

H. CHOUCHANE A.Y. HOEKSTRA M.S. KROL M.M. MEKONNEN

NOVEMBER 2013

WATER FOOTPRINT OF TUNISIA FROM AN ECONOMIC PERSPECTIVE

VALUE OF WATER

RESEARCH REPORT SERIES NO. 61

WATER FOOTPRINT OF TUNISIA FROM AN ECONOMIC PERSPECTIVE

H. CHOUCHANE¹ A.Y. HOEKSTRA^{1,*} M.S. KROL¹ M.M. MEKONNEN¹

NOVEMBER 2013

VALUE OF WATER RESEARCH REPORT SERIES NO. 61

¹ Twente Water Centre, University of Twente, Enschede, The Netherlands * Contact author: Arjen Y. Hoekstra, a.y.hoekstra@utwente.nl

© 2013 The authors

Published by: UNESCO-IHE Institute for Water Education P.O. Box 3015 2601 DA Delft The Netherlands

The Value of Water Research Report Series is published by UNESCO-IHE Institute for Water Education, in collaboration with University of Twente, Enschede, and Delft University of Technology, Delft.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the authors. Printing the electronic version for personal use is allowed.

Please cite this publication as follows:

Chouchane, H., Hoekstra, A.Y., Krol, M.S. and Mekonnen, M.M. (2013) Water footprint of Tunisia from an economic perspective, Value of Water Research Report Series No. 61, UNESCO-IHE, Delft, the Netherlands.

Contents

Su	ımmary	5
1.	Introduction	7
2.	Methods and data	9
3.	Results	13
	3.1. Water footprint of national production	13
	3.2. Water footprint of crop production at sub-national level	14
	3.3. Blue water footprint of crop production in the context of blue water availability	17
	3.4. Economic water and land productivity at national level	
	3.5. Economic water and land productivity at sub-national level	20
	3.6. Virtual water flows related to trade in agricultural and industrial products	23
	3.6.1. Tunisian virtual water import	23
	3.6.2. Tunisian virtual water export	25
	3.7. Water saving through virtual water trade	27
	3.8. The water footprint of consumption	
4.	Conclusions	
Re	eferences	

Summary

In a country where freshwater resources are scarce and unevenly distributed, the choice of cropping patterns and the import of food products can be important means to meet the need for food and lessen the pressure on domestic water resources. This paper quantifies and analyses the water footprint of Tunisia at national and subnational level, assessing green, blue and grey water footprints for the period 1996-2005. It also assesses economic water and land productivities related to crop production for irrigated and rain-fed agriculture and the economic earnings related to export and the economic costs related to import per unit of water virtually traded.

The total water footprint of production in Tunisia was, on average, 19 Gm³/yr in the period 1996-2005. The water footprint of crop production gave the largest contribution (87%). North Tunisia has the biggest share in the total water footprint of crop production (70%), followed by Central (26%) and South Tunisia (4%). At national level, tomatoes and potatoes were the main crops with relatively high economic water productivity, with a Tunisian average of 1.08 and 0.87 US\$/m³ respectively, while olives and barley were the main crops with relatively low productivity, of 0.03 and 0.04 US\$/m³ respectively. In terms of economic land productivity, oranges had the highest productivity, with 4040 US\$/ha, and barley the lowest, with 130 US\$/ha. South Tunisia has the lowest economic water and land productivities.

The total blue water footprint of crop production represents 31% of the total renewable blue water resources, which means that Tunisia as a whole experiences significant water scarcity. The blue water footprint resting on groundwater represents 62% of the total renewable groundwater resources, which means that the country is facing a severe water scarcity related to groundwater. Considering surface and groundwater together, the highest scarcity occurs in South Tunisia (severe water scarcity of 78%), followed by Central Tunisia (significant water scarcity of 32%) and finally North Tunisia (moderate water scarcity of 23%). In terms of groundwater, all regions of the country experience severe water scarcity, with a scarcity level of 47% for both North and Central Tunisia, while the situation in South Tunisia is even more severe, with a blue WF resting on groundwater exceeding the renewable groundwater resources.

The total water footprint of Tunisian consumption was 21 Gm³/yr, which is 2200 m³/yr per citizen. The latter figure is 60% larger than the world average. Consumption of agricultural products largely determines the total water footprint related to consumption, contributing 98% to the total water footprint. The study shows that the external water footprint of Tunisian consumption is 32% of its total water footprint, mainly due to food imports from Europe.

1. Introduction

As one of the most arid countries in the Mediterranean, Tunisia suffers from high water scarcity. The shortage of water resources is a limiting factor to food production. Not only a deliberate management of available resources and choices in agricultural production, but also import of water in virtual form through international trade, seems to be a way to fill the water deficit.

The concept of virtual water (Allan, 1993) is defined as the amount of water embedded in traded products. Water-poor countries can save water by importing water-intensive commodities instead of producing them domestically. International trade in agricultural commodities mainly depends on factors such as availability of land, labour, technology, the costs of engaging in trade, national food policies and international trade agreements (Hoekstra and Chapagain, 2008). Closely linked to the concept of virtual water is the concept of water footprint (WF). The water footprint, introduced by Hoekstra in 2002, is an indicator of fresh water use of a consumer or producer (Hoekstra et al., 2011). The WF informs not only about the level of water consumption but also about where this water is used. The WF of a product is the volume of fresh water used to produce the product, measured over the full supply chain (Hoekstra et al., 2011).

The WF has three components: blue, green and grey. The blue WF refers to consumption of blue water resources (surface and groundwater) in the production process and along the supply chain of a product. The green WF refers to consumption of green water resources (rainwater). The grey WF relates to pollution and is defined as the volume of freshwater that is required to assimilate the load of pollutants given natural background concentrations and existing ambient water quality standards (Hoekstra et al., 2011).

The WF of a crop is generally expressed in terms of m³/ton or litre/kg, but can also be expressed in terms of m³ per monetary unit (Hoekstra et al., 2011). Garrido et al. (2009) show the usefulness of doing so in a case study for Spain. They show that water scarcity affects water productivity; users become more efficient in their blue water use as water becomes scarcer, but this behavioural adaptation only occurs in regions where water is scarce and where blue water is the main contribution to total crop water use.

A concept closely related to water footprint is water productivity (WP). The increasing scarcity of freshwater and the important role that water plays in food production imposes the need to optimise water use in all human activities, particularly in agriculture, the main water-using sector worldwide. There is no common definition of the term WP (Rodrigues and Pereira, 2009), but in all definitions, WP refers to the ratio of the net benefits from crop, forestry, fishery, livestock or mixed agriculture systems to the amount of water used to produce those benefits. Physical WP can be defined as the ratio of agricultural output to the amount of water consumed ('crop per drop'), which is mostly expressed in either blue water withdrawal or total (green plus blue) water consumption (Kijne et al., 2003; Zwart and Bastiaanssen, 2004, 2007; Playan and Matoes, 2006; Molden, 2007). Expressing WP in physical terms does not give insight in the economic benefit of water use; therefore it is also useful to consider economic water productivity ('dollar per drop') (Cook et al., 2006; Pereira et al., 2009). Economic water productivity (EWP) is defined as the value derived per unit of water used (Igbadun et al., 2006; Palanisami et al., 2006; Teixeira et al., 2008; Vazifedoust et al., 2008; Garrido et al., 2009). This definition has also been used to relate water use in agriculture to nutrition, jobs, welfare and environment, where the socioeconomic value added of water use can be expressed in terms of 'nutrition per drop', 'job per drop', etc. The scope for increasing the value per unit of water used in agriculture is often bigger than the scope for increasing physical water productivity (Molden et al., 2010). According to Molden et al. (2010), much of the potential for increasing the harvest for common grains was met during the green revolution. The areas with still a high potential for gains in physical water productivity are those with very low yields, such as sub-Saharan Africa and South Asia. Strategies for increasing the net value of water used in agriculture include: increasing the value of ecological services of agriculture and obtaining multiple benefits per unit of water (Molden et al., 2010).

In this report we quantify and analyse the green, blue and grey water footprint within Tunisia, analyse the blue water footprint into the context of blue water availability, assess economic water and land productivities related to crop production for irrigated and rain-fed agriculture, estimate the economic earnings related to export and the economic costs related to import per unit of water virtually traded, and estimate the external water footprint and water dependency of Tunisian consumption. The period of analysis is 1996-2005. The study follows the methodology described in *The Water Footprint Assessment Manual* (Hoekstra et al., 2011). The study adds to earlier studies of water footprint and virtual water trade for Tunisia (Chapagain and Hoekstra, 2004; Chahed et al., 2008; Chahed et al., 2011; Mekonnen and Hoekstra, 2011a) by adding the economic dimension in a comprehensive national Water Footprint Assessment (WFA).

2. Methods and data

This study follows the terminology and methodology as set out in *The Water Footprint Assessment Manual* (Hoekstra et al., 2011), which contains the global standard for Water Footprint Assessment (WFA) developed by the Water Footprint Network. The national water footprint accounting scheme shows the various balances that hold for the water footprint related to national consumption, the water footprint within the area of the nation, the virtual water export and the virtual water import (Figure 1).

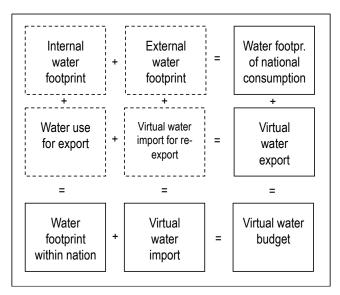


Figure 1. The national water footprint accounting scheme. Source: Hoekstra et al. (2011).

The WF within a nation is defined as the total freshwater volume consumed or polluted within the territory of the nation as a result of different economic activities. The WF of national consumption is defined as the total volume of freshwater that is used to produce the goods and services consumed by the inhabitants of the nation. It consists of two components: the internal and external WF of national consumption. The internal WF is defined as the use of domestic water resources to produce goods and services consumed by the nation's population. It is the sum of the WF within the nation minus the volume of virtual-water export to other nations related to the export of products produced with domestic water resources. The external WF is defined as the volume of water resources used in other nations to produce goods and services consumed by the population in the nation under consideration. It is equal to the virtual-water import into the nation minus the volume of virtualwater export to other nations as a result of re-export of imported products. The virtual-water export from a nation consists of exported water of domestic origin and re-exported water of foreign origin. The virtual-water import into a nation will partly be consumed, thus constituting the external WF of national consumption, and may partly be re-exported. The sum of the virtual water import into a country and the WF within the area of the nation is equal to the sum of the virtual water export from the nation and the WF of national consumption. This sum is called the virtual-water budget of a nation. The national water saving associated with import can be estimated by multiplying the imported product volume by the volume of water that would have been required to produce the product domestically.

We will put the blue WF in the context of renewable blue water resources (blue water availability) in order to assess water scarcity. Vörösmarty et al. (2000) and Oki and Kanae (2006) consider a country to be severely water stressed if the ratio of blue water withdrawal to renewable blue water resources is higher than 40%. In our case, we will relate water scarcity to the blue WF rather than to blue water withdrawal, which according to Hoekstra et al. (2012) is a more meaningful basis to show water scarcity, since a significant share of withdrawn water returns to rivers and aquifers and becomes available for reuse. The blue WF measures the consumptive use of blue water resources. Following Hoekstra et al. (2012), we compare the blue WF to renewable blue water resources. Table 1 shows the water scarcity thresholds used in this study, equivalent to the thresholds used by Hoekstra et al. (2012).

Table 1. Water scarcity thresholds.	Water ecorativ thresholds
Blue water scarcity levels *	Water scarcity thresholds
Low blue water scarcity	< 20%
Moderate blue water scarcity	20-30%
Significant blue water scarcity	30-40%
Severe water scarcity	> 40%

Table 1. Water scarcity thresholds.

Water scarcity defined as blue water footprint / renewable blue water resources.

We calculate overall water scarcity on annual basis as the ratio of total blue WF to total renewable blue water resources, and groundwater scarcity as the ratio of the blue WF from groundwater sources to renewable groundwater resources.

In calculating water productivities, we make a distinction between rain-fed and irrigated agriculture. In the former case, the only water source is rainwater, so that we can speak about green water productivity. In the case of irrigated agriculture, we distinguish between green and blue water productivity, because both rainwater and irrigation water are consumed. In irrigated agriculture, green water productivity is defined as the yield that would be obtained based on rain only (assuming that there is no irrigation) divided by the volume of green water consumed. Blue water productivity is defined as the additional yield obtained through irrigation divided by the blue water (irrigation water) evapotranspiration (Hoekstra, 2013).

