X , .  (79) 

On 0"I the argument of the A-function, denoted as the phase function, is real 
(-iO). 

The integral representation for E can be written as 

[( ) 
= 0  o 5=1 

(8o) 
Integration of the resulting A-function and restricting to the time interval [0, ~ )  
leads to 

E = (1 + i n )  dv(~) =0 7+(~,r) 0~.H dr  (81) 

= (1 + in) f~ W(~) 
+(~,,) O~ H '  

where w denotes the Leray form, and ~+ (x, t) denotes the tube of cycles 03% (x, T) 
for the interval 7 e [0, t). In this representation the time behaviour ('tail') of E 
is hidden as a parameter in the cycles at a given direction of propagation. 

In polar coordinates the cycle 07+ can be parametrized as follows: 

07+ (r, ¢, x , ,  ~) = {q+ (r, 0(¢, ¢), x-,  v), ¢, l(q+ (r, ~(¢, ¢), xn, r),  ~) I (82) 
tbe  ([0,2~'),[0,7r),... ,[0,r))}, 
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where q+ (r, q(¢, ¢), x3, r) denotes the n-plet of modified Cagniard contours. The 
latter contours, with parameter v, are obtained from the cycles through inter- 
section with the (q, ~n)-plane (fixed ¢) followed by an orthogonal projection on 
the complex q-plane. 

Without restriction, we can assume that the direction of observation coincides 
with the xn-axis. This implies that everywhere ~ixi can be replaced by ~nx,~, 
whereas (77) can be replaced by 

X ¢  : I x .  - r = 0 ,  ( 8 3 )  

where the new coordinates are denoted as the old ones (see Figure 2). But then 
the time axis coincides with the ~n-axis and the tube 7+(x,t) can be defined 
through an interval along the ~n-axis. 

At this point, it is observed that the construction of the fundamental solution 
reduces to the construction of the cycles on A, followed by an integration over 
these cycles. For isotropic media it is simple to find these cycles; for anistropic 
media, however, the construction is far from trivial. In the further analysis, a 
basis for these cycles in the homology group of the associated hypersurface will 
be found and a differential equation for the integral representation over any basis 
element will be derived. 

' ~ "Re{A} 

ol" 1 
f~ 

Fig. 2. The projection of the unit &sphere onto the slownes surface 
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4 T h e  F u n d a m e n t a l  S o l u t i o n  E x p r e s s e d  a s  a n  I n t e g r a l  

o v e r  V a n i s h i n g  C y c l e s .  

In this section we will show how the geometry of the slowness surface leads 
to a natural decomposition of the fundamental solution E into integrals over 
so-called vanishing cycles. As we shall see these cycles encode the topological 
information of the wave operator: they depend only on the topology of degen- 
rate critical points on the slowness surface, which are defined by the polynomial 
equations describing the slowness surface around such points. To achieve this 
decomposition, we use the geometrical objects introduced in the two preceding 
sections. The decomposition of the fundamental solution into integrals over van- 
ishing cycles, has in fact been foreseen already by Petrovsky [36], and used also 
in [43, 8]. 
Decomposition into vanishing cycles. 
Let us begin with putting the result of the previous section (see also [8, 25, 36]) 
in a more general context. Expression (81) is of the generic form 

E = ~  P ( ~ I , - " , ~ , )  dC .. O ~ ' : ~ - ~ , )  ~l .d~,,_, (84) 

where P is a degree k < deg H - n - 1 polynomial in ~. The integral is over a 
complex (n - 1)-dimensional cycle denoted by 7 in the (n - 1)-dimensional alge- 
braic hypersurface A : H(~I , ' . .  ,~,) = 0, i.e., the cycle is a certain (connected) 
piece of the slowness surface, oriented such that the coordinate ~n corresponds 
to the 'vertical' direction. As was shown in the previous section the contour 07 
arises through intersection A n X. The integrand is in fact a closed rational form 
of degree (n - 1) with poles along 0~. H = 0, hence the integral depends only on 
the homology class of 7. The quantity O~,H corresponds to the group velocity 
in the n-th direction, i.e., the vertical group velocity. Since the cycle depends 
continuously on the coefficients of H, we may use these as deformation param- 
eters of the cycle, without changing the value of the integral. The fact that the 
integral only depends on the homology class represented by 7 has an important 
consequence which will play a central r61e in this section. 

Define coordinates xi on X t  such that its local equation is simply ~nxn = t, 
where t has the interpretation of time. We are interested in the solutions of the 
following set of equations 

H = 0, c9~,,...,~._, H = 0, (85) 

where it is understood that the slowness hypersurface is oriented such that the 
group velocity is parallel with the ~n-axis. In general the roots of these equations 
will all be different, in which case there are p = D ( D  - 1) n-1 of them. Label 

them according to ~(k), k = 1 , . . . , p .  These points define singular points (for 
vertical propagation) on the slowness surface; we will study the topology of the 
slowness surface "around those points in detail below. 

The level surfaces H(~l, '"  •, ~n-1, r) = 0 for generic values of r, considered as 
a parameter, contain (n - 2)-cycles Ak (r) which have the defining property that 
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they 'vanish' when taken along a path uk in the r-plane (i.e. the target plane 
of the function H),  connecting a generic point ~(0) with the point ~(k): upon 
approaching the point ~(k), the cycle Ak shrinks to the point ~(k). The system of 
paths ui, i = 1 , - . . ,  # is non-intersecting. The cycles Ai, i = 1 , . . . ,  p are referred 
to as vanishing cycles. (An explicit construction of these cycles will be  given 
later.) The vanishing cycles define (n - 1)-cycles Ji on H = 0 by taking the 
union of all cycles Alk(v) as we move along uk from ~(0) to ~(k). It is a s tandard 
fact on integrals of the type (84) that  the cycles thus constructed are homologous 
to the cycle 7 in the sense that  there exists the following decomposition: 

= + c . _ , ( d . ° ) ) ,  (86)  
i = 1  

where the ( n -  1)-cycle C,,-1 is homologous to zero on g ( ~ l , . . - ,  ( , - 1 ,  ~(0)) = 0. 
This then results in the following decomposition of E over vanishing cycles: 

E = o ~ . g ( ~ h " .  ,~ , )  

" f P ( ~ l , ' : : , ~ , )  
= c' J ,  : . - .T . )  . . .  (87)  

i = 1  

, 1 u,  ,(I") 

This is just  a rewriting of the formulae at the end of the previous section. The 
numbers ci, describing the decomposition of the original integral, are referred to 
as intersection numbers and are of topological nature. The last integral in (87) 
is over the vanishing cycles; its detailed properties will be discussed in the next 
section. In the rest of this section we will apply elements of singularity theory 
to make the above decomposition explicit, that  is we will show how to compute 
the intersection numbers ci. 

In order to do so, we will make more precise the duality between the slowness 
surface and the wave front. This will lead naturally to the s tudy of singulari- 
ties of specific families of hypersurfaces, which are deformations of the original 
slowness surface. The singularities on the slowness surface correspond to critical 
points of second (i.e., non-degenerate) or higher order (degenerate). Such points 
correspond to certain singularities on the wave front. We will show, following 
[4, 5, 7] that  such singularities can be conveniently studied in terms of critical 
points in the Legendre transformation relating the slowness and wave front set 
(including the diffraction surface and wave front surface). As we shall discuss, 
this also will lead to a complete classification of wave front singularities that  can 
arise in anisotropic elastic media. 
A singularity on the wave front is the singularity of a Legendre transformation. 
The duality between the projective wave front 57d and Re{A} is described by 
a Legendre transformation and has extensively been discussed in [7]. The char- 
acteristic feature of a Legendre transformation is that  it transforms functions 
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on a vector space to functions on the dual of this vector space. To explain the 
concept, consider the following example. Let  y = f (~) ,~  E t t  be a smooth func- 
tion, with f ' ( ~ )  > 0. A Legendre transformation of f is a new function g of a 
new variable x constructed in the following way. Let  x be a given number  and 
consider the line y = x~. Take the point ~(x) on the ~-axis such that  the vertical 
distance between the line and f is maximal. Tha t  is, for each x the function 
F(~,  x) = ~x + f(~) has a maximum at ~ = ~(x), following from O~f = 0, i.e., 
from f ' (~)  = x. The function g is now defined as g(x) -- F(~(x) ,  x). Note that  
since the second derivative of f does not change sign, the point ~(x) is unique. 
As an example take the cubic function f(~) = I 3 - ~  . Then F(~,x)  = ~ x -  ~s/3, 
~(x) 2 "- x, and hence g(x) -- 2x3/2/3. 

An important  proper ty  of a Legendre transformation is tha t  its square is the 
identity, in other words, one can view it as a projection, which point of view will 
be adopted below. The extension to higher dimensions is straightforward: let 
f -- f ( ~ l , " "  ,~n-1) such that  the Hessian det(OiOjf) > O, i , j  E { 1 , - . . , n  - 1}, 
i.e., the  function f is strictly convex. Then the Legendre t ransformation of f is 
a function 

g(x) = f ( ~ ( x ) , x ) ,  (88) 

where x(~) is the solution of 0~, ,...,¢._, f - 0 and F = xj~j + f(~).  The functions 
f and g are each other Legendre dual. An all too well known example of this 
duality is the duality between the Hamiltonian and Lagrangian functions of 
classical mechanics. The generic situation is summarized as follows [7]: for the 
function F(~i, xj)  of 2(n - 1) variables, the formulae 

OF OF 

OF 
T = f - ~,-~-~ = F (89) 

define a Legendre variety in the 'big' (2 ( n -  1) + 1)-dimensional space coordinated 
by (x, ~, r ) ,  through the condition 

3~(z) : O~F = O, F = r. 

The  projection (~, x, v) -~ (x, v) is a Legendre transformation. 
Apply this to the slowness surface defined by the equation H ( ~ I , . . . ,  ~,,) = 0. 

This surface has already been parametrized by ~,~ = f ( { 1 , " " ,  {,,-1). We defined 
the function 

n--1 
f(~, x) -~ ~ X,~i ~" x , f ( ~ l , ' " ,  ~n-1 ). (90) 

i=1 

Upon dividing by x ,  > 0, we may redefine the function F as 

n--I  

= i ( 6 , " " ,  X' J 
i=1 Xn 

(91) 
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Henceforth, we will work exclusively with projective coordinates x~/x, ,  i = 
1 , . - . ,  n - 1, xn ~ 0, denoted by xi as well. Thus 

.F,d = { ( x , , . . . , x n ) , 3 , ( x )  : O~F =O, F = ~ }  (92) 

is the Legendre dual of the slowness surface parametrized by [ .  Note that  the 
function F is the Hamiltonian for the 'ray-system' and not the Hamiltonian for 
the full wave equation. That  is, F is the linearized form of the full Hamiltonian, 
defined in terms of classical fields. 

It  is now evident what the origin of singularities on the wave front is: they 
are precisely the Legendre transformation of the critical points O~F = 0 in the 
'big' 2 ( n -  1) + 1 space defined above. At these points the function f and its dual 
g fail to be convex, i.e., at these points at least one of the principal Gaussian 
curvatures on the slowness surface vanishes. Quite generally, the singular points 
on wave surfaces correspond to Legendre transformations of the critical points 
in ~-space of the function F.  The function F is called the generating function 
of the Legendre transformation. It can be considered as defining a family of 
slowness surfaces defined locally by f and 'parametrized'  by Xl , . - .  , Xn--1. This 
is a useful interpretation in the context of singularities. In fact, the family F 
defines a deformation of the isolated singularities of the function f ,  such that  
F(~,  0) = .f(~) parametrizes the original singularity defined by a critical point 
of f .  
Singularity theory. 
Smooth functions, like f ,  that  define isolated singularities have been thoroughly 
studied, for example in [2, 7]. For us, the most important  class of functions is the 
one formed by functions that  define isolated, stable singularities, i.e., the ones 
that  are invariant under a local reparametrization of the surfaces. In [7] a com- 
plete classification is given of all types of singularities tha t  can occur in Legendre 
transformations of arbi t rary slowness surfaces in low dimensions. In particular, 
it follows that  possible singularities of fronts in three spatial dimensions fall into 
three classes. Correspondingly the critical points on the slowness surface define 
either a local extremum, an inflection point (i.e., vanishing Gaussian curvature) 
or a point at  which a derivative of the curvature vanishes. Around such points 
on the slowness surface there exist local (curve-linear) coordinates s(~, x), y(x), 
found upon applying a canonical transformation of the original ( 'horizontal') 
coordinates ~, x, such that  the function F at such points satisfies F = OsF -- O, 
and close to the singularity is given by an expression of Table 1. Note that  in 
projective space coordinates one of the y coordinates is set to 1. In general, the 
evaluation of the lat ter  canonical transformation involves numerical computa- 
tions. We postpone those computations to a future paper. The functions s have 
the physical interpretation of 'horizontal '  slownesses, while the functions Yi are 
space(-time) coordinates. 

These singularities define a point of transversal self intersection in the first 
case; in the second case a cuspidal edge in the (Yl, Y2)-plane, dividing the plane 
into regions of either three real roots of F = 0 or a real one and two complex con- 
jugated ones. This singularity corresponds to a vanishing of Gaussian curvature 
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Table 1. Singularities on Wave fronts in 3-dimensional space. 

Type I Normal form Ip 

A1 I F = s2 A2 F =  ~s s + y l s + y 2  12 I 
A3 F = ¼s 4 + yls s + y2s + Y3 3 

on the slowness surface. In the third case the wave surface singularity is known 
as a swallowtail in (Yl, Y2, Y3)-space. On the slowness surface this corresponds to 
a point where the derivative of a Gaussian curvature vanishes. See Figure 3 for 
the possibile wave front singularities. 

z /8 , /  

j! /6 

Fig. 3. Possible momentary 3-D wave front singularities , (see also [5]), with leading 
asymptotic behavior, (determined in section 5) 

We will give a simple heuristic argument why this is indeed a complete classi- 
fication. Possible points of inflection on the real slowness surface can be detected 
by considering the condition that  a real valued bitangent exists. A bitangent line 
is a line tangent to a slowness sheet at two points. Obviously, this can only 
happen when the slowness sheet is locally not convex. For every bitangent line 
there will be automatically two inflection points. Note that  the bitangent must 
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be a real line as follows from the hyperbolicity condition. A limiting case thus 
occurs when the two inflection points coincide, as then the bitangent will become 
complex. This situation occurs at a point (~1, ~2, (3) for which up to the third 
derivative with respect to ~ vanish, implying that  F is a fourth order polynomial 
proportional  to (~ - ~)4. 

The presence of cups and cuspidal edges is quite common in practical situa- 
tions. For example, they occur in a generic 3-dimensional finely layered medium, 
consisting of different isotropic elastic material. The  system of layers has a re- 
sulting hexagonal symmetry, but  is not isotropic. One of the (quasi-)shear waves 
may exhibit two or four cusps. It  is impor tan t  to realize tha t  the above classifi- 
cation can be recast in a classification of relations among the components of the 
stiffness tensor cij~t for which the above singularities occur. 

From now on, we will assume that  the function F is brought into normal 
form, and we will denote the normal coordinates s by ~ again. The labelling 
of the three cases is according to the types of reflection groups that  act on the 
critical points. They  encode the topological s t ructure of the singularity as we 
shall now discuss. 

In general, the multiplicity of the isolated critical point of f (~)  gets resolved 
into p different critical points of the family F(~, x), for a generic choice of pa- 
rameters of x. In fact one can show that  the set of all parameters  x for which 
the F has p distinct critical values is dense, i.e., F can be seen as a non-singular 
Morsification o f  the ]unction f .  This fact allows us to introduce p < n - 1 
parameters  A in place of the n - 1 parameters x for which the the same is true: 

F(~, A) = f(~) + Z Aig,(~). (93) 
i----1 

The functions gi(~) are polynomials in all variables ~ 1 , ' " ,  ~n-1 forming a basis 
in the p-dimensional vector space of polynomials in ~ modulo those polynomials 
generated by the the first partial derivatives of f .  The fact tha t  this is a finite 
p-dimensional vector space is a s tandard result. This vector space, spanned by 
gi(~), is sometimes referred to as the local ring of f .  The important  point that  
we stress here, is tha t  for generic choices of A the critical points of F are all 
distinct and the set of those A's is dense as well. In other words, in a suitably 
small neighborhood of the critical point of f every analytic function near f can 
be obtained by analytic changes of variables in F(~,  A) for some value of A. The 
form (93) of F is called a versal deformation of F .  

The question now arises as to whether one requires a continuum or discrete 
set of values of A's to unravel the singular points in a judiciously chosen neigh- 
borhood of .f. Obviously, this depends on the nature  of the singularity of f .  
Without  discussing this (see e.g. [6] for a complete discussion) we state the re- 
sult here: for those singularities appearing in the list above, there is always only 
a finite set of values of A required. (The singularities in tha t  list are of modality 
zero.) 

The equation F(~, A) -- 0 defines for generic values of A the nonsingular level 
surfaces of f .  Introduce the set S of all Ai, i = 1 , . . .  p, and consider for each A 
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the level surface 
Vx = {f(~, A) = 0, I5l < p}, (94) 

i.e., we intersect F = 0 with a small (n-2)-ball  B of radius p > 0 centered at the 
critical point of f .  (This is the region of validity of the normal form representing 
F.) The surfaces Vx are for generic values of )~ nonsingular and for those values 
they are all diffeomorphic to the non-singular level surfaces of f .  The set of 
A's for which Vx is singular forms a set of codimension 1 in S. This set has an 
obvious geometrical interpretation: it defines a singularity on a wave front, now 
parametrized by A instead of x. For example, for A2 we find that the singular 
set in S (corresponding to the cusp) is constrained by the equation 

~ + ~ = 0. (95) 

Loosely speaking, the projection ~r : V ) S, of which the fibers are Vx, replaces 
the rSle of the Legendre transformation. It should be realized that trading the 
parameters xi for the parameters hi effectively reduces the dimensionality: the 
dimension of the space S of relevant parameters is usually less (at most equal) 
than the dimension of the original physical space. This 'collapse' of dimensions 
is typical for a singularity defined by a degenerate critical point and occurs in 
various physical problems (for example, in phase transitions). 
Time evolution or fronts in three dimensions. 
Having discussed the possible topologies of the wave fronts in a 3-dimensional 
(homogeneous) elastic medium, we now turn to the problem on how the fronts 
evolve in time. Quite generally, a moving front may change its shape in time. 
To study the possible time evolution of moving fronts, we consider the union of 
all momentary fronts classified in Table 1. This union defines a hypersurface in 
4-dimensional space-time. In fact, it follows rather easily that this hypersurface 
is itself a front of a Legendre transformation acting on a Legendre variety of 
one dimension higher than the Legendre variety of the momentary front. One 
considers the time as an additional parameter; the Legendre transformation in 
the higher dimensional space projects on space-time parametrized by (x, t). 

