
LSAC RESEARCH REPORT SERIES 

 Unraveling the Relationship Between Testlet Features 
and Item Parameters: An Empirical Example 
 
Muirne C. S. Paap 
Bernard P. Veldkamp 
University of Twente, Enschede, The Netherlands 

 Law School Admission Council 
Research Report 12-06 
October 2012 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

A Publication of the Law School Admission Council 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Law School Admission Council (LSAC) is a nonprofit corporation that provides unique, state-of-the-
art admission products and services to ease the admission process for law schools and their applicants 
worldwide. More than 200 law schools in the United States, Canada, and Australia are members of the 
Council and benefit from LSAC's services.  
 
 
© 2012 by Law School Admission Council, Inc.  
 
 
LSAT, The Official LSAT PrepTest, The Official LSAT SuperPrep, ItemWise, and LSAC are registered 
marks of the Law School Admission Council, Inc. Law School Forums, Credential Assembly Service, 
CAS, LLM Credential Assembly Service, and LLM CAS are service marks of the Law School Admission 
Council, Inc. 10 Actual, Official LSAT PrepTests; 10 More Actual, Official LSAT PrepTests; The Next 10 
Actual, Official LSAT PrepTests; 10 New Actual, Official LSAT PrepTests with Comparative Reading; The 
New Whole Law School Package; ABA-LSAC Official Guide to ABA-Approved Law Schools; Whole Test 
Prep Packages; The Official LSAT Handbook; ACES

2
; ADMIT-LLM; FlexApp; Candidate Referral Service; 

DiscoverLaw.org; Law School Admission Test; and Law School Admission Council are trademarks of the 
Law School Admission Council, Inc.  
 
All rights reserved. No part of this work, including information, data, or other portions of the work 
published in electronic form, may be reproduced or transmitted in any form or by any means, electronic or 
mechanical, including photocopying and recording, or by any information storage and retrieval system 
without permission of the publisher. For information, write: Communications, Law School Admission 
Council, 662 Penn Street, PO Box 40, Newtown PA, 18940-0040. 
 
LSAC fees, policies, and procedures relating to, but not limited to, test registration, test administration, 
test score reporting, misconduct and irregularities, Credential Assembly Service (CAS), and other matters 
may change without notice at any time. Up-to-date LSAC policies and procedures are available at 
LSAC.org. 



i 

Table of Contents 

Executive Summary ...................................................................................................... 1 
 
Introduction ................................................................................................................... 1 
 
Method ........................................................................................................................... 4 

Testlet Properties ................................................................................................. 4 
Statistical Analysis ................................................................................................ 6 

 
Results ........................................................................................................................... 8 

Tree-Based Regression Step 1: Univariate Trees ................................................ 8 
Tree-Based Regression Step 2: Multivariate Tree .............................................. 12 

 
Discussion ................................................................................................................... 15 
 
References ................................................................................................................... 16 
 



 



1 

Executive Summary 

A mathematical model called item response theory (IRT) is often applied to high-
stakes tests to determine the characteristics of test questions (i.e., items), such as 
difficulty, discrimination, and susceptibility to guessing. Note that in this context, the 
term “discrimination” refers to how well an item distinguishes between higher- and 
lower-ability test takers. Often, these tests contain subsets of items grouped around a 
common stimulus (testlet). This grouping often leads to items within one group 
(testlet) being more strongly correlated among themselves than among items from 
other groups, which can result in moderate to strong testlet effects.  

Recently, it was shown that stimulus features could be used to predict the size of 
the testlet effect. Furthermore, a strong relationship was found between average item 
difficulty and the magnitude of the testlet effect. This study explores the relationship 
between stimulus features and the IRT parameters of difficulty, discrimination, and 
guessing. It was found that stimuli associated with easy items consisted of many 
different (but commonly used) words as well as an intermediate proportion of 
negative words. Relatively short stimuli containing many different words were found 
to have a high information density, and thus are considered to be very useful for 
distinguishing between test takers of different ability levels. No useful predictions 
could be made with regard to susceptibility to guessing, since that parameter did not 
vary much from one item to the next. It was concluded that stimulus features can be 
used to manipulate passage texts in such a way that they will have “favorable” 
properties in terms of testlet effect and average item parameters. 

Introduction 

It has become common practice to use item response theory (IRT) models to 
analyze data obtained from high-stakes tests. Typically, testing agencies use 
standard IRT models, such as the Rasch model or the two- or three- parameter 
logistic model (2PLM, 3PLM). These models are popular because they are well 
known, are relatively straightforward to estimate if there is enough data, and can be 
implemented in standard software packages such as Bilog-MG (Zimowski, Muraki, 
Mislevy, & Bock, 1996).  