The yield obtained from rain only is estimated based on the equation proposed by Doorenbos and Kassam (1979):

$$\left(1 - \frac{Y_a}{Y_m}\right) = K_y \left(1 - \frac{ET_a}{CWR}\right)$$
(1)

where K_y is a yield response factor (water stress coefficient), Y_a the actual yield (kg/ha), Y_m the maximum yield, obtained under optimal water supply conditions (kg/ha), ET_a the actual crop evapotranspiration (mm/period) and CWR the crop water requirement (mm/period). Following this equation, the green-water based yield ($Y_{green, irrig}$) in irrigated agriculture can be calculated from:

$$\left(1 - \frac{Y_{\text{green,irrig}}}{Y_{\text{tot,irrig}}}\right) = K_y \left(1 - \frac{ET_{\text{green}}}{ET_{\text{green}} + ET_{\text{blue}}}\right)$$
(2)

whereby Y _{tot,irrig} is the yield occurring under full irrigation (rain + irrigation water), which is equal to the maximum yield Y_m ; ET_{green} is the evapotranspiration of green water that would have occurred without irrigation; ET_{blue} is the evapotranspiration of blue water. Data on Y _{tot,irrig}, ET_{green} , ET_{blue} and K_y are obtained for all irrigated crop areas from the grid-based study of Mekonnen and Hoekstra (2010).

The additional yield through irrigation is calculated as the total yield in irrigated agriculture ($Y_{tot,irrig}$) minus the yield that would have hypothetically occurred if there were no irrigation ($Y_{green,irrig}$).

Figure 2 shows the relation between yield and evapotranspiration during the growing period and visualizes green and blue water productivity through two subsequent slopes. The first (green) slope represents the green water productivity, while the second (blue) slope represents the blue water productivity.

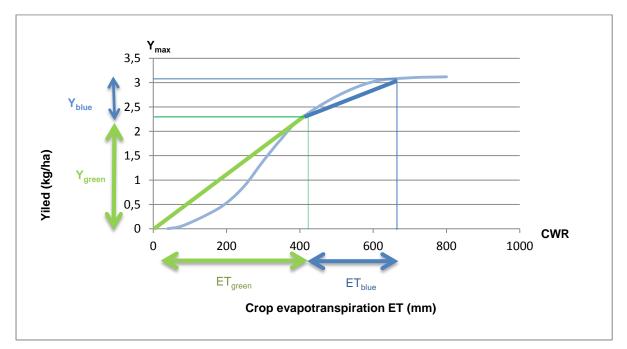


Figure 2. The relation between yield and evapotranspiration from a crop field. Green and blue water productivity appear as the slopes of each of the two line segments drawn in the graph.

Economic water productivities (US\$/m³) are calculated by multiplying physical water productivities (kg/m³) by crop value (US\$/kg). For a farmer, economic blue water productivity may be a relevant variable for production decisions, as blue water use goes along with direct production costs or blue water availability may be limiting production. Land productivity may influence decisions on crop choices if land availability is most limiting for a farmer.

The cost per unit of virtual water imported $(US\$/m^3)$ is calculated by dividing the total value of imported crop by its total WF. In a similar way, the earning per unit of virtual water exported $(US\$/m^3)$ is calculated by dividing the total value of exported crop by its total WF.

The study is based on data for the period of 1996-2005. Table 2 gives an overview of all variables and sources used in this study. We divided the country into three regions based on climate: North, Central and South (Figure 3). North has a Mediterranean climate, South has a Sahara climate, while Central has a climate in between. Each region consists of governorates, administrative sub-units.

Table 2. Overview of input variables and sources used.

Input variable	Source
Water footprint of crop production	Mekonnen and Hoekstra (2010, 2011b)
Water footprint in other sectors	Mekonnen and Hoekstra (2011a)
Yields and evapotranspiration in rain-fed and irrigated systems	Mekonnen and Hoekstra (2010)
Water resources availability and water withdrawal at national level	Ministry of Environment (2009)
Surface water availability and withdrawal at regional level	Ministry of Agriculture (2005a)
Groundwater availability and withdrawal at regional level	Ministry of Agriculture (2005b)
Crop values (producer prices)	FAOSTAT (FAO, 2009)
Virtual water flows	Hoekstra and Mekonnen (2012)
Economic values of imports and exports	ITC (2007)
Water footprint of national consumption	Hoekstra and Mekonnen (2012)

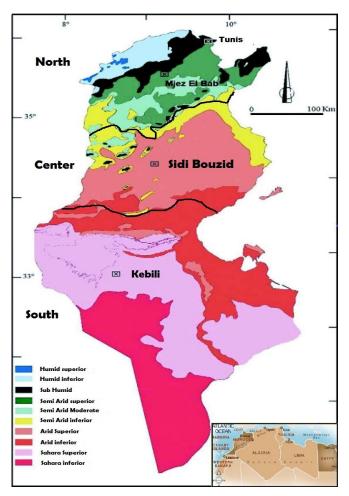


Figure 3. Bioclimatic map of Tunisia. Source: Chelbi et al. (2009).

3. Results

3.1. Water footprint of national production

The total water footprint (WF) of Tunisian production was about 19 Gm³/yr (89% green, 8% blue, 3% grey; see Table 3) over the period 1996-2005. The WF of crop production gave the largest contribution to the total WF of production (87%), followed by grazing (11%). The remaining part (2%) represents domestic water supply, livestock production and industrial activities.

	Water footprint of crop production	Water footprint of grazing	Water footprint of animal water supply	Water footprint of industrial production	Water footprint of domestic water supply	Total water footprint
Green	14820	2000	-	-	-	16820
Blue	1330	-	60	10	40	1440
Grey	450	-	-	50	220	720
Total	16600	2000	60	60	260	19000

Table 3. The national water footprint of Tunisia and its components (Mm ³ /yr). Period 1996-

Source: Mekonnen and Hoekstra (2011a).

Considering the WF of crops per unit of weight (m^3/ton) , pistachios had the largest WF, about 98000 m³/ton, which is much more than the global average of 11000 m³/ton. The smallest WF of crops was found for lettuce and chicory, about 80 m³/ton, which is less than the world global average (200 m³/ton) (Appendix I).

The WFs of the main crops in terms of total national production are listed in Table 4. The listed crops represent 86% of the total blue WF of crop production. Among these crops, almonds have the largest WF per unit of weight, about 20820 m³/ton, which is more than twice the global average WF for almonds. Tunisian almonds use about four times more green water compared to the global average, while they consume about the global average amount of blue water. Tomatoes have the smallest WF with 120 m³/ton, which is below the global average (210 m³/ton). Dates, almonds, figs and grapes are the biggest blue water users with 3270, 1950, 1740 and 1080 m³/ton respectively. These figures are higher than the global average, especially for grapes, which uses ten times the global average amount of blue water.

Olives alone account for about 46% of the total WF of crop production in Tunisia. About 79% of the total green WF is due to the production of olives (7270 Mm³/yr), wheat (3170 Mm³/yr) and barley (1220 Mm³/yr) (Appendix II). The total blue WF is dominated by dates and olives (together 47%) and, to a lesser extent grapes, wheat and almonds.

Crop	То	tal wate (Mm	r footprir ³/yr)	nt	Water fo	otprint p (m ³ /t		of crop	Global average water footprint (m ³ /ton)			
·	Green	Blue	Grey	Total	Green	Blue	Grey	Total	Green	Blue	Grey	Total
Almonds	790	90	50	930	17760	1950	1110	20820	4630	1910	1510	8050
Barley	1220	30	60	1310	3560	80	180	3820	1210	80	130	1420
Carrots	10	30	2	40	260	530	30	820	110	30	60	200
Dates	110	350	10	470	1030	3270	80	4390	930	1250	100	2280
Figs	70	40	4	120	2810	1740	170	4720	1500	1540	280	3280
Grapes	70	130	10	200	550	1080	60	1690	430	100	90	610
Olives	7270	270	30	7570	8790	330	40	9150	2470	500	50	3010
Oranges	40	20	2	70	370	230	20	620	400	110	50	560
Potatoes	40	40	10	80	110	120	20	260	190	30	60	290
Tomatoes	50	40	10	100	60	50	10	120	110	60	40	210
Wheat	3170	100	150	3420	2380	70	110	2560	1280	340	210	1830

Table 4. The average green, blue and grey water footprint of main crops in Tunisia (1996-2005).

Source: Mekonnen and Hoekstra (2011a). Note that ton refers to metric ton.

3.2. Water footprint of crop production at sub-national level

The total water footprint of crop production in Tunisia is about 16.6 Gm³/yr. In this total, green water takes the biggest share (89%), while the blue and grey components contribute 8% and 3% respectively. North Tunisia takes the biggest share in the total WF of crop production (70%), followed by Central (26%) and South (4%) (Table 5; Figure 4). Kairouan in Central Tunisia is the governorate with the largest crop-related WF, with 2.2 Gm³/yr, which represents 13% of the crop-related WF in the whole country and half of the Central Tunisian WF. The governorates in the surroundings of the river basin Medjerda, such as Beja, Jandouba, Kef and Siliana, had the largest WF in the North of the country and together account for almost 7 Gm³/yr, which represent 43% of the total WF of crop production in Tunisia. Regarding blue water, North Tunisia has the biggest share in the total blue WF, with 650 Mm³/yr, which represent 49% of the total blue WF of crop production in the country. South and Central Tunisia follow with 28% and 23% respectively. In South Tunisia, the driest part of the country, the total WF of crop production is dominated by blue water (with a contribution of 68%). The governorates Gabes and Tozeur have the biggest blue WF, mainly because of the production of dates.

Table 6 shows the WF per unit of weight for the most important crops, averaged over the regions North, Central and South. There is a clear difference in WFs and crop water requirements between the three regions. While the difference between North and Central is not so big, results for North and South differ considerably, especially for olives, wheat, almonds, figs and barley. In terms of the blue WF, a unit of wheat or barley grown in South Tunisia uses almost 12 times more blue water than the same crop grown in North, largely because irrigation is the dominant production system in South, whereas rain-fed production is dominant in Central and North. Almond and figs grown in Central Tunisia use less blue water than in the other regions, while tomatoes and carrots grown in South Tunisia have the smallest blue WF per ton.

Governorate*	Water f	ootprint of crop proc	luction (Mm ³ /yr)		
Governorate	Green	Blue	Grey	Total	
Ariana	730	140	30	910	
Beja	1500	70	50	1620	
Bizerte	1110	100	50	1260	
Jendouba	1140	90	40	1270	
Kef	1930	40	60	2030	
Nabeul	960	120	30	1120	
Siliana	1980	50	50	2080	
Tunis	30	2	1	30	
Zaghouan	1270	30	30	1330	
North Tunisia	10650	650	340	11640	
Kairouan	1990	160	50	2190	
Kasserine	930	20	30	980	
Mahdia	1	1	0	2	
Monastir	70	3	1	80	
Sfax	210	40	8	250	
SidiBouzid	280	70	8	360	
Sousse	520	9	7	540	
Central Tunisia	4000	290	100	4390	
Gabes	100	180	6	280	
Gafsa	3	8	0	10	
Kebili	2	9	0	10	
Medenine	0	1	0	1	
Tataouine	1	3	0	4	
Tozeur	60	190	5	250	
South Tunisia	160	390	10	560	

Table 5. The total water footprint of crop production in Tunisia by governorate (1996-2005).

Source: Mekonnen and Hoekstra (2011b).

* Tunisia is subdivided into 24 governorates; Manouba and Ben Arous are relatively new and are accounted in this study under Tunis (the capital).

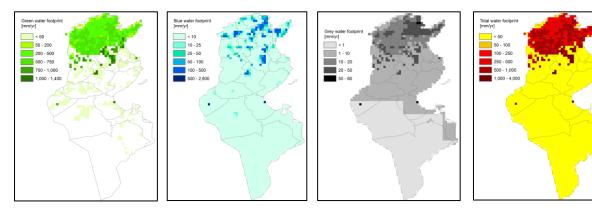


Figure 4. The green, blue, grey and total water footprint of crop production in Tunisia.

Table 6. The average green, blue and grey water footprint and crop water requirement of main crops in Tunisia per region (1996-2005).

		Water fo	otprint per tor	n of crop (m	¹³ /ton)	Total w	ater for	otprint (N	1m³/yr)	Crop water
	Crop	Green	Blue	Grey	Total	Green	Blue	Grey	Total	requiremen (m ³ /ha)
	Almonds	16590	2480	1010	20090	380	60	20	460	9220
	Barley	3520	90	180	3790	930	10	50	990	4570
	Carrots	290	500	40	820	10	20	1	30	6340
	Dates	-	-	-	-	-	-	-	-	-
ج	Figs	2840	1680	170	4690	60	40	4	110	7780
North	Grapes	780	1120	70	1970	30	40	3	70	7160
2	Olives	8650	400	40	9080	4660	170	20	4850	8150
	Oranges	370	220	20	610	40	20	2	60	7780
	Potatoes	130	110	20	260	30	40	10	70	3550
	Tomatoes	70	40	10	120	40	30	10	70	3510
	Wheat	2360	90	110	2550	2820	70	130	3020	4980
	Almonds	18290	1490	1200	20980	410	30	30	470	9550
	Barley	3470	240	200	3910	290	10	20	320	4710
	Carrots	490	380	70	940	3	7	0	10	6650
	Dates	-	-	-	-	-	-	-	-	-
<u>a</u>	Figs	3460	1200	220	4880	10	10	1	10	8030
Central	Grapes	700	1300	70	2060	30	50	3	90	7510
Ŭ	Olives	8840	470	40	9350	2580	100	10	2690	8420
	Oranges	370	240	20	630	3	3	0	10	8020
	Potatoes	110	130	20	270	10	20	0	40	3660
	Tomatoes	80	40	10	120	10	10	2	20	3640
	Wheat	2350	230	120	2710	350	20	20	390	5120
	Almonds	20810	2330	2080	25220	10	1	1	10	11780
	Barley	3770	1050	310	5130	2	1	0	3	6070
	Carrots	670	30	150	860	0	0	0	0	7760
	Dates	1040	3290	80	4390	110	350	10	470	13350
Ę	Figs	4940	820	500	6260	0	0	0	0	9920
South	Grapes	450	1870	70	2380	10	30	1	40	8730
0	Olives	10750	930	80	11760	30	3	0	40	10390
	Oranges	210	510	30	750	0	0	0	0	9480
	Potatoes	70	210	30	310	0	0	0	0	4310
	Tomatoes	150	1	20	170	0	0	0	0	4500
	Wheat	2780	1230	210	4220	3	1	0	4	6610

Source: Mekonnen and Hoekstra (2011b).