The singularities on the momentary fronts sweep out a subvariety (a lower 
dimensional surface) in the hypersurface swept out by the moving front. These 
singular surfaces are called caustics. In principle, caustics can be classified using 
similar techniques as used in the classification of singularities in the Legendre 
transformations defining the momentary fronts. In case the dimension of the ini- 
tial space is three, the possible singularities in addition to the ones (intersections) 
given in Table 1 are given in Table 2 (see [5]). 

The A4 type singularity in 4-dimensional space-time corresponds again to 
a swallow tail, which we will discuss in detail below. The D4-type singulari- 
ties are qualitatively different from the Ak-type singularities in that they are 
g-dimensional rather than 1-dimensional (which is the case for the Ak-type sin- 
gularities). They are usually referred to as the 'umbilical' singularities [15]. In 
Figure 4 we have depicted the typical singularities of the caustics in space-time 
swept by the singularities of momentary wave fronts in 3-dimensional space. 
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Table 2. Caustics swept in space-time by momentary fronts in 3-dimensional space 
(yo represents time). 

Type I Normal form 

Fig. 4. Evolution of an A4 and D± wave front singularity in 4-D space-time, (see also 

The  swallowtail singularity A4 in 4-dimensional space-time is most  useful to 
illustrate the t ime evolution, as it is related to a common physical phenomenon. 
Consider a momentary  wave front in 3-dimensional space and assume that  it has 
cusp singularities. The cuspidal edges sweep out the caustic. Assume further- 
more, that  the caustic has a 3-dimensional swallowtail singularity. The  caustic 
is locally diffeomorphic to the polynomial of type A4 having a multiple root.  
The  cuspidal edges sweep out a 2-dimensional surface on this hypersurface cor- 
responding to a variety diffeomorphic to the A4 polynomial having roots of mul- 
tiplicity of at least 3. This variety is called an open swallowtail in 4-dimensional 
space-time. An important  result by Arnold [3] states tha t  the t ime evolution 
of any cuspidal edge can always be put  upon a canonical t ransformation into 
the normal form of an open swallowtail, i.e., into a variety given by the zero 
locus of the A4 polynomial with at least coinciding roots. This greatly facili- 
tates the way the projection on to the physical 3-dimensional space has to be 
made: it corresponds to differentiation with respect to ~. Note that  differentia- 
tion lowers by one both  the degree and the multiplicity of the roots. Thus the 
problem separates into two parts: first one studies the open swallowtail on the 
full hypersurface defined by the moving front, and secondly one projects onto 
the space of degree four polynomials having at least roots of multiplicity two by 
differentiation, i.e., on the swallowtail in three space dimensions. 

As t ime proceeds, the edges disappear into a singularity of type A4 in space- 
time, that ,  when projected onto 3-dimensional space, corresponds to an A3-type 
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singularity. This type of evolution is easily identified in a physical situation. 
Namely, suppose a cusp is generated (in a hexagonal medium, say) and moves 
into an isotropic medium. Then the cusp will eventually evolve into a singular 
point on the spherical wave front after which it disappears entirely. The  singular 
point is necessarily of type A3 in 3-dimensional space. It is interesting that  the 
result in [3] implies tha t  in general the cuspidal edge of a moving front passes the 
line of self intersection of the swallowtail in 3-dimensional space at two different 
times. Then  it follows tha t  if the t ime difference between the arrivals of the two 
edges is T, the t ime towards the vertex of the swallowtail, i.e., the point after 
which the cusp has disappeared, is T 2/s. 
The decomposition of the cycle 07. 
We next  describe the cycles in (87) in terms of the level surfaces F(~,  A) = 0 
of f(~) .  First, recall tha t  at the end of the previous section we introduced the 
cycles as the intersection of A n Xr. From (77) we draw the conclusion that  
A O X0 corresponds with F(~,  x) = 0. To construct  the contours 0"y near the 
arrivals, we intersect the level surface with a small ball of radius p centered at a 
critical point (which we have taken to be the origin of the affine coordinates ~). 
Thus, we are looking 'closely' at the front, i.e., mathematical ly we consider the 
high frequency limit. Close to the critical point the function F can be brought 
into its normal form, i.e., one of the three representations given in Table 1. The  
(partial) contours 07 are thus contained in the set 

A N X0 n S ,,~ { f (~ ,  x) = 0} n B. (96) 

We set X = X0. Upon constraining the full set of parameters  x to the 'relevant'  
parameters  )~, we conclude that  the cycles Cn-2(~n) E B are precisely cycles on 
the surfaces F(~,)~) = 0, which we denoted earlier as Vx. This space is much 
more convenient, since we can now invoke results by Milnor on properties of the 
homology group formed by these cycles. 

According to Milnor [29] the space of cycles Cn-2 is of finite dimension #, 
and any (n - 2)-cycle can be expanded into a suitably defined basis of cycles, 
such tha t  the coefficients of this expansion are all integers. More precisely, the 
p-dimensional homology of the fibers Vx for generic values of the parameters  )~ 
form a #-dimensional lattice: 

Hn-2(A N X N B) = H,_2(Vx) = Z" .  (97) 

A basis in this homology is given by a system of # cycles ~ i  which vanish along 
suitable chosen paths connecting a given non-critical value of F with a critical 
one. Milnor's theorem thus states tha t  any cycle 07 on a level surface of .f can 
be decomposed into certain basis cycles drawn on the level surfaces defined by 
F = 0, such that  the coefficients are all integers. In other  words: there exists a 
basis of cycles such that  the intersection numbers ci in (87) are all integers. Such 
a basis is referred to as a basis of vanishing cycles. 

We are now in a position to actually construct such systems of paths and the 
associated cycles. First we divide the critical values of F(~, A) into two sets: the 
real critical values, and the ones that  come in complex conjugated pairs. (Recall 
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that since we require that the function F is real on the real axis, and analytically 
continued in the complex plane according to Schwarz's reflection principle there 
are no arbitrary complex critical points.) In order to make contact with the 
original integral E it is obvious that we have to decide on a particular orientation 
of those cycles that correspond to the real critical values: they have to be in 
agreement with the chosen orientation of the slowness sheets. Assume that the 
origin is a non-critical value of F.  Let U be that portion of the complex plane that 
contains all the critical values. Now connect the origin with any real critical point 
with a path in U such that it always consists of points whose imaginary parts 
are in absolute values less than the absolute values of the imaginary parts of any 
other complex critical point. Further, paths joining the origin with critical points 
that come in complex conjugated pairs, are conjugated and always contained in 
either the positive half plane or negative half plane according to the imaginary 
part of the critical value. We furthermore require that they intersect the real 
axis transversally (to be in agreement with Schwarz's reflection principle). 

Let us denote a system of critical paths in the r-plane obeying these condi- 
tions by ui(A), k = 1 , . . . , # ,  with A parametrizing the path. Next we apply a 
fundamental result in Morse theory, which ensures that close to a critical value 
Zi of F,  F has the expansion (considering the A's as parameters) 

k n--1 

r = z ,  + - ( g s )  
j = l  j = k + l  

where the 'horizontal slowness' coordinates zj(~, A) are real The index k is the 
number of positive eigenvalues of the Hessian of F.  (This is a coordinate inde- 
pendent quantity describing the number of directions at the critical point for 
which F is increasing.) Now introduce the vanishing sphere associated with the 
critical point Zi as 

Si(A) = ~¢/ui(A) - Zi S "-2,  (99) 

with S "-2 the unit sphere in n - 2 coordinates of which the tangent space is 
locally spanned by the vectors 

( O/ OZl , " " , O / Ozk, iO/ OZk+ l , ' " ,  iO/ OZn-1). 

The orientation of this sphere and hence of Si is such that its volume form is 
positive with respect to the volume form orienting the (real) slowness surface. 
The homology class in Hn-2(Vx)  represented by Si is the vanishing cycle corre- 
sponding to the path ui and is denoted by Ai. The system {Ai}~=l forms a basis 
in this homology group. It is with respect to this basis that we will compute the 
numbers ci in (87). 

There is a lot of freedom in choosing a basis of vanishing cycles, which is 
refelcted in the invariance of this basis under automorphic transformations of the 
homology group H,-2 ,  i.e. the isometries of the Milnor lattice.These automor- 
phisms are referred to as monodromy transformations. Rather than discussing 
this in detail we will simply list the results necessary for the computation of the 
intersection numbers ci. It turns out that a monodromy transfromation can be 
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described analytically by studying the properties of the vanishing cycles under 
the following transformations. Consider the combined transformation of going 
along a path ui starting at a given non-critical value, going around anti-clockwise 
a given critical point Zi and back along ui. Under such transformations the roots 
of the equation F = 0 are permuted, but a vanishing cycle, i.e., a contour on 
a non-singular level surface which vanishes upon taking the parameters to zero, 
remains invariant. This implies the possibility of writing down a canonical rep- 
resentation of the vanishing cycles in terms of a suitably chosen parametrization 
of the level surface. This is reflected in the so-called Picard-Lefschetz formula 
, which gives an canonical form of~the inner product on the vanishing cycles. 
Applying this formula yields the following representation of the monodromy op- 
erator hi corresponding to a transformation encircling the i-th critical point: 

hi(~) = ~ + ( - 1 ) " ( " - ' / ~ ( ~ ,  AdA, ,  (100) 

where (~ is an arbitrary cycle of dimension n - 2. It is thus seen tha t  the mon- 
odromy group acts as a (pseudo) reflection, hi(Ai) = --Ai, and it is the identity 
on the hyperplane orthogonal to Ai. In general, the intersection product is hard 
to compute explicitly, and only for a few classes of singularities there exist ex- 
plicit results. However, for simple singularities, among which are those of Table 
1, it can be computed easily. In fact, for singularities defined by 

f(~) = ~ k + l ,  (101) 

it can be shown that  one can bring a basis of vanishing cycles into the following 
form 

(Ai, AI+I ) = - 1 ,  (Ai, Aj) = 0 for I i - Jl --- 2. (102) 

Furthermore, we can construct the composition of all opertars hi, denoted by h. ,  
which thus describes a loop based at a non-critical value, encircling all critical 
values at once. It turns out that  such an operator in case of the singularity of 
Ak, has eigenvalues given by the roots of unity exp(2rcij/k), j = 1, 2,. . .  k. The 
operator h.  will be used in the next section. 

For the simple singularities of type A~ the resulting reflection groups are just 
the permutat ion groups on respectively two or three elements, the Weyl groups 
of the Lie groups A1,A2 and A3. For us the most important  things are that  
the intersection indices appearing in (87) are first of all integers and, secondly, 
depend only on the monodromy group, i.e., on the topology of the singularity 
only. 

Let us now finally compute explicitly these indices for real critical values, 
using a result by Vasiliev in [43]. In fact using the description of the vanishing 
cycles given above it follows that  for three spatial dimensions the intersection of 
the contour 07 with the vanishing cycle Ai corresponding to the i-th real critical 
point is given by 

gi > 0 ci =- (Ai, 07) = --(1 + (--1) 3-k) -- ~_~j(Ai, Aj) (103) 
Z, < 0 ci -- (Ai, 07) = --(1 + (--1) t~) + Ej (A i ,  Aj). 
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set ,Ud at most at isolated points, such 
integral over a vanishing cycle of f has 

that  locally )~ = 0 at such a point. The 
the form 

associated with the i - th critical value, and ~ denoting the local coordinate. 
Upon varying )t the cycles will become dependent on A, but as the integral is 
over a rational closed (n - 2) form they define locally constant classes in the 
homology H,-2(Vx).  Of course this is not globally so, as the cycles transform 
nontrivially under the monodromy group of the singularity. The local constancy 
of the classes in fact leads to the conclusion that  the integrals over vanishing 
cycles satisfy a Picard-Fuchs differential equation in )~. We will now show how 
to compute these equations explicitly. 

The integrand has poles precisely at the p critical points of H.  The differ- 
ential equation which we are about to derive is actually a calculation in the 
co-homology (i.e., the Poincare dual of H,-2(Vx)).  It is well known that  the 
cohomology of projective hypersurfaces can be calculated from its rational dif- 
ferential forms having poles at infinity. To do the actual computation a bound 
on the order of the poles is required. Such bounds can be determined using the 
work of Griffiths [18]. 

The order of the pole of the rational integrand in (106), which a priori has 
a pole of 'arbitrary'  order, can be put in some canonical form in which it has 
a pole of order one. This reduction-of-pole property is extensively discussed 
in [18]. Here, we will only briefly mention the idea, which is as follows. The 
middle cohomology of the complex hypersurface Vx in C P  n-2 is described by 
rational differentials in C P  n-1 having poles of arbitrary order along Vx. Each 
form Pd~/O~, H defines a cohomology class by considering its residue on Vx as 
follows. The (n - 2)-cycle Ai on Vx can be made into an (n - 1)-cycle 5i by 
considering the tube over Ai, i.e., (fi is a small cylinder erected along the normal 
over Ai in C P  "-1. Then we can define the residue as 

= J6f, ( Pd~ 
k O c H ] "  

(107) 

We suppress the index i attached to the vanishing cycle from now. 
Recall that  the value of the integral on the r.h.s, does not change if we add 

to the integrand an exact differential form. having poles on the hypersurface 
H = 0~1.,,_1H = 0. This can be used to lower the order of the pole of the 
integrand (106) on Vx as follows. Let I be the sum of the weights of the quasi- 
homogeneous polynomial defined by the principal symbol, i.e., H = 0 and let 
its degree be D. Consider quasi-homogeneous polynomials Aj, j = 1 , . . . ,  n - 1, 
and the degree of Aj is D + 11 - l, with lj the weight of the ~j in Aj. Define the 
(n - 3)-form 

= O~n---- ~ Z ( l i ~ i A j  - lj~jAi)d~l h . . .  A ~ i  A . . .  A d~j A . . .  A d~n_ 1. (108) 
i<j 

I "  P(~)d~ 
I = / (106) 

JA 
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For complex conjugated critical values Zz = Zi one has 

(Ai,  07  ) = (A¥~ 07  ) -" (Ai,  At).  (104) 

The sum over j is over those wnishing cycles associated with real critical values 
that are in between the origin and Zi. The original contour 07 thus has the 
following decomposition in terms of vanishing cycles 

07 = c, a , ,  (105) 
i=l 

with the intersection numbers ci given in (103)-(104). This gives the decom- 
position of the original contour. As a side remark, note that in case all the 
intersection indices c/vanish, the solution vanishes identically. In this case one 
speaks of a lacuna. In [8, 43] it is shown that the condition that all the ci vanish 
(the so-called local Petrovsky condition) implies 'sharpness' of the wave-front in 
which case one speaks of a (local) lacuna. Note that since 07 still depends on a 
coordinate x on the front, this condition is local, in particular, it depends from 
what side one approaches the front. We will briefly come back to this in the next 
section. 

5 A D i f f e r e n t i a l  E q u a t i o n  f o r  t h e  F u n d a m e n t a l  S o l u t i o n  

The main point of the previous section was that the geometry of the slowness 
surface, in particular its dependence on singular points, is conveniently studied 
in the homology of the level surfaces H(~I , - - - ,~ , - I ,A)  = 0 parametrized by 
F(~, A) = 0, with A playing the r61e of a parameter through the vertical slowness 
~n. This has lead to an explicit decomposition of the fundamental solution into 
integrals over vanishing cycles. 

In this section we will study the integral over a vanishing cycle in detail. We 
will show that it satisfies a linear differential equation in A, of which the form only 
depends on the topology of the singularity through its monodromy group. This, 
among other things determines the high frequency asymptotics of the solution, 
which we will find for the three singularities A1, A2, Aa. The differential equation 
is well known among mathematicians, where it is called a Picard-Fuchs equation 
[18, 24]. The implications for the asymptotic behavior of the integrals in the high 
frequency limit are similar as obtained from steepest decent methods in Maslov 
theory on oscillatory integrals, where F plays the role of the phase function [15]. 
However, exploiting the geometrical content of the Picard-Fuchs equation, the 
topological origin of the asymptotics is immediately obvious. 

Let f ( ~ l , ' " ,  ~n-1) be the vertical slowness having an isolated singularity at 
the origin of criticality #. Let F(~, A) be a versal deformation, with the property 
F(~, 0) = f(~). Consider also the Milnor fibration r : V --~ S whose fibers VA 
over the space S of versal deformation parameters are the zero level surfaces 
F(~, A) = 0 (which are diffeomorphic to the non-singular level surfaces of f(()) .  
Now, let A E S be a local coordinate on a curve in S intersecting the singular 
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Its differential is defined as 

(O~,,H) E 8 A .  ~A.~ ~ d~ ~ A , ~ d ~  ~ -:::-Zd 
(O:, H)  2 -- (O¢,,H) ~ (O:, H) " 

(109) 
This shows that  any form of which the numerator  can be writ ten as a linear 
combination of partial derivatives a (a :  H)(~),  is equivalent up to (rational) 
exact forms to a rational form with a smaller order pole. By this reduction 
technique, one can put  the integrand in a canonical form, more precisely, one 
associates a specific cohomology class to such integrands. 

Let  us, before we proceed, illustrate this method  by way of a simple example, 
where the integral (107) is simply a contour integral in the complex plane. The  
residue in (107) is the familiar Cauchy residue. Now assume that  the integrand 
has a pole of order two at ~ = 0, say. Then it has a Laurent  series expansion of 
the form (b/¢ ~ + d/~ +...)d~, b, d constants. Next let q~ = b/¢. Then 

Pd:/O:,,g(:) + d¢ "." (d/: +...)d: 

has only a first order pole. Proceeding in this way, we can reduce the pole of the 
integrand to order one at any point on the hypersurface H = O:, H = 0. This 
brings the rational form in a canonical form. 

