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Abstract

A Bayesian approach to the evaluation of person fit in item response theory (IRT)

models is presented. In a posterior predictive check, the observed value on a discrepancy

variable is positioned in its posterior distribution. In a Bayesian framework, a Markov

chain Monte Carlo procedure can be used to generate samples of the posterior distribution

of the parameters of interest. These draws can also be used to compute the posterior

predictive distribution of the discrepancy variable. The procedure is worked out in detail

for the 3-parameter normal ogive model, but it is also shown that the procedure can be

directly generalized to many other IRT models. Type I error rate and the power against

some specific model violations are evaluated using a number of simulation studies. Index

terms: Bayesian statistics, item response theory, person fit, model fit, 3-parameter normal

ogive model, posterior predictive check, power studies, type I error.
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Applications of item response theory (IRT) models to the analysis of test items,

tests, and item score patterns are only valid if the IRT model holds. Fit of items can

be investigated across persons and fit of persons can be investigated across items. Item

fit is important because in psychological and educational measurement, instruments

are developed that are used in a population of persons; item-fit then can help the test

constructor to develop an instrument that fits an IRT model in that particular population.

Item-fit statistics have been proposed by, for example, Mokken (1971), Andersen (1973),

Yen (1981, 1984), Molenaar (1983), Glas (1988, 1999), and Orlando and Thissen (2000).

As a next step, the fit of an individual's item score pattern can be investigated. Although a

test may fit an IRT model, persons may produce patterns that are unlikely given the model,

for example, because they have preknowledge of the correct answers to some of the most

difficult items. Investigation of person fit may help the researcher to obtain additional

information about the answering behavior of a person. By means of a person-fit statistic,

the fit of a score pattern can be determined given that the IRT model holds. Some statistics

can be used to obtain information at a subtest level and a more diagnostic approach can

be followed. Meijer and Sijtsma (1995; in press) give an overview of person-fit statistics

proposed for various IRT models.

To decide whether an item score pattern fits an IRT model, a sampling distribution

under the null model, that is, the IRT model, is needed. Let t be the observed value of a

person-fit statistic T. Then the significance probability or probability of exceedance is

defined as the probability under the sampling distribution that the value of the test statistic

is equal or smaller than the observed value, that is, p = P(T t), or equal or larger than

the observed value, that is, p = P(T > t), depending on whether low or high values of

the statistic indicate aberrant item score patterns. As will be discussed below, for some

statistics theoretical asymptotic or exact distributions are known which can be used to

classify an item score pattern as fitting or nonfitting. An alternative is to simulate data

according to an IRT model based on the estimated item parameters and then determine p

empirically (e.g., Reise, 1995, 1999; Reise & Widaman, 1999; Meijer & Nering, 1997).

However, the true values of both the item and person parameters are unknown, and the

5
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uncertainty about these parameters is often not taking into account when simulating an

empirical distribution.

In this article, we will explore an alternative approach based on a Bayesian

framework and posterior predictive checks using Markov chain Monte Carlo (MCMC)

methods. For more information on posterior predictive checks, refer to Meng (1994),

Gelman, Carlin, Stern, and Rubin (1995), and Gelman, Meng, and Stern (1996). In

principle, this approach applies to any IRT model, but in this study we will focus on

the 3-parameter normal ogive (3PNO) model.

Compared to the traditional frequentist approach, this Bayesian approach has several

advantages. First, there is no need to derive the theoretical sampling distribution of the

statistic, which sometimes may be very difficult, if not impossible. Second, the person-

fit statistic may depend on unknown quantities as the item and person parameters which

uncertainty is explicitly taken into account. The third advantage pertains to generality of

the procedure. Simulation studies have show that a fully Bayesian approach to estimation

of the parameters in simple MT models (say 1- or 2-parameter models) are generally

not superior to estimates obtained by a maximum marginal likelihood (MML) procedure

or a Bayes modal procedure (see, for instance, Baker, 1998, or Kim, 2001). However,

the Bayesian approach also applies to complicated IRT models, where MML or Bayes

modal approaches pose important problems. Recently, the fully Bayesian approach has

been adopted to the estimation of IRT models with multiple raters, multiple item types,

missing data (Patz & Junker, 1997, 1999), testlet structures (Brad low, Wainer & Wang,

1999, Wainer, Brad low & Du, 2000), latent classes (Hoijtink & Molenaar, 1997), models

with a multi-level structure on the ability parameters (Fox & Glas, 2001) and the item

parameters (Janssen, Tuerlinckx, Meulders & de Boeck, 2000), and multidimensional

MT models (Beguin & Glas, 2001). The motivation for the recent interest in Bayesian

inference and MCMC estimation procedures is that the complex dependency structures in

the mentioned models require the evaluation of multiple integrals to solve the estimation

equations in an MML or Bayes modal framework (Patz & Junker, 1999). These problems

are easily avoided in an MCMC framework. Procedures for the evaluation of model fit,

6
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such as the procedures for the evaluation of person fit presented here, can be directly

generalized. This point will be returned to in the discussion. In this article, several well-

known person-fit statistics are generalized to the Bayesian framework. Note that Reise

(2000) used empirical Bayes estimation methods in a logistic regression framework to

determine the fit of an item score pattern.

This paper is organized as follows. First, we will introduce some relevant IRT models

and some person-fit statistics that are often used. Second, we will discuss the principles

of MCMC methods to sample the posterior distribution of a person-fit statistic. Third, we

will conduct a simulation study in which we will investigate how many persons and how

many items are needed in the sample to apply this method in practice. Finally, we will

conduct a simulation study to determine the effectiveness of several person-fit statistics.

IRT models and Person Fit

In IRT (Rasch, 1960; Birnbaum, 1968; Mokken, 1971; Lord, 1980; Hambleton &

Swaminathan, 1985; van der Linden & Hambleton, 1997) the probability of a correct

response on item j (j = 1, ..., k), Pi(0), is a function of the latent trait value 9 and a

number of item characteristics. Often used models are the one, two, and three parameter

logistic (1, 2, and 3PL) models (Hambleton & Swaminathan, 1985). For example, in

the 3PL model, the item is characterized by a difficulty parameter 0i, a discrimination

parameter ai and a (pseudo-)guessing probability y3, which is the lower asymptote of

P;(0) when oo. Most person-fit studies have been conducted in the context of the

logistic IRT models (Meijer & Sijtsma, in press). In a Bayesian framework, however, the

3PNO model (e.g., Lord, 1980, pp. 13-14) has some computational advantages, although

the 3PNO model and the 3PL model are completely equivalent for all practical purposes.

In the 3PNO model, the probability of correctly answering an item is given by

Pi(0) = -yi + (1 yi)(1)(aj0 f3j), (1)
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where 43 denotes the standard normal cumulative distribution.