These widely used IRT models are based on several assumptions, including local 
independence (LI) of item responses. This assumption holds if responses to the 

items in the test are dependent solely on the ability level (θ) of the candidate. 
However, many high-stakes tests include subsets of items that share a common 
stimulus (e.g., text passage or video fragment), commonly referred to as a testlet. 
This may lead to a breach of LI among the items belonging to the same testlet. If the 
local dependence (LD) is large within testlets, using standard IRT models may have 
serious consequences for model estimation; as DeMars (2012) eloquently 
summarizes, it could lead to errors in scaling and equating, biased item parameters, 
and item misfit (Glas, Wainer, & Bradlow, 2000; Li, Bolt, & Fu, 2005; Marais & 
Andrich, 2008). Therefore, many test developers aim to design stimuli that will not 
produce large testlet effects. 

Several ways to deal with testlet effects have been proposed over the years. One 
of the most popular methods is the testlet model proposed by Bradlow, Wainer, and 
Wang (1999). They introduced a new parameter that accounts for the random effect 
of a person on items that belong to the same testlet, in order to adjust for the nested 
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structure. This parameter,              
  , is referred to as the testlet parameter for 

person n on testlet t. It represents a random effect that exerts its influence through its 

variance: The larger the variance    
 , the larger the amount of local dependence (LD) 

between the items j within the testlet t (Wainer & Wang, 2000). Therefore, the 

variance or standard deviation of     can be seen as a measure of the testlet effect. 
Before this model was introduced, item scores within a testlet were commonly 
summed up, producing one “polytomous” score per testlet, which could then be 
analyzed with straightforward IRT models (e.g., Thissen, Steinberg, & Mooney, 
1989). However, in calculating sum scores, the exchangeability of items is assumed, 
which may not be realistic in practice. Moreover, when a polytomous IRT model is 
used to model the summarized score per testlet, a guessing parameter at the item 
level cannot be taken into account. For these reasons, many researchers prefer the 
testlet model proposed by Bradlow, Wainer, and Wang.  

A question left unaddressed until relatively recently is whether the testlet effect is 
related to features of stimuli. Although the testlet model performs well in recovering 
model parameters (Tao & Su, 2012, April), using a more parsimonious IRT model 
may still be preferred if testlet effects are small. Therefore, it would be helpful for test 
designers if they knew which testlet features contribute to larger testlet effects. We 
recently proposed a framework for investigating this issue (Paap, Glas, He, & 
Veldkamp, 2012). A new IRT model, the explanatory testlet response model (ETRM), 
was developed to decompose the testlet effect into an unexplained part and a part 
that is predicted by testlet features. We showed that tree-based regression (TBR) is 
highly useful for selecting relevant stimulus features that can be plugged into the 
ETRM to assess their impact on the testlet parameter. We were able to use these 
features to divide the testlets into groups that had a high testlet effect versus a 
medium testlet effect, based on the scores on the stimulus features. A next step 
might be to investigate whether there is a causal relationship between features and 
testlet effects by manipulating the passage texts. If a relationship is found, test 
designers could take these features into account when they are writing new testlets. 
The resulting testlets would be expected to have a low testlet effect, and from that 
point onward, regular IRT models could be used to calibrate the data.  

In a subsequent study (Paap & Veldkamp, 2012), we showed that certain stimulus 
features had predictive value for the size of the testlet effect, even when the effect of 
the estimated item parameters (discrimination and difficulty parameter) was 
accounted for. Moreover, our results indicated that testlets that contained less difficult 
items showed large testlet effects (Figure 1). A possible explanation could be that 
item difficulty may have a moderating effect on the relationship between testlet 
features and the testlet effect. 

In our previous work, the main focus was on finding variables that could be linked 
to the testlet effect. Besides testlet parameters, testlet response theory models also 
distinguish among item parameters such as difficulty, discrimination, and guessing. In 
this study, we focus on other important IRT parameters: the item parameters. We will 
explore the relationship between testlet features (as independent variables) and 
average item parameters per testlet (dependent variables) by using TBR—both 
univariate and multivariate. We chose to use TBR instead of the better-known linear 
regression, because TBR is a more flexible method for dealing with highly complex 
interactions, and it poses fewer statistical assumptions (e.g., regarding the 
distribution of the variables). 
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FIGURE 1. Regression tree with the 3PNO-based testlet effect as a dependent variable and stimulus 
features and average item difficulty as independent variables. Adapted from Paap, M. C. S., & 
Veldkamp, B. P. (2012). Minimizing the testlet effect: Identifying critical testlet features by means of 
tree-based regression. In T. J. H. M. Eggen & B. P. Veldkamp (Eds.), Psychometrics in Practice at 
RCEC, p. 69. Enschede, the Netherlands: RCEC, Cito/University of Twente. Copyright 2012 by RCEC, 
Cito/University of Twente, Enschede, Netherlands. Adapted with permission. 
  