It is obvious that  in general the integral over a vanishing cycle as a function 
of A will be multivalued due to the nontrivial monodromy. In particular, the 
p-dimensional vector 

I (A) - -  , Oe,,H'"" ~ O : H ) '  (110) 

will be multivalued in A. We will now show that  this vector satisfies a differential 
equation in A with unique holomorphic coefficient functions pi(A), whose solu- 
tions are linear combinations of the integrals (110). For simplicity of notation, 
we consider here just one parameter  A, the multi prameter  case is discussed in 
[41]. 

Recall that  the cohomology class defined by the cycle a does not change upon 
varying A locally, so we can differentiate with respect to A under the integral: 

Now construct the vector It(A) by taking the j - th  derivative w.r.t. A, i.e., 

( dJ /A P d~ dJ /A P d~ 
P(A)- XZ , O .H' ' O .H) 

(111) 

(112) 

The vector spaces Wi formed by all vectors I j ,  j < i, must have constant dimen- 
sion as function of A, as the integrands are all closed (n - 2)-forms in A. Also, 
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the dimension di = dimWi of these spaces cannot exceed p. Thus there will be 
a smallest number of derivatives s, such that 

a--1 

I" = -- ~-~pj(A)I j. (113) 
j = 0  

That is, the vector Ii say, satisfies a differential equation of the type 

+ ~__~0pi(A)~7 = 0 (114) 

Such an equation is referred to as a Picard-Fuchs equation [6]. The unknown 
coefficient functions are determined by taking successive derivatives with re- 
spect to A and repetitive use of the reduction technique discussed earlier. An 
important property of Picard-Fuchs equations is that they can have at worst 
regular-singular points, at which the coefficient functions may develop poles due 
to the monodromy around such points. By multiplying the the Picard-Fuchs 
operator 

da ~- z di 

i=0  

by As, the equation takes the form 

A +~_,q,(A) A-~ O ~ , , y ] = O  (115) 
i=0  

whose coefficient functions are now holomorphic also at the regular singular 
points. (Upon changing A the integral plus all its derivatives changes according 
to the monodromy operator, all in the same way.) We will see shortly that the 
order s of the equation is fixed by the monodromy group. (A more extensive 
analysis, valid for more general types of singularities, is given e.g. in [26].) 

As a simple example consider f = 42 (type A1). Since p = 1, we only have one 
point representing the zeroth vanishing homology class. The differential equation 
in this case is thus of first order: 

dI 1 n a 
d-A + A(2 - ~) I  = 0, (116) 

that is I = const. A (n-a)/2. This gives the asymptotic expansion near the critical 
point. The full solution E can in this case easily be obtained. From the above 
we conclude that it must be of the form 

A(n-3)12 g(A), (117) 

with g(A) a holomorphic function generally depending on )~. However, since F is 
quadratic, I is in fact an integral over an (n - 2)-sphere of radius V~, so that g 
is in this case independent of A, 

n -  1 ~ ( n - - 1 ) / 2  

g(A) = 2 l " ( ( n -  1) /2+ 1)' (118) 
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that  is, half the surface of the unit (n - 2) sphere. (Compare this with the results 
in Section 3 for the HPL formula.) This immediately leads to the well known 
result for the full solution E. The quadratic case is generic around each local 
maximum on the slowness surface one can find coordinates ~ such that  F is 
quadratic. The points corresponding to degenerate critical points, i.e., points 
where F is of type A2 or A3 are special. In those cases g does depend on A 
and likewise the full solution is more involved, however, its asymptotics may be 
readily obtained. 

For the A2 type singularity the differential equation reads (after bringing it 
into its familiar form) 

d'~' A I = 0 (119) 

of which the solution is the well known Airy function. 

In fact by the techniques outlined above we find for any isolated singularity 
(not only the simple ones) a Picard-Fuchs equation whose solution has a holo- 
morphic limit A -4 0, and thus gives an exact solution for I at  the singularity. 
The Airy-function is a well known example studied extensively in geometrical 
optics. Usually one arrives at the solution for the phase function using Maslov 
theory. Here we arrive at such solutions using a differential equation. As we will 
now discuss, this has the advantage that  it illuminates the topological aspects 
of asymptotics of I near the singularity. 
Asymptotic behavior of the integrals. 
The fact that  Picard-Yhchs equations are ordinary (matrix) differential equa- 
tions with regular singular points allows us to apply classical techniques to find 
the asymptotic behavior of the integrals. One immediate conclusion is that  the 
solution of the differential equation has an analytic extension at A = 0. To find 
the exact behavior at the point A = 0 we will rewrite (115) as a first-order matrix 
equation as follows. Define the s x s matrix /j 10 . . . . . .  

0 1 O . - -  

i . .  
A(A) = (120) 

0 1 
- q  (A)--ql(A) . . . .  q,_,(A) 

then the following matrix equation is equivalent to (115) 

A~d~(A)  = A(A)d~(A), (121) 



163 

with I Pd~ 
(9~,,H d Pd~ 

A - -  d~(A) = dA O~,,H (122) 

( d )  s-1 e d  ' 

A O~,,Hj 
Standard  theory now implies that  around A = 0 the solution can be writ ten in 
terms of a matr ix  ~ whose columns provide a basis in the s-dimensional solution 
space 

---(A) = B(A)A M (123) 

where B(A) is an s x s-matrix regular at A = 0  and M is a constant s x s matrix.  
The expression A M is defined as (for small ~) 

A M ----- "~ "1- M(log A) + 
(M log ,~)2 

2! 
+ . . .  (124) 

The  matr ix  B has a regular power series in A with constant coefficient matrices, 
which is absolutely convergent near A = 0. 

The monodromy resulting from going around the critical point at A = 0 is 
with respect to the basis defined by ~, given as exp(27riM). This is the mon- 
odromy operator  h .  = hi .h2 defined in the previous section. It  is easy to see that  
it is a unipotent  operator,  i.e., there is an index m such tha t  (exp(27r iM)-  1) m = 
0 ,  but  (exp(2~riM) - 11) m+l ~ 0. For the Ak-type singularities this index is equal 
to k = p, the multiplicity of the singularity. 

As a result it follows (see [28] for a general proof) tha t  close to the point 
A = 0, i.e., close to the intersection point with the singular set 2Y, I(A) has the 
following asymptotic  expansion: 

z, = A) (125) 
ot,k 

This series is absolutely convergent if IAI is small. The  coefficients of the series are 
vectors in C f'. The  numbers c~ are nonnegative rational numbers; all coefficients 
aa,k vanish for k > 0. ~ r t h e r m o r e ,  the numbers c~ have the proper ty  tha t  
exp(2rc~) is an eigenvalue of the monodromy operator  h . .  This last proper ty  thus 
shows explicitly the relation of the asymptot ic  expansion and the monodromy 
group of the singularity. 

As an example, consider the A2 singularity discussed earlier. The  eigenvalues 
of h .  are exp(:t:2~ri/6). The above result then implies tha t  close to A = 0 

i =  + (126) 
171 m 
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with all coefficients positive. This result agrees with the well known high fre- 
quency expansion of the fundamental  solution near a cuspidal singularity de- 
scribed by the Airy-function. For the A3- type singularity, we get 

I ~ A 1/4. (127) 

The first exponent in the expansion (125) is referred to as the singularity index. 
Its relation to the order of the monodromy group has been extensively discussed 
by Arnold [2], however, not from the differential point of view adopted in this 
paper. In fact, it is not hard to see that  the general asymptot ic  formula for 
an isolated singularity defined by £ quasi-homogeneous polynomial F(s ,  y) in 
normal coordinates S l , " " ,  Sn--1 is given by 

1 
z ~ # = - (128) 

1 1 For example, for an Ak-type singularity fl = 2 k+l"  
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M A T H E M A T I C A L  A D D E N D A  T O  H O P P E R ' S  

M O D E L  OF P L A N E  S T O K E S  F L O W  D R I V E N  

B Y  C A P I L L A R I T Y  O N  A F R E E  S U R F A C E  

J. de GI%AAF 

Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, 
The Netherlands. 

Introduct ion 

In an interesting and stimulating series of papers [H1], [H2], [H3], Hopper 
presents some special exact solutions of the shape evolution of a piece of vis- 
cous matter driven by surface tension on the free boundary. 
Hopper's paper [H1] is of a conceptual nature and consists of two parts. In 
his first part Hopper derives an evolution equation for the change of shape in 
time: The unknown function in this evolution equation is a Riemann mapping 
function from the unit disc onto the region occupied by the fluid at time t. 
Hopper's evolution equation is a partial differential equation of a very special 
nature, requiring 'compensation of analytic singularities'. In [H1] we find, what 
might be called, a pseudo Lagrangian description of the piece of matter and 
several other innovative concepts. However, a lot of important mathematical 
and physical details are missing in [H1]. In my view e.g. the kinematical aspects 
are completely neglected in [H1] (and also in [R]). 
Chapter 1 in my paper might well be called: 'Mathematical addenda to Hopper's 
derivation of Hopper's equation'. 
In the second part of [H1] and also in [H2], [H3], Hopper finds solutions of his 
equation which are of type ft(z, A(t)). He makes a clever guess of a parametrized 
set of analytic functions ft(z; A), such that substitution of them in the evolution 
equation leads to one ordinary differential equation for ~(t). 
In Chapter 2 of this paper I study several mathematical aspects of Hopper's 
equation. On the 'state space', which is a part of an ellipsoid in Hilbert space, 
Hopper's evolution equation can be considered as an infinite system of ordinary 
differential equations. For this system there are 3 'exhausting' series of finite 
dimensional sub systems leading to solutions which are: 1. Complex polynomials 
with real coefficients, 2. Complex polynomials with complex coefficients, 3. 
Rational functions. Some local results on these finite dimensional sub systems 
are presented. 
For numerical solutions to the same problem which use Lorentz- Ladyzhenskaja 
potentials I refer to work being done in Eindhoven [VM1], [VM2], [VM3]. 
I wish to thank Dr. H.K. Kuiken of Philips Research Laboratories for drawing 
my attention to these interesting problems. 



168 

1 A s h a p e - e v o l u t i o n  e q u a t i o n  

1 .1  F o r m u l a t i o n  o f  a S t o k e s  p r o b l e m  w i t h  a f r e e  b o u n d a r y  

On a simply connected open domain Gt C /~2  with a smooth boundary OGt we 
consider the system of Navier-Stokes equations for the unknown velocity field 
v(_x, t) = (vl (z, t), v2(x, t)), z = (x, y) and the unknown pressure p(_.z, t), 

Dv Ov } 

p ~ = p ~ + p(_~.v)_~ = - v p  + ~zx~ + pg_ (x, y) e at, ~ > 0 ,  

V . v =  0 , 

with the boundary condition 

T n = -7(V.n)__n = - 7 ~ n  on OGt . 

Here T is the stress-tensor (= stress-matrix) 

T = - p I  + r I + \ d z ]  ] " 

Further, n(__z) and ~(_z) are the outward normal and the curvature at points 
x E c~Gt. 
The relevant physical constants are: The density p [ML-3], the viscosity 
r/ [ M L - 1 T  -1] and the surface tension 7 [MT-2] • 
Note that with this boundary condition the surface is supposed to behave like a 
membrane. 

~ 6  

Next we introduce dimensionless quantities. Put 

Y 7 

p = ~ p  n = ~  dcr=TrR 2.  

G 

Then the Navier-Stokes system becomes 

D~ .... } 
S - -  = - ~ + 2 x ~ + / ~ 2 p  g 

d t  - 7 - ~ ~ ~ 

f7.~= 0 
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Tn = - ~ n  on 0Gt 

with 

~ = ~ T~ = -~6~j + ~O~i + 0~ ] 

P7 R2P If the Suratmunnumber S = L-~ gR and the Bondnumber B = - - -  are very 
, 7 

small, e.g. if R is very small, it suffices to solve Stokes equations on Gt. (We 
omit the tilde ,,~) 

A v = ~ 7 p  / i n G t  

J V . v =  0 

T n  = - ~ n  on cgGt . 

An equivalent formulation is 

V T  = 0iTij = 0 / in 
Gt 

J V.v_= 0 

T__n = - a n  on cgGt . 

1.2 The  genera l  so lu t ion  of S tokes '  equa t ions  

In this section we want to describe the general solution of the Stokes system on 
a fixed, simply connected open domain G C ~2  

~2vl ~2vl Op 
Oz 2 + Oy 2 Oz 

02v2 02v2 Op 
Ox2 c9y2 cgy 

+ = °  

Suppose that  the pair (v, p) solves this system on G and let T be stress tensor 
obtained from this solution. 
Then because of the simple eonnectedness of G there exists a 'streamfunction'  
¢ and an 'Airy function' ¢ such that 

_~ = (vl, v2) = (¢v , - ¢ = )  

T=(Tll T 1 2 ) = ( - ¢ v v  Cxv ) 
T21 T2~ ¢,y - ¢ ~  " 
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The latter can be argued as follows: Since V .  T = 0 the stress tensor T must  be 
of the form 

( / .  g~ ) .  T 
\ - f x  - g ~  

The symmet ry  of T then requires - f ~  = gv which says V • (f ,  g) = 0. Hence 
(f,  g) = ( - ¢ v ,  ¢~) for some function ¢. Note that,  if_v is given, the streamfunc- 
tion ¢ is determined up to a constant C and the Airy function is determined up 
to a linear function Ax + By + C1. 
Taking the trace of T we find 

1 p = ~ ( ¢ ~  + ¢ ~ )  = ½A¢.  

Combining this with the equation A_v = Vp we find the Stokes equations in 
Cauchy-Riemann form 

a (½A¢)_ o 
o~ ~ (a¢) = o 

0 Q a ¢ ) +  0 
0-~ G (a¢) = 0. 

So (½A¢) + i (A¢)  is an analytic function on G, therefore A A ¢  = 0 and 
A A ¢  = 0, so the functions ¢ and ¢ are biharmonic. 
Any biharmonic function ¢ on a simply connected domain G can be represented 
a s  

¢ = 2Re(-2fl + gl) , z = x + iy 

with f l  and gl analytic on G. Cf. [M], pp. 106-111. 
Following the same reasoning we put 

¢ = Im(~f2 + a2) 
with f2 and g2 analytic on G. 
From the Cauchy-Riemann representation of Stokes' equations it follows that  
f 'z = f~'. Consistency in the stress tensor requires g~' = g~'. So there are constants 
A, B, D, E 6 ~ and C, F E C such that  

f l =  f 2 + A z + i B z + C ,  g l = g ~ + D z + i E z + F .  

Define 

Then 

~ = f e + A z ,  x = g 2 .  

¢ = 2Re(2~ + -2(iBz + C) + X + (D + iE)z + F) 

= 2Re(-2T + X) + 2Re(-2C + (D + iE)z + F ) .  
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Omission of the second term leads to the same stress tensor. Summarizing: The 
state of the system is described by the analytic functions p and X and 

! ¢ + i ¢  = ~ + X  2 

Note that  ~ is uniquely determined by the state (v_.,p) and that  addition of a 
complex constant to X leads to the same state. Conversely, any pair of analytic 
functions ~ and X leads to a solution of Stokes' equations. 

1 . 3  K i n e m a t i c  a n d  D y n a m i c  Q u a n t i t i e s  e x p r e s s e d  i n  ~ a n d  X 

In a straightforward way the velocity field v(_x) = (vx(x, y), v2(x, y)) and the 
stress tensor field T(~) = [Tij (x, y)] can be expressed in the analytic potentials 

and X. Write z = x + iy. 

o _rm(-e~o + x)  - i o Im(-e~o + x) vl + iv2 = Cy - i¢~ = -~y "~z 

= Irn(-i~o + i-29o' + ix ' )  - i Im(~o + -59o' + X') 

= Re(-99 + -~qa' + X') -- i I m ( ~  + -2~' + X') 

= - R e  ~ -  i I m  ~ + z~o' + X' 

= - 9  + z~' + X' 
$ 

Tll + T22 = - 2 p  = - A ¢  = - 2 A R e ( g ~  + X) 

= - 8  Re p' = -4(~0' + ~a') 

T22 - Tl l  + i2T12 = - ¢ ~ .  + Cuy + 2i¢~y 

b2 02 02 
= (-2~-7z ~ + 2 -z---~)Re(-2~oy 2 + X) + 4i ~ Re('2~ + X) 

C~V2 0Vl 
= 2 ~ - 2 ~ + 2i¢,~ = - 4 ¢ ~  + 2 i ¢ ~  

(9 2 
= 4i ~ [i Irn(-2ta + X) + Re(-2~ + X)] = - 4 ( 2 ~ "  + X") • 

Stress orthogonal to a given curve 
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- 4 5  

- ¢~v - ~ A ¢  - 2¢=v - R e  ~ = 

= ½ ~ ¢ ( - z m  ~ + i Re ~) + (2¢~ I r~  ~ - ¢~yR~ ~) + 

+ i(¢=vlm ~ + 2¢=vRe ~) 

l i ( A ¢ ) ~  1 = - 2 ( ~ ¢ ~  + i¢=~)7 

0 2 
= i{zx R~(~ip + x)}~ - 2{ 0W~v (½¢ + i¢)}z 

= 2i{(ip' + ~7/:) + (zip" + ~-77)~} 

d ( z T +  F)  = 2 i z  ip+ . 

Note that  if we replace ¢ by ipl = ip + C + iflz with C E C, /3 E 1~ and keep 
the same X than a rigid motion is added to the velocity field vl + iv2. However 
this modification does not affect T and T_n. 

1 . 4  A r o a d  t o  H o p p e r ' s  e q u a t i o n  

In continuum mechanics there are two conventional ways of describing the motion 
of mat ter .  In the Lagrangian description each mat ter  particle gets its own label, 
X say, and one wants to find the position x of each particle X as a function of 
time, i.e. one looks for the function x = _.F(X, t). 
On the other hand, users of the Eulerian description are not so much interested 
in the position of each particle. In the Eulerian description one wants to calculate 
the velocity field 
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with 

_~(_~, t) = Z(Z- (_~, t),  t) 

o £(~ , t )  F_(~, t) = ~ 

In this paper we want to determine the evolution of the shape of a piece of 
mat ter  and the positions F(x ,  t) of the particular and the velocity fields v(__x, t) 
are not so relevant. 
Instead of the Lagrangian or Eulerian approach we use what we cM1 the "Pseudo- 
Lagrangian picture": At each time t a fixed domain D in _~-space is mapped by 
a function m = O(~, t) onto the actual configuration of the piece of matter.  The 
function ~ is made 'more or less rigid' by requiring extreme smoothness of it. 
In our 2 dimensional case, following Hopper [H1], we require it to be analytic. 