3.3. Blue water footprint of crop production in the context of blue water availability

Tunisia has limited water resources, estimated at 4.87 Gm³/yr in 2005, of which 4.26 Gm³/yr are renewable (Ministry of Environment, 2009). The remaining part, 610 Mm³/yr, is fossil groundwater situated in South Tunisia, and expected to be exhausted in about 50 years at the current extraction rate (FAO, 2003).

The total renewable surface water (TRSW) was estimated at 2.70 Gm³/yr (Table 7). This amount represents the average calculated over a 50-year period. Surface water contributions come from four distinct natural regions. The far northern part of North Tunisia, with only 3% of the total Tunisian land area, has on average about 960 Mm³/yr of TRSW, which is about 36% of the national total. The basins of Majerda and Melian in North Tunisia provide an average of 1.23 Gm³/yr (45% of the national total). Central Tunisia, including the watersheds Nebhana, Marguellil, Zeroud and Sahel, has an average TRSW of 320 Mm³/yr (12%). South Tunisia, which represents about 62% of the total national land area, has very irregularly available surface water resources, averaging 190 Mm³/yr, or 7% of the national TRSW (Ministry of Environment, 2009).

The total groundwater resources are estimated at 2.17 Gm³/yr in 2005 (Ministry of Environment, 2009), of which 750 Mm³/yr are from shallow aquifers (depth less than 50 m) and 1420 Mm³/yr from deep aquifers (deeper than 50 m) of which 610 Mm³/yr are non-renewable. The total renewable groundwater is thus 1560 Mm³/yr. North Tunisia has 50% of the shallow aquifer resources; Central Tunisia contains 33%, while South contains 17%. Regarding deep aquifers, South has the biggest share (55%), followed by Central (23%) and North (22%).

In 2005, the total fresh water withdrawal in Tunisia reached 2.65 Gm³/yr, consisting of 0.70 Gm³/yr surface water withdrawal and 1.95 Gm³/yr groundwater withdrawal (Ministry of Environment, 2009). Not all abstracted water evaporates, so that part of the water used remains available in the country for reuse. When we want to compare water use to available water resources, it is better to compare the consumptive water use, i.e. the blue water footprint, to the available water resources. On a national scale, the total blue water footprint of crop production is 1.33 Gm³/yr, against a total renewable blue water resources of about 4.26 Gm³/yr. The total blue WF of crop production thus represents 31% of the total renewable blue water resources, which means that Tunisia experiences 'significant water scarcity' according to international standards. Note that we include in this analysis only the blue WF related to crop production, but this contributes 93% to the total blue WF in the country, so we underestimate water scarcity only slightly.

It is estimated that, at national scale, 73% of the blue WF of crop production relates to groundwater consumption, while 27% refers to surface water consumption. The blue WF that specifically relates to groundwater consumption represents 62% of the total renewable groundwater resources, which means that the country is facing severe water scarcity related to groundwater (Table 7).

At regional level, the highest overall water scarcity occurs in South Tunisia (severe scarcity of 78%), followed by Central (significant scarcity of 32%) and North (moderate water scarcity of 23%). In terms of groundwater,

all regions of the country experience severe water scarcity, with a scarcity of 47% in both North and Central and 123% in South Tunisia. The latter means that consumptive use of groundwater exceeds the renewable groundwater available in this region.

It is to be observed that the water scarcity figures presented here are calculated on an annual rather than a monthly basis. As noted by Hoekstra et al. (2012), this may lead to an underestimation of scarcity as experienced in the drier parts of the year, particularly because of the variability in available surface water resources within the year. For estimating groundwater scarcity, the annual approach will generally suffice because of the relatively long residence time and buffering capacity of groundwater systems. Groundwater scarcity figures are possibly underestimated, though, because return flows in groundwater-based irrigation are here assumed to return to the groundwater system from which abstraction took place, while part of the return flow may be surface runoff.

	Dive wet	ar faatarint (Mm ³ () (r)		Blue water r						
	Dive wate	er footprint (ivirri /yr)	Renewable	blue water re	esources			Water scarcity (%) ^e		
	Ground- water ^a	Surface water ^a	Total ^b	Ground- water ^d	Surface water ^c	Total	Fossil ^d	Total	Ground- water	Overall	
North	320	330	650	680	2190	2870		2870	47	23	
Central	270	20	290	570	320	890		890	47	32	
South	380	10	390	310	190	500	610	1110	123	78	
Total	970	360	1330	1560	2700	4260	610	4870	62	31	

Sources:

^a Based on WF data from Mekonnen and Hoekstra (2011b) and ratios of surface water withdrawal to groundwater withdrawal per region from Ministry of Agriculture (2005a,b). Using the surface/groundwater ratios for withdrawals for estimating the surface/groundwater ratios for blue WFs implicitly assumes that the fractions of return flow are similar for surface and groundwater abstractions.

^b Mekonnen and Hoekstra (2011b)

^c Ministry of Environment (2009)

^d Ministry of Agriculture (2005b)

^eOwn elaboration

3.4. Economic water and land productivity at national level

An analysis of water management in a Mediterranean country must have a focus on irrigated agriculture (Garrido et al., 2009). Although irrigated land accounts to only 7% of the total cultivated land in Tunisia (Chahed et al., 2008), it contributes to more than 35% of the total production of the agricultural sector and accounts for more than 80% of the total water withdrawal in the country (Ministry of Environment, 2009).

Based on producer prices, Table 8 presents the economic water productivity (EWP) of main crops in Tunisia, for both rain-fed and irrigated agriculture. In the case of irrigated agriculture, we distinguish between green and blue EWP. For the listed crops, the average EWP in Tunisian crop production is around 0.32 US\$/m³, which is slightly less than the figure found in a study for Spain by Garrido et al. (2009), who found an average value of around 0.25 \notin /m³, which is equivalent to about 0.35 US\$/m³. The average EWP in Tunisian rain-fed agriculture (0.35 US\$/m³) was a bit higher than for irrigated agriculture (0.32 US\$/m³). For several of the selected crops,

EWP in rain-fed and irrigated production systems are found to be very similar. In the case of carrots and potatoes, however, total EWP is larger in irrigated agriculture than in rain-fed agriculture. For dates and tomatoes, we found the reverse.

In irrigated agriculture, the blue water applied is not always more productive than the green water. For carrots, potatoes and tomatoes the blue EWP in irrigated agriculture was found to be higher than the green EWP, but for dates and grapes the reverse was found. While most of the blue water in Tunisia is consumed in dates, grapes, olives and wheat production (Table 4), the blue EWP of these crops is low when compared to potatoes and tomatoes, which have the highest blue EWPs, with 0.97 and 1.13 US\$/m³ respectively.

	Pł	nysical wat	er product	ivity (kg/m ³	³) ^a		Economic water productivity (US\$/m ³) ^c					
Crop	Total (green) WP in rain-fed agric.	Green WP in irrigated agric.	Blue WP in irrigated agric.	Total WP in irrigated agric.	Average WP in irrigated & rain-fed agric.	Producer price (US\$/kg) ^b	Total (green) EWP in rain-fed agric.	Green EWP in irrigated agric.	Blue EWP in irrigated agric.	Total EWP in irrigated agric.	Average EWP in irrigated & rain-fed agric.	
Almonds	0.05	0.05	0.05	0.05	0.05	1.70	0.09	0.09	0.09	0.09	0.09	
Barley	0.28	0.24	0.31	0.27	0.28	0.14	0.04	0.03	0.04	0.04	0.04	
Carrots	1.04	1.00	1.40	1.27	1.27	0.13	0.14	0.13	0.19	0.17	0.17	
Dates	0.40	0.61	0.11	0.23	0.23	1.01	0.40	0.62	0.11	0.23	0.23	
Figs	0.22	0.22	0.22	0.22	0.22	0.47	0.10	0.10	0.10	0.10	0.10	
Grapes	-	0.79	0.52	0.61	0.61	0.32	-	0.25	0.17	0.20	0.20	
Olives	0.11	0.11	0.11	0.11	0.11	0.32	0.03	0.03	0.03	0.03	0.03	
Oranges	1.69	1.68	1.68	1.68	1.68	0.34	0.58	0.58	0.58	0.58	0.58	
Potatoes	3.86	3.75	4.72	4.27	4.24	0.21	0.80	0.77	0.97	0.88	0.87	
Tomatoes	10.75	8.77	9.62	9.17	9.24	0.12	1.26	1.03	1.13	1.07	1.08	
Wheat	0.41	0.40	0.50	0.44	0.41	0.24	0.10	0.09	0.12	0.10	0.10	

Table 8. Physical and economic water productivity of main crops in Tunisia at national level (1996-2005).

Sources:

^aOwn elaboration based on data from Mekonnen and Hoekstra (2010)

^b FAOSTAT (FAO, 2009)

^c Own elaboration

Table 9 presents economic land productivity (ELP), again distinguishing between rain-fed and irrigated agriculture. In terms of total ELP, oranges, tomatoes and dates had the highest ELPs, with 4040, 3770 and 3080 US\$/ha respectively, while barley and olives had the lowest ELPs, with 130 and 170 US\$/ha respectively.

Economic land productivity is higher in irrigated agriculture than in rain-fed agriculture for all selected crops. Given the fact that, on average, economic *water* productivities in irrigated agriculture are *not* higher than in rain-fed agriculture, one can conclude that irrigation water is generally not applied to increase water productivity (US\$/m³) but rather to increase land productivity (US\$/ha). Enlarging the irrigated area for the listed crops will increase land productivity. But, since water is a limiting factor in production, it may be most beneficial to increase irrigated areas only for crops with high economic water productivity and for which the difference between ELP in rain-fed and irrigated agriculture is considerable, like for example potatoes.

Dates and oranges had relatively low economic water productivities (0.23 and 0.58 US\$/ m^3 respectively) as compared to potatoes (0.87 US\$/ m^3) (see Table 8), but the ELPs for dates and oranges were higher (3080 and 4040 US\$/ha respectively) than the ELP for potatoes (2870 US\$/ha).

At a national level, the figures on economic *water* productivities (Table 8) provide little basis for understanding or explaining current cropping patterns. The figures on economic *land* productivities give a better basis for understanding, because various of the crops with large production volumes (especially tomatoes, potatoes, oranges and dates) have a relatively high ELP. The main exceptions are wheat, barley and olives, that have large production volumes but low ELP (and also low EWP).

		Yi	eld (ton/ha	l) ^a			Economic land productivity (US\$/ha) ^c					
Crop	Total (green) yield in rain-fed agric.	Green yield in irrigated agric.	Blue yield in irrigated agric.	Total yield in Irrigated agric.	Average yield in irrigated & rain- fed agric.	Producer price (US\$/ton) ^b	ELP in rain-fed agric.	Green- water based ELP in irrigated agric.	Blue- water based ELP in irrigated agric.	ELP in irrigated agric.	Average ELP in irrigated & rain- fed agric.	
Almonds	0.23	0.22	0.26	0.48	0.25	1700	390	380	440	820	430	
Barley	0.90	0.66	0.61	1.27	0.91	140	130	90	90	180	130	
Carrots	2.41	1.98	6.00	7.98	7.69	130	320	270	800	1070	1030	
Dates	1.20	1.20	1.87	3.07	3.05	1010	1210	1210	1890	3100	3080	
Figs	0.98	0.93	0.78	1.72	1.53	470	460	442	370	810	720	
Grapes	3.24	2.01	2.59	4.60	4.60	320	1040	650	830	1480	1480	
Olives	0.51	0.49	0.41	0.90	0.53	320	160	150	130	280	170	
Oranges	7.60	7.14	5.99	13.13	11.75	340	2610	2460	2060	4520	4040	
Potatoes	6.74	5.84	9.30	15.14	13.95	210	1390	1200	1920	3120	2870	
Tomatoes	22.20	17.03	15.81	32.84	32.18	120	2600	1990	1850	3840	3770	
Wheat	1.54	1.23	0.99	2.21	1.58	240	370	290	240	530	370	

Table 9. Yield and economic land productivity of main crops in Tunisia at national level (1996-2005).