To investigate the goodness-of-fit of item score patterns, several IRT-based person-fit

statistics have been proposed. Most person-fit statistics have the form

k

v(9) = [y p, (0)]2 v3 (0),
j =1

(2)

where Yi is the response to item j, where the weight vj (9) is often defined as an increasing

function of the likelihood of the observed item scores. So the test is based on the

discrepancy between the observed scores Yj and the expected scores under the model,

Pi (9). A straightforward example of a member of the class defined by (2) is the W-

statistic by Wright and Stone (1979), which is defined as

Ek [Y P (OW
W= =1 3 3

El3c=1 133 (9) [1 P3 OA
(3)

A related statistic was proposed by Smith (1985, 1986) where the set of test items is

divided into S non-overlapping subtests denoted A, (s = 1, S). Then the unweighted

between-sets fit statistic UB is defined as

1 S EjEA,[ri P. (e)12UB =
S 1 Ei". 13(0) [1 P;(0)]

(4)

Other obvious members of the class defined by (2) are two statistics proposed by Tatsuoka

(1984): (1 and (2. The (1-statistic is the standardization with a mean of 0 and unit variance

of

k

Si = E[Pi(o) Yi] (ni Tti), (5)
j=1

S
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where nj denotes the number of correct answers to item j and Tij denotes the mean

number of correctly answered items in the test. The index will be positive indicating

misfitting response behavior when easy items are incorrectly answered and difficult items

are correctly answered, and it will also be positive if the number of correctly answered

items deviates from the overall mean score of the respondents. If a response pattern is

misfitting in both ways, the index will obtain a large positive value. The (2-statistic is a

standardization of

k

= E[13(0) Y3] [P3(0)- Rik]
j=1

(6)

where R is the person's number-correct score on the test. This index is sensitive to item

score patterns with correct answers to difficult items and incorrect answers to easy items;

the overall response tendencies of the total sample of persons is not important here.

Another well-known person-fit statistic is the log-likelihood statistic

/ = Ely; log Pj (0) + (1 Yj) log[l Pj(6)[1, (7)
j=1

first proposed by Levine and Rubin (1979). It was further developed in Drasgow, Levine,

and Williams (1985), and Drasgow, Levine, and McLaughlin (1991). Drasgow et al.

(1985) proposed a standardized version lz of 1 which was purported to be asymptotically

standard normally distributed; lz is defined as

=
1 E (1)

[V ar (1)]1'
(8)

where E (1) and V ar(1) denote the expectation and the variance of 1, respectively. These

quantities are given by

k

E (1) = E {Pi (0) log [Pi (0)] + [1 Pi (0)] log [1 Pj (0)[} , (9)
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Var(l) =E 13; (0)[1 (0)] [log A(19) .

j=1
(10)

It can easily be shown that I E(I) can be written in the form of Equation (2) by choosing

vi(0) = log ( (9)
1 Pi(0))

The assessment of person fit is usually contaminated with the estimation of 0. If

is an estimate of 0 then the distributions of a person-fit statistic using 9 instead of 0

will differ. For example, Molenaar and Hoijtink (1990) showed that the distribution of

I, differs substantially from the standard normal distribution for short tests. Snijders (in

press) derived expressions for the first two moments of the distribution: E [1 / (b)] and

Var [1/(b)] and performed a simulation study for relatively small tests consisting of 8

and 15 items and for large tests consisting of 50 and 100 items, fitting the 2PL model, and

estimating 0 by maximum likelihood. The results showed that the approximation was

satisfactory at Type I error levels of a = 0.05 and a = 0.10, but that the empirical Type I

error was smaller than the nominal Type I error for smaller values of a. In fact, both the

distribution of lz and the version of lz corrected for 9, denoted 1:, are negatively skewed

(Snijders, in press; van Krimpen-Stoop & Meijer, 1999). This skewness influences the

difference between nominal and empirical Type I error rates for small Type I error values.

For example, Snijders (in press; see also Krimpen -Stoop and Meijer, 1999) found that

for a 50-items test at a = .05 the discrepancy between the nominal and the empirical

Type I error for lz and lz at 0 = 0 was small (.001), whereas for a = .001 for both

statistics it was larger (approximately .005). Van Krimpen-Stoop and Meijer (1999) found

that increasing the item discrimination resulted in a distribution that was more negatively

skewed. An alternative may be to use a x2-distribution; statistical theory that incorporates

the skewness of the distribution is not yet available, however, for the 2PL and 3PL models.
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Examples of person-fit tests outside the class defined by (2) are the uniformly most

powerful (UMP) tests by Klauer (1991, 1995; see also Levine & Drasgow, 1988). Klauer's

approach entails an UMP test for testing whether a person's item score pattern complies

with the Rasch (1960) model against a specific alternative model that can be viewed as

a generalization of the Rasch model. The statistic that forms the basis of an UMP test is

the sufficient statistic for the parameters that have to be added to the null model (in this

case the Rasch model) to define the alternative model.

For example, consider the test of the Rasch model against an alternative model where

the ability parameter differs between subtest Al and subtest A2. Let 01 be the individual's

ability on subtest Al and let 02 be the individual's ability on subtest A2. Furthermore,

consider the number-correct score on the first and second subtest, respectively and let

= 01 02. Then Ho: S = 0 can be tested against H1: S # 0 using the number-correct

score on either one of the subtests. Note that in an lRT model it is assumed that for each

person the latent trait is invariant across items, if this is not the case this may point at

aberrant response behavior. In contrast to, for example, calculating the log-likelihood as

given in (7) or (8) we now explicitly test against an alternative hypothesis. So when the

null hypothesis is rejected for a particular person this person can be classified as aberrant.

We will denote the statistical test where we test if the total score on the first subtest is

too high compared to what we expect based on the model as T1, and we will denote the

statistical test where we test if the test score on the second subtest is too high compared

to what we expect on the basis of the model as T2.

As another example, Klauer (1991, 1995) proposed a person-fit test for violation

of the assumption of local independence using an alternative model proposed by

Kelderman (1984, also see, Jannarone, 1986) where the probability of a response pattern

(yi, , yj, -, Ilk) is given by

P(Yi, Yi, Yk10) oc exP [E Yi 13j) + Eyiyi+id .

k-1

j=1 j=1
(12)
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Note that 6 models the dependency between yj and yj+1. If S = 0 the model equals the

Rasch model. An UMP test denoted as Tag of the null hypothesis S = 0 can be based on

a the sufficient statistic with realizations vqc-1
YiYi+1.

When the item discrimination parameters a3 are considered known, the principle

of the UMP test can also be applied to the 2PL model. Analogous UMP tests for the

3PL model and the normal ogive model cannot be derived because these models have no

sufficient statistic for O. Even though UMP tests do not exist for these models, the notion

of using statistics related to the parameters of an alternative model as a basis of a test is

intuitively appealing. Therefore, the generalizations of these tests to the 3PNO model in

a Bayesian framework will also be studied below.

Bayesian estimation of the 3PNO model

In this study, an MCMC procedure will be used to generate the posterior distributions

of interest. The MCMC chains will be constructed using the Gibbs sampler (Gelfand &

Smiths, 1990). To implement the Gibbs sampler, the parameter vector is divided into a

number of components, and each successive component is sampled from its conditional

distribution given sampled values for all other components. This sampling scheme is

repeated until the sampled values form stable posterior distributions.