~o0  m~ i'.al~ e,. ~ - ; ÷  c;~-cle 

i 

We now gather some convenient kinematical expressions. 
The trajectory of particle X in configuration space is 

t ~ ~(t )  = £ ( x _ ,  t ) .  

The trajectory of particle X in Pseudo-Lagrangian coordinates is 

t ~ C ( £ ,  t) = ~- (£(x ,  t), t ) .  

Differentiating the identity 
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~_'-(~_((_,t),t) =(_ 

according to t leads to 

(D_~-)(_~({, t))h({,  t) + (_~-).(__a((, t), t) = 0 .  
Here the dot • denotes partial differentiation to t. So 

([~*-)' (_x, t) = - ( D ~ )  -1 (~*'- (__x, t))~(_~ ~- (x, t), t) . 

For the velocity field in configuration space we find 

v(~, t) : £ ( Z -  (_~, t), t ) .  

Since 

a{ (x ,  t) _ (ma ~-)(F( x ,  t), t )£ (x ,  t) + (~_~-). (r (X,  t), t) 
0t . . . . .  

we find for the velocity field in Pseudo-Lagrangian coordinates 

~({_, t) = (D~'-)(~_({, t), t)v(~({,  t), t) + (~- ) '  (_~({, t), t) 

= (D_~)-I({ ,  t )~(_a({,  t), t) - _riCe, t ) ] .  

Our ultimate goal is to calculate 

a ({ ,  t) for l(_l = 1 

which represents the shape of our piece of matter.  
Now suppose that  at t ime t the fluid occupies a domain Gt C ff~2. Fix a point 
in Gt and choose x + iy coordinates such that this point becomes the origin. 
Introduce a conformal mapping ~ : D ---+ Gt, with z = ~2(C,t), ~ = ~ + iq. D 
is the unit disc in the complex ( plane and f~(0, t) = 0. Note that ~ is uniquely 
determined if we require ~ ' (0 , t )  > 0. Suppose further that at time t the state 
(2,P) of the Stokes system is described by the complex analytic 'potentials' 
and X. If necessary we may add a uniform rotation velocity field to v_(x, t) in 
order to arrange that  ~,'(0) E/E.  Cf. the remark at the end of section 1.3. 

e~6 

"_ = e i¢~(@ 

a s  

At the boundary OGt of Gt, see picture, we have the boundary condition 
T n : -nn. 

With the potentials ~p and X this becomes, in complex notation, 
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d ~ - -  d ei~(8) 2i ~ ( z ~  + ~ + X') = i ~ , 

which leads to 

2 ( z ~  + ~o + X') = e/~(') + Ca , at OGt . 

The constant Ca can be made zero by addition of a suitable constant velocity 
field to _v(x, t). 
Then combination at OGt of the latter result with 

vl + iv2 = ( - ~  + z~o' + X') 

yields 

2(v~ + ivy) = - 4 ~  + e ~(~) , at OGt • 

With the parametrization ~(e i°, t) for OGt this becomes 

Rewrite 

2V 1 (~](e i8, t), t) -[- 2~v2(~'~(e i6, t) ,  t) = -4~o(f~(e i°, t), t) + d°~'(de,t) 
la , (e~o,t)}  

w__ = ( D ~ ) - l v -  ( D ~ ) - l h  

in the complex {-plane 

~(¢ , t )  = v a ( a ( i , t ) , ~ ) + / v ~ ( ~ ( ¢ , t ) , t )  ~ ( ¢ , t )  
a , (¢ ,  t) f l ,(¢,  t)  " 

At OD we have ( = e i°, O E ~ ,  and 

Re ~ - i Q ( ~ i ° , t )  = 0 . 

With e i° = cr and ~5(¢, t) = p(a(¢,  t), t) we arrive at 

2~5(a,t) ~ (a , t )  1 ~((r,t) 

~f~'(~, t~  + ~'(~,t-------~ - 21~ ' (~ , t ) l  
We now make the important observation that  the two terms on the right hand 
side are the respective real and imaginary parts of an analytic function 5r(lfft'(~, t)l ) 
restricted to the boundary OD. This analytic function U is uniquely defined by 

1 
Re $(1~ ' (¢ , t )1)_  21~,(¢,t)1, ¢ ~ OD 

Zm 7 ( l ~ ' ( o , z ) l )  = o .  

Summarizing, we find on D the relation 

2~(¢, t) = ¢~'(¢, t) 5(1~'(¢, t)l) - fi(¢, t) . 

We now proceed to derive an evolution equation for ~ in which the unknown 
complex analytic potentials ~ and X play no role. 
In 2(z~o' + ~o + X') on Gt substitute z --- f~(¢, t) and put )~(4, t) = X(fft(¢, t), t), 
~(~, t) = ~(f~(4, t), t). At the boundary OD this leads to 
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( o.')o) 
2 ~ + ~ +  IO'(,,)1 ' o ' econ .  

Suppress --~ and substitute 2p = ~ c  _ ~ and its derivative. Then, at COD 

1 ~d ( ~ )  _ O(;~,7)p = 2X-- 7 
- ~ ' ~ ( J :  - I--~1 ) + 

After complex conjugation and writing ~ = c~, ]al = 1, 

- -  - -  d - -  

~, ~' ~ -  ~ ( ~ ' 7 ) '  + ~(~ ~') = 2x'. 

d _ie_i# d this becomes With c~--- e ie and ~zz = 

i e  - i e  (e ie ~ a '  ~ )  + -d--~ (~2 a ' )  = 2X' on COD . 

Hopper Ira], writes ~ = -i~-~" h for 'di~erentiation ~long the unit circle'. 
Then 

(~ n,) _ d ( ~  n, J:(In'l)) = 2xP 
dt 

which is Hopper's evolution equation for the shape of a piece of viscous matter 
driven by surface tension. 

2 S o m e  m a t h e m a t i c a l  a n a l y s i s  o n  H o p p e r ' s  

e q u a t i o n  

2.1 M a t h e m a t i c a l  g e n e r a l i t i e s  o n  H o p p e r ' s  e v o l u t i o n  
e q u a t i o n  

On the closed unit disk D C C we look for solutions g2(~, t), ~ E D, t > 0 of the 
evolution equation 

(H) d ( ~  ~/) _ ~ ( ~  ~1U(lfl/[)) = _2XI= analytic on D .  

Solutions ~ are required to be (a t least) analytic on D and continuous on D. 
Remind that, by definition, 

~(~, t) = ~(~ , t) 

and also that U(I~Pl; ~) is analytic on D and uniquely defined by 

{ ~ t l  
Re :~(l~'(¢,t)l) = 2112p,¢,t--------i[ , ~ e cOD 

(F) 

Zr.  : r ( l ~ ' ( o , t ) l ) =  0 
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The righthand side -2X'  of the evolution equation is an unknown analytic func- 
tion. Therefore the question: 
Does the cancellation of singularities inside D determine the shape evolution? 

Note that  if ~(~, t) solves (H) then also e~'(0fl(~, t), ~ : ~ --* ~ arbitrary, is a 
solution. This type of nonuniqueness can be resolved by requiring ~l(0, t) > 0. 

D E F I N I T I O N .  (Set of states E C E)  

E = {f~}, with 
o o  

E - • f t ( ~ ) =  n~ ~ ; D - + C ,  analytic 
~ = 1  

o o  

• E nlanl2 = 1 ,  means:  Area f~(D) = 7r 

• re, I~1 _< 1 fl'(()  # 0 .  

t2 E E means: f~ is analytic on D, fl is continuous on D and fY(~) # 0 for < 1. 

Note that E is a part of an ellipsoid in the Hilbert space. 

I-I; I6ev-t apse. e. 

Calculate 

~ ' ~ =  ~ kak~K k- l -1  = 

k>_0, l>0 

o o  o o  

E {  E 
m = - - e ¢  £ = m a x ( O , m }  

(~ - -  m + 1)~lal-m+l } ~. -m = 

o o  

= E um~-m " 
~ l ~  m OO 
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Note: 
o o  

m >  1 =:> u m =  E ( g - m + l ) ~ a l - m + l  • 
£----rn 

There are two mat r ix  forms for this expression: (1 / (1--4- l/a1 / u2 ~2 2~3 3~4 as 
u3 -- a3 2a4 a3 _ 
U4 a4 63 

lal..4a )l" 
0 ai 2a2 3a3 ~2 

= 0 0 ai  2a2 a3 
0 0 0 ai ~4 

• . ; ; 

In short  ~ -- g ( ~ ) g  = M(~)~. 
Note tha t  if ~(~, t) = E,~°°=l a,( t )~ ~ satisfies (H) then 

Hence 

d -~(z)a'(z)~z = 7~ ~ ,  ~la~(t)l~ 
dt 

[zl__l Z=l 

d 
= ~ , ,~(t)  = 0 .  

c o  

~r E 2lal(t)2 = constant  = ~-, 
£-----1 

which means  'conservation of  area'• 

In the next theorem we gather  some results on a Taylor  series representation 
of :r(l~'l). 

T H E O R E M .  
• For all f~ E E the funct ion 

5[ ~, 
n - - - ~ - -  OO 

is analyt ic  and single valued on an annulus -~ < l i l  < R, R > 1. 
* Define 

n = l  n=O 

then .~" satisfies the conditions (F) 
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2 ~  

'l{fi (i n ~ -- 
4r 

0 m----I 

oo 1 

.~ a.,~l~(m-l)'} -~ ~-""'d~ 
£---I 

* (io = ~o > 0 ( i - n  = (i--Z 

We now calculate the second term in (H) 

d 1 
~(¢~(_:) c,(~:) 7(1~'(¢)1)= 

oo oo 

~ E ~-~. E ~oc}: 
m ~ - - O O  n-----O 

H 

n - , ~  __ i )  - k  E ( n - m + l ) ~ n  ,n# -- E ( - k +  E ~,~Un+k # , 
171:-- oo n = O  k : - - ~  n - - O  

The singular part is 
oo oo 

k = l  n = 0  

Now the condition of cancellation of singularities leads to the following infinite 
system of ordinary differential equations 

(al 2a2 3a3 4a4-.- / ( a l  / 
0 al 2a2 3a3 a2 

d 0 0 al 2a2 a3 = dt 0 0 0 al "~ 
: : : : i 

In short 

(00 0 0 l/a1  a23a34a4 0 ~0 /31 ~2 0 al 2a2 3a3 a2 
_ 0 0 2/30 2f31 0 0 al 2a~ ~3 

0 0 0 3/30 0 0 0 al ~4 

d 
= ~{M(a)~_} = -B(__a)g) , a(O) = flo • 

Let there be given an initial condition _q(O) = ao and put _u_u o = M(_qo)~_ o. Now if 
from the infinite system of quadratic equations 
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M(a)_  = _u. 

__a is locally solvable as a function of _u around _u = _% then the initial value 
problem is reduced to an initial value problem for the infinite system of quasi-  
linear differential equations 

d 
7i  -~ = - B ( ~ ( ~ ) ) _ ~ ,  _~(0) =_~0 • 

Not much can be said about  the solvability of this dynamical  system at this 
moment .  If  every solution is a trajectory on the above mentioned ellipsoid in 
Hilbert space then the shape would remain simply connected if the initial domain 
is simply connected. Most probably such a deep result does not have a simple 
proof. 

~;I I ;'~ ope. 

2.2 T h e  real  p o l y n o m i a l  H o p p e r  p r o b l e m  

If we substitute the Ansatz 

N 
a ( ~ , t ) =  ~ an(t)~ n , n e W ,  an:  [0, oo)---+ J~ 

n-----1 

in Hopper 's  equation (H) we find, e.g. for N = 4, the following finite system of 
ordinary differential equations 

d u2 
dt u3 0 

u3 0 

du - B ( a ) u  with in short -aT = _ _ 

u2 0 
u3 0 
u4 0 

2a2 
al 
0 
0 

00 0) (ul) 
~o 51 5= u= 
0 2f10 , 2fll ua 
0 0 3flO U4 

.'a4)(al) 
2a2 3a3 a2 
al 2a2 a3 
0 a 1 a4 
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al 2a~ 
as 2a3 
a3 2a4 
a4 0 

in short u = M(a)__a = N ( a ) a  and 

27r 
1 

0 

Denote a = ( 1 , 0 , 0 , . . . , 0 )  = w. 

3a3  

3a4 
0 
0 

 a)(al) 000 a43 a2 

N 1V 1 

~_a ~ m~ama~ei(rn-t)8 }- ~einSds. 
rn=l £=1 

The following properties are straightforward 

P R O P E R T I E S  of fin, 1 < n < N 

1 
• flo (_a) > ~ , for all a e 

• fln(co)----16no, l < n < N  

• fin(a)~-*O a l s a - + c o ,  l < n < N  

* /?o(_a) 1" o o  i f  a --+ O E .  

The derivative of_u_u, e.g. is N = 4, is found to be 

So 

du 
da 

al 2a2 3a3 4a4 
a2 2a3 3a4 0 
a3 2a4 0 0 
a4 0 0 0 

at 2a2 3a3 4a4 / 
+ 0 al 2a2 3a3 

0 0 al 2a2 " 
0 0 0 al 

2 0 0 O)  
du_. w.) 0 1 0 0 
~_a ( - =  0 0 1 0 

0 0 0 1 

Applying the Inverse Function Theorem we find that  a can be solved locally as 
a function of u in a neighbourhood of u = w. 
Via the method of variation of constants we find for the components uj, 
2 < j < g ,  

(j-l) t 

So co is a local at tractor.  Near co there is exponential decay: [a - co[ _ Ce-½ t. 



182 

Note that  there are special solutions a(t) with al(t) # O, aN(t) {k 0 and 
a2(t) -- . . .  ----  a N - l ( t )  = O. These are the typical solutions in Hopper's work. 
He 'guesses' shapes with one parameter and then solves an ordinary differential 
equation for this parameter as a function of t, cf. [H1], [H2], [H3]. 

E X A M P L E  (Hopper 1990). 
Try to solve Hopper's equation by the function 

~(~,t)  = a(t)~ g + 1 

with a(t) >_ b(t) > 0 and N ~ ~vV fixed. 
Calculate 

: a I b ~-(N+I) 
N + I  

• ~--7 - -  a - -  b~ - N  

b 2 ab ~-(N+I) _ ab~-(N-1) 
f i e '  = (a 2 + 1 N + 1 

- -  1 ab  b 2 ( ~  N -~ ~_N)]_ 1 1 (~ ,~Q_I  (a2 _}_ b2)_l [1 a 2 +  

1 i f a > b t h e n  ~ <  

• ~" : Olo -F 2 0 l N ~  N -}- 20~2N~ 2N -}- " ' "  , 

1 1 
ol0(a , b) --- ~--~(a 2 + b2)-~ 

27r 

2ab cos 0)- 1 dO 
(1 a 2 -k- b 2 

0 

bb 1 + (&b + ab]c_(N+l ) 
d ( ~ Q ' )  -: 2(ah + ~ - - - i - ) ( -  " X + 1 "" + Taylorseries 

N ~-(N-{-1) • [~'~t(0~0 -~ 2~N~N)] ~--- abc~0(a, b ) - ~ - - ~  . 

The system of two ordinary differential equations 

{ " a~i+ N + 1 - 0  

ab + at) = -abolo(a, b)N 
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can be written explicitely 

ab2N 
= a o ( a , b ) ( N  + 1)a 2 - b ~ 

a ~ b N ( N  + 1) 

This system is singular if a = b. At this point the decay of b is faster than 
exponential. For small b there is exponential decay 

1 t )  . 
b( t )  

2.3 T h e  C o m p l e x  p o l y n o m i a l  H o p p e r  p r o b l e m  

If we substitute the Ansatz 
N 

f](¢,t)---- ~ an(t)¢ n , N e  i N ,  n :  [0, oo)---+C 
n = l  

in Hopper's equation (H) we find, again, the finite system of ordinary differential 
equations 

d = 

but now with 

and 

2~ 

0 

N N 1 
~ m~am-dtei(m-Q'}-~e-'nSds, 

m = l  £=I 

~ = M ( a ) g = N ( ~ ) a  ( S ) .  

Note that ul  = -dial + 2-d2a2 + . . .  + N-dNaN E ~ .  So in order to make quasi 
linearization possible, at least locally, we require ul E ~ .  Then (unlike Hopper 
in [H1]) we find that the system (S) consists of 2 n -  1 real equations with (2n -  1) 
unknowns. 

Now define 

H :  ~2,~-1.__+ ~2,~-1 : a ~ u = M(a_)g 

with al E/~,  ul E/~. 
The real derivative D H  of H at _a is, with complex notation and z = ( z l , . . . ,  ZN), 

Zl = ~I 

al 2a2 3a3 4a4 -£1 
0 al 2a2 3a3 -£2 

a ~-~ DH(a_)z = 0 0 al 2a2 -£3 

0 0 0 al -24 
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al 2a2 3aa 4a4 Zl 
a2 2a3 3a4 0 z2 

+ ~3 2~4 0 0 z3 
a4 0 0 0 z 4 

The real linear mapping DH(a) is invertible at a = w_. So also in the complex 
case oa turns out to be a local attractor. With the modifications mentioned in 
this section, the complex polynomial Hopper problem can be attacked with the 
same methods as the real polynomial Hopper problem in the preceding section. 

2 .4  T h e  R a t i o n a l  H o p p e r  P r o b l e m  

The Hopper equation 

d ( ~ a ' ) -  ~ ( < ~ f 2 ' ~ ' ) =  - 2 X ' =  analytic on 

can be written 

f~,, fi, 

Following Hopper we take the Ansatz 
N - -  

A o  _ _  A o  

= (  1 - c~,~( ' ( - ~ , ~  ' 
n = l  n = - I  

- -  -- analytic on D . 

n = l  

N A-~ N An&n 
, ,=1  = ( ¢  - a , , ) ~  " 

After substitution in Hopper's equation and rearranging 

( ~  ~ 7 ~ , ~ ) [  ( l + f f  ~ - 7 ) * + ( 5 r ' -  ~-7]+ 
n = l  

- ~ (~_~n)2 ( ~ ' - ~  ( ¢ _ ~ , )  ( ~ _ ~ n )  2 - analytic on D 
n = l  n = l  = 

Since 2 nd order and i st order poles have to compensate each other on D we find 
the following two sets of ordinary differential equations 

- -  = - ~ ( l a ' ( u . ,  ~)1 
O l n  

[ a, , (~ . )  ~n + 
t ~ "  ~, (~ . )  ~ .  ~ , ( ~ . ) J  
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Remind that, in this special case, 2" is a function of o~1,. •., aN, A1,.  •., AN. 