Sources:

^a Own elaboration based on data from Mekonnen and Hoekstra (2010)

^b FAOSTAT (FAO, 2009)

^c Own elaboration

3.5. Economic water and land productivity at sub-national level

Tables 10 and 11 show economic water and land productivities, respectively, for the main crops at regional level. North and Central Tunisia have similar economic water productivities. South Tunisia has lower water productivities for the listed crops except for potatoes. North Tunisia has the highest economic land productivity (ELP) for all listed crops except for carrots, grapes and tomatoes. Central Tunisia has the highest ELP for carrots and tomatoes, while Central and South have similar ELP for grapes. South has the lowest ELP for all crops except for dates and grapes.

		Phy	vsical wate	er producti	vity (m ³ /	kg) ^a		Ecor	nomic wate	er producti	vity (US	\$/m ³) ^c
	Crop	Total (green) WP in rain-fed agric.	Green WP in irrigated agric.	Blue WP in irrigated agric.	Total WP in irrigated agric.	Average WP in irrigated & rain-fed agric.	Producer price ^b (US\$/kg)	Total (green) EWP in rain-fed agric.	Green EWP in irrigated agric.	Blue EWP in irrigated agric.	Total EWP in irrigated agric.	Average EWP in irrigated & rain-fed agric.
	Almonds	0.05	0.05	0.05	0.05	0.05	1.70	0.09	0.09	0.09	0.09	0.09
	Barley	0.28	0.23	0.36	0.28	0.28	0.14	0.04	0.03	0.05	0.04	0.04
	Carrots	1.04	1.02	1.41	1.28	1.28	0.13	0.14	0.14	0.19	0.17	0.17
	Date	-	-	-	-	-	-	-	-	-	-	-
	Figs	0.22	0.22	0.22	0.22	0.22	0.47	0.10	0.10	0.10	0.10	0.10
North	Grapes	-	0.81	0.56	0.66	0.66	0.32	-	0.26	0.18	0.21	0.21
	Olives	0.11	0.11	0.11	0.11	0.11	0.32	0.03	0.03	0.03	0.03	0.03
	Oranges	1.69	1.68	1.68	1.68	1.68	0.34	0.58	0.58	0.58	0.58	0.58
	Potatoes	3.86	3.75	4.71	4.28	4.25	0.21	0.80	0.77	0.97	0.88	0.88
	Tomatoes	10.72	8.84	9.67	9.21	9.29	0.12	1.25	1.03	1.13	1.08	1.09
	Wheat	0.41	0.40	0.51	0.44	0.41	0.24	0.10	0.10	0.12	0.10	0.10
	Almonds	0.05	0.05	0.05	0.05	0.05	1.70	0.08	0.09	0.09	0.09	0.09
	Barley	0.26	0.24	0.31	0.27	0.26	0.14	0.04	0.03	0.04	0.04	0.04
	Carrots	1.00	0.94	1.36	1.24	1.24	0.13	0.13	0.13	0.18	0.17	0.17
	Dates	-	-	-	-	-	-	-	-	-	-	-
F	Figs	0.21	0.22	0.22	0.22	0.22	0.47	0.10	0.10	0.10	0.10	0.10
Central	Grapes	-	0.77	0.52	0.61	0.61	0.32	-	0.25	0.17	0.19	0.19
0	Olives	0.11	0.11	0.11	0.11	0.11	0.32	0.03	0.03	0.03	0.03	0.03
	Oranges	1.67	1.68	1.68	1.68	1.68	0.34	0.58	0.58	0.58	0.58	0.58
	Potatoes	3.86	3.57	4.69	4.28	4.26	0.21	0.80	0.73	0.97	0.88	0.88
	Tomatoes	10.98	8.70	9.62	9.21	9.22	0.12	1.28	1.02	1.13	1.08	1.08
	Wheat	0.38	0.38	0.50	0.43	0.39	0.24	0.09	0.09	0.12	0.10	0.09
	Almonds	0.04	0.04	0.04	0.04	0.04	1.70	0.07	0.07	0.07	0.07	0.07
	Barley	0.21	0.43	0.12	0.21	0.21	0.14	0.03	0.06	0.02	0.03	0.03
	Carrots	1.02	1.03	1.43	1.30	1.29	0.13	0.14	0.14	0.19	0.17	0.17
	Dates	0.40	0.61	0.11	0.23	0.23	1.01	0.40	0.62	0.11	0.23	0.23
_	Figs	0.17	0.17	0.17	0.17	0.17	0.47	0.08	0.08	0.08	0.08	0.08
South	Grapes	-	1.14	0.39	0.54	-	0.32	-	0.37	0.13	0.17	0.17
	Olives	0.09	0.09	0.09	0.09	0.09	0.32	0.03	0.03	0.03	0.03	0.03
	Oranges	1.45	1.39	1.39	1.39	1.40	0.34	0.50	0.48	0.48	0.48	0.48
	Potatoes	3.96	3.74	4.86	4.42	4.34	0.21	0.81	0.77	1.00	0.91	0.89
	Tomatoes	8.62	6.00	7.59	7.23	8.61	0.12	1.01	0.70	0.89	0.85	1.01
	Wheat	0.19	0.20	0.39	0.34	0.28	0.24	0.04	0.05	0.09	0.08	0.07

Table 10. Physical and economic water productivity of main crops in Tunisia at regional level (1996-2005).

Sources:

^a Own elaboration based on data from Mekonnen and Hoekstra (2010)

^b FAOSTAT (FAO, 2009)

 $^{\circ}$ Own elaboration

			Yie	ld (ton/ha) ^a			Econo	omic land	producti	vity (US	\$/ha) ^c
	Сгор	Total (green) yield in rain-fed agric.	Green yield in irrigated agric.	Blue yield in irrigated agric.	Total yield in Irrigated agric.	Average yield in irrigated & rain- fed agric.	Producer price (US\$/ton) ^b	ELP in rain-fed agric.	Green- water based ELP in irrigated agric.	Blue- water based ELP in irrigated agric.	ELP in irrigated agric.	Average ELP in irrigated & rain- fed agric.
	Almonds	0.24	0.23	0.25	0.48	0.36	1700	410	390	420	810	460
	Barley	0.90	0.63	0.63	1.27	1.08	140	130	90	90	180	130
	Carrots	2.35	2.05	5.92	7.96	5.16	130	320	270	790	1070	1020
	Dates	-	-	-	-	-	-	-	-	-	-	-
_	Figs	0.99	0.95	0.77	1.72	1.35	470	470	450	360	810	740
North	Grapes	3.24	2.20	2.38	4.58	3.91	320	1040	710	760	1470	1470
2	Olives	0.52	0.50	0.39	0.90	0.71	320	160	160	120	280	170
	Oranges	7.50	7.23	5.89	13.12	10.31	340	2580	2490	2030	4510	4090
	Potatoes	6.95	5.92	9.23	15.14	11.05	210	1430	1220	1900	3120	2910
	Tomatoes	23.47	17.55	15.30	32.85	28.16	120	2750	2050	1790	3840	3750
	Wheat	1.51	1.28	0.94	2.22	1.86	240	360	300	220	530	380
	Almonds	0.22	0.21	0.27	0.48	0.35	1700	370	350	470	820	410
	Barley	0.81	0.60	0.66	1.27	1.04	140	110	80	90	180	120
	Carrots	2.14	1.77	6.24	8.02	5.08	130	290	240	840	1070	1060
	Dates	-	-	-	-	-	-	-	-	-	-	-
a	Figs	0.91	0.84	0.88	1.72	1.31	470	430	400	420	810	670
Central	Grapes	-	2.10	2.51	4.62	4.62	320	-	680	810	1480	1480
S	Olives	0.48	0.46	0.44	0.90	0.69	320	150	150	140	280	160
	Oranges	6.96	6.40	6.76	13.16	10.06	340	2390	2200	2330	4530	4040
	Potatoes	6.21	4.79	10.30	15.09	10.65	210	1280	990	2120	3110	2870
	Tomatoes	23.16	15.52	17.31	32.83	28.00	120	2710	1820	2030	3840	3830
	Wheat	1.30	1.07	1.14	2.21	1.76	240	310	250	270	520	340
	Almonds	0.12	0.11	0.37	0.48	0.30	1700	210	190	630	820	230
	Barley	0.43	0.72	0.53	1.25	0.84	140	60	100	70	170	80
	Carrots	1.64	2.07	5.99	8.06	4.85	130	220	280	800	1080	970
	Dates	1.20	1.20	1.87	3.07	3.05	1010	1210	1210	1890	3100	3080
_	Figs	0.44	0.40	1.32	1.72	1.08	470	210	190	620	810	240
South	Grapes	-	1.93	2.68	4.61	4.61	320	-	620	860	1480	1480
0)	Olives	0.23	0.24	0.66	0.90	0.57	320	70	80	210	280	80
	Oranges	3.23	2.91	10.23	13.14	8.19	340	1110	1000	3520	4520	3360
	Potatoes	3.06	5.07	10.07	15.15	9.10	210	630	1050	2080	3120	2510
	Tomatoes	11.36	6.16	26.51	32.67	22.02	120	1330	720	3100	3820	1330
	Wheat	0.44	0.37	1.84	2.21	1.32	240	100	90	440	520	190

Table 11. Yield and economic land productivity of main crops in Tunisia at regional level (1996-2005).

Sources:

^a Own elaboration based on data from Mekonnen & Hoekstra (2010)

^b FAOSTAT (FAO, 2009)

^c Own elaboration

When comparing rain-fed and irrigated agriculture, we find that the ELP of irrigated lands is much higher than the ELP of rain-fed lands for all listed crops. In South Tunisia, which is much drier than North and Central, the blue-water based ELP in irrigated agriculture is higher for all crops than in North and Central, which illustrates the greater importance of irrigation water to yields in the South.

The same conclusion that we have drawn at the national level is valid at regional level: enlarging the irrigation areas will generally increase ELPs, particularly in the South. But primarily in the South, water availability is the key limiting factor in production, not land availability, so that optimizing EWP will be more advisable than optimizing ELP.

For South Tunisia it is especially attractive to grow dates, because the climate and growing conditions are very suitable for this crop; dates are not grown in North and Central. The ELP for dates is high as well, but the EWP is not. From the perspective of a most economic use of scarce freshwater resources in South, it is more attractive to grow potatoes, tomatoes and oranges than to grow dates.

The study of economic water and land productivity has a number of limitations that are mostly due to a lack of data. First, we assumed the producer price of crops to be the same for the Tunisian regions, where differences can somewhat affect the results at regional level. Second, we did not distinguish between prices for rain-fed and irrigated crops. Irrigated crops may have a higher price due to better control of the production process, which would translate into a higher economic water and land productivity in irrigated agriculture. Third, we calculate economic water and land productivity by multiplying physical productivity and price, while it is better to look at the value added per unit of production. Finally, we assumed full irrigation in irrigated agriculture, while in reality irrigation may (deliberately or involuntarily) be limited.

3.6. Virtual water flows related to trade in agricultural and industrial products

3.6.1. Tunisian virtual water import

The total gross virtual water import in the period 1996-2005 was 8100 Mm³/yr (71% blue, 18% green and 11% grey, Table 12). The largest contribution (94%) related to import of crop products. Imports of animal products and industrial products contributed with 2% and 4% respectively. The economic value of imports was 10330 million US\$/yr, of which 80% related to import of industrial products, 18% to import of crop products and 2% to import of animal products. The average cost of imported commodities per unit of virtual water imported was 1.28 US\$/m³.

Crops responsible for relatively large virtual water imports are cotton, wheat, soybean, maize, sugar and barley. The import of cotton products (mainly from France, Belgium and Italy) and wheat (mainly from Canada, France and Spain) were responsible for 2200 and 1850 Mm³/yr, respectively (Table 13), which together represents 53% of the total virtual water imported. The total economic value of crop products imported by Tunisia was 1840

million US\$/yr. About 51% of the total cost is related to import of cotton products and 16% to import of sugar products. The average cost of imported crops per unit of virtual water imported was 0.24 US\$/m³.

About 49% of the crop-related virtual water imports of Tunisia comes from Europe (Figure 5), mainly from France, Italy, Germany and Belgium; 17% comes from Latin America, 13% from Asia, 12% from North America and 1 % from Oceania. For animal products and industrial products, the biggest part of the virtual water imported, about 68% comes from Europe, mainly from France and Germany for animal products and from France and Italy for industrial products. Figure 5 summarizes the results per continent, where Latin America includes Mexico, and Europe includes Turkey and the Russian Federation.

	Related to crop products	Related to animal products	Related to industrial products	Total virtual water imported
Green (Mm ³ /yr) ^a	5610	140	-	5750
Blue (Mm ³ /yr) ^a	1400	20	30	1450
Grey (Mm³/yr) ^a	600	10	280	890
Total (Mm³/yr) ^a	7610	170	310	8100
Economic value of imports (million US\$/yr) ^b	1840	150	8330	10330
Value per unit of imported virtual water (US\$/m ³) ^c	0.24	0.85	27.00	1.28

Table 12. Tunisia's virtual water import and economic value of imports. Period: 1996-2005.

Sources:

^a Hoekstra and Mekonnen (2012)

^b ITC (2007)

^c Own elaboration

Table 13.	Imported crops	s with a large volume	of virtual water.	Period: 1996-2005.