Albert (1992; see also Baker, 1998) applies Gibbs sampling to estimate the

parameters of the well known 2PNO model (e.g., Lord & Novick, 1968). Johnson and

Albert (1999, Section 6.9) generalized the procedure to the 3PNO. For application of the

Gibbs sampler, it is important to create a set of partial posterior distributions that are easy

to sample from. This often involves the data augmentation, that is, the introduction of

additional latent variables that lead to a simple set of posterior distributions. In the Gibbs

sampling algorithm, these latent variables are sampled along with the variables of interest.

The present procedure is based on two data augmentation steps. The first step entails the

O
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introduction of binary variables Wo such that

{
1 if person i knows the correct answer to item j

Wii 0 if person i does not know the correct answer to item j. (13)

So if Wij = 0, person i guessed the response to item j, if Wij = 1, person i knows the right

answer and gives a correct response. The relation between Wzj and the observed response

variable Ili; is given by a model where cn), with = a302 ,3j, is the probability

that the respondent knows the item and gives a correct response with probability one, and

a probability (1 (1.(70) that the respondent does not know the item and guesses with

ryj as the probability of a correct response. So the probability of a correct response is a

sum of a term 43(rhi) and a term 7i (1 (13(770)). Summing up we have

P(Wii = 1 IY0 = rhiai) oc Cnii)

P(Wii = 0 IY0 = 1,710,7j) a

P(Wij = 1117ii = 0, rhi,ryj) = 0

P(Wij = 0 I Yj = 0,17ijaj) = 1.

(14)

The second data augmentation step is derived using a rationale which is analogous to a

rationale often used as a justification of the 2PNO (see, for instance, Lord, 1980, Section

3.2). In that rationale, it is assumed that, if person i is presented item j, a latent variable

Zj is drawn from a normal distribution with mean /hi and a variance equal to one. A

correct response yu = 1 is given when the drawn value is positive. Analogously, in the

present case, a variable Zji is introduced with a distribution defined by

N(riii,l) truncated at the left by 0 if Wij = 1zi; = Wii
N(Thi, 1) truncated at the right by 0 if Wij = 0. (15)

The item parameters a have a prior p(a, 0) = 113k..=1 I(ai > 0),which insures that the

discrimination parameters are positive. Note that this prior is uninformative with respect

3
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to 0. The guessing parameter -yi has the conjugate prior Beta(a, b). The ability parameters

9 have a standard normal distribution, that is, A = 0 and o- = 1.

The procedure described below is based on the Gibbs sampler. The aim of the

procedure is to simulate samples from the joint posterior distribution of a, 0, y, 0, z and

w,given the data y, which are the responses of n test takers to k items. This posterior

distribution is given by

p(a, z ,w IY) = p(z, w IY ; a, 0, 7, 0,)P(7)p(a,13)P(0)

k

= C 11 H p(Zij I Wij, )P(Wij I Yij, nijaj )P(7j)gai >
i=1 j=1

0(0i; µ = 0,a = 1)

where p(wii I yii, nii,7j ) is given by (14) and p(zii Iwii , mi) follows from (15).

Although the distribution given by (16) has an intractable form, as a result of the two

data augmentation steps, the conditional distributions of a, /3, -y, 0, z and w are now each

tractable and easy to sample from. A draw from the full conditional distribution can be

obtained in the following steps.

Step 1 The posterior p(z, w Iy ; a, 0, -y, 9) is factored as p(z Iy ; w, a, 0, -y, 0)

p(w Iy ; a,13, 7, 9), and values of w and z are drawn in two substeps:

Draw wii from the distribution of Wij conditional on the data y and a, f3, -y, 0, given
by (14).
Draw zi; from the conditional distribution of Zii given all other variables using (15),

(16)

Step 2 Draw from the conditional distribution of 0 given the values z, w, a, 0, -y,and

y. Since p(0 IY ; z, w, a, /3, 'Y, 0) is proportional to p(z 19 a, 0)P(0)P(7 w, y z, a, /3),

and the last term also does not depend on 0, it follows from the definition of Zji given

above that the error term eii in Zji Qj = ajOi + eij is a normally distributed. So the

full-conditional distribution of 0 entails a normal model for the regression of 4 oi on

aj,with 0i as a regression coefficient which has a normal prior with parameters p = 0
and a = 1. (see, for instance, Gelman, et al., 1995, p.45 and p.78)

14



Bayesian Person Fit Indices 12

Step 3 Draw from the conditional distribution of the parameters of item j, ai, and [3d.

Analogous to the previous step, also this step entails sampling from a regular normal

linear model. Defining Zi = (Z13, Zni)T , and X = (0, 1), with 1 being the n

dimensional column vector with elements -1, the two items parameters can be viewed as

regression coefficients in Zj = X(aj,i3j)T + e, where e is a vector of random errors.

So also this step boils down to sampling the regression coefficients in a regular Bayesian

linear regression problem.

Step 4 Sample from the conditional distribution of rye. The likelihood of w1j, tun.; is

a binomial with parameter With the noninformative conjugate Beta prior introduced

above, the posterior distribution of -yi also follows a beta distribution (see, for instance,

Gelman, et al., 1995, Section 2.1).

So the procedure boils down to iteratively generating a number of sequences of

parameter values using these four steps. Convergence can be evaluated by comparing the

between- and within-sequence variance (see, for instance, Gelman, et al., 1995). Starting

points of the sequences can be provided by the Bayes modal estimates of BILOG-MG

(Zimowski, Muraki, Mislevy, & Bock, 1996). For more information on this algorithm

refer to Albert (1992), Baker (1998), and Johnson and Albert (1999).

In the Bayesian approach, the posterior distribution of the parameters of the 3PNO

model, say p(61y), is simulated using a Markov chain Monte Carlo (MCMC) method

proposed by Johnson and Albert (1999). Person fit will be evaluated using a posterior

predictive check based on an index T(y, 6). When the Markov chain has converged,

draws from the posterior distribution can be used to generate model-conform data yTeP

and to compute a so-called Bayes p-value defined by

Pr(T(Yr", 6) T(y, 6) I Y)- (17)

So person-fit is evaluated by computing the relative proportion of replications, that is,

draws of 6 from p(ely), where the person-fit index computed using the data, T(y, 6),

has a smaller value than the analogous index computed using data generated to conform
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the IRT model, that is T(y"P, e).Posterior predictive checks are performed by inserting

the person-fit statistics given in the previous section into Equation (17). After the burn-

in period, when the Markov Chain has converged, in every n-th iteration (n > 1),

using the current draw of the item- and person parameters, a person-fit index T(y, e)

is computed, a new model-conform response pattern is generated, and a value T(y"P, e)

is computed. Finally, a Bayesian p-value is computed as the proportion of iterations were

T(YrP, e) T(Y, e).

Simulation studies

This simulation study consists of two parts. In the first part we will investigate the

Type I error rate as a function of test length and sample size. In the second part we will

investigate the detection rates of the different statistics for different model violations, test

lengths, and sample sizes. Furthermore, we will investigate the impact of nonfitting item

scores on the bias in 0 as a function of the number of test items affected by lack of model

fit. In all three simulation studies we will use the statistics 1,W,UB,C T and'317 -329 -mg) -1

T2 as defined above.