So we have 2N complex, coupled, explicit ordinary differential equations which 
are locally solvable. 

E X A M P L E  (Hopper 1989). 

Exact solution of the problem of coalescence of 2 equal cylinders. 
Take 

1 - v 2 
z = ~ ( ~ ,  ~( t ) )  _ 1 

(1+~2)~ 1 + v ( 2  " 

The inverse of the 'parameter function' v(t) is 
1 

t = - ~  - / [k(1 + k2)½ K(k)] -~ ~k 
V 

with K an elliptic integral. See [H1]. 
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A b s t r a c t  We study a quantum Yang-Baxter s tructure associated with non- 
ultralocal lattice models. We discuss the canonical structure of a class of in- 
tegrable quantum mappings, i.e. iterative canonical transformations that  can 
be interpreted as the time-one step of a discrete-time evolution. As particular 
examples we consider quantum mappings associated with the lattice analogues 
of the KdV and MKdV equations, together with their exact quantum invariants. 

1 Introduct ion 

Discrete integrable models, in which the spatial dimension is discretized, but  the 
t ime is continuous, have traditionally played an important  role in mathematics 
and physics, bo th  in the classical as well as in the quantum regime. On the 
quantum level the algebraic structure of integrable systems is discussed in terms 
of quantum groups [1]-[3]. The  discretized version of such models has played a 
particular role in this respect,  e.g. in the quantum inverse scattering method [4]. 
The  models, in which also the time-flow is discretized (i.e. integrable lattices 
or partial  difference equations), have been considered on the classical level in a 
number of papers [5, 6]. Recently, they have become of interest in connection 
with the construction of integrable mappings, i.e. finite-dimensional reductions 
of these integrable lattice equations, [7, 8]. Their  integrability is to be understood 
in the sense tha t  the discrete time-flow is the i terate of a canonical transforma- 
tion, preserving a suitable symplectic structure,  leading to invariants which are 
in involution with respect to this symplectic form. A theorem ~ la Liouville then 
tells us in analogy with the continuous-time situation that  one can linearize the 
discrete-time flow on a hypertorus which is the intersection of the level sets of 
the invariants, [9]. Integrable mappings have been considered from a slightly 
different perspective also in the recent literature, cf. e.g. [10]-[13]. 

Integrable two-dimensional lattices arise, bo th  on the classical as well as 
on the quantum level, as the compatibility conditions of a discrete-time ZS 
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(Zakharov-Shabat) system 

L ' ( A ) .  Mn(A) --- Mn+I(A)" L,~(A) , (1.1) 

in which A is a spectral parameter ,  L~, is the lattice translation operator at site 
n, and the prime denotes the discrete time-shift corresponding to a translation 
in the second lattice direction. As L and M, in the quantum case, depend on 
operators,  the question of operator  ordering becomes important.  Throughout  
this paper  we impose in the quantu,n case as a normal order the order which 
is induced by the lattice enumeration, with n increasing from the left to the 
right. Finite-dimensional mappings are obtained from (1.1) imposing a period- 
icity condition 

in(A)  = L~+p(A) , Mn(A) = M~+p(A) (1.2) 

for some P E N. 
In a recent paper  [14], we introduced a novel quantum structure that  is ap- 

propriate for obtaining an integrable quantization of mappings of the so-called 
KdV-type, i.e. mappings derived from a lattice version of the KdV equation, 
cf. [7]. In this paper  we will review the construction of such integrable quan- 
tum mappings and their quantum invariants and we consider also the quantum 
mappings associated with the lattice version of the MKdV equation, cf. also 
[15]. A related system with continuous time is the quantum Volterra system, cf. 
[16]. As was indicated in [8], it turns out that  these mappings and their under- 
lying integrable lattices are - on  the classical level- symplectic with respect to a 
so-called non-ultralocal Poisson structure,  cf. also [17]. In the continuous-time 
case such (classical) non-ultralocal r-matrix structures have been studied in a 
number of papers, cf. e.g. [18]-[22]. The discrete version of the non-ultralocal 
Poisson bracket s t ructure reads, cf. ref. [8], 

{Ln,l,Lm,2} = -~n,m+l L,m s+2 Lm,2 + ~n+l,m L,,,2 s~ 2 Ln,1 
+ 5~,,, [r + L,,,1Lm,2 - L,,,iLm,2r12] , (1.3) 

Throughout  this paper  we adopt  the usual convention that  the subscripts 1, 2,- . .  
in (1.3) denote the factors in a matricial tensor product,  i.e. Ail,i2 ..... ~M - ~  

A ~ l , ~ 2  . . . . .  ~M ()~1, ~2 , ' ' "  , AM) denotes a matr ix  acting nontrivially only on the fac- 
tors labeled by il ,  i 2 , . . . ,  iM of a tensor product  @a Va, of vector spaces V(~ and 
trivially on the other factors, cf. also e.g. [4, 17]. For example, in eq. (1.3), 
the subscripts a, fl = 1, 2 , . . .  for the operator  matrices Ln,(, denote the corre- 
sponding factor on which this Ln acts (acting trivially on the other factors), i.e. 
Ln4 = Ln(A1) ® 1, L,,,2 = 1 ® Ln(A2). We suppress the explicit dependence on 
the spectral parameter  A = A1 respectively A = A2, assuming that  each value 
accompanies its respective factor in the tensor product.  

Eq. (1.3) defines a proper  Poisson bracket provided that  the following rela- 
tions hold for s + = s±(A1, A2) and r ± = r±(Al,  A2): 

sS(A1,A2) --- s+I(A2,A1) , r ~ ( A 1 , A 2 ) =  - r~ (A 2 ,  AI) ,  (1.4) 
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to ensure the skew-symmetry, and 

[r ,rS] + + = 0 ,  (15a) 
[s 2,sS] + + =0, (1.5b) 

to ensure tha t  the the Jacobi identities hold for the Poisson bracket (1.3). The 
relation (1.5a) for r ± is nothing but the usual classical Yang-Baxter equation 
(CYBE). As a consequence of the ZS system (1.1) we have on the classical level 
a complete family of invariants of the mapping,  namely by introducing the asso- 
ciated monodromy matr ix T()~), obtained by gluing the elementary translation 
matrices Lj  along a line connecting the sites 1 and P + 1 over one period P, 
namely 

4---- 
P 

T(A) - - H  Ln(A).  (1.6) 
n----'l 

In order to be able to integrate (1.3) to obtain Poisson brackets for the mon- 
odromy matr ix we need in addition to these relations the extra relation 

r+2 - = - ( 1 . 7 )  

In the classical case the traces of powers of the monodromy matrix are invariant 
under the mapping as a consequence of 

T'(A) = Mp+I (),)T(A)M{-I(A) (1.8) 

and the periodicity condition Mp+I = M1, thus leading to a sufficent number of 
invariants which are obtained by expanding the traces in powers of the spectral 
parameter )~. The involution property of the classical invariants follows from the 
Poisson bracket 

{trT(A), trT(A') } = 0 (1.9) 

which can be derived from (1.3). 
For the quantum mappings we will use the structure of [14, 23] which is the 

quantum analogue of this non-ultraiocai Poisson structure. In the continuous- 
time case such a novel quantization scheme was proposed in ref. [24], in con- 
nection with the quantum Toda theory. Similar structures with continuous time 
flow have been introduced also for the quantum Wess-Zumino-Novikov-Witten 
(WZNW) theory with discrete spatial variable, cf. [25, 26]. When consider- 
ing discrete-time flows some interesting new features arise, as was indicated in 
[14. 23]. In fact, the conventional point of view, tha t  the M-part  of the Lax 
equations does not need to be considered explicitly in order to construct quan- 
tum invariants, is no longer true. Therefore, one needs to establish the complete 
quantum algebra, containing commutation relations between the L-operators 
as well as between the L- and the M-operators, and between the M-operators 
themselves. As a consequence we will find, in the quantum mappings under 
consideration, non-trivial quantum corrections in the quantum invariants of the 
mappings. From an algebraic point of view, the basic algebraic relations for the 
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monodromy matrices, that  axe relevant in the context of non-ultralocal models, 
are similar to the algebras of currents of a quantum group, [3], that  have ap- 
peared also in different contexts, [27]-[29]. Interestingly enough, the relations 
between the monodromy matr ix and the time-part of the Lax representation are 
very similar to the relations associated with the description of the cotangent 
bundle of a quantum group (T*G)q [30]. 

The outline of this paper is as follows. In section 2 we introduce the basic 
ingredients of the non-ultralocal quantum R, S-structure. In section 3 we inves- 
tigate the canonical structure of quantum gauge- or similarity transformations, 
leading to (integrable) quantum mappings. This leads to a 'full' Yang-Baxter 
structure including the discrete-time part of the Lax representation. In section 
4 we present two examples of this structure: quantum mappings associated with 
the lattice KdV and with the lattice MKdV equation. In order to establish 
the quantum integrability of these mappings, we then develop in section 5 the 
'full' quantum structure for the monodromy matrix, and show how to construct 
commuting families of exact quantum invariants for these mappings. Finally, 
in section 6 we give a construction of the generating operator of the quantum 
mappings, as a cap~niral transformation on the quantum phase space, in the 
special cases of the KdV and MKdV systems. 

2 Non-ultralocal  Yang-Baxter  structure 

We now define a quantum Yang-Baxter structure that  is adequate for the map- 
pings in this paper, i.e. discrete-time systems arising (both on the classical as 
well as quantum lev, !) from compatibility equations of the form of (1.1). 

We introduce the q uautum L-operator Ln ()~) at each site n of a one-dimensional 
lattice, which is a matrix whose entries are quantum operators (acting on some 
properly chosen Hilbert space). The operators Ln()~) are supposed to have only 
non-trivial commutation relations between themselves on thc same and nearest- 
neighbour sites, namely as follows 

R+2 L.,1.  L.,2 = L.,2. L.,1 R~- 2 (2.1a) 
Ln+l,1 • S + Ln,2 = Ln,2" Ln+l,1 , (2.1b) 

L n j "  Lm,2 -- Lm,2" Ln,1, [ n -  m ]_ 2 .  (2.1c) 

These relations are the quantum analogue of the non-ultralocal Poisson bracket 
(1.3), defining what in [26] is referred to as the Kac-Moody algebra on the lattice. 
We will show in section 4 that  the quantum mappings provide examples of such 
a non-ultralocal quantum R, S-matrix structure. 

The compatibility relations of the equations (2.1a)-(2.1c) lead to the following 
consistency conditions on R + and S 

"4- 4. R12R13 4. (2.2a) = R13  R12  , 
r ~ 3  4- 4. 4- 4- 812 $13 = Sla S12 R ~  , (2.2b) 
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where S + = S~.  Eq. (2.2a) is the quantum Yang-Baxter equation (QYBE's) 
for R + coupled with an additional equation (2.2b) for $4-. For a derivation of 
eqs. (2.2) see appendix A. 

In order to establish that the structure given by the commutation relations 
(2.1) allows for suitable commutation relations for the monodromy matrix, we 
need to impose in addition to (2.2) that 

4- 4- R,~ s,~ = s ~  R b .  (2.3) 

Using these relations it is easy to establish that each sign of eqs. (2.2a),(2.2b) 
can be combined into a single equation as follows 

= (R,3S13) R ~ .  (2.4) 

At this point it is useful to introduce the following decomposition of the 
monodromy matrix (1.6) 

in which 

T = T +-T~- , (2.5) 

4------ 
P n 

T~(A) = H L/(A) , T~(A) = H  Lj(A),  
j : n + ,  j = l  

(2.6) 

First, one derives for the monodromy matrices T + and T~- the following set of 
relations 

T+-4 " S+ T~,2 = T~,2" S• T +4,, , (2.7b) 

for 2 < n <  P -  1. 
Next, taking into account the periodic boundary conditions we obtain for the 

monodromy matrix the commutation relations 

R+2 TI" S + T2 = T2. S 5 T1 n 5 • (2.8) 

Some details of the derivation of eqs. (2.7), (2.8) are presented in appendix B. 

R e m a r k :  The classical limit of the quantum structure (2.1)-(2.2) is easily ob- 
tained by considering the quasi-classical expansion 

s ~  = 1® 1 - h s ~  + O(h2), 
n?2 = 1 ® 1 + h r 5  + O(h~), (2.9) 

In this limit the quantum commutation relations (2.1) yield the non-ultralocal 
Poisson bracket structure given in eqs. (1.3)-(1.5). 
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3 Q u a n t u m  M a p p i n g s  

We are interested in the canonical structure of discrete-time integrable systems, 
i.e. systems for which the time evolution is given by an iteration of mappings. If 
the mapping contains quantum operators, the commutation relations with the 
monodromy or Lax matrices become nontrivial and it is not a priori clear in this 
case that  the Yang-Baxter structure is preserved. Furthermore, the traces of 
powers of the monodromy matrix are no longer trivially invariant as the cyclic 
property of the traces is no longer true for operator-valued arguments. To deal 
with these new features, it is necessary to take the M-part  of the Lax or ZS 
system also into account, and investigate the f u l l  quantum structure involved in 
these systems, consisting of commutation relations between the L-part as well 
as of the M-part  of the Lax pair. 

In [23] we have introduced such a full Yang-Baxter structure taking account 
of the spatial as well as the time part of the Lax pair. The structure is obtained 
by supplying in addition to eqs. (2.1) the following equations. 

M.+I,1 " S +  Lrt,2 = L . , 2  . M .+I ,1  , (3.1a) 

Ltn,2 • S~2Mn,1 = M . , I  " L'n,2, (3.1b) 

and 

Mn,1 " Lm,2 = Lm,2 . Mn,1 , 
t F M,~+1,1 • L,~,2 = L.~,2 • M.+I,1 

Mn,1 • Mrn,2 = Mm,2  " M . , 1  , 

in combination with 

R+2 Mn,1 • M,~,2 = M , , 2 "  M,~,I R ~  2 , 

M : , I  " S +  M , , 2  = Mn,2"  M~ , I  . 

The trivial commutation relations are the following 

f . - . f l  > 2, 
, I n - - q  > 2, 

> 2, 

(3.2a) 

(3.2b) 

(3.3a) 

(3.3b) 

(3.3c) 

Mn"~i'" Mn,2 -= M,,2- M~'(i" , (3.4a) 

M:+1,1- M,,2 = M,,2-M'+1,1 , (3.4b) 

M:+1,1" L,,2 = Ln,~. M',+I, 1 , (3.4c) 

for multiple applications of the mapping. We shall not specify other commu- 
tation relations, as they do not belong to the Yang-Baxter structure. More 
precisely, one may notice in the explicit examples of section 4 that  the commu- 
tation relations 

[Ln ,~ M,]  , [L,~+I ,~ M,]  , [M,+I ,~ L~] , [M,+I ~ L '_ I ]  , [M,+I ,~ M,~], 

are nontrivial, and they depend on the details of the system satisfying the Yang- 
Baxter equations. However, in order for the Yang-Baxter structure to be pre- 
served under the mapping, we do not need information on these latter commu- 
tation relations. The main statement now is that  the commutation relations 
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between the matrices L,~ are invariant under the mapping 

Ln --+ L "  = Mn+l  Ln M n  1 , (3.5) 

see appendix C for some details. 
For the quantum mappings under consideration here the operator L ,  has a 

composite structure, i.e. 
L ,  ---- V2," V2n-1 (3.6) 

and the commutation relations of the Yang-Baxter structure involving the L ,  
can be inferred from the commutation relations among the Vn themselves, as 
well as the commutation relations between the V, and Mm. In fact, imposing 
the commutation relations 

V,~+l,1 • S + ( n )  Vn,2 = Vn,2- Vn+l,1 , (3.7a) 

R+12 Vn,l " Yn,2 = Vn,2 . Vn,1 R12 , (3.7b) 

Vn,l" Vm,2 = V,~,2 • V~,l, In - m I >_ 2 ,  (3.7c) 

we obtain the relations (2.1) as can be easily verified. 
In eq. (3.7a) the S+(2n)  is independent of n and is equal to the S + occuring 

in eq. (2.1b). For odd values of n, S + ( n )  may be a different solution of eqs. 
(2.1)-(2.3). The proof of eq. (2.1a) from eq. (3.7b) is essentially the same as the 
proof in appendix B showing how eq. (2.7a) is obtained from eqs. (2.1). 

Next we impose the commutation relations between the operators Vn and 
Mn.  The only nonvanishing commutation relations involving M~ are taken to 
be the following ones 

V 2 n + l  W2n- I 
V2n g ,t 
V2n-I ++M,~o  V.~ r~-2 2n--3 

V2.-2 -V2"_4 
(3.8) 

and in addition we impose simple commutation relations between M= and V2=-2 
and V2'=_1, respectively 

Mn+l,1 " S+  V2,,,2 --'- V2n,2 " Mn+l,1 , (3.9a) 

V ; , _ 1 , 2 S 5 "  Mn,1 = M,~,x . V2"_l, 2 , (3.95) 

With  the use of eqs. (3.8), (3.9) and (3.6) it is straightforward to derive eqs. 
-- i  t (3.1) and (3.3). Eq. (3.4c) can also be shown replacing L ,  by M,~+I L,, M ,  and 

taking account of the invariance of commutation relations under the mapping. 
The relations (3.7)-(3.9) are satisfied by the quantum mappings which will be 
considered in section 4. In section 5 we construct commuting families of quantum 
invariants on the basis of the full Yang-Baxter structure given above. 