Crop	% of the total virtual water	Vi	rtual water ir	mport (Mm ³ /y	/r) ^b	Economic value (million	Value per unit of imported water
1	imported ^a	Green	Blue	Grey	Total	US\$/yr) ^c	(US\$/m3) ^a
Cotton	29%	1250	760	200	2210	940	0.40
Wheat	24%	1650	60	150	1850	200	0.10
Soybeans	15%	840	280	20	1140	140	0.10
Maize	8%	500	40	100	640	100	0.20
Sugar	7%	380	110	30	520	290	0.60
Barley	4%	300	10	30	340	40	0.10
Coffee	2%	180	1	2	190	10	0.10
Other	11%	520	140	70	730	130	0.20
Total	100%	5610	1400	600	7610	1840	0.25

Sources:

^a Own elaboration

^b Hoekstra and Mekonnen (2012)

^c ITC (2007)

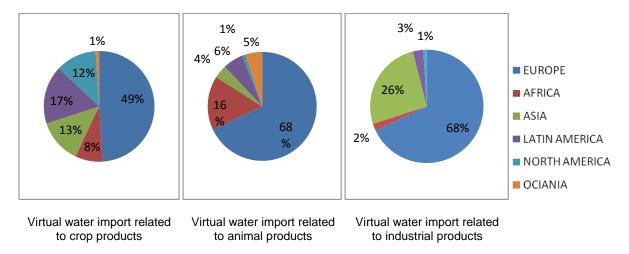


Figure 5. Virtual water import of Tunisia specified by continent for the period 1996-2005. Source: based on data from Hoekstra and Mekonnen (2012).

3.6.2. Tunisian virtual water export

The total gross virtual water export in the period 1996-2005 was 9760 Mm³/yr (88% blue, 5% green and 7% grey, Table 14). The export of crop products contributed most (95%) to the total virtual water export, followed by export of animal products (3%) and export of industrial products (2%). The export value was 9760 million US\$/yr, of which 67% related to export of industrial products, 32% to export of crop products and 1% to export of animal products. Thus, Tunisia generated a foreign exchange of about 1.00 US\$/m³ on average.

Olive oil and cotton products were the main crop products, contributing 68% and 26% respectively to Tunisia's crop-related virtual water export (Table 15). The virtual water export related to the two crops was estimated at 6360 and 2380 Mm³/yr, respectively. About 73% of the total green water exported was related to export of olive oil (6110 Mm³/yr). The economic value of crop export was 3120 million US\$/yr, whereby cotton export represented 89% of the total export earnings. The average earning per unit of crop-related virtual water export was 0.35 US\$/m³. The export of cotton products gives the highest earning per drop of water (1.20 US\$/m³), while export of wheat generates the lowest earning (0.02 US\$/m³). In terms of blue water, olive oil generates the highest earning per drop of water.

Tunisia is a net virtual water exporter related to cotton trade; the water footprint of exported cotton (2380 Mm^3/yr) exceeds the water footprint of imported cotton (2210 Mm^3/yr). The earning per unit of water in the case of cotton export (1.20 US\$/m³) is bigger than the cost per unit of water in the case of cotton import (0.40 US\$/m³), which can be explained by the fact that most of the cotton exported from Tunisia is a re-export of the imported cotton after processing to textile, yielding a value added.

On the other hand, Tunisia is a net virtual water importer related to trade in wheat. Gross virtual water import related to wheat import is 1850 Mm^3/yr , and gross virtual water export related to wheat export amounts to 190 Mm^3/yr . The export makes little sense, since the earning per unit of water for wheat exports (0.02 US\$/m³) is

very low compared to other crops and also much lower than the cost per unit of water for imported wheat $(0.10 \text{ US}/\text{m}^3)$.

About 85% of the crop-related virtual water export goes to Europe (Figure 6), mainly to Italy, Spain and France; 6% goes to Latin America, 4% to North America, 4% to Africa, and 1% to Asia. For animal products the biggest part goes to Africa (86%), mainly Libya, while for industrial products the biggest part is exported to Europe (88%), mainly to France, Italy and Germany.

	Related to crop products	Related to animal products	Related to industrial products	Total virtual water exported
Green ^a (Mm ³ /yr)	8320	260	-	8580
Blue ^a (Mm ³ /yr)	400	40	10	460
Grey ^a (Mm ³ /yr)	570	20	130	730
Total (Mm ³ /yr)	9300	320	150	9760
Economic value of exports (million US\$/yr) ^b	3120	20	6620	9760
Value per unit of exported water (US\$/m ³) ^c	0.35	0.05	50	1.00

Table 14. Tunisia's virtual water export and economic value of exports. Period: 1996-2005.

Sources:

^a Hoekstra and Mekonnen (2012)

^b ITC (2007)

^c Own elaboration

Table 15. Exported crops with a large volume of virtual water. Period: 1996-2005.

Crop	% of the total virtual water exported ^a -	Virtual	water exp	oort (Mm ³	/yr) ^b	Economic value (million - US\$/yr) ^c .	Value per unit of exported water (US\$/m ³) ^a				
	68%	Green	Blue	Grey	Total	- 00¢/yr)	Green	Blue	Total		
Olive oil	68%	6110	230	30	6360	230	0.03	1.00	0.04		
Cotton	26%	1860	0	520	2380	2780	1.50	-	1.20		
Wheat	2%	170	10	10 10		4	0.02	0.70	0.02		
Dates	2%	40	120	3	160	70	1.80	0.60	0.40		
Other	2%	140	140 60		220	50	0.30	0.90	0.20		
Total	100%	8320	400	570	9300	3120	0.40	0.90	0.30		

Sources:

^a Own elaboration

^b Hoekstra and Mekonnen (2012)

^c ITC (2007)

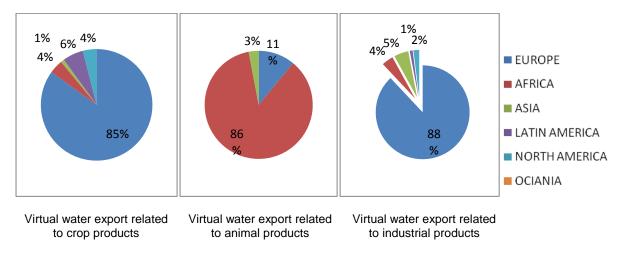


Figure 6. Virtual water export from Tunisia specified by continent for the period 1996-2005. Source: based on data from Mekonnen and Hoekstra (2010a, 2010b).

3.7. Water saving through virtual water trade

Even though Tunisia had a net virtual water export of 1660 Mm³/yr in the period 1996-2005, the country saved water through trade. This can be understood as follows. Tunisia had a total gross virtual water export of 9760 Mm³/yr. This is the volume of water that the country 'lost' (between brackets, because foreign currency came in return of course). The country had a gross virtual water import of 8100 Mm³/yr. This is the volume of water used in other countries to produce commodities for Tunisian consumption. If Tunisia had produced the imported commodities domestically, however, it would have taken more water, namely 10700 Mm³/yr, due to lower water productivities in Tunisia compared to countries from where Tunisia received its imports. So, whereas the country 'lost' 9760 Mm³/yr, it 'saved' 10700 Mm³/yr. The resultant net water saving was 940 Mm³/yr (62% green, 3% blue and 35% grey). Trade in crop products (38%) and industrial products (4%). Table 16 shows the contributions of the different product groups to the total water savings.

Regarding blue water, only trade in animal and industrial products resulted in net blue water saving (20 and 4 Mm³/yr, respectively). Trade in crop products resulted in a net blue water loss of 1 Mm³/yr. Concerning green water, the largest amount of green water saved (320 Mm³/yr) related to trade in animal products.

	Green	Blue	Grey	Total
Related to trade in crop products	270	-1	280	540
Related to trade in animal products	320	20	10	360
Related to trade in industrial products	-	4	40	40
Total	590	30	330	940

Table 16. Water saving in Tunisia through trade (Mm³/yr) in the period 1996-2005.

Source: Mekonnen and Hoekstra (2011a).

3.8. The water footprint of consumption

The water footprint (WF) of Tunisian consumption was 2200 m^3 /yr per capita over the period 1996-2005, which is about 60% larger than the world average of 1390 m^3 /yr (Hoekstra and Mekonnen, 2012). Consumption of agricultural products largely determines the total WF related to consumption, contributing 98% to the total WF. Consumption of industrial products and domestic water supply contribute only 1% each.

In total terms, the WF of Tunisian consumption was 21 Gm³/yr (81% green, 12% blue and 7% grey). Wheat was the product with the single largest contribution, with 480 m³/yr per capita (91% green, 3% blue, 6% grey). Table 17 shows the top-five of products with the largest contribution to the WF of Tunisian consumption. The external component of the WF consumption was 6810 Mm³/yr (70% green, 19% blue, 11% grey), which represents 32% of the total WF, while the internal component was 14220 Mm³/yr (87% green, 8% blue, 5% grey) (Figure 7). In terms of its water needs, Tunisia has a particular dependency on Europe; the largest part of the country's virtual water imports come from Italy, France and Germany.

Table 17. Top-five of products with the largest contribution to the water footprint of Tunisian consumption.

Des du st		Water footprint	(m ³ /yr/capita)	
Product -	Green	Blue	Grey	Total
Wheat	440	10	30	480
Bovine meat	280	20	10	320
Olive oil	210	10	0	220
Meat, other	140	60	10	200
Milk and its products, excluding butter	130	20	10	160

Source: Mekonnen and Hoekstra (2011a).

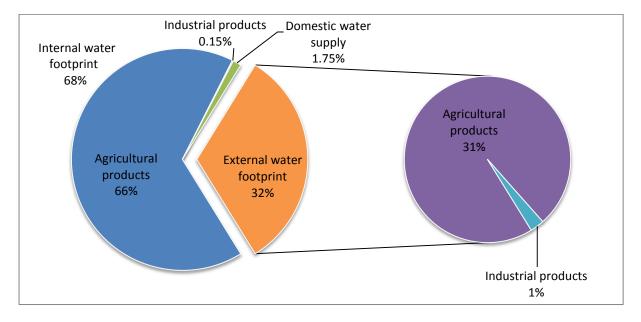


Figure 7. Composition of the water footprint of Tunisian consumption in the period 1996-2005. Source: based on data from Mekonnen and Hoekstra (2011a).

4. Conclusions

The water footprint (WF) of Tunisian production was 19 Gm³/yr in the period 1996-2005. Green water had the biggest contribution (89%), but there are regional differences. Crops in South generally have a larger total WF and larger blue water fraction than in Central and North Tunisia, caused by differences in climate. South is an arid region, which explains why the WF in this region is dominantly blue.

The country suffers significant water scarcity, with a national blue WF of crop production amounting to 31% of the country's renewable blue water resources. South Tunisia experiences severe water scarcity, Central Tunisia significant scarcity and North Tunisia moderate scarcity. For groundwater in particular, all three regions experience severe water scarcity, with the worst situation in South, where the blue WF resting on groundwater exceeds renewable groundwater resources by an estimated 23%.

The overview of water productivities of different crops shows that 91% of the total blue WF of crop production in the country relates to crops produced at blue water productivities of less than 0.20 US $/m^3$. Only tomatoes, potatoes and oranges show larger blue water productivities. The smallest blue water productivity is found for olives (0.03 US $/m^3$), one of the major export products of the country.

Among the major crops grown in Tunisia, oranges, tomatoes and potatoes have relatively large economic water and land productivities. The same, but to a lesser extent, is true for dates, which are grown in South only. Relatively low economic water and land productivities are found for wheat, barley, almonds, olives and figs. It is further found that irrigation generally increases economic land productivity (US\$/ha), but not water productivity (US\$/m³). The contribution of blue water to economic land productivity is largest in the dry South.

Relatively large virtual water imports relate to imports of cotton, sugar and cereal crops, mainly from Europe. Olive oil and cotton are the crop products contributing most to virtual water export. The average cost of imported crops per unit of virtual water imported was 0.24 US\$/m³, while the earning of exported crops per unit of virtual water exported was 0.34 US\$/m³. Gross virtual water export from Tunisia exceeds gross virtual water import, but at least the benefit per drop of water used for making export products is larger than the cost per drop of water in import products.

Tunisia is not water self-sufficient with 32% of its total WF of consumption outside its borders, mostly in Europe. Given the water scarcity in the country it is unlikely that the country will be able to decrease its dependency on external water resources.

The results of this study show that the scarce Tunisian water resources have mainly been allocated to uses with low economic productivity; this could be the result of the agricultural policy followed by the Tunisian government. Over the last forty years, Tunisia's agricultural policy focussed on ensuring food security. by encouraging the production of staple crops such as wheat, barley and olive oil and livestock products such as milk and meat. This policy intended to ensure a lower price for those products than the international market price (Ministry of Agriculture, 2002). However, in the last few years, Tunisian authorities have started to re-think the country's agricultural policy and integrate it with the management of its scarce water resources. By the end of 1999, Tunisia signed a free trade agreement with the EU, encouraging imports in the agricultural sector (Ministry of Agriculture, 2002). Where market conditions exist and staple foods may be supplied from other sources, farmers can be encouraged to shift from low-value to high-value crops and increase the economic productivity of water in agriculture (FAO, 2012).