Study 1: Type I Error Rate

Method

The simulation studies with respect to the Type I error rate were performed in two

conditions: one with random and one with fixed item parameters. In both conditions, the

ability parameters were drawn from a standard normal distribution. In the first condition,

for every replication the item parameters were drawn from the default prior distributions

used in BILOG-MG. The guessing parameter 7 was drawn from a Beta(a, b) distribution

with a and b equal to 5 and 17, respectively. This results in a mean y of 0.20. Further,

the item discrimination parameters were drawn from a lognormal distribution with mean

zero and a variance equal to 0.5 and the item difficulty parameters Q were drawn from a

normal distribution, also with mean zero and variance 0.50. In the second condition, the
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item parameters were fixed. The ry was fixed to 0.20 for all items. Item difficulty and

discrimination parameters were chosen as follows:

for a test length k = 30, three values of the discrimination parameter, 0.5, 1.0, and 1.5,
were crossed with ten item difficulties f3i = 2.00 + 0.40(i 1), i = 1, ..., 10.
for a test length k = 60, three values of discrimination parameters, 0.5, 1.0, and 1.5,
were crossed with twenty item difficulties /3 = 2.00 + 0.20(i 1), i = 1, ..., 20.

Three samples sizes were used: n = 100, n = 400, and n = 1000. The true values

of the parameters were used as starting values for the MCMC procedure. The procedure

had a run length of 4000 iterations with a burn-in period of 1000 iterations. That is,

the first 1000 iterations were discarded. In the remaining 3000 iterations, T(y"P, e) and

T(y, e) were computed every 5 iterations. So the posterior predictive checks were based

on 600 draws. For the statistics that uses a partitioning of the items into subtests, the items

were ordered according to their item difficulty [3 and then two subtests of equal size were

formed, one with the difficult and one with the easy items. Finally, for every condition,

100 replications were simulated and the proportion of replications with a Bayesian p-value

less than 0.05 was determined.

Results

Insert Table 1 and 2 about here

The results for the condition with random item parameters are shown in Table 1; the

results for the condition with fixed item parameters are shown in Table 2. It can be seen

that, in general, the significance probabilities converge to their nominal value of 0.05 as

a function of sample size and test length, and the nominal significance probability is best

approximated by the combination of a test length k = 60 and a sample size n = 400 or

n = 1000. Note that for n = 100 the significance probabilities are much too large. There

are no clear effects for specific person-fit statistics, except that the U B and the Ting seem

to be quite conservative for n = 400 and n = 1000 and random item parameter selection.

Finally, at the bottom of the two tables, the mean over replications and simulees of the

absolute difference between the true and the estimated ability parameters is given. This
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mean absolute error (MAE) will be used to interpret the bias in the ability parameters of

simulees with nonfitting response vectors in the simulation study discussed below.

Study 2: Detection rates

Method

Guessing. In several studies problems are discussed of unmotivated persons that

take a test which they do not have personal interest in. For example, Schmitt, Cortina,

and Whitney (1993) noted the potential for suspicion and disdain among employees in a

concurrent validation study, the authors predicted that factors including poor motivation

and cheating may lead to inaccurate assessment of abilities for some employees. In

such testing conditions persons may guess the correct answers to groups of items, or

they may produce typical item score patterns like repeated patterns of item responses.

Identifying these examinees prior to item calibration, equating, and score reporting may

help to improve the usefulness of results from a large scale testing program. It has been

suggested that person-fit statistics may be useful to detect such behavior (Haladyna, 1994,

p.165).

To evaluate the detection rate of guessing, a number of simulation studies were

carried out. These studies generally had the same set-up as the Type I error rate studies

(Study 1) under the condition with fixed item parameters, with the following alterations.

The condition with sample size of n = 100 was not used because of its inflated Type

I error rate. The data were generated in such a way that guessing occurred for 10% of

the simulees, so data matrices with n = 400 simulees had 40 aberrant simulees, and data

matrices with n = 1000 simulees had 100 aberrant simulees. For these aberrant simulees,

guessing was imposed in three conditions, where 1/6, 1/3, or 1/2 of the test was corrupted

by guessing. So for the test with k = 30 items, the number of corrupted items was either

5, 10, or 15, and for the test with k = 60 items, the number of corrupted items was either

10, 20, or 30. Guessing was always imposed on the items with the lowest item difficulty.

This was done because guessing on the easiest items has the most detrimental effect on the

estimation of 0 (Meijer & Nering, 1997) and thus detection of these item score patterns is

1 3
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important. The probability of a correct response to these items by aberrant simulees was

0.20.

Test statistics were computed in the same way as in Study 1. So, again, for statistics

based on a partitioning of the test, two subtests of equal size were formed: a difficult

and an easy one. As a result, the corrupted items were in the easiest test, although the

partitioning did not completely conform to the pattern of corrupted and uncorrupted items.

So in this sense, the partition was not optimal. However, in real situations, there is usually

no prior knowledge of which items are corrupted, so the setup was considered realistic.

A final remark concerns the computation of T1 and T2. The latter was computed as

described above, that is, its Bayesian p-value indicates how often the observed score was

lower than the score replicated under the model. So a low p-value for T2 indicates that

the score on the second subtest was too high. However, in the simulation study, the item

parameters were ordered from difficult to easy, and guessing was imposed on the easy

items. Therefore, it is expected that the score on the easiest subtest will be too low, so for

T1 the orientation of the test is changed from right-tailed (too high scores) to left-tailed

(too low scores). That is, T1 should detect too low scores. 50 replications were simulated

in every condition.

Item disclosure. In high-stakes testing, persons may be tempted to obtain knowledge

about the type of test questions or even about the correct answers to the items in the test.

In computerized adaptive testing this is one of the major threats to the validity of test

scores. But also in standardized paper-and-pencil tests this is a realistic problem. For

example, in personnel selection commercial available tests are often used by different

companies. This makes the threat of item disclosure realistic due to repeated test taking.

Item disclosure may result in a larger percentage of correct answers than expected on the

basis of the trait that is being measured.

Note, that in general it is unknown on which and on how many items a person

has knowledge of the correct answers. Item preknowledge on a few items will only

have a minor effect on the number-correct score (Meijer & Nering, 1997). Also, item

preknowledge of the correct answers on the easiest items in the test will only slightly

,9
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improve the number-correct score. This suggests that in particular item preknowledge

on the items of median difficulty and on the most difficult items may have an effect on

the total score. Thus, the effect of item preknowledge will be important in particular for

persons with a low ability level that answer many difficult items correctly.

The setup of the simulation study to the detection rate of the tests for item disclosure

was analogous to the study to the detection rate for guessing. So data were generated for

sample sizes of n = 400 and n = 1000 simulees, and test lengths of k = 30 and k = 60

items, item disclosure was prominent for 10% of the simulees, and for these simulees,

1/6, 1/3 or 1/2 of the difficult items in the test were corrupted. The probability of a

correct response to these items was chosen to be 0.80. Test statistics were computed in

the same way as in the guessing study, except for T1 and T2, which are now right-tailed

as all other statistics in the study. That is, both statistics are designed to detect scores that

are too high. Again, 50 replications were simulated in every condition.