4 T h e  Q u a n t u m  L a t t i c e  K d V  a n d  M K d V  

Here we consider two examples of integrable quantum mappings coming from 
the lattice analogues of the KdV and MKdV equations. 
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a) The first example of a concrete integrable family of quantum mappings 
that  exhibit the structure outlined above, is the mapping of the KdV type (i.e. 
mappings arising from the periodic initial value problem of lattice versions of 
the KdV equation, see [7] and section 6 below). These are rational mappings 
R 2P --~ R 2 P :  ( { v j } )  t--+ ({V;}) of the form 

, e5 e5 
"U~j_ 1 : V2j , V2j : V2j+I  -1 t- ( j =  1 , . . - , P ) ,  (4.1) 

V2j V2j+2 

imposing the periodicity condition vi+2P = vi.  The mapping (4.1) has the 
Casimirs 

P P 

Z = v J-1 = c ,  (4.2) 
j = l  j = l  

where c is chosen to be invariant under the mapping, in which case we obtain a 
(2P - 2)-dimensional generalization of the McMillan mapping [10]. 

To obtain the Yang-Baxter structure it is worthwhile to note that eq. (4.1) 
arises as the compatibility condition of a ZS system (1.1) with 

aj 1 ) (4.3) Li  = ½ ~ . ½ i _ 1  , Mi = ~2i O ' 

( v l  1 )  
V ~ =  hl 0 

in which ~2i = k2 - q2, ~2j+1 = k 2 - p2 and e5 = p2 _ q2. In fact, from the ZS 
condition (1.1) one obtains 

e5 
aj = v 2 j - 1 - - -  (4.4) 

v2j  

as well as the mapping (4.1). The corresponding classical invariants, obtained 
by expanding the trace of the monodromy matrix (1.6) in powers of k 2, are in 
involution, cf. eq. (1.9), with respect to the Poisson structure [7] 

{ V j ,  V j , }  : ~ j+ l , j '  -- ~j,j'4-1 , (4.5) 

which was obtained using a Legendre transformation on an appropriately chosen 
Lagrangian [7]. This ensures that  the mapping (4.1) is symplectic, i.e. the same 
Poisson brackets hold also for the primes variables v~. This property can also be 
checked easily by direct computation. On the basis of this a canonical transfor- 
mation to action-angle variables can be found following ideas from [9], thereby 
showing complete integrability in the sense of Liouville [7, 8]. In the quantum 
case the variables vj become hermitean operators on which we impose the fol- 
lowing Heisenberg type of commutation relations, as a natural quantization of 
the Poisson relations (4.5), cf. [14, 23], 

[Uj ,  Vj,] : h ({~j,j'-~-I - -  ~ j + l , j ' )  , (4.6) 
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(where h = ih), It is easy to check that  the quantum mapping (4.1) preserves 
the commutat ion relations (4.6), and in section 6, we show that the mapping is 
a canonical transformation with respect to these commutation relations. 

The special solution of the quantum relations (2.2), (2.3), wtfich constitutes 
the R, S-matrix structure for the quantum mapping (4.1), together with the 
commutation relation (4.6), is given by 

in which p~ 

R+~ = R~ - S + + S5 

R~2 = 1 ® 1 + h - -  (4.7) 

S + = I ® I - h F ® E ,  S (2=S  + ,  
~2 

-= k~ - q2,a = 1,2 and the permutat ion operator P12 and the 

1 0 0 0 / 
0 0 1 0 
0 1 0 0 
0 0 0 1 

F = ( O1 0)0 " (4.8) 

matrices E and F are given by 

E = (  °o 01) 

We mention the useful identity 

n+2 = A1A2 Ri-2Ai-IA21 , (4.9) 

where A~ = # ~ F  + E,  (a = 1,2), from which it is evident that  it is not strictly 
necessary to introduce two different R-matrices R +. 

The complete Yang-Baxter structure can now be derived from the mapping 
(4.1), the relation (4.4) for aj and the commutat ion relation {4.6). In fact, from 
(4.6) one immediately obtains eq. (3.7a) with 

s ~ ( n )  = 1 ® 1 - ,h---F ~ E (4.10) 
A,n,2 

with A2j,2 = kg - q2 Aej-l,2 = kg - p 2  and also eqs. (3.7b) and (3.7c). These 
relations are at the basis of the L part, i.e. eqs. (2.1), of the Yang-Baxter 
structure. To derive the commutat ion relations (3.8), (3.9) one first checks by 
explicit calculation that  the only nonvanishing commutation relations between 
the matrix Mn and the matrices Vrn, Vrm are indeed those indicated by eq. (3.8). 
Furthermore, one has the commutat ion relations 

[M,~+I - V2n+l ~, V2n] = 0 , [Mn+l - V2~ ~, V~+I] = 0 (4.11) 

which with eq. (3.7a) and its counterpart  in terms of the primed operators 
immediately yield eqs. (3.9). Finally the nontrivial commutation relations (3.2) 
follow from 

[M~ ,~ M~] -- 0 , [M:  - V~n_ 1 ~, Mn] = 0 (4.12) 
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together with (3.9). The trivial commutation relations can be checked in a 
similar way. 

Thus, the mapping (4.1) and its ZS system (4.3) with the commutation rela- 
tion (4.6) satisfy the complete Yang-Baxter structure treated in sections 2 and 3. 

R e m a r k :  The KdV mappings considered here are the discrete-time analogue of 
the quantum Volterra system treated in ref. [16]. Such systems are of interest, 
in connection with discretizations of the Virasoro algebra [31]-[34]. 

b) 
with the following R, S-matrices. Introducing 

We now consider the example of the MKdV mappings, which is associated 

together with / x ) 
Slz = 1 1 ' (4.13b) 

q 

it is straightforward to check that the matrices of (4.13) obey for spectral para- 
meter/k12 = ~1/)~2 the following relations 

R12 A1 $21 A2 = A2 $12A1 R12 , R12 A11 S12 A21 ---- A21 S21Ai -1 R12 , (4.14) 

in w h i c h A l = A ( $ ~ ) ® l  , A 2 = l ® A ( $ 2 )  and 

( a  b )  (4.15) A()~) = ~ d ' 

where a, b and d are arbitrary constants. Eq. (4.20) then yields a solution of 
the Yang-Baxter relations (2.2), (2.3) with 

R12 ~ R12(+~1, )t2) --: R12(+~1/+~2) , 
R~+2 = A~A~RI~ (~1/~)(A~A~)-I, 
S ~  = A ~ S l ~ A ;  1 , S 5  = 

8 5  = h i S ~ h ~  1 • (4.16) 

As an example of a quantum mapping associated with this solution of the Yang- 
Baxter equation we consider 

l 
~O2n_ 1 ~ ~02n , 

e~'~. = ( P 2 n -  r) + (P2n+l + r)e  ~°'z"+~ 
(Pzn+l -- r)  + (p~, + r)e~-.+2 
n =  1, . - .  2 P  

e~O2.+1 ( P 2 n - 1 -  r) + (P2n + r)e  ~02" 
(P2n -- r)  -[- (P2n-I -J- r) e~°2" ' 

(4.17) 

q)h2 -- 1 0 0 0 / 

0 $12 -- 1 q -- 1 0 (4.13a) 
R1~(~12) = 0 ~ l ~ ( q -  1) q(~12 - 1) 0 ' 

0 0 0 q$12 -- 1 
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which is a quantum version of the mapping associated with the lattice MKdV 
equation, cf. [7]. The MKdV mapping (4.17) arises as the compatibility condi- 
tion of a ZS system (1.1) with Ln = V2n" V2~-~, cf. (3.6), and 

( 1 0 )  
Vn = A n - V n ,  Vn = 0 e~- 

hn=(pn--  1) 
A P n  + r  " 

in which A = k s - r ~, P2n-1 = P, P2n = q and 

(4.18) 

In fact, working out (1.1) with (3.6) and (4.18), (4.19) one finds the mapping 
(4.17) and 

- (mn-  - + (p n + " ( 4 . 2 0 )  

In the classical case the mapping is completely integrable with P integrals in 
involution with respect to the (invariant) Poisson bracket 

{ ~ j ,  ~Oj,} = ~ j ' , j+ l  - - J j ' , j - -1  (4.21) 

cf. eq. (1.9) and the expansion of t r T ( A )  in powers of k 2. 
In the quantum case we have the commutation relation 

[toj, ~oj,] = h ( ( ~ j , j ' + l  - -  ~ j , j ' - - l )  , (4.22) 

implying in particular that  

e~-e~-+l = q e ~ , + l e  ~ .  , q = e - h  . (4.23) 

Starting from (4.23) we find the commutation relations (3.7), in which the 
+ 4- 

R12, $12 are given by (4.22) with 

q = e - h  , x - -  k~ - r2  
- r2  ( 4 . 2 4 )  

and An given by (4.18) with A = k 2 - r 2. 
From the commutation relation (4.23), together with the explicit expression 

(4.20) for e ~- it is straightforward to derive the remaining relations of the Yang- 
Baxter structure, i.e. eqs. (3.8), (3.9) and (3.2), completely analogously to the 
case of the KdV-type of mappings. The trivial commutation relations can also 
be checked directly. Thus with the MKdV-type of mappings we have another 
example of the complete Yang-Baxter structure presented in sections 2 and 3, 
but here the R ~  and S~  correspond to different (trigonometric) solutions of the 
Yang-Baxter equations. 

1 0 ) (4.19) Mn -- A2n" 0 e ~" ' 
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5 Quantum Invariants 

In the classical case the trace of the monodromy matrix yields a sufficient number 
of invariants which are in involution. In the quantum case the trace is no longer 
invariant and we have to consider more general families of commuting operators. 

Following the t reatment  of ref. [27], a commuting parameter-family of oper- 
ators is obtained by taking (for details, cf. appendix D) 

T(A) = t r ( T ( A ) K ( A ) ) ,  (5.1) 

for any family of numerical matrices K(A) obeying the relations 

K1 tl (( t,S~2)-1 ) /(2 R+2 -- R1- 2/(2 t2 (( t2S+)-1 ) K1 . (5.2) 

(We assume throughout that  S ~  and R ~  are invertible). The left superscripts 
tl and t2 denote the matrix transpositions with respect to the corresponding 
factors 1 and 2 in the matricial tensor product. Expanding (5.1) in powers of the 
spectral parameter A, we obtain a set of commuting observables of the quantum 
system in terms of which we can find a common basis of eigenvectors in the 
associated Hilbert space. We note that  a matrix K(A) is commonly introduced 
in connection with quantum boundary conditions other than periodic ones [27], 
but in relation to the quantum mappings of the present paper it is essential in 
the periodic case as well. 

Furthermore the Yang-Baxter equations of section 3 lead to the following 
commutation relations between M -- M n = l  and the monodromy matrix T, 

TI " M ~  1" S +  M2 = M2 " S~2T1" M ~  1 • (5.3) 

Here we use the notation M1 -- M @ 1, M2 - 1 ® M as usual for the factors 1 
and 2 in the matricial tensor product. The derivation of eq. (5.3) is based on 
the commutation relation 

M - 1  M-1  M , , I  " (Ln+I  " L ,  " , )2 = (Ln+I  " L n "  n )~ " S ~ 2 M , , '  (5.4) 

which is easily checked noting that  

n n + l  " L , .  M Z  1 = M(~-~ . L~+ 1 • L~  (5.5) 

and using the commutation relation (3.1b) and the trivial relations (3.3b), (3.3c). 
Then with the use of (3.1a) it is found that  

M 1 - S  + ( n p .  Lp-1 . . . . .  L l ' M - 1 ) 2  = L p , 2 - M I '  (LP-1 . . . . .  L~ .M-1)2  

= ( L p  . . . . .  na )2"  (L2" L , .  M - 1 ) ~  • S • .  M1 (5.6) 

which is just eq. (5.3). 
The commutation relation (2.8) for the monodromy matrices is invariant. 

This can be shown noting that  eqs. (2.1) are invariant under the mapping and 
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by repeating the derivation of eq. 
It  follows also directly from eq. 
fact, 

(2.8), but  now with the updated variables Lj ' .  
(5.7) and the commutat ion relation (5.3). In 

R+2T; + , • $12T~ = R+2M1 • TI" M ~  1" S+M2 • T2. M21 

= R+2M1 • M2.  S ~ T 1 .  M~ -1. T2. M~ -1 

= M s .  MI"  S+R+2T1. M~ -1. T2. M ~  ~ 

M2 " M1 + + S+ T2 1 - '  = • Sz2R12T1 • M 2  1 • • M ~  S ~  

1 - 1  
---- M2 . MI . 8~T2 . S~2T1" R72M2 ~ . M C S~2 

= T~. S+M1 • M2.  S~2T1M~ -1 ~Ar-lq+-i r~- 
• * ' * 2  ~ ' 1 2  * ¢ 1 2  

= T~. S G T ~ R G ,  (5.7) 

Our aim is now to describe the integrability of the quantum mappings of 
section 4 which obey the commutat ion relations (2.8) and (5.3). For this we 
need to show that  one can find a sufficient family of commuting invariants of 
the mapping. Let  us thus use eq. (5.3) to calculate commuting families of 
quantum invariants in the case of the KdV and MKdV mappings of section 4. 

In fact, introducing a tensor 

K12 = P 2g g2, (5.8) 

where P12 is the permuta t ion  operator  satisfying e.g. 

P12A1 = A2P12, P12A2 = ALP12,/)12 = P21, tr2P12 = 11 (5.9) 

for matrices A not  depending on the spectral parameter ,  and choosing AI = ~2, 
we can take the trace over left- and right hand side of (5.3) contracting with 
K12. This leads to 

trl2 (K12(TM-1) I  • S+ M2) 

provided that  

= tr2 (K2T2M  -1 trl(P12K2S +)  M2) = tr (KT)  
(5.10) 

trl(Pi2K2S~) = 12 • (5.11) 

In eq. (5.10) tr12 = trltr2 denotes the trace over the factors 1 and 2 in the 
direct product  space of matrices, whereas trl and t r  2 a r e  restricted to only one 
of these factors. Under the same condition (5.11) we have that  

$?'12 (K12M2" S ~ ( T M - 1 ) I )  

=- trl  (K1M1tr2(P12K1S~2)(TM-1)I )  = t r ( g T ' ) .  (5.12) 

A solution to eqs. (5.11) is easily found, namely by taking 

K2 = trl { p 1 2 t ' ( ( t l S + ) - l ) }  . (5.13) 

It can be shown tha t  (5.14) win solve eq. (5.2). 
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Applying (5.14) to the examples of the KdV and MKdV mappings, we find 
in the KdV case, using (4.10), 

h ( 0  0 )  (5.14) g ( ~ ) = l + ~ S _  , S _ =  0 I ' 

and in the case of the MKdV mapping, with the use of the relation 

S 5  = 1 ® 1 + (q - 1) (n l"  S _ .  A11 ® S_) , (5.15) 

cf. (4.13) and (4.16), we find the following solution from (4.18), 

K(,~) = 1 +  ( q - l _  1 )S_ -A .  S _ . A  -1 

A = (  q-r,~ q+rl ) , , ~ = k 2 - r  2 (5.16) 

and again the K(~) in combination with the R ~ ,  S~  of eqs. (4.19), (4.20) 
satisfies eq. (5.2). 

Hence, in the case of the KdV and MKdV mappings we have obtained a 
commuting family of quantum invariants that  can be evaluated expanding ~-(,~) = 
trK(,~)T()~) in powers of k 2. 

For instance, in the KdV mapping the explicit expression of the invaxiants 
can be inferred from 

r ( ~ )  = : v j  1 
\ j = l  

N ~Jv 

+ Z II  - -  
I~J [ ( . - .<JN~2P  V~I VJv-}-lVJu 

Jv+l -J,., )_2,Jl --JN"t-2P)2 

: ,  (5.17) 

leading to find a full family of commuting invariants. In (5.17) :: denotes the 
normal ordering of the operators vj in accordance with their enumeration, and 
~ j  = ~j  for J ~ 2P, ~2P = AzP + h. Thus the quantum effect is only visible in 
the boundary terms associated with the factor 1/(VlV2p). 

As a very simple example we give the quantum invariant of the original 
McMillan mapping [10], i.e. (4.1) for P = 2, namely 

225y (5.18) x ~ = y , y~ = --x ~2_y2 ' 

for x = vl -- e, y = v2 -- e, (choosing c = 22) and where [y, x] = h, having the 
invariant 

Z = (e2 _ y 2 ) ( d _  x2) _ (e8+ h ) ( e y x -  e8). (5.19) 

The invariant Z can be viewed as a Hamiltonian generating a continuous-time 
interpolating flow by ~ = ~ [27, x], ~) = ~ [:Z, y], whose solutions can be considered 
to be parametrized in terms of what we could call a quantum version of the Ja- 
cobi elliptic functions. More general two-dimensional quantum mappings have 
been studied in ref. [35]. 
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R e m a r k :  The  construction of quantum mappings can be generalized to a 
larger class of models, namely those associated with the lattice Gel'fand-Dikii 
hierarchy, [36], as was explicitly shown in [23]. In [37] we elaborated a fusion 
procedure for obtaining the commuting families of exact higher-order invariants 
for these mappings. 

6 Q u a n t u m  A c t i o n  

In the previous sections, we have established the general structure of mappings of 
KdV and MKdV type. We have shown that ,  as a consequence of the Yang-Baxter 
s t ructure the basic commutat ion relations are preserved under the discrete-time 
evolution. Furthermore,  we have established their integrability by constructing 
from the Yang-Baxter s t ructure a complete and commuting set of invariants of 
the mapping. Wha t  was not established yet was the existence of a unitary op- 
erator tha t  generates the quantum mappings by conjugation. We will establish 
here such a generating operator  for the quantum mappings associated with the 
KdV and MKdV lattice starting from the classical action for these lattice equa- 
tions. 