References

- Allan, J.A. (1993) Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible, In: ODA, Priorities for water resources allocation and management, ODA, London, pp. 13-26.
- Chahed, J., Hamdane, A. and Besbes, M. (2008) A comprehensive water balance of Tunisia: blue water, green water and virtual water, Water International, 33(4): 415-424.
- Chahed, J., Besbes, M. and Hamdane, A. (2011) Alleviating water scarcity by optimizing "Green Virtual-Water": the case of Tunisia, In: Hoekstra, A.Y., Aldaya, M.M. and Avril, B. (eds.) Proceedings of the ESF Strategic Workshop on accounting for water scarcity and pollution in the rules of international trade, Amsterdam, 25-26 November 2010, Value of Water Research Report Series No. 54, UNESCO-IHE, Delft, the Netherlands, pp. 99-113.
- Chapagain, A.K. and Hoekstra, A.Y. (2004) Water footprints of nations, Value of Water Research Report Series No.16, UNESCO-IHE. Delft, The Netherlands.
- Chelbi, I. Kaabi, B. Béjaoui, M. Derbali, M. and Zhioua E. (2009) Spatial Correlation Between PhlebotomuspapatasiScopoli (Diptera: Psychodidae) and Incidence of Zoonotic Cutaneous Leishmaniasis in Tunisia, Journal of Medical Entomology 46(2): 400-402.
- Cook, S., Gichuki, F. and Turral, H. (2006) Water productivity: estimation at plot, farm and basin scale. Basin Focal Project Working Paper No. 2, GGIAR Challenge Program on Water and Food.
- Doorenbos, J. and Kassam, A.H. (1979) Yield response to water, FAO Drainage and Irrigation Paper 33, Food and Agriculture Organization, Rome, Italy.
- FAO (2003). Review of world water resources by country, FAO water report No.23, Food and Agriculture Organization, Rome, Italy.
- FAO (2009) FAOSTAT on-line database, Food and Agriculture Organization, Rome, Italy, http://faostat.fao.org
- FAO (2012) Cropping with water scarcity, FAO water report No. 38, Food and Agriculture Organization, Rome, Italy.
- Garrido A., Llamas, R. Varela-Ortega, C. Novo, P. Rodríguez-Casado, R. and Aldaya, M. M. (2010) Water footprint and virtual water trade in Spain: Policy implications, Springer, New York, USA.
- Hoekstra, A. Y. (2013) The water footprint of modern consumer society, Routledge, London, UK.
- Hoekstra, A.Y. and Chapagain, A.K. (2008) Globalization of water: Sharing the planet's freshwater resources, Blackwell Publishing, Oxford, UK.
- Hoekstra, A.Y. and Mekonnen, M.M. (2012) The water footprint of humanity, Proceedings of the National Academy of Sciences, 109(9): 3232–3237.
- Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M. and Mekonnen, M.M. (2011) The water footprint assessment manual: Setting the global standard, Earthscan, London, UK.
- Hoekstra, A.Y., Mekonnen, M.M., Chapagain, A.K., Mathews, R.E. and Richter, B.D. (2012) Global monthly water scarcity: Blue water footprints versus blue water availability, PLoS ONE 7(2): e32688.
- Igbadun, H.E, Mahoo, H.F, Tarimo, A.K.P.R and Salim, B.A (2006) Crop water productivity of an irrigated maize crop in Mkoji sub-catchment of the great Ruaha River Basin, Tanzania, Agricultural Water Management, 85: 141-150.

ITC (2007) SITA version 1996-2005 in SITC, [DVD-ROM], International trade centre, Geneva, Switzerland.

- Kijne, J.W., Barker, R. and Molden, D. (2003) Water productivity in agriculture: limits and opportunities for development, IWMI and CABI Publisher, Wallingford, UK.
- Mekonnen, M.M. and Hoekstra, A.Y. (2010) The green, blue and grey water footprint of crops and derived crop products, Value of Water Research Report Series No. 47, UNESCO-IHE, Delft, The Netherlands, www.waterfootprint.org/Reports/Report47-WaterFootprintCrops-Vol1.pdf.
- Mekonnen, M.M. and Hoekstra, A.Y. (2011a) National water footprint accounts: the green, blue and grey water footprint of production and consumption, Value of Water Research Report Series No. 50, UNESCO-IHE, Delft, The Netherlands, http://www.waterfootprint.org/Reports/Report50-NationalWaterFootprints-Vol1.pdf.
- Mekonnen, M.M. and Hoekstra, A.Y. (2011b) The green, blue and grey water footprint of crops and derived crop products, Hydrology and Earth System Sciences, 15(5): 1577-1600.

Ministry of Agriculture (2002) Ninth plan of development (1997-2001) (French), Tunis, Tunisia.

- Ministry of Agriculture (2005a) Yearbook of surface water resources (French), General Directorate of Water Resources, Tunis, Tunisia.
- Ministry of Agriculture (2005b) Yearbook of groundwater resources (French), General Directorate of Water Resources, Tunis, Tunisia.
- Ministry of Environment (2009) Indicators for sustainable management of water resources (French), Tunis, Tunisia.
- Molden, D. (2007) Water for food, Water for life: a comprehensive Assessment of Water Management in Agriculture, Earthscan London, UK, and IWMI, Colombo, Sri Lanka.
- Molden, D., Oweis, T., Steduto, P., Bindraban, P., Hanjra, M.A. and Kijne, J. (2010) Improving agricultural Water productivity: Between optimism and caution, Agricultural Water Management, 97:528-535.
- Oki T, Kanae S. (2006) Global hydrological cycles and world water resources, Science 313(5790): 1068–1072.
- Palanisami, K., Senthilvel, S., Ranganathan, C.R., Ramesh, T. (2006) Water productivity at different scales under canal, tank and well irrigation systems, Centre for Agricultural and Rural Development Studies, Tamil Nadu Agricultural University, Coimbatore, India.
- Pereira L.S., Cordery I., Iacovides I. (2009) Coping with water scarcity: Addressing the challenges, Springer, Dordrecht, the Netherlands.
- Playan, E., Matoes, L. (2006) Modernization and optimization of irrigation systems to increase water productivity, Agricultural Water Management, 80: 100-116.
- Rodrigues, G.C., Pereira, L.S. (2009) Assessing economic impacts of deficit irrigation as related to water productivity and water costs, Biosystems Engeneering, 103: 536-551.
- Teixeira, A.H. de C., Bastiaanssen, W.G.M., Moura, M.S.B., Soares, J.M., Ahmad, M.D. and Bos, M.G. (2008) Energy and water balance measurement for water productivity analysis in irrigated mango trees, Northeast Brazil, Agricultural and Forest Meterology, 148: 1524-1537.
- Vazifedoust, M., Van Dam, J.C., Feddes, R.A. and Feizi, M. (2008) Increasing water productivity of irrigated crops under limited water supply at field scale, Agricultural Water Management, 95: 89-102.
- Vörösmarty, C.J., Green, P., Salisbury, J., and Lammers, R.B. (2000) Global water resources: vulnerability from climate change and population growth, Science 289: 284–288.

- Zwart, S.J., Bastiaanssen, W.G.M. (2004) Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize, Agricultural Water Management, 69: 115-133.
- Zwart, S.J., Bastiaanssen, W.G.M. (2007) SEBAL for detecting spatial variation of water productivity and scope for improvement in eight irrigated wheat systems, Agricultural Water Management, 89: 287-296.

Appendix I: The average water footprint per ton of crop at regional and national level (m³/ton)

Period 1996-2005

Product	Product		No	orth		Central Green Blue Grey Total Green				So	uth			Tunisia a	average		World average				
code (FAOSAT)	description (FAOSTAT)	Green	Blue	Grey	Total	Green	Blue	Grey	Total	Green	Blue	Grey	Total	Green	Blue	Grey	Total	Green	Blue	Grey	Total
15	wheat	2357	85	110	2552	2351	231	123	2705	2781	1227	211	4219	2375	72	109	2556	1277	342	207	1826
44	Barley	3519	86	180	3785	3469	241	197	3907	3774	1047	306	5127	3561	75	181	3817	1213	79	131	1423
75	Oats	26739	11325	1511	39575	27846	11058	1688	40592	40976	193	3437	44606	24687	13776	1458	39921	1479	181	128	1788
83	Sorghum	10068	3520	506	14094	8048	5338	482	13868	10693	4158	833	15684	9708	3958	493	14159	2857	103	87	3047
97	Triticale	801	0	90	891	793	3	90	886	984	0	97	1081	803	1	89	893	826	38	89	953
108	Cereals,nes	227	2278	0	2505	2640	1983	0	4623	4636	23	0	4659	1907	2676	0	4583	3316	115	9	3440
116	Potatoes	125	112	21	258	110	134	22	266	65	213	28	306	114	122	20	256	191	33	63	287
157	Sugar beet	52	49	28	129	44	50	28	122	0	0	0	0	54	47	28	129	82	26	25	133
176	Beans, dry	2524	97	465	3086	2242	194	457	2893	1422	318	454	2194	2510	102	455	3067	3945	125	983	5053
181	Broad beans, horse	1961	85	378	2424	1722	232	377	2331	1128	226	433	1787	1978	64	372	2414	1317	205	496	2018
187	Peas, dry	2868	65	426	3359	3175	88	526	3789	2770	606	724	4100	2899	55	424	3378	1453	33	493	1979
191	Chick peas	2962	25	456	3443	3074	143	548	3765	3455	1158	924	5537	2941	15	458	3414	2972	224	981	4177
201	Lentils	5860	254	736	6850	5701	267	780	6748	2758	1145	699	4602	5915	224	725	6864	4324	489	1060	5873
205	Vetches	2620	60	404	3084	2833	163	494	3490	2171	367	624	3162	2613	60	396	3069	2031	109	213	2353
211	Pulses nes	1682	50	264	1996	1850	65	324	2239	1226	345	353	1924	1697	43	262	2002	2217	250	650	3117
221	Almonds, with shell	16598	2484	1005	20087	18290	1488	1201	20979	20813	2330	2079	25222	17763	1950	1105	20818	4632	1908	1507	8047
223	Pistachios	69228	27982	4876	102086	73679	15743	5599	95021	58373	8713	7827	74913	80863	12022	5480	98365	3095	7602	666	11363
260	Olives	8652	396	36	9084	8839	467	39	9345	10752	928	76	11756	8790	325	37	9152	2470	499	45	3014
267	Sunflower seed	3069	0	23	3092	3091	0	24	3115	3212	0	40	3252	3093	0	23	3116	3017	148	201	3366
270	Rapeseed	4127	0	30	4157	4183	0	32	4215	4111	0	51	4162	4173	0	30	4203	1703	231	336	2270
328	Seed cotton	2505	0	738	3243	395	0	129	524	0	0	0	0	2515	0	736	3251	2282	1306	440	4028
333	Linseed	1359	15	0	1374	1337	44	0	1381	1500	2	0	1502	1349	25	0	1374	4730	268	170	5168
358	Cabbages and other brassicas	185	185	21	391	232	143	27	402	359	10	79	448	175	200	20	395	181	26	73	280
366	Artichokes	625	87	37	749	540	200	36	776	353	397	53	803	614	106	36	756	478	242	98	818
372	Lettuce and chicory	59	4	11	74	57	7	12	76	73	0	22	95	58	6	11	75	133	28	77	238
373	Spinash	114	12	22	148	110	16	23	149	144	0	45	189	110	17	21	148	118	14	160	292