Violations of local independence. When previous items provide new insights useful

for answering the next item or when the process of answering items is exhausting, the

assumption of local independence may be violated. This may result, for example, due

to speeded testing situations or in situations were there is exposure to material among

students (Yen, 1993; see also Embretson & Reise, 2000, pp. 231-233).

The setup of the simulation study to the detection rate of the tests for violation of

local independence was analogous to the studies to the detection rate of guessing and

item disclosure. Again, data were generated for sample sizes of n = 400 and n = 1000

simulees, and test lengths of k = 30 and k = 60 items, the model violation was

imposed on 10% of the simulees, and for these simulees, 1/6, 1/3 or 1/2 of the test was

corrupted. Responses to corrupted items were generated with the model defined by (12),

with S = 1.0. In these simulations, the items were ordered such that the affected items

succeeded each other. For the condition were 1/3 of the test was corrupted, the model

violation was imposed on the items with a = 1.0. For the condition were 1/6 of the test

was corrupted, the model violation was imposed on the items with a = 1.0 and the lowest

item difficulties. For the condition were 1/2 of the test was corrupted, the model violation



Bayesian Person Fit Indices - 18

was imposed on the items with a = 1.0 and, in the case when there were too few items

with a = 1, on the items with a = 0.5 and the lowest item difficulties. The impact of a

violation with 5 = 1.0 was an average increase in lag, 7; - YiY.1+1, of 1.6, 4.0 and 5.9

for a test of 60 items with 1/6, 1/3 or 1/2 of the items corrupted, respectively, and of 0.7,

1.5 and 2.4 for a test of 30 items with 1/6, 1/3 or 1/2 of the items corrupted, respectively.

Test statistics were computed in the same way as in the study of item disclosure

reported above, with the exception that for T1 the focus was on higher-than-expected

outcomes. Again, 50 replications were made in every condition.

Results

Guessing. The proportions of "hits", that is, the proportion of correctly identified

aberrant simulees are shown in Table 3. The proportions of "false alarms", that is, the

proportion of normal simulees incorrectly identified as aberrant, are shown in Table 4.

Insert Table 3 and 4 about here

The optimal condition for the detection of guessing is a large sample size and a large

test length. Therefore, the results of the condition with n = 1000 simulees and k = 60

items will be discussed first. The main overall trend for all tests is that the detection

rate decreases as the number of affected items increases. This can be explained by the

inflated MAE of 0 for the misfitting simulees (bottom Table 1). It can be seen that the

MAE for the misfitting simulees is grossly inflated, where the MAE is larger for p = 1/2

and p = 1/3 than for p = 1/6. Comparing these results with the results in Table 1,

it can also be concluded that the presence of 10% misfitting simulees in the calibration

sample affected the MAE for the fitting simulees to some degree. As the number of

affected items increases, the MAE also increases, and since the fit statistics are computed

conditionally on 0, the detection rate decreases. Inspection of the results in the condition

with n = 400 simulees and k = 60 shows that the detection rate is little affected by the

smaller calibration sample. Furthermore note that the detection rate of T1 is lower than
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the detection rate of T2. So the bias in 0 is such that the low scores on the first part of the

test are less unexpected than the relatively high scores on the second part of the test.

For a test length of k = 30 items, the detection rate is slightly less than for k = 60

items. This is as expected, because the statistics are computed on an individual level and

on this level the test length is the number of observations on which the test is based. Note

that the relatively low detection rates of nig and T1 found for k = 60 also applies for

k = 30. Finally, at the bottom of the table it can be seen that the MAE was less inflated

than for the study with k = 60. The explanation is that the absolute numbers of affected

items that was responded to is lower here.

Item disclosure. The proportions of hits and false alarms are shown in 'Fable 5 and 6,

respectively. It can be concluded that the effects of test length and proportion of affected

items are also found here. Furthermore, the absence of an effect of calibration sample

size is replicated here. The detection rates of Tag are relatively low

Insert Table 5 and 6 about here

Remember that now the items in the second part of the test, that is, the easy items, were

affected by the model violations. Therefore, it was expected that T2 would be sensitive

to the increase in the total score on the second half of the test. Table 5 shows that this

expectation was confirmed (e.g., detection rates between 0.24 and 0.50 for n = 1000

and k = 30). However, note that for k = 30 the detection rate of T1 was also relatively

large (between 0.27 and 0.30) with, contrary to T2, a high false alarm rate (between 0.27

and 0.29). Thus, the bias of the ability estimate caused by the model violation was large

enough to affect the simulation of the predictive distribution of T1. In practice this is

undesirable, because one does not know a priori which part of the test is affected and the

interpretation of the outcome of T1 and T2 is problematic.
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Wolations of local independence. The proportions of hits and false alarms are shown

in Table 7 and 8, respectively.

Insert Table 7 and 8 about here

Although for the aberrant simulees the increase in lag reported above was

considerable, in the two bottom lines of Table 7 it can be seen that the resulting bias in their

ability estimates was not impressive. Also the detection rate of the tests was negligible.

Even the power of the Tag-test, which is specially targeted at this model violation was

negligible. The only exception was the T1-test. The reason is that the affected items were

placed at the beginning of the test, and the increase in lag also resulted in an increase in

the total score on the first part of the test. Note, however, that in Table 8 it can be seen

that the false alarm rate of this test also increased.

Discussion

Aberrant response behavior in psychological and educational testing may result in

inadequate measurement of some persons. Therefore, misfitting item scores should be

detected and removed from the sample. To classify an item score pattern as nonfitting,

the researcher can simply take the top 1 or top 5 percent of aberrant cases or he/she use

a theoretical sampling distribution or can simulate datasets based on the estimated item

parameters in the sample. In the first case person-fit statistics are used as descriptive

statistics. In this study, we followed the approach in which we used person-fit statistics to

test the hypothesis that an item score pattern is not in agreement with the underlying test

model. Simulation methods thus far applied in the literature did not take into account the

uncertainty of parameters of the IRT model. In this study, we used Bayesian methods that

take into account this uncertainty to classify an item score pattern as fitting or nonfitting.

Although Bayesian methods are statistically superior to other simulation methods, a

drawback is that they are relatively complex and computational intensive.
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Depending on the type of data and the problems envisaged, a researcher may choose a

particular person-fit statistic, although not all statistics have equally favorable properties

in a statistical sense. In general, sound statistical methods have been derived for the

Rasch model, but because this model is rather restrictive to empirical data, the use of

these statistics is also restricted. For the 2PL model and the 3PL model and for short tests

and tests of moderate length (say, 10-60 items) due to the use of 0 rather than 0, for most

statistics the nominal Type I error rate under the standard normal distribution is not in

agreement with the empirical Type I error rate (van Krimpen-Stoop & Meijer, 1998). As

an alternative one may use the correction proposed by Snijders (in press) or one may use

Bayesian simulation procedures discussed in this paper.