We will restrict  ourselves in this note  to mappings of KdV type, i.e. mappings 
coming from reductions of the lattice KdV equation. The lattice potential  KdV 
equation is an integrable partial  difference equation, which reads, [6,7], 

+ u. ,m+l  - + - = (6.1) 

in which e = p + q, 5 = p - q are lattice parameters  and the dependent variable 
u depends on two integer variables n,m E Z. Equation (6.1) is the ' integrated' 
version of the lattice KdV equation 

?~n,m+l ~- ~n,m--1 -- Un--l,m -- Un+l,m 

e~ e6 
= - , (6.2) 

~. .~L U n , m  __ Un+l,m+l ~ ~_ Un_l,m_l __ Un,r  n 

which arises as the Euler-Lagrange equation from the following action 

S =  ~ [ u , , ~ ( u , + l , ~ - u , , m + l ) + e 6 1 n ( e + u , , ~ - u , + l , ~ + l ) ]  , (6.3) 
n,m~Z 

i.e. 8S/6un,m = 0 yields eq. (6.2). In [71, cf. also [61, we established a linear 
problem of Zakharov-Shabat type for eqs. (6.1) as well as for (6.2). b-hrthermore, 
in [7] we showed that  well-chosen periodic initial value problems on the lattice 
for (6.1)- and consequently for (6.2)- yield reductions to integrable mappings, 
specifying one of the lattice directions as the direction of the discrete-time up- 
date. Thus a mapping reduction is achieved by taking the m-direction as t ime 
and labelling the variables along a 'staircase' in the lattice, i.e. taking 

! l 
Uj, j  = :  U2j , U ] + I ,  j -----: U 2 j + I  =:~ U j , j +  1 ~ U 2 j , U j + I , j +  1 = U2j+2 = U2 j+ I  , 
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denoting by the prime ' as before the discrete-time shift, i.e. 

.~j(t)  = .~./(t + 1), ~ + ~ ( t )  = . ~ + ~ ( t  + 1).  

Imposing periodic boundary  conditions un+2(p+l) (t) = un(t), in which P + 1 
is the period, we obtain a finite-dimensional reduction of the lattice equations 
(6.1) and (6.2). For this reduction we have a reduced action which reads 

P + I  

t6Z+ n=l 
(6.4) 

in terms of the even variables (an action in terms of the odd variables need not 
he given separately). For convenience we will use in this section instead of vj the 

reduced variables xn =- u2n - u2n+2. Using the periodic boundary conditions, 
leading to 

P 

~ n = 0 ,  (6.5) 
n= l  

we can write an action entirely in terms of the variables xn ,  n = 1 . . .  P - 1, 
namely as 

S~d = Z L(x(t),x'(t)), (6.6a) 
~6Z+ 

choosing a discrete-time Lagrangian 

~'-f i ~./ - v (~)  (6.6h) L ( x , x ' ) =  ~ x , -  

P--I n 

V(x)'= ~ 2 2 nu "21 xj -e (~ ln (E-{-  x n 
n--1 

- e ~ l n  e - -  ~ _ x . /  , (6.6e) 
.i=1 

where x is shorthand for ( x l , . . . , x p - 1 )  and in which the x ,  are varied inde- 
pendently. Although in the original action Srea of (6.4) one varies with respect 
to the variables u2n,  it is easily verified that ,  varying with respect to xn, the 
Lagrange equations 

o%-~. + \ o ~ . )  = 0 (6.7) 

' x . ( t +  1). yield the proper  discrete equations of motion for the x ,  = x n ( t ) ,  x n = 
Thus we can work with the xn as the reduced canonical variables. 
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We shall now introduce a different Legendre transformation than the one 
used in [7] to obtain the generating function of the canonical transformation. In 
fact, because of the special form of the 'kinetic' part  of the Lagrangian (6.6b), 
it is convenient to choose a form of a Legendre transformation specially adapted 
to the situation at hand and which is of the form 

P - - 1  n 

H(x,y') Z r ' x '  = Ynt ,, - Z x j )  - L ( x ,  x ' ) ,  (6.8) 
n = l  j = l  

introducing momentum variables by 

OL 
' ( 6 . 9 )  Yn - Ox" 

Variation with respect to the x,~ and y~ variables of (6.8), and using (6.9) to- 
gether with the Lagrange equations (6.7), we obtain 

P - 1  OH 
Y " -  = 0 x .  ' ( 6 .10a)  

j=n  

OH (6.10b) 
r x j  = Oy~ ' 

X n ~  

j=l 

(n = 1, ..., P -- 1), which can be interpreted as the discrete-time Hamilton equa- 
tions. 

From eqs. (6.10) it is easily established that  the variables x,~ and Yn are 
canonical. In fact, it is a straightforward exercise to show that  the symplectic 
form 

P - - 1  

= ^ (6 .11 )  
n, m l  

t ! is invariant under the mapping x,~ ~-+ x,~,yn ~-~ y,~ described by eqs. (6.10). Eq. 
(6.11) implies the Poisson brackets 

{x, ,  Ym} -- ~,,m , {x,,, x,~} -- {y, ,  Ym} = 0 .  (6.12) 

In principle we can use the Legendre transformation (6.4) in more general situ- 
ations then only the integrable case of (6.6). In that  special case, however, we 
obtain the discrete-time 'hamiltonian'  for the KdV mappings, namely 

P - - 1  

H ( x , y ' )  = T ( y ' )  + V ( x )  , T ( y ) =  Z ¼Y~ ' (6.13) 
"tl.~l 

where V ( x )  is given by eq. (6.6c). What  is especially convenient is the fact that  
H of (6.13) decomposes into a kinetic and a potential part,  a feature that  was 
not there in the hamiltonian description of [7]. However, in order to obtain this 
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feature, we had to modify the Legendre transformation, leading to the additional 
terms on the left-hand side of eqs. (6.10). 

The quantization of discrete-time modes with hamiltonian (6.13) and Pois- 
son brackets (6.12) is obtained by the straightforward quantization prescription 
{-, .} --+ ~[. ,  .], replacing the canonical coordinates and we replace xu, Yn by her- 
mitian quantum operators An, Y,~ acting on a well-defined Hilbert space. Thus, 
we obtain the usual Heisenberg algebra for X,~, yn, 

[Xn, Ym] = iliSn,m , [Xn,Xm] = [Yn, Ym] = 0 .  (6.14) 

Eqs. (6.14) correspond precisely to the commutation relations (4.6) that  we need 
to obtain a quantum R-matrix formulation for the commutation relations of the 
KdV-mappings. 

Now, as for the quantum version of the mapping, we first note that  as a 
consequence of the splitting of H into T + V and the X, Y being canonically 
conjugate, the form of the mapping need not to be modified in the transition 
from the classical to the quantum case. This is consistent with the R, S-matrix 
structure of section 4a. Hence eqs. (6.10) are still valid in terms of the quan- 
tum variables Xn, Yn. Secondly, the splitting of H suggests directly the form 
of the unitary operator that  generates the quantum mapping, the only com- 
plication arising from the extra terms on the left-hand side of eqs. (6.10). If 
these were absent, the form of the unitary operator would simply be the product 
e x p ( i / h V )  e x p ( i / h T ) .  However, in the presence of these extra terms we now are 
forced to take: 

k i < J ' = l  

in which V = V ( X ) ,  T = T ( Y ) ,  and the middle factor on the right-hand side 
of (6.15) is an ordered product of exponential factors, ordered in lexicographic 
order, i.e. 

e£a X P - 2  Y P - 1  . . . e ~  X 2 Y P - 1  . , . e ~  X 2 Y 3 e ~  X I  Y P - 1  . . .  e ~  X t  r a e ~  X1r2" 

Using (6.15) and the relations 

, e . X ' ~ e - ~  x ' ~  = Y~ - ~ , (i # j ) ,  e ~ X ' Y ~ X j e  - '~x 'Y j  = X i  + X j  ± " " ' " " 

it is straightforward to establish that  the transformations 

X n  ~-~ X ~  = U X n U  t , Y ,  ~-~ Y~ = U Y ,  U t (6.16) 

yield exactly the quantum mapping provided by the quantization of eqs. (6.10). 
Eq. (6.15), together with (6.16), demonstrates the fact that  the quantum KdV 
mapping provides indeed a canonical transformation in the full quantum sense, 
namely as a unitary transformation on the quantum phase space. 
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R e m a r k :  We can use the above given construction for obtaining the generating 
operator  of the canonical t ransformation also directly for the MKdV mappings 
of section 4b (we omit the details here). In fact, in that  case one starts from the 
action for the classical MKdV lattice tha t  was given in [7]. The construction 
can be applied without modification to tha t  case also. ~ r t h e r m o r e ,  these con- 
siderations can be generalized to the wider class of mappings corresponding to 
the lattice Gel'fand-Dikii hierarchy, [23,37]. It  would be interesting to look for a 
direct relation between the operator  U and the discrete-time par t  of the linear 
problem, which generates the time-shift on the level of the Lax representation. 
Some results in this direction were mmounced in [38]. 
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A p p e n d i x  A 

In order to derive the compatibility relations for the Yang-Baxter matrices R 
and S, i.e. eqs. (2.2), from the commutation relations (2.1) for the Lax matrices 
L, we encounter four different types of combinations of matrices L. Embedding 
the L matrices in a tensorial product of three copies of the matrix algebra, i.e. 
Ln, j ,  j = 1, 2, 3 acting on vector spaces V ® V ® V, and denoting 

L , m = L , ® I ® I  , L n , 2 = I ® L , ® I  , L n , 3 = l ® l ® L n ,  

we can distinguish the following types of combinations of matrices L involving 
only coinciding and/or  neighbouring sites: 

i) L1 -= L,+2,1, L2 - Ln+l,2, L3 --- L,,3 

In this case, no conditions on the R- or S matrices will appear, because 

n l  . S +  L2  • S +  L3  = L3  . n 2  " n l  , (A.1) 

independently of the order in which the relation (2.1a) is applied. 

i i )  L1 - Ln+l,1, L2 -= Ln+l,e, La - L . ,3  

In this case, we have on the one hand 

R+12L1 L2  + + - + + . . . . .  R 1 2 S 1 3 S ~ a L a  , (A.2) S13 S~3 L3 L2 Lz 

whereas on the other hand we find 

= L a .  L 2 .  L1R-~2 = L 2 .  S + L 1  • S + L 3 R - ~ 2  • (A.3) 

Comparing relations (A.2) and (A.3), we have 

- + + + + - Rl~S13S~a (A.4) -- S~3 S13 R12 , 

which after relabelling of the vector spaces becomes eq. (2.2b). 

i i i )  L1 -= L.~+1,1, L~ - L . ,2 ,  L3 --- L~,a 

Take for this case the combination 

R ~ 3 L z  " S +  L2  • S +  L3  = L z  • .,.23~.12~13 " +  ¢+ q + "  L2" L3 ,  (A.5) 

and compare this with 

= L3 • L= • L 1 R ~ 3  

- L 1  + + - • S ~ 3 S z ~ L s .  L 2 R 2 3  (A.6) 
+ + + 

= L1 • S 1 3 S 1 2 R 2 3 L 2  • L3  , 

yielding eq. (2.2b) with the + sign. 
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i v )  L1 --: L,~ 4 ,  L2 - -  L,, ,2,  La ---- L . , 3  

In  this case we have the  s t a n d a r d  braiding type  of a rgument  to  find as 
a sufficient condi t ion the  q u a n t u m  R-ma t r ix  relations (2.2a) for R + and  
R - .  

Appendix B 

In  this append ix  we establish the  c o m m u t a t i o n  relat ions between the  m o n o d r o m y  
mat r ices  T and  T + , T ~  of eq. (2.6), using the  fundamenta l  c o m m u t a t i o n  rela- 
t ions of the  mat r ices  L , .  

i) Using eqs. (2.1a), (2.1b) we can establish 

R+2 Ln+t,1 • L,~,I • L ,+I ,~  • Ln,2 = R + L,~+1,1 • Ln+l,2 • S + L~,I"  Ln,2 

= L , + t , 2 "  L n + t , t "  R~2 S + L n , t "  Ln ,2  (B.1) 

which, by  imposing  the  relat ion (2.3), reduces to  

= L . + t , 2  • L ~ + I , t  • S + L . , 2 "  L .  m Rt-  2 , 

= Ln+l,2 • L,~,2 • L , + I , I  • L , , t  R1- 2 • (B.2) 

By  r epea t ed  appl icat ion of eqs. (B.1) and  (B.2) toge ther  wi th  eq. (2.3) one 
shows t h a t  

R+2L~,,1 • . . .  • L,~+t,1 • Lp,2 • . . .  • L,+1,2 

= R+2 L p , 1  • L p - l , t  • Lp,2 • L p - 2 , t  • L p - 1 , 2  • . . .  • Ln+t , t  • Ln+2,2  • L n + l , 2  

= R+2 L p , 1  • L p , 2 "  S + L p - I , 1  • L p - t , 2 "  S+1 • L p - 2 , t ' . . .  

• . . "  L n + 2 , 2  • S + L n + l , t  • L,~+1,2 

= L p , 2  • L p , 1 S  + "  L p - 1 , 2  • L p - t , I S  + "  L p - 2 , 2 " . . .  

L + • . -"  n+2,1S12 • Ln+l,2 • L~+1,1 Ri-2 

-~ L p , 2  • L p - 1 , 2 " . . .  • Ln+l,2 • LB.1  " L p - I , 1  " . . .  " Ln+l,1 R12 , (B.3) 

leading to  eq. (2.7a) for T + .  A similar a rgumen t  can be  applied for T~-. Fur- 
thermore ,  eq. (2.7b) is derived f rom eqs. (2.1b), (2.1c) by not ing  tha t  

L p , 1 . . . .  • Ln+l,1 • S + L n , 2  " . . . "  L1,2 

= L P 4  • . . .  • L,~+2,1 • Ln,2 • Ln+t,1 • L , -1 ,2  • . . .  • Lt,2 

= Ln,2 • . . .  • L2,2 ' L p , 1  • L1,2 • L p - I , 1  • . . .  • L n + l , 1  

= L , , 2 . . . . "  L 2 , ~ .  L 1 , 2 S + L a t . . . .  • L n + t , 1  , (B.4) 

where  in t he  last s tep we have used the  c o m m u t a t i o n  relat ion 

L p , 1  • L1,2 = L1,2- S + L p ,  t (B.5) 

taking into account  the  per iodic  b o u n d a r y  conditions.  
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Finally, f rom (2.7) we immed ia t e ly  ob ta in  

t / + 2 T I " S  + T 2 - - R  + T  + . T  + 12 n,1 , ,~"  S + T n , 1  "T~-,2 

- T+ • Z + • rSS+T ,I - -  n ,2  n ,1  

- T + T + --  n,2 " n, l  " S+12Tn,,2 " T~, I  R { 2  

= T 2  S + T 1 R S ,  

which is eq. (2.8). 

(B.6) 

Appendix C 

i) We prove  t h a t  eqs. (3.1a),(3.1b),  t oge the r  wi th  (3.2h) are  sufficient to ensure 
t h a t  the  basic  c o m m u t a t i o n  re la t ions  be tween  the  mat r ices  Ln,  eqs. (2.1a), are 
preserved  unde r  the  m a p p i n g  

L n  ~ L ~  = M n + l  " L,~" M ~  1. 

In  fact ,  

' + ' = L '  • ~q+Mn+l,2 • Lr,,2 • M ,  - 1  Ln+l,1 " ~12Ln,2 n-bl,1 n,2 

-'~ i n + l , 2  " i n + l , 1  " Ln ,2  " n,2 

• M - 1  • Ln,2  • M - 1  --~ i n + l , 2  " i n + 2 , 1  " L n + l , 1  n + l , 1  n ,2  

. M - 1  M - 1  ~-- M n + l , 2  • M n + 2 , x  " Ln+I , IS I+2Ln ,2  n + l , 1  " n ,2  

! . M - 1  = L~,2 • M. ,2  • L.+1,1 .,2 

-- Ltn,2 ' - -  • L n + l , 1  , ( C . 1 )  

and  s imilar ly  

+ ' ' = R+12Mn+I,1 • Ln,1  • n,1 " Ln,2  R12Ln, 1 • L , ,  2 M -1 ! 

v - - I  -- - - I  = R+2Mn+I,I " L,m "Ln,2 "M(~,I($12) 

M - 1  M - l t S - ~ - I  = R+2Mn+I,1 • M,,+-1,2 • ,.q~2Ln,1 • L,~,2 • n,2 • ,~,1~ 12J 

-- Mn+I,2 • M n + l , 1  • S~R+12Ln,1  " Ln ,2  " 1~-1,,,2 " M(~,1-1 ($12--) --1 
--1 + --1 -- = Mn+I ,2"  M n + I , I "  S ~ L n , 2 "  n n , l "  M ; . I  • M~,2($12 ) R12 

• M - 1 .  M - I ( S + ) - I R ~ 2  = M n + I , 2  • L,,,2 • M n + I , 1  • Ln,1  n,1 n,2 

--1 + --1 -- = L ' , 2 "  M . , 2 "  L ' , I  -M,~,2(812 ) RI~ 

= L1,,2 ' - • L n , 1 R 1 2  • (C.2) 

Finally, we have t h a t  

' + ' ---- M: '  + 11/[ - 1  M~,+1,1 " $12Ln ,2  ~+1,,  " $12M~+1,~  " L . , 2  • ~,2 

- M , , + ~ , ~ .  M ' + ~ , ~  • L , , ~ .  M -1  - -  n,2 

Mn+l,2 Ln,2 ' • M -1 = " " M n + l , 1  n ,2  

- -  f in ,2  _ . M ~ + I ,  1 • (c.3) 
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It is straightforward to check along similar lines that all trivial commutation 
relations remain so after applying the mapping. 

Appendix D 
In order to show that eq. (5.2) provides a commuting family of operators, let 
us give an argument similar to the one given by Sklyanin in [27]. Denoting by 
Ti and Ki, (i -- 1, 2) the monodromy matrix resp. matrix K for two different 
values of the spectral parameter At resp. A2 and acting in two different factors of 
a matricial tensor product, and denoting by ~-1,~'2 the invariants (5.1) evaluated 
at these respective values of the spectral parameter, we have on the one hand, 
assuming that [Ki ,~ Tj] = 0, 

T 1 "i" 2 = trl (T1K1) tr2 (T2K2) = trl,2 {T1K1 t2T2 t2K2} 
- -  trl,2 { t~(T1S~2T2) t ' ( t 'g l  t, ((t~q+..1,2j~-t~/ t2K2 ) } 

=trl,2{RI+,;~T2S~,2TI R~, 2 4214KI 4((t2S~2)-I ) t~K2] } (D.1) 
t~ + --1 =trl ,2{T2S~,2T 1 4,[(t ,~R~2)-lt ,K1 t,((  $1,2 ) ) t,K2t,~ R -  1l 1,2J J 

whereas on the other hand we have 

r2 T1 -= tr2 (T2K2) trl (TIK1) 
=trt,2{tl(T2S~,2T1) t2[t~K2 t2((t 'S~2)-l) t'K1]} (D.2) 

= trl,2 {T2 S ,2T, -1) "gl)}, 
from which it is clear that (D.1) and (D.2) can be identified provided that we 
have the following condition on the matrices K 

(t12R+) -1 t lKl t , ( ( t~S+)- t  ) t2K 2 = t2K 2 t~((tlS~2)-I ) t ,K 1 (t,2R~2)-I . 
(D.3) 

Eq. (D.3) is a very general condition for operator valued matrices K of which 
the entries commute with the entries of T, which is sufficient to ensure that the 
T(A) form a parameter family of commuting operators. For numerical matrices 
K(A) eq. (D.3) leads to the condition (5.2) given in the main text. 
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A b s t r a c t .  We study the q-deformation of the Clifford algebras that  come out 
in a natural way for fermions and bosons in Fock space. An analysis of three 
particular cases; the transformation of fermion (bosons) among themselves, the 
linear combination of fermions (bosons) in order to get bosons (fermions) and 
a supersymmetric transformation, is carried out. 