Product	Product description (FAOSTAT)		North Green Blue Grey Total 69 39 8 116				Cen	tral			So	uth			Tunisia a	average			World a	average	I
code (FAOSAT)	(FAUSTAT)	Green	Blue	Grey	Total	Green	Blue	Grey	Total	Green	Blue	Grey	Total	Green	Blue	Grey	Total	Green	Blue	Grey	Total
388	Tomatoes	69	39	8	116	76	36	9	121	149	1	23	173	60	48	8	116	108	63	43	214
393	Cauliflowes and brocolli	82	4	15	101	79	7	15	101	99	0	28	127	80	6	15	101	189	21	75	285
394	Pumpkins squash and grouds	153	2	31	186	151	4	31	186	152	37	33	222	153	2	31	186	228	24	84	336
397	Cumcumbers and gherkins	92	95	13	200	125	73	18	216	252	7	53	312	87	102	12	201	206	42	105	353
399	Eggplants (aubergines)	134	4	18	156	131	6	18	155	174	1	27	202	133	5	18	156	234	33	95	362
401	Chillies and peppers, green	158	5	22	185	156	7	23	186	214	0	40	254	157	7	22	186	240	42	97	379
402	Onions (inc. shallots), green	62	12	12	86	62	13	13	88	106	0	34	140	59	15	12	86	176	44	51	271
403	Onions, dry	199	66	17	282	214	62	21	297	422	8	77	507	189	77	17	283	192	88	65	345
406	Garlic	1110	407	104	1621	1201	374	123	1698	2371	61	462	2894	1054	469	102	1625	337	81	170	588
414	Beans, green	187	2	41	230	181	9	42	232	252	0	75	327	186	5	42	233	320	54	188	562
417	Peas, green	309	4	54	367	295	16	55	366	411	1	90	502	304	9	54	367	382	63	150	595
426	Carrots and turnips	285	500	35	820	487	384	65	936	674	29	152	855	260	529	33	822	106	28	61	195
463	Vegetables fresh nes	147	6	21	174	143	9	22	174	205	1	46	252	144	9	21	174	205	33	101	339
490	Oranges	373	218	22	613	374	235	24	633	214	506	26	746	367	228	22	617	401	110	49	560
495	Tangerines, mandarins, clem.	551	322	33	906	553	348	36	937	317	748	38	1103	543	337	32	912	479	118	152	749
497	Lemons and limes	305	178	18	501	306	192	20	518	175	414	21	610	311	193	18	522	432	152	58	642
507	Grapefruit (inc.pomelos)	233	136	14	383	235	147	15	397	133	315	16	464	229	142	14	385	367	85	54	506
512	Citrus fruit, nes	456	260	27	743	459	280	29	768	264	610	32	906	445	276	26	747	1145	62	35	1242
515	Apples	1224	0	65	1289	1265	0	73	1338	1551	0	138	1689	1278	0	67	1345	561	133	127	821
521	Pears	1154	0	61	1215	1193	0	69	1262	0	0	0	0	1194	0	63	1257	645	94	183	922
526	Apricots	1720	0	93	1813	1785	0	105	1890	2191	0	198	2389	1761	0	98	1859	694	502	92	1288
531	Cherries	285	0	8	293	109	0	6	115	128	0	12	140	107	0	6	113	961	531	112	1604
534	Peaches and nectarines	1110	0	60	1170	1149	0	68	1217	1410	0	127	1537	1120	0	63	1183	583	188	139	910

Product code	Product description (FAOSTAT)		No	orth			Cen	tral			So	uth			Tunisia a	average		World average			
(FAOSAT)	(FAUSTAT)	Green	Blue	Grey	Total	Green	Blue	Grey	Total	Green	Blue	Grey	Total	Green	Blue	Grey	Total	Green	Blue	Grey	Total
536	Plums and sloes	1347	0	71	1418	1392	0	80	1472	1634	0	156	1790	1389	0	73	1462	1570	188	422	2180
541	Stone fruit, nes	935	0	50	985	956	0	56	1012	1122	0	108	1230	930	0	50	980	868	1049	136	2053
544	Strawberries	77	161	11	249	71	178	11	260	31	266	12	309	88	176	12	276	201	109	37	347
554	Cranberries	234	0	44	278	259	0	53	312	148	0	65	213	232	0	43	275	91	108	77	276
560	Grapes	781	1119	68	1968	706	1290	68	2064	447	1868	68	2383	554	1082	55	1691	425	97	87	609
567	Watermelons	226	11	19	256	236	10	21	267	345	0	38	383	226	13	19	258	150	25	63	238
568	Other melons (inc.cantaloupes)	123	2	24	149	121	3	24	148	154	0	29	183	124	2	24	150	125	29	67	221
569	Figs	2838	1677	171	4686	3455	1204	219	4878	4936	820	503	6259	2810	1744	167	4721	1504	1544	227	3275
572	Avocados	474	49	29	552	423	118	28	569	320	260	45	625	468	58	28	554	849	237	87	1173
577	Dates	0	0	0	0	0	0	0	0	1036	3285	84	4405	1032	3271	84	4387	930	1250	98	2278
592	Kiwi fruit	693	95	43	831	615	195	43	853	374	351	50	775	673	116	42	831	307	168	38	513
603	Fruit, tropical fresh nes	648	0	34	682	670	0	39	709	642	0	69	711	652	0	34	686	1455	200	172	1827
619	Fruit Fresh Nes	382	0	20	402	394	0	23	417	463	0	44	507	833	0	44	877	1199	201	112	1512
689	Chillies and peppers, dry	1820	242	117	2179	1629	501	117	2247	888	909	134	1931	1775	295	112	2182	5869	1125	371	7365
711	Anise, badian, fennel, corian.	2327	134	353	2814	2267	196	365	2828	3241	6	644	3891	2278	189	350	2817	5369	1865	1046	8280
723	Spices, nes	1977	127	262	2366	1894	219	278	2391	2957	8	698	3663	1913	198	260	2371	2735	242	390	3367
826	Tobacco, unmanufactured	2150	522	306	2978	2010	761	309	3080	1325	2161	312	3798	2096	593	306	2995	2021	205	700	2926

Source: Mekonnen and Hoekstra (2011)

Product code	Product description		No	orth			Cen	tral			Sou	ıth		Tunisia Total				
(FAOSAT)	(FAOSTAT)	Green	Blue	Grey	Total	Green	Blue	Grey	Total	Green	Blue	Grey	Total	Green	Blue	Grey	Total	
15	Wheat	2820,1	71,0	128,5	3019,6	350,7	23,9	17,5	392,0	2,5	1,1	0,2	3,8	3173,2	95,9	146,2	3415,3	
44	Barley	926,4	14,4	46,6	987,3	289,3	10,7	15,2	315,2	2,2	0,6	0,2	3,0	1217,9	25,7	62,0	1305,6	
75	Oats	19,7	9,8	1,1	30,7	4,9	4,0	0,3	9,3	0,0	0,0	0,0	0,0	24,7	13,8	1,5	39,9	
83	Sorghum	9,1	3,5	0,5	13,0	0,6	0,5	0,0	1,2	0,0	0,0	0,0	0,0	9,7	4,0	0,5	14,2	
97	Triticale	4,2	0,0	0,5	4,7	1,2	0,0	0,1	1,3	0,0	0,0	0,0	0,0	5,4	0,0	0,6	6,0	
108	Cereals,nes	48,9	62,0	0,0	111,0	11,9	23,3	0,0	35,2	0,0	0,0	0,0	0,0	60,8	85,4	0,0	146,2	
116	Potatoes	33,5	35,0	5,8	74,3	1,8	2,6	0,4	4,8	0,0	0,0	0,0	0,0	35,3	37,7	6,2	79,1	
157	Sugar beet	4,4	3,9	2,3	10,5	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	4,4	3,9	2,3	10,7	
176	Beans, dry	1,1	0,0	0,2	1,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,2	0,0	0,2	1,4	
181	Broad beans, horse	68,1	2,1	12,8	83,0	1,1	0,1	0,2	1,4	0,0	0,0	0,0	0,0	69,2	2,3	13,0	84,5	
187	Peas, dry	14,6	0,3	2,1	17,1	1,2	0,0	0,2	1,4	0,0	0,0	0,0	0,0	15,8	0,3	2,3	18,5	
191	Chick peas	24,7	0,1	3,8	28,6	0,6	0,0	0,1	0,7	0,0	0,0	0,0	0,0	25,2	0,1	3,9	29,3	
201	Lentils	4,7	0,2	0,6	5,5	0,4	0,0	0,0	0,4	0,0	0,0	0,0	0,0	5,1	0,2	0,6	5,9	
205	Vetches	0,5	0,0	0,1	0,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,5	0,0	0,1	0,6	
211	Pulses nes	37,3	1,0	5,7	44,0	3,0	0,1	0,5	3,6	0,0	0,0	0,0	0,0	40,4	1,0	6,2	47,6	
221	Almonds, with shell	376,2	55,7	23,0	454,8	411,1	30,8	25,7	467,6	7,1	0,8	0,7	8,6	794,4	87,2	49,4	931,0	
223	Pistachios	35,7	10,2	2,4	48,3	69,4	5,4	4,6	79,5	0,9	0,1	0,1	1,1	105,9	15,7	7,2	128,9	
260	Olives	4660,8	170,3	19,1	4850,2	2581,5	95,6	11,3	2688,4	31,7	2,7	0,2	34,6	7274,0	268,6	30,6	7573,2	
267	Sunflower seed	28,5	0,0	0,2	28,7	2,2	0,0	0,0	2,2	0,0	0,0	0,0	0,0	30,8	0,0	0,2	31,0	
270	Rapeseed	7,9	0,0	0,1	7,9	1,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0	8,8	0,0	0,1	8,9	
328	Seed cotton	7,9	0,0	2,3	10,2	0,1	0,0	0,0	0,2	0,0	0,0	0,0	0,0	8,0	0,0	2,3	10,3	
333	Linseed	5,0	0,1	0,0	5,0	1,4	0,1	0,0	1,4	0,0	0,0	0,0	0,0	6,3	0,1	0,0	6,5	
358	Cabbages	1,8	1,9	0,2	3,9	0,5	0,7	0,1	1,3	0,0	0,0	0,0	0,0	2,3	2,7	0,3	5,3	
366	Artichokes	9,7	1,2	0,6	11,5	1,0	0,6	0,1	1,7	0,0	0,0	0,0	0,0	10,7	1,9	0,6	13,2	
372	Lettuce and chicory	0,7	0,1	0,1	0,9	0,2	0,0	0,0	0,3	0,0	0,0	0,0	0,0	0,9	0,1	0,2	1,2	
373	Spinach	1,0	0,1	0,2	1,4	0,3	0,1	0,1	0,4	0,0	0,0	0,0	0,0	1,3	0,2	0,3	1,7	

Appendix II: The total water footprint of crop production (Mm³/yr)

Product code	Product description		No	orth			Cer	ntral			Sou	uth		Tunisia Total				
(FAOSAT)	(FAOSTAT)	Green	Blue	Grey	Total	Green	Blue	Grey	Total	Green	Blue	Grey	Total	Green	Blue	Grey	Total	
388	Tomatoes	39,9	29,1	5,1	74,1	11,2	11,3	1,6	24,1	0,0	0,0	0,0	0,0	51,1	40,4	6,7	98,3	
393	Cauliflowers and broccoli	0,5	0,0	0,1	0,6	0,1	0,0	0,0	0,2	0,0	0,0	0,0	0,0	0,6	0,0	0,1	0,7	
394	Pumpkins	4,7	0,1	0,9	5,6	0,6	0,0	0,1	0,8	0,0	0,0	0,0	0,0	5,3	0,1	1,1	6,5	
397	Cucumbers	2,0	2,2	0,3	4,5	0,6	0,8	0,1	1,5	0,0	0,0	0,0	0,0	2,6	3,0	0,4	6,0	
399	Eggplants (aubergines)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
401	Chillies and peppers, green	25,7	0,9	3,6	30,1	8,1	0,7	1,2	10,0	0,0	0,0	0,0	0,0	33,7	1,5	4,8	40,1	
402	Onions (incl. shallots), green	6,0	1,3	1,2	8,5	1,5	0,6	0,3	2,5	0,0	0,0	0,0	0,0	7,5	2,0	1,5	11,0	
403	Onions, dry	17,3	6,3	1,5	25,0	5,0	2,8	0,5	8,2	0,0	0,0	0,0	0,0	22,2	9,0	2,0	33,3	
406	Garlic	5,1	2,0	0,5	7,6	1,5	0,9	0,2	2,5	0,0	0,0	0,0	0,0	6,6	2,9	0,6	10,1	
414	Beans, green	0,4	0,0	0,1	0,4	0,1	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,5	0,0	0,1	0,6	
417	Peas, green	3,9	0,1	0,7	4,6	1,0	0,1	0,2	1,3	0,0	0,0	0,0	0,0	4,9	0,1	0,9	5,9	
426	Carrots and turnips	9,2	17,8	1,1	28,2	2,8	6,7	0,4	9,9	0,0	0,0	0,0	0,0	12,1	24,5	1,5	38,1	
461	Carobs	0,0	0,0	0,0	0,0	3,6	0,1	0,1	3,8	0,0	0,0	0,0	0,0	3,6	0,1	0,1	3,8	
463	Vegetables fresh nes	8,4	0,4	1,2	9,9	2,5	0,3	0,4	3,1	0,0	0,0	0,0	0,0	10,8	0,7	1,6	13,1	
490	Oranges	35,9	21,6	2,1	59,5	3,3	2,7	0,2	6,3	0,0	0,1	0,0	0,1	39,2	24,3	2,3	65,9	
495	Tangerines, mandarins	18,2	11,0	1,1	30,3	1,7	1,4	0,1	3,2	0,0	0,0	0,0	0,0	20,0	12,4	1,2	33,5	
497	Lemons and limes	5,6	3,4	0,3	9,3	0,5	0,4	0,0	1,0	0,0	0,0	0,0	0,0	6,1	3,8	0,4	10,3	
507	Grapefruit	12,6	7,6	0,7	21,0	1,2	1,0	0,1	2,2	0,0	0,0	0,0	0,0	13,8	8,6	0,8	23,2	
512	Citrus fruit, nes	25,1	15,0	1,5	41,5	2,3	1,9	0,1	4,3	0,0	0,0	0,0	0,1	27,4	16,9	1,6	45,9	
515	Apples	105,8	0,0	5,5	111,3	21,1	0,0	1,2	22,3	0,3	0,0	0,0	0,3	127,2	0,0	6,7	133,9	
521	Pears	55,1	0,0	2,9	58,0	11,0	0,0	0,6	11,6	0,0	0,0	0,0	0,0	66,1	0,0	3,5	69,6	
526	Apricots	17,4	0,0	0,9	18,4	30,0	0,0	1,7	31,7	0,1	0,0	0,0	0,1	47,5	0,0	2,6	50,1	
534	Peaches and nectarines	68,6	0,0	3,8	72,3	18,4	0,0	1,1	19,5	0,1	0,0	0,0	0,1	87,0	0,0	4,9	91,9	