From the results it can be concluded that even for a test as short as 30 items and for

400 simulees the type I error is well under control (approximately 0.03 at an nominal for

most statistics studied). In particular it is interesting to compare these results with the

results obtained using the theoretical distribution. For example, Snijders (in press) found

using the 2PL model and the log-likelihood statistic corrected for 0 in a simulation study

with 100,000 replications for nominal type I error rates a = .05 (resulting in standard

errors between 0.001 and 0.005) for a 15-items test empirical type I errors between 0.053

and 0.061. Note, however, that he considered the item parameters known. This is only

realistic when the item parameters can be estimated very accurately, that is, for very large

sample sizes. For small sample sizes the method proposed in this study may be more

suitable.

Detection rates differed for different statistics and different types of model violations

simulated. In general, it can be concluded that the detection rates for guessing and item

disclosure were higher than for violations against local independence. Note, however,

that also the MAE was relatively small in the latter case, in contrast to the MAE for

the guessing condition. Also for item disclosure, the MAE was often slightly larger for

misfitting score patterns compared to the MAE for fitting score patterns, although the

power of some person-fit statistics was high (Table 5). Aggregated over all conditions,

the (2-test had the highest power. The expectation that the UMP tests for person fit in

2 4
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the Rasch model (T1, T2 and Ting) may also be superior in the framework of a 3PL

model in an Bayesian framework was not corroborated. Traditional discrepancy tests

do better here. Not reported above, but also included in the study were versions of T1,

T2, and Tag where the item scores were weighted by the discrimination parameters. The

detection rates of these tests were consistently lower than those of the tests based on the

unweighted scores. Interesting was that the detection rates decreased when the number

of items affected by guessing increased. This is contrary to findings in earlier studies

(Meijer & Sijtsma, 2001). This may be explained as follows. In the present study a larger

amount of guessing resulted in a lower B than the original B. As a result of using this lower

item score patterns are less aberrant than using the original 9. In other studies, the B is

often fixed, and as a result item score patterns are more often classified as misfitting.

A final remark concerns the generalization of the procedure presented here to a

general IRT framework incorporating models with multiple raters, testlet structures, latent

classes, and multi-level structures (references given above). The common theme in these

models is their complex dependency structure and the fact that these complex models

can be estimated using the Gibbs sampler. In all cases, the structure of the estimation

procedure is analogous: draws from the posterior distribution are made by partitioning the

complete parameter vector into a number of components and sampling each component

conditionally on the draws for the other component. Usually, the partition of the complete

parameter vector is in the item parameters, the person parameters, augmented data (such

as Z and W above) and hyperparameters which may be related to some restrictions on

the parameters (as in testlet and other multilevel IRT models) and some of the priors. In

all these models, the statistics described above can be computed given the current draw

of the item and person parameters, both for the observed data y and replicated data yreP

drawn from the posterior predictive distribution.
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Table 1
Actual Type I Error Rates for a Nominal a = .05 Test

Random Item Parameters
k = 30
n = 100 n = 400 n = 1000

k = 60
n = 100 n = 400 n = 1000

/ 0.10 0.03 0.03 0.19 0.03 0.03
W 0.10 0.03 0.03 0.20 0.03 0.03

UB 0.07 0.01 0.02 0.16 0.02 0.01
(1 0.12 0.04 0.04 0.20 0.04 0.04
(2 0.19 0.07 0.06 0.26 0.06 0.06

Tiag 0.16 0.03 0.02 0.22 0.01 0.01
Ti 0.19 0.08 0.06 0.24 0.04 0.04
T2 0.18 0.08 0.06 0.25 0.05 0.05

MAE 0.33 0.28 0.28 0.33 0.22 0.20

1
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Table 2
Actual Type I Error Rates for a Nominal a = .05 Test

Fixed Item Parameters

n = 100
k = 30

n = 400 n = 1000 n = 100
k = 60

n = 400 n = 1000
/ 0.10 0.02 0.02 0.18 0.04 0.04

W 0.10 0.02 0.02 0.19 0.04 0.04
U B 0.08 0.00 0.01 0.15 0.03 0.04
(.1 0.14 0.04 0.05 0.20 0.04 0.04
(2 0.21 0.09 0.06 0.26 0.05 0.05

Tiag 0.22 0.07 0.06 0.24 0.03 0.03
71 0.24 0.04 0.04 0.25 0.03 0.04
T2 0.24 0.05 0.04 0.25 0.05 0.05

MAE 0.46 0.30 0.30 0.32 0.23 0.22



T
ab

le
 3

D
et

ec
tio

n 
R

at
e 

fo
r 

G
ue

ss
in

g 
Si

m
ul

ee
s

k 
=

 3
0

n 
=

 4
00

n 
=

 1
00

0
k 

=
 6

0
n 

=
 4

00
n 

=
 1

00
0

p=
 1

/6
p=

 1
/3

p 
=

 1
/2

p=
 1

/6
p 

=
 1

/3
p 

=
 1

/2
p 

=
11

6
p 

=
11

3
p 

=
 1

/2
p=

 1
/6

p=
 1

/3
p=

 1
/2

.4
7

.2
5

.1
9

.5
0

.2
3

.1
8

.5
7

.3
3

.2
6

.5
7

.3
2

.2
4

.4
5

.2
6

.2
0

.4
7

.2
4

.1
9

.5
7

.3
4

.2
6

.5
6

.3
3

.2
5

U
 B

.4
9

.2
4

.1
6

.5
2

.2
2

.1
5

.5
2

.3
4

.2
0

.6
1

.3
3

.2
3

.3
3

.2
2

.3
0

.3
6

.2
0

.2
7

.3
5

.2
5

.3
2

.3
7

.2
3

.3
0

.5
2

.3
3

.2
5

.5
5

.3
2

.2
5

.6
3

.3
8

.2
9

.6
2

.3
7

.2
9

T
la

g
.0

9
.3

9
.2

5
.0

7
.3

8
.2

4
.2

3
.4

9
.3

4
.1

6
.4

7
.3

3
T
i

.1
6

.0
2

.0
4

.1
8

.0
2

.0
4

.2
3

.0
3

.0
7

.1
9

.0
2

.0
4

T
2

.2
3

.4
4

.4
0

.2
3

.4
3

.3
9

.3
4

.4
8

.4
6

.3
8

.4
7

.4
5

M
A

E
 n

or
m

al
.3

1
.3

6
.3

6
.3

0
.3

6
.3

6
.2

8
.3

4
.3

5
.2

5
.3

3
.3

3
M

A
E

 a
bb

er
an

t
.7

5
1.

77
1.

82
.7

3
1.

77
1.

82
1.

00
1.

88
1.

90
1.

01
1.

95
1.