1 I n t r o d u c t i o n  

Since two decades it is well known that  the Yang-Baxter equation (YBE) can be 
considered as the master equation of integrable models in statistical mechanics 
and in two dimensional quantum field theory.[1] 

Faddeev [2] and coworkers proposed the quantum inverse method as an uni- 
fication of classical and quantum integrable models. In this case the solutions 
of YBE give the commutat ion properties among operators. 

This approach has led to the idea of introducing deformation over groups or 
Lie algebras, so called quantum groups. In the course of constructing trigono- 
metric solutions of YBE the deformation of the universM enveloping algebra 
of SL(2) was introduced. This is one of the first ocurrences of new algebraic 
objects, now called "quantum groups". 

The purpose of the present work is to propose generalized commutat ion re- 
lations for fermions and bosons in Fock space (q-deformed oscillator algebras) 
and their subsequent analysis using the Manin's viewpoint [3] for three partic- 
ular cases. The first of them considers a linear transformation GLq(N) among 
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bosons (fermions), the second one studies a linear transformation G L q ( N )  on 
fermions (bosons) in order to get bosons (fermions). At last, an analysis of a 
supersymmetric linear transformation is presented. 

The paper is organized as follows : in section II we present a short review 
of Clifford algebras to introduce the usual oscillator algebras in Fock space. In 
section III we q-deform the second ones keeping Pauli principle invariant. In 
part IV, we consider quantum groups as effecting linear transformations on the 
space of the q-oscillator algebras defined in section III; the conditions for such a 
mapping to be an endomorphism constitute the quantum group relations, finally 
we study the three particular cases stated above. 

2 Clifford Algebra in Fock Space and Oscillator 
Algebras 

Let K be a commutative field and let Q be a quadratic form on the K -  module 
V. Let 

T ( V ) =  K ® V G V ® V ®. . .  

be the tensor algebra over V, and let I (Q)  be the two sided ideal generated by 
the elements X ® X - Q ( X ) .  1 in T ( V ) .  The quotient algebra T ( V ) / I ( Q )  is 
called the Clifford algebra of Q and is denoted by C(Q) [3]. 

If el, ..., en is a basis of V, then 

1, ei , eij(i  < j ) ,  ..., ele2...en 

form a basis of C(Q) .  
In a general context the definition stated above corresponds to a symmetric 

Clifford algebra [4]. We define now the symplectic Clifford algebra [5], as the 
quotient associative algebra T ( V ) / I ( F ) ,  where the two sided ideal I (F )  is gen- 
erated by the elements X ® Y - Y ® X - F ( X ,  Y )  ; X ,  Y E V, V is a vector 
space over K and F a symplectic form. 

Therefore, the boson algebra is defined as the symplectic Clifford algebra 
generated by {hi, b2, ..., b~, b], b t, ..., b t} basis set of Y and a unit element satis- 
fying the following boson relations 

In a similar way tile fermion algebra is defined as the symmetric Clifford alge- 
r t t t b a generated by {al, a2 ,  . . . ,  an, al, a 2, ..., an} basis set of V and a unit element, 

satisfying the following fermion relations 

a t a~) t t _  Fa~a~ {a i , a j }  = aiaj Jr ajai -= O, { i, -= a iaj  • = 0 (2) 

{el,  a~}= aia~ -4-aJai = hSij 
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A final comment in this section; we stress the possibility of constructing a su- 
peralgebra endowed with a nonsingular bilinear form which is either symplectic 
(boson case) or symmetric (fermion case). 

3 Quantum Superspace 

Quantum groups have been extensively studied from different points of view 
since the papers of Faddeev [2, 6, 7, 8], Drinfeld [9, 10, 11], Jimbo [12, 13, 14], 
Woronowicz [15], Manin [16, 17] and coworkers appeared. 

Manin described a class of quantum groups as natural symmetries of non- 
commutative algebraic varieties defined by quadratic equations. According with 
this idea we present in this section a q-deformation of the Clifford (oscillator) 
algebras above defined, as the non-commutative algebraic varieties whose sym- 
metries define a quantum group. 

The quantum superspace Aq studied by Martin [17] is generated by operator 
valued coordinates X1,..., X~ with parity assignment Xi = ~ and commutation 
rules 

X ~ = O  f o r ~ = l  (3) 

XiXj  - q~l(-1)~3XjXi = 0 forJ i < j, 

and its dual, A~ is generated by operator valued coordinates ~1, . . . , ~  with 

~k = 1 - ]~ parity assignment and commutation rules 

(~k) 2 = 0 for k = 0 (4) 

~k ~l _ qkz(_l)(~+l)([+l)~l ~k = 0 for k < 1. 

Here q = {qij } are non-zero elements of a field K.  
The symmetry of the non-commutative algebraic manifolds (3) and (4) is 

given by the quadratic equations produced by the following constrains 

(i) X '  = M X  and X"  = M T x  verify (3) 

(ii) X'  verifies (3) and ~' = M~ verifies (4) where X = (X1, ..., Xn) , 
. .  2 = (~1, . ,  ~,~), qlj # - 1  and M is any quantum matrix, namely matrices 

whose elements are themselves non commutative. 

We define a q-bosonic space generated by operator valued coordinates Xg, (i = 
1, ..., n; a = (a, b), a is the tag that  identifies the annihilation operators and b 
is the tag for the creation ones) such that  they fulfill the following relation 

[X~,Xf]  = X ~ X f  - q - l X f X ~  =li6ijrl c~p w h e r e / <  j (5) 
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and 

7/°~z = [ 1 if 

[ 0 otherwise 

corresponds to an annihilation operator, 
whereas ~ is a creation one 

Hereafter q is any non-zero real number. 
Besides, we define a q-fermionic space generated by operator valued coordi- 

nates ~g (i = 1, ..., n; a = (a, b) a for annihilation operators and b for creation 
ones) such that  the following relations are fulfilled 

{47,(j~} = ~g ~jZ + q~j~ 4g = hSqqc~Z where i < j 

( C )  2 = ~ = 0 

and 

(6) 

In our approach the Pauli principle invariance is kept as mandatory structure 
of nature. In the limit q ~ 1, (5) and (6) transform to (1) and (2) respectively; 
on the other hand, if we consider the "classical" limit h -+ 0 we recover a 
structure of type (3) and (4). 

Summarizing our proposition in a snpersymmetric short notation, we have 
a similar structure to the so called quantum hypervolume graded rings [17] 

where i < j and 

is such that (Sg) e # 0, being 

is such that (Sg) 2 = 0, being 

_q-1 if S~ 

F = s7  = x 7  
q if s7 

s7  = ~7 

(7) 

4 Y a n g - B a x t e r  A p p r o a c h  

The Yang-Baxter equation is a functional equation for a four indices function 
~zR-y~ of at least one parameter u that  is called the spectral parameter 

~ , R ( u  - v )~ ,~ , ,  R(u)p~,,~,~,, R(v)~,~,, = (8) 

~,~,, R(v)~,~,, ~,, R ( ~ ) ~ , ~ ,  R(~ - v)~p, 

A solution of the Yang-Baxter equation (YBE) we shall call a Yang-Baxter 
bundle (YBB) [18]. 

In this section we will study how the algebra given by the relations that  define 
the quantum space of linear endomorphisms of the quantum hypervolume (7) 
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(for the cases h --~ 0 and h 76 0) can be rewritten in the tensor product form 
like 

ijRkz Mkm Ml~ = Mjl Mikkl R ,~  (9) 

up to a sign, where ijRkl can be obtained from a YBB and M is a quantum 
matrix and a linear transformation operator over the Fock space simultaneously. 
We will present some consequences of this property. 

Case 1. Let us consider a complex vector space S~ of dimension 4n, n > 2, 
with the following basis 

(XI ,X2 , . . .  ' t J X~, ~1, ~2, ~n,~I,s¢~, ~ }  (10) Xn, X 1 , X 2, ..., ..., ..., 

Let us consider the following quantum matrix 

MI : ( GLq(2n) GLq(2n) ) (11) 

M1 is the group of quantum matrices that  mix bosons Xg in order to get new 
bosons (Xg)'  and fermions ~ in order to get new fermions ((~)'. If they are 
isometries of the bilinear form (7) for h = 0 (classical limit) then they define an 
associative algebra that  can be written like the tensor product (9). In this case 
R = [~zR~5] is given by lim~--.0 of 

R(u) = (q-1 _ uq) E Ec~c~ @ Ec~c~ + (1 - u) E E~c~ @ EpZ -~ (12) 

where E~Z denotes the matrix (hi~hjZ), u is the spectral parameter and q de- 

notes, a real number. The matrix R(u) in (12) corresponds to the A (1) matrices 
given by Jimbo [13]. 
In the quantum case (h 76 0) the M1 transformations are restricted by the 
following relations 

(4n-1) (4n-l) 

E rqrq+l= E rq+xrq =0 i=  1 , . . . , ( 4 n - 1 )  (13) 
j= l  j= l  

i = 1 , - . . , ( 2 n -  1)~(2n + 1 ) , . . . ( 4 u -  1) 
~ ( r i z r j l + l  -- q - % ~ z r . + l )  = 1 

j = i + l , . . . , ( 4 n )  
1=1 

where I is an odd number and rij is the ijth entry of the M1 quantum matrix. 
We should remark that  M] is the most general group of quantum matrices which 
mix fermions (bosons) in order to get new fermions (bosons) for the classical 
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limit and the quantum case if we consider restrictions (13). A mixture fermions- 
bosons is not allowed in this case. 
Besides, i fh  7~ 0 and q ~ 1, eq. (7) can be considered as a generalized commuta- 
tion relation and the corresponding M1 matr ix as its natural symmetry. These 
relations have been recently studied and, in the quantum-mechanical context, 
they can contain not only Fermi and Bose statistics but Greenberg's infinite 
statistics (q = 0) as special cases [19]. 

Case  2. Let us consider a complex vector space S~ of dimension 4n, n > 2, 
with the basis set given by (10). 
Let us consider the following quantum matr ix 

( 0 GLq(2n) ) (14) 
M2 = GLq(2n) 0 

M2 is the group of quantum matrices that  mix bosons X~ in order to get 
fermions ( ~ ) '  and fermions ~ in order to get bosons (X/~) '. If they are isome- 
trics of the bilinear form (7) for h = 0 (classical limit) then they define an asso- 
ciative algebra under multiplication that can be written like the tensor product 
(9), up to a sign. In this case R = [~zP~6] is given by lim,,--._l of the matr ix 
R(u) in (12). 
In the quantum case (h ~ 0) the M2 transformation are restricted by the fol- 
lowing relations 

(4~-1) (4~-1) 

8ijSij+l "~ Z 8ij+lSij ~-~ O i--~ 1, . . . , ( 4 n -  1) (15) 
j = l  j = l  

i = 1 , - . - , ( 2 n -  1),(2n + 1 ) , . . . ( 4 n -  1) 
~-~(silsjz+l + qsjlsil+l) = 1 j = i + 1, ..., (4n) 
1=1 

where l is an odd number and sij is the ij-th entry of the M2 quantum matrix. 
We should remark that M2 is the most general group of quantum matrices which 
mix bosons (fermions) in order to get fermions (bosons) for the classical limit 
and the quantum case if we consider the restrictions given in (15). 
On the other hand, the R(v) YBB constructed from R(u) in (12) using the 
following conformal mapping u --+ q_l_------~el ~ (where either 0 < Imv < rr and 

Irau > 0 or 0 < [my < rr, Rev < 0 and Imu > 0, lul < 1) is a regular solution 
of YBE. It means 

R(v)/ ,=0 = P , P = [~zP~a] (16) 

where P is the permutation operator 

~zP~  = ~ 5~v (17) 

Furthermore, from a given YBB a set of completely integrable models (those 
possessing as many commuting and conserved physical magnitudes as degrees 
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of freedom, an infinite number for a field theory or statistical model in the 
thermodynamical  limit) can be constructed [18]. Each regular YBB can be 
considered as a Lax operator for a one dimensional periodic system of M bound 
states each one of them has N quantum states in the following initial value 
problem [18] 

O 
c9X2 T(X1,  X2; v) = L(X2v)T(X1 ,  X2; v) (18) 

for the transition (or monodromy) matr ix  T, where Xi are coordinates of the 
quantum chain. 
Let us present the one dimensional quantum system associated to R(v).  The 
quantum system in question is a closed ring of bound states [1, 18], thus the 
space of quantum states is V1 ® V2 ®... ® VM. The L - o p e r a t o r  L(u) is considered 
as a matr ix whose elements are operators in VN. 

~ , L ( u ) z z ,  = ~ ,  R(u)z~, (19) 

the indices a, fl being the matr ix ones and at, fl~ being the quantum ones. 
The infinite number of commuting and conserved physical magnitudes for this 
one dimensional field model can be constructed using a generating function and 
is related with an infinite dimensional symmetry transformation group or gauge 
transformation. 
M. Liischer [20] has shown that  

d • Z l  It(0) ( )1/ Jn = n - i t  v v=0 

is the generating function for the commuting local quantities. Here 
t(v) = t r T ( 1 , M ; v )  = t r { L ( M  - A :  v).. .L(1;v)} and T ( 1 , M ; v )  
is the transition matr ix for the chain such that  X1 = 1 and X2 = M. 
For our case 

1 d" 
J~ = (q -1  _ q)M dr" l n [ ( q - 1  - i v ) M  + (1 -- ~ i ~ ) M ] / v = 0  

(20)  

(21)  

Case  3. Let us consider a complex vector space S~ of dimension 4n, n > 2, with 
the basis set given by (10). Additionally, let us consider the quantum matrices 
M E GLq(4n),  namely a supersymmetric transformation mixing fermions and 
bosons. 
We study the set of M matrices, isometries of the bilinear form (7) for h = 0 
(classical limit) and of 

= - p x ~  ¢i = 0 (22)  

where p is a real number. Although, we would like that  they define an associa- 
tive algebra under multiplication that  would be written like the tensor product  
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(9), up to a sign (where R = [,ZRv6 ] might be given by the limit of a linear 
combination of the R-matrices reported by Jimbo [13]) we are not able to write 
the GL(4n) symmetry in the (9) tensor product form. On the contrary, only for 
particular cases of M we can write the symmetry in the proper way. 
Let us consider the following example; M is defined like 

M3 - muff/* ol = 0, +, - ,  3 where (23) 

o.o_ 1 (GLq(2n) 0 ) °" + 1 ( 0  GLq(2n) ) (24) 
q,/O o GL (2n) = 0 0 

( 0 0 ) 0 .3_ 1 (q-lGLq(2n) 0 ) 
o'- = V~ GLq(2n) 0 - ~ 0 -qGLq(2n) ' 

q is any real number, Q = q + q-1 and m/* are real coefficients such that m0 # 
- m 3 .  If the set of M3 matrices are isometries of the bilinear form (7) for h = 0 
(classical limit) then they define an associative algebra under multiplication that 
can be written like the tensor product (9). 
In this case R = [~R.ye] is given by 

c~¢Z a¢o/ a>~ 

+pEEc~p®EZc~-p-1 ~_ E~p®Epc,-q -l ~ Ec~z®Epc~ ~<~ 

(25) 

for all (o/,/3') parameters. 
Furthermore, the set of matrices ~ru constitutes a representation for q-deformed 
Pauli matrices [21]. On the other hand eq.(25) resembles, provided we choose 

properly the spectral value and free parameters, the D(2+) 1 quantum matr ix  
reported by Jimbo [13]. Anyway, we claim that at least it constitutes a linear 
combination of the R(x) matrices presented by Jimbo for a particular set of 
spectral values. 

5 S u m m a r y  and C o n c l u s i o n s  

We use the Fermi-Dirac and Bose-Einstein statistics in Fock space as the first 
step to define a q-mutator algebra for any q real number. A quantum group 
structure as symmetry of this q-deformed statistics, which keeps the Pauli prin- 
ciple invariant, is found out. In the "classical" limit h --+ 0 we recover the 
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usual Manin quantum superspaces, in the limit q = 1 we have the usual Clifford 
algebra in n dimensional free Fock space. 

Three different cases for the quantum symmetry are studied. The first one 
corresponds to the well established symmetry transformations among fermions 
(bosons), namely the mixed states fermions-bosons are not considered. 

Like the quantum symmetry for this case (in the classical limit) can be con- 
sidered as a limit of a regular Yang Baxter bundle, we construct the totally 
integrable one dimensional field model associated with it. The generating func- 
tion of the infinite number of conserved and commuting physical magnitudes 
for this system is given. For the quantum structure (h ¢ 0), some restrictions 
to the quantum matrices M1 are presented. 

In the second case, we present the symmetry transformation of bosonic states 
into fermionic ones and vice versa . Like in case 1 the quantum symmetry up 
to a sign (in the classical limit) can be considered as a limit of the same regular 
Yang Baxter bundle obtained for case 1. For the quantum structure (h ¢ 0), 
some restrictions to the quantum matrices M2 are presented. 

The last case is related with a linear transformation between bosons and 
fermions, the so called supersymmetry. We can not relate the general case to 
the Yang-Baxter tensor product but only particular forms for M3 are allowed 
to be used, an example (in the q-deformed Pauli matrices basis) is given. 

We remark that  all the matrices so obtained might be associated to six-vertex 
or ice-type models in statistical mechanics. Additionally, locality has been lost 
either in the sense of space-like commutativity or in the sense that  observables 
are point-like functionals of the fields [22]. 
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