Product code (FAOSAT)	Product description (FAOSTAT)		Nc	orth			Cer	ntral			Sou	ıth		Tunisia Total				
		Green	Blue	Grey	Total	Green	Blue	Grey	Total	Green	Blue	Grey	Total	Green	Blue	Grey	Total	
536	Plums and sloes	15,8	0,0	0,8	16,6	3,1	0,0	0,2	3,3	0,0	0,0	0,0	0,0	19,0	0,0	1,0	20,0	
541	Stone fruit, nes	2,6	0,0	0,1	2,7	0,2	0,0	0,0	0,2	0,0	0,0	0,0	0,0	2,8	0,0	0,1	2,9	
544	Strawberries	0,6	1,2	0,1	1,8	0,0	0,1	0,0	0,2	0,0	0,0	0,0	0,0	0,6	1,3	0,1	2,0	
554	Cranberries	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
560	Grapes	27,7	43,4	2,6	73,6	30,6	54,5	2,9	87,9	7,6	30,9	1,2	39,7	65,9	128,7	6,6	201,2	
567	Watermelons	59,0	3,0	5,0	66,9	17,2	1,4	1,6	20,2	0,2	0,0	0,0	0,2	76,3	4,5	6,6	87,4	
568	Other melons	8,6	0,1	1,6	10,3	2,6	0,1	0,5	3,2	0,0	0,0	0,0	0,0	11,2	0,2	2,2	13,6	
569	Figs	61,8	38,7	3,6	104,1	8,2	4,9	0,5	13,6	0,3	0,0	0,0	0,3	70,3	43,6	4,2	118,0	
572	Avocados	0,1	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,1	
577	Dates	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	109,9	348,5	8,9	467,4	109,9	348,5	8,9	467,4	
592	Kiwi fruit	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
603	Fruit, tropical fresh nes	45,4	0,0	2,3	47,7	3,7	0,0	0,2	3,9	0,0	0,0	0,0	0,0	49,1	0,0	2,5	51,6	
619	Fruit Fresh Nes	45,1	0,0	2,3	47,5	9,0	0,0	0,5	9,5	0,1	0,0	0,0	0,1	54,3	0,0	2,9	57,1	
689	Chillies and peppers, dry	11,2	1,3	0,7	13,3	1,2	0,7	0,1	2,0	0,0	0,0	0,0	0,0	12,4	2,1	0,8	15,3	
711	Anise, badian, fennel	17,6	1,1	2,6	21,4	4,5	0,7	0,8	6,0	0,0	0,0	0,0	0,0	22,2	1,8	3,4	27,4	
723	Spices, nes	3,4	0,2	0,4	4,0	0,8	0,2	0,1	1,1	0,0	0,0	0,0	0,0	4,2	0,4	0,6	5,2	
826	Tobacco	4,6	1,2	0,7	6,5	1,5	0,6	0,2	2,3	0,0	0,0	0,0	0,0	6,1	1,7	0,9	8,7	
900	Fodder crops	728,6	0,0	20,9	749,5	57,2	0,0	1,8	59,0	0,6	0,0	0,0	0,6	786,4	0,0	22,8	809,1	
Total WF (Mm3/yr)		10651,8	651,7	337,5	11641,1	4003,4	293,5	96,4	4393,2	163,9	385,0	11,7	560,6	14819	1330	446	16595	

Source: Mekonnen and Hoekstra (2011)

Value of Water Research Report Series

Editorial board: A.Y. Hoekstra, University of Twente; H.H.G. Savenije, Delft University of Technology; P. van der Zaag, UNESCO-IHE.

- 1. Exploring methods to assess the value of water: A case study on the Zambezi basin *A.K. Chapagain – February 2000*
- Water value flows: A case study on the Zambezi basin.
 A.Y. Hoekstra, H.H.G. Savenije and A.K. Chapagain March 2000
- 3. The water value-flow concept I.M. Seyam and A.Y. Hoekstra – December 2000
- 4. The value of irrigation water in Nyanyadzi smallholder irrigation scheme, Zimbabwe
- G.T. Pazvakawambwa and P. van der Zaag January 2001
- The economic valuation of water: Principles and methods J.I. Agudelo – August 2001
- 6. The economic valuation of water for agriculture: A simple method applied to the eight Zambezi basin countries J.I. Agudelo and A.Y. Hoekstra – August 2001
- 7. The value of freshwater wetlands in the Zambezi basin
- I.M. Seyam, A.Y. Hoekstra, G.S. Ngabirano and H.H.G. Savenije August 2001
 "Demand management" and "Water as an economic good": Paradigms with pitfalls
- H.H.G. Savenije and P. van der Zaag October 2001
- Why water is not an ordinary economic good H.H.G. Savenije – October 2001
- Calculation methods to assess the value of upstream water flows and storage as a function of downstream benefits I.M. Seyam, A.Y. Hoekstra and H.H.G. Savenije – October 2001
- 11. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade *A.Y. Hoekstra and P.Q. Hung September 2002*
- 12. Virtual water trade: Proceedings of the international expert meeting on virtual water trade *A.Y. Hoekstra (ed.) – February 2003*
- 13. Virtual water flows between nations in relation to trade in livestock and livestock products *A.K. Chapagain and A.Y. Hoekstra July 2003*
- 14. The water needed to have the Dutch drink coffee A.K. Chapagain and A.Y. Hoekstra – August 2003
- 15. The water needed to have the Dutch drink tea
- A.K. Chapagain and A.Y. Hoekstra August 2003
 16. Water footprints of nations, Volume 1: Main Report, Volume 2: Appendices
- A.K. Chapagain and A.Y. Hoekstra November 200417. Saving water through global trade
- A.K. Chapagain, A.Y. Hoekstra and H.H.G. Savenije September 2005
 18. The water footprint of cotton consumption
- A.K. Chapagain, A.Y. Hoekstra, H.H.G. Savenije and R. Gautam September 2005
- 19. Water as an economic good: the value of pricing and the failure of markets
- *P. van der Zaag and H.H.G. Savenije July 2006*20. The global dimension of water governance: Nine reasons for global arrangements in order to cope with local water problems
- *A.Y. Hoekstra July 2006*The water footprints of Morocco and the Netherlands
- A.Y. Hoekstra and A.K. Chapagain July 2006
- 22. Water's vulnerable value in Africa *P. van der Zaag July 2006*
- 23. Human appropriation of natural capital: Comparing ecological footprint and water footprint analysis *A.Y. Hoekstra July 2007*
- 24. A river basin as a common-pool resource: A case study for the Jaguaribe basin in Brazil *P.R. van Oel, M.S. Krol and A.Y. Hoekstra July 2007*
- Strategic importance of green water in international crop trade M.M. Aldaya, A.Y. Hoekstra and J.A. Allan – March 2008
- 26. Global water governance: Conceptual design of global institutional arrangements *M.P. Verkerk, A.Y. Hoekstra and P.W. Gerbens-Leenes – March 2008*
- Business water footprint accounting: A tool to assess how production of goods and services impact on freshwater resources worldwide *P.W. Gerbens-Leenes and A.Y. Hoekstra – March 2008*
- 28. Water neutral: reducing and offsetting the impacts of water footprints A.Y. Hoekstra March 2008
- 29. Water footprint of bio-energy and other primary energy carriers
- P.W. Gerbens-Leenes, A.Y. Hoekstra and Th.H. van der Meer March 2008
- 30. Food consumption patterns and their effect on water requirement in China *J. Liu and H.H.G. Savenije March 2008*
- 31. Going against the flow: A critical analysis of virtual water trade in the context of India's National River Linking Programme S. Verma, D.A. Kampman, P. van der Zaag and A.Y. Hoekstra March 2008
- 32. The water footprint of India D.A. Kampman, A.Y. Hoekstra and M.S. Krol – May 2008

- 33. The external water footprint of the Netherlands: Quantification and impact assessment *P.R. van Oel, M.M. Mekonnen and A.Y. Hoekstra May 2008*
- 34. The water footprint of bio-energy: Global water use for bio-ethanol, bio-diesel, heat and electricity *P.W. Gerbens-Leenes, A.Y. Hoekstra and Th.H. van der Meer August 2008*
- 35. Water footprint analysis for the Guadiana river basin *M.M. Aldaya and M.R. Llamas November 2008*
- 36. The water needed to have Italians eat pasta and pizza *M.M. Aldaya and A.Y. Hoekstra May 2009*
- 37. The water footprint of Indonesian provinces related to the consumption of crop products *F. Bulsink, A.Y. Hoekstra and M.J. Booij May 2009*
- The water footprint of sweeteners and bio-ethanol from sugar cane, sugar beet and maize P.W. Gerbens-Leenes and A.Y. Hoekstra – November 2009
- 39. A pilot in corporate water footprint accounting and impact assessment: The water footprint of a sugar-containing carbonated beverage A.E. Ercin, M.M. Aldaya and A.Y. Hoekstra November 2009
- The blue, green and grey water footprint of rice from both a production and consumption perspective A.K. Chapagain and A.Y. Hoekstra – March 2010
- Water footprint of cotton, wheat and rice production in Central Asia M.M. Aldaya, G. Muñoz and A.Y. Hoekstra – March 2010
- 42. A global and high-resolution assessment of the green, blue and grey water footprint of wheat *M.M. Mekonnen and A.Y. Hoekstra April 2010*
- 43. Biofuel scenarios in a water perspective: The global blue and green water footprint of road transport in 2030 *A.R. van Lienden, P.W. Gerbens-Leenes, A.Y. Hoekstra and Th.H. van der Meer April 2010*
- 44. Burning water: The water footprint of biofuel-based transport *P.W. Gerbens-Leenes and A.Y. Hoekstra June 2010*
- 45. Mitigating the water footprint of export cut flowers from the Lake Naivasha Basin, Kenya *M.M. Mekonnen and A.Y. Hoekstra June 2010*
- 46. The green and blue water footprint of paper products: methodological considerations and quantification *P.R. van Oel and A.Y. Hoekstra July 2010*
- 47. The green, blue and grey water footprint of crops and derived crop products *M.M. Mekonnen and A.Y. Hoekstra December 2010*
- The green, blue and grey water footprint of animals and derived animal products M.M. Mekonnen and A.Y. Hoekstra – December 2010
- 49. The water footprint of soy milk and soy burger and equivalent animal products *A.E. Ercin, M.M. Aldaya and A.Y. Hoekstra February 2011*
- 50. National water footprint accounts: The green, blue and grey water footprint of production and consumption *M.M. Mekonnen and A.Y. Hoekstra May 2011*
- 51. The water footprint of electricity from hydropower *M.M. Mekonnen and A.Y. Hoekstra – June 2011*
- 52. The relation between national water management and international trade: a case study from Kenya *M.M. Mekonnen and A.Y. Hoekstra June 2011*
- 53. Global water scarcity: The monthly blue water footprint compared to blue water availability for the world's major river basins *A.Y. Hoekstra and M.M. Mekonnen September 2011*
- 54. Proceedings of the ESF Strategic Workshop on accounting for water scarcity and pollution in the rules of international trade *A.Y. Hoekstra, M.M. Aldaya and B. Avril (eds.) October 2011*
- 55. A comparative study on the water footprint of poultry, pork and beef in different countries and production systems *P.W. Gerbens-Leenes, M.M. Mekonnen and A.Y. Hoekstra December 2011*
- 56. The water footprint of France A.E. Ercin, M.M. Mekonnen and A.Y. Hoekstra – March 2012
- The water footprint of Switzerland A.E. Ercin, M.M. Mekonnen and A.Y. Hoekstra – March 2012
- Blue water footprint of agriculture, industry, households and water management in the Netherlands A.Y. Hoekstra, M.J. Booij, J.C Hunink and K.S. Meijer – June 2012
- 59. Water footprint scenarios for 2050: A global analysis and case study for Europe A.E. Ercin and A.Y. Hoekstra September 2012
- 60. Proceedings of the session "Solving the Water Crisis: Common Action Toward a Sustainable Water Footprint", Planet under Pressure Conference, London, 26 March 2012
- *G.P. Zhang, A.Y. Hoekstra and D. Tickner (eds.) October 2012*Water footprint of Tunisia from an economic perspective
 - H. Chouchane, A.Y. Hoekstra, M.S. Krol and M.M. Mekonnen November 2013

Reports can be downloaded from: <u>www.waterfootprint.org</u>

www.unesco-ihe.org/value-of-water-research-report-series

UNESCO-IHE P.O. Box 3015 2601 DA Delft The Netherlands

Website www.unesco-ihe.org Phone +31 15 2151715

University of Twente

Delft University of Technology

UNIVERSITY OF TWENTE.