95



T
ab

le
 4

Fa
ls

e 
A

la
rm

 R
at

e 
fo

r 
G

ue
ss

in
g 

Si
m

ul
ee

s
k 

=
30

n 
=

 4
00

n 
=

 1
00

0
k 

=
60

n 
=

 4
00

71
 =

 1
00

0
p=

 1
/6

p=
 1

/3
p 

=
11

2
p=

 1
/6

p=
 1

/3
p=

 1
/2

p=
 1

/6
p=

 1
/3

p=
 1

/2
p 

=
11

6
p 

=
11

3
p=

 1
/2

1
.0

1
.0

2
.0

2
.0

1
.0

1
.0

1
.0

1
.0

2
.0

2
.0

1
.0

1
.0

2
.0

1
.0

2
.0

2
.0

1
.0

1
.0

1
.0

1
.0

2
.0

2
.0

1
.0

1
.0

1
U

B
.0

1
.0

2
.0

1
.0

1
.0

1
.0

1
.0

2
.0

3
.0

1
.0

2
.0

3
.0

1
.0

3
.0

5
.0

4
.0

2
.0

3
.0

3
.0

2
.0

3
.0

3
.0

2
.0

2
.0

2
.0

6
.0

8
.0

6
.0

4
.0

5
.0

5
.0

5
.0

6
.0

5
.0

4
.0

5
.0

5
T

ia
g

.0
3

.0
5

.0
3

.0
1

.0
1

.0
1

.0
2

.0
1

.0
1

.0
0

.0
0

.0
0

T
i

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
1

.0
0

.0
0

T
2

.0
4

.0
8

.0
5

.0
3

.0
4

.0
3

.0
3

.0
3

.0
3

.0
2

.0
2

.0
2



V

T
ab

le
 5

D
et

ec
tio

n 
R

at
e 

fo
r 

It
em

 D
is

cl
os

ur
e

k 
=

 3
0

n 
=

 4
00

n 
=

 1
00

0
k 

=
 6

0
n 

=
 4

00
n 

=
 1

00
0

p=
 1

/6
p=

 1
/3

p 
=

11
2

p=
 1

/6
p 

=
 1

/3
p=

 1
/2

p 
=

11
6

p 
=

 1
/3

p=
11

2
p 

=
11

6
p 

=
11

3
p=

 1
/2

1
.1

3
.3

2
.3

8
.1

3
.3

4
.3

8
.2

8
.5

8
.5

4
.2

6
.5

4
.5

1
.1

5
.3

6
.4

0
.1

5
.3

8
.3

9
.3

3
.6

2
.5

4
.3

2
.5

8
.5

1
U

B
.1

0
.2

5
.3

5
.1

0
.2

8
.3

5
.2

1
.4

9
.5

1
.2

3
.4

1
.5

8
.2

5
.5

5
.5

9
.2

5
.5

4
.5

8
.5

2
.7

6
.7

7
.5

0
.7

4
.7

4
.3

2
.6

4
.6

8
.3

2
.6

3
.6

7
.6

1
.8

4
.8

7
.5

6
.8

4
.8

5
T

in
g

.0
6

.1
5

.1
7

.0
6

.1
0

.1
0

.0
8

.2
9

.2
2

.0
7

.2
2

.1
5

T
1

.3
0

.3
1

.2
9

.3
0

.2
9

.2
7

.0
1

.0
3

.1
4

.0
1

.0
3

.1
9

T
2

.2
4

.4
7

.5
3

.2
4

.4
3

.5
0

.4
3

.6
5

.6
3

.3
8

.6
0

.6
1

M
A

E
 n

or
m

al
.2

9
.2

9
.3

0
.2

9
.2

9
.2

9
.2

3
.2

3
.2

4
.2

2
.2

2
.2

2
M

A
E

 a
bb

er
an

t
.3

4
.4

8
.6

2
.3

4
.4

7
.6

4
.2

6
.3

9
.5

7
.2

6
.4

0
.6

4



T
ab

le
 6

Fa
ls

e 
A

la
rm

 R
at

e 
fo

r 
It

em
 D

is
cl

os
ur

e
k 

=
 3

0
n 

=
 4

00
n 

=
 1

00
0

k 
=

 6
0

n 
=

 4
00

n 
=

 1
00

0
p=

 1
/6

p=
 1

/3
p=

 1
/2

p=
 1

/6
p=

 1
/3

p=
 1

/2
p 

=
11

6
p 

=
11

3
p 

=
11

2
p=

 1
/6

p 
=

11
3

p=
 1

/2
.0

2
.0

2
.0

2
.0

2
.0

2
.0

1
.0

2
.0

1
.0

1
.0

2
.0

1
.0

1
.0

2
.0

2
.0

1
.0

2
.0

1
.0

1
.0

2
.0

1
.0

1
.0

2
.0

1
.0

1
U

B
.0

2
.0

2
.0

1
.0

2
.0

2
.0

1
.0

2
.0

1
.0

1
.0

1
.0

1
.0

2
(1

.0
3

.0
2

.0
2

.0
2

.0
2

.0
2

.0
2

.0
1

.0
1

.0
1

.0
1

.0
1

(
2

.0
5

.0
4

.0
4

.0
4

.0
4

.0
3

.0
4

.0
3

.0
3

.0
4

.0
3

.0
2

T
ag

.0
2

.0
1

.0
2

.0
1

.0
1

.0
1

.0
1

.0
0

.0
0

.0
0

.0
0

.0
0

T
1

.2
9

.2
8

.2
9

.2
9

.2
7

.2
7

.0
0

.0
0

.0
9

.0
0

.0
0

.1
0

T
2

.0
4

.0
3

.0
3

.0
3

.0
2

.0
2

.0
2

.0
1

.0
1

.0
2

.0
1

.0
1



T
ab

le
 7

D
et

ec
tio

n 
R

at
e 

fo
r 

V
io

la
tio

n 
of

 L
oc

al
 I

nd
ep

en
de

nc
e

k 
=

 3
0

n 
=

 4
00

n=
 1

00
0

k 
-=

 6
0

n 
=

 4
00

n 
=

 1
00

0
p=

 1
/6

p=
 1

/3
p 

=
11

2
p=

 1
/6

p=
 1

/3
p 

=
11

2
p=

 1
/6

p 
=

11
3

p 
=

11
2

p=
 1

/6
p=

 1
/3

p=
 1

/2
1

.0
2

.0
2

.0
1

.0
1

.0
2

.0
1

.0
2

.0
3

.0
1

.0
2

.0
3

.0
1

W
.0

2
.0

2
.0

1
.0

1
.0

2
.0

1
.0

2
.0

3
.0

1
.0

2
.0

3
.0

1
U

B
.0

2
.0

3
.0

1
.0

1
.0

2
.0

1
.0

2
.0

3
.0

1
.0

2
.0

2
.0

2
C

l
.0

2
.0

3
.0

2
.0

1
.0

2
.0

1
.0

2
.0

4
.0

2
.0

2
.0

4
.0

1
.0

4
.0

6
.0

5
.0

3
.0

4
.0

3
.0

5
.0

7
.0

4
.0

3
.0

6
.0

4
T

la
g

.0
2

.0
4

.0
5

.0
1

.0
1

.0
2

.0
1

.0
2

.0
3

.0
0

.0
1

.0
1

T
1

.1
4

.3
3

.3
7

.1
3

.3
2

.3
7

.0
7

.2
7

.3
5

.0
7

.2
7

.3
4

T
2

.0
2

.0
2

.0
2

.0
1

.0
0

.0
1

.0
3

.0
1

.0
1

.0
1

.0
1

.0
1

M
A

E
 n

or
m

al
.3

0
.3

0
.2

9
.2

9
.2

8
.2

9
.2

3
.2

3
.2

3
.2

2
.2

2
.2

2
M

A
E

 a
bb

er
an

t
.3

3
.3

3
.3

5
.3

1
.3

3
.3

4
.2

5
.2

6
.2

9
.2

3
.2

6
.3

0

N
i



T
ab

le
 8

Fa
ls

e 
A

la
rm

 R
at

e 
fo

r 
V

io
la

tio
n 

of
 L

oc
al

 I
nd

ep
en

de
nc

e
k 

=
30

n=
 4

00
n=

10
00

k 
=

60
n=

 4
00

n=
 1

00
0

p 
=

11
6

p=
 1

/3
p=

 1
/2

p=
 1

/6
p=

 1
/3

p=
 1

/2
p=

 1
/6

p 
=

 1
/3

p=
 1

/2
p=

 1
/6

p=
 1

/3
p 

=
 1

/2
1

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

W
.0

3
.0

3
.0

3
.0

3
.0

3
.0

3
.0

3
.0

3
.0

3
.0

3
.0

3
.0

3
U

B
.0

3
.0

3
.0

3
.0

3
.0

3
.0

3
.0

1
.0

1
.0

1
.0

1
.0

2
.0

2
(i

.0
4

.0
4

.0
4

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

(2
.0

6
.0

7
.0

7
.0

6
.0

6
.0

6
.0

6
.0

6
.0

6
.0

6
.0

5
.0

6
T

hz
9

.0
2

.0
2

.0
2

.0
1

.0
1

.0
1

.0
1

.0
1

.0
1

.0
0

.0
0

.0
0

T
1

.1
0

.1
0

.0
9

.0
9

.0
9

.0
8

.0
6

.0
5

.0
4

.0
5

.0
4

.0
4

T
2

.0
6

.0
7

.0
6

.0
4

.0
5

.0
5

.0
3

.0
4

.0
4

.0
3

.0
3

.0
3



Titles of Recent Research Reports from the Department of
Educational Measurement and Data Analysis.

University of Twente, Enschede, The Netherlands.

RR-01-09 C.A.W. Glas & R.R. Meijer, A Bayesian Approach to Person Fit Analysis in
Item Response Theory Models

RR-01-08 W.J. van der Linden, Computerized Test Construction

RR-01-07 L.S. Sotaridona & R.R. Meijer, Two New Statistics to Detect Answer Copying
RR -01 -06 L.S. Sotaridona & R.R. Meijer, Statistical Properties of the K-index for

Detecting Answer Copying

RR -01 -05 I. Hendrawan, C.A.W. Glas, & R.R. Meijer, The Effect of Person Misfit on
Classification Decisions

RR -01 -04 R. Ben-Yashar, S. Nitzan & H.J. Vos, Optimal Cutoff Points in Single and
Multiple Tests for Psychological and Educational Decision Making

RR -01 -03 R.R. Meijer, Outlier Detection in High-Stakes Certification Testing
RR -01 -02 R.R. Meijer, Diagnosing Item Score Patterns using IRT Based Person-Fit

Statistics

RR -01 -01 W.J. van der Linden & H. Chang, Implementing Content Constraints in Alpha-

Stratified Adaptive testing Using a Shadow test Approach
RR-00-11 B.P. Veldkamp & W.J. van der Linden, Multidimensional Adaptive Testing

with Constraints on Test Content

RR-00-10 W.J. van der Linden, A Test-Theoretic Approach to Observed-Score equating
RR-00-09 W.J. van der Linden & E.M.L.A. van Krimpen-Stoop, Using Response Times

to Detect Aberrant Responses in Computerized Adaptive Testing
RR-00-08 L. Chang & W.J. van der Linden & H.J. Vos, A New Test-Centered Standard-

Setting Method Based on Interdependent Evaluation of Item Alternatives
RR-00-07 W.J. van der linden, Optimal Stratification of Item Pools in a-Stratified

Computerized Adaptive Testing

RR-00-06 C.A.W. Glas & H.J. Vos, Adaptive Mastery Testing Using a Multidimensional
IRT Model and Bayesian Sequential Decision Theory

RR-00-05 B.P. Veldkamp, Modifications of the Branch-and-Bound Algorithm for
Application in Constrained Adaptive Testing

RR-00-04 B.P. Veldkamp, Constrained Multidimensional Test Assembly
RR-00-03 J.P. Fox & C.A.W. Glas, Bayesian Modeling of Measurement Error in

Predictor Variables using Item Response Theory
RR-00-02 J.P. Fox, Stochastic EM for Estimating the Parameters of a Multilevel IRT

Model



RR-00-01 E.M.L.A. van Krimpen-Stoop & R.R. Meijer, Detection of Person Misfit in
Computerized Adaptive Tests with Polytomous Items

RR-99-08 W.J. van der Linden & J.E. Carlson, Calculating Balanced Incomplete Block
Designs for Educational Assessments

RR-99-07 N.D. Verhelst & F. Kaftandjieva, A Rational Method to Determine Cutoff
Scores

RR-99-06 G. van Engelenburg, Statistical Analysis for the Solomon Four-Group Design
RR-99-05 E.M.L.A. van Krimpen-Stoop & R.R. Meijer, CUSUM-Based Person-Fit

Statistics for Adaptive Testing

RR-99-04 H.J. Vos, A Minimax Procedure in the Context of Sequential Mastery Testing
RR-99-03 B.P. Veldkamp & W.J. van der Linden, Designing Item Pools for

Computerized Adaptive Testing

RR-99-02 W.J. van der Linden, Adaptive Testing with Equated Number-Correct Scoring
RR -99 -01 R.R. Meijer & K. Sijtsma, A Review of Methods for Evaluating the Fit of Item

Score Patterns on a Test
RR-98-16 J.P. Fox & C.A.W. Glas, Multi-level IRT with Measurement Error in the

Predictor Variables
RR-98-15 C.A.W. Glas & H.J. Vos, Adaptive Mastery Testing Using the Rasch Model

and Bayesian Sequential Decision Theory

RR-98-14 A.A. Beguin & C.A.W. Glas, MCMC Estimation of Multidimensional IRT
Models

RR-98-13 E.M.L.A. van Krimpen-Stoop & R.R. Meijer, Person Fit based on Statistical
Process Control in an AdaptiveTesting Environment

RR-98-12 W.J. van der Linden, Optimal Assembly of Tests with Item Sets
RR-98-11 W.J. van der Linden, B.P. Veldkamp & L.M. Reese, An Integer Programming

Approach to Item Pool Design

RR-98-10 W.J. van der Linden, A Discussion of Some Methodological Issues in
International Assessments

Research Report& can be obtained at costs, Faculty of Educational Science and Technology,
University of Twente, TO/OMD, P.O. Box 217, 7500 AE Enschede, The Netherlands.



faculty of
N EDUCATIONAL SCIENCE

AND TECHNOLOGY
A publication by

The Faculty of Educational Science and Technology of the University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands BEST COPY AVAILABLE