4 

Method 

Testlet Properties 

Items in the Analytical Reasoning (AR) section of the Law School Admission Test 
(LSAT) are designed to test the ability of the examinee to reason within a given set of 
circumstances described in the stimulus (testlet-specific text passage). The stimulus 
contains information about a number of elements (people, places, objects, tasks, and 
so on) along with a set of conditions imposing a structure on the elements (e.g., 
ordering them, assigning elements of one set to elements of another set, and so on). 
AR stimuli always permit more than one acceptable outcome satisfying all of the 
requirements in the stimulus text. For detailed information about the AR section of the 
LSAT, the reader is referred to The Official LSAT Handbook (Law School Admission 
Council, Inc., 2010). 

The testlet feature variables used in this study fall into three categories: (1) 
variables describing the logical structure of the stimuli (structural variables), (2) 
variables describing the themes contained in the stimuli (theme variables), and (3) 
surface linguistic variables. Two raters (the authors of this paper) independently 
coded the variables in Categories 1 and 2. In the case of incongruent scorings, a 
consensus was reached through a thorough discussion. Surface linguistic features 
were identified using the specialized text-mining software Python (Python Software 
Foundation, 2009). An overview of the structural, theme, and surface linguistic 
variables can be found in Table 1. We used the same dataset that we used in our 
previous studies (Paap et al., 2012; Paap & Veldkamp, 2012). For a detailed 
description of the extraction of testlet features, we refer to Paap et al. (2012). 
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TABLE 1 
Overview of independent variables used in the regression analyses, divided into three categories 

Independent Variables Description/Remarks 

(1) Structural Variables  
Number of Features Takes values 2, 3, or 4; 2 if it only contains information on one type of entity variable (“x”) and one position variable (“y”), 3 if it 

contains information about two entity variables and one position variable or one entity variable and two position variables, 
and 4 if it contains information about two entity variables and two position variables. 

Stimulus Type Only scored if the number of features is 3 or 4; it specifies whether the stimulus is of type 1 (two or more x’s were assigned to 

one y), 2 (one x was assigned to two or more y’s) or 3 (x was assigned to y, which was assigned to a higher-order position 
variable “z”). 

Number of Entities The number of entities, summed over all entity variables present in the stimulus; entities are defined as the units in the 
stimulus that had to be assigned to positions. 

Number of Positions The number of positions, summed over all position variables present in the stimulus. 
Cardinality of Entities Takes values “1” or “multiple.” The cardinality of entities is “1” if they can only be assigned to a position once and multiple if 

they can be assigned more than once. 
Cardinality of Positions Takes values “1” or “multiple.” The cardinality of positions is “1” if only one entity can be assigned to a position and “multiple” if 

more than one entity can be assigned to a position. 
Number of Entities Smaller/Larger Than Number of Positions  
Ordered Positions (Yes/No/Partially)  
  
(2) Theme Variable  
Theme/topic Variable used to describe the main theme of the stimulus. The following categories are used: B (Business), E (Education), R 

(Recreation), M (Media), A (Animals), T (Transport/Vehicle), N (Nature), P (Intrapersonal Relationships/Family), and H 
(Health). 

  
(3) Surface Linguistic Variables  
Word Token* Length of the stimulus text, total number of words excluding punctuation. 
Word Type* Vocabulary size, total number of words excluding word repetition and punctuation. 
Word Diversity Word Type divided by Word Token. 
Average Characters* Average number of letters used per word in the stimulus text. 
Percentage of Negative Words Percentage of “negative” words such as “no,” “not,” “neither,” and so on. May increase the difficulty of a text. 
Brown News Popularity The popularity of verbs, nouns, adjectives, adverbs, and names in the Brown news corpus. Note that the Brown corpus was 

the first million-word electronic corpus of English, created in 1961 at Brown University (Francis & Kučera, 1964). The 500 
text sources contained in the corpus have been categorized by genre, such as news, editorial, etc. To calculate the Brown 
News Popularity variable, the Porter Stemmer algorithm was used to standardize each word. 

Percentage of Content Words* The number of verbs, nouns, adjectives, adverbs, and names divided by Word Token. 
Modifier Propositional Density* Number of adjectives divided by Word Token. 
Predicate Propositional Density* Number of verbs divided by Word Token. 
Number of Sentences* Number of sentences used in stimulus text. 
Average Sentence Length* Word Token divided by Number of Sentences. 
Percentage of “If” Clauses In the AR stimuli, “if” clauses are regularly used and could be expected to increase the difficulty of a text (both with respect to 

logical reasoning and sentence complexity). 

*Based on work by Drum, Calfee, & Cook (1981), Embretson & Wetzel (1987), and Gorin & Embretson (2006). 
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Statistical Analysis 
 
Parameter Estimation 

 
The responses of 49,256 students to 594 items nested within a total of 100 

testlets (stimuli) administered in the AR section of the Law School Admission Test 
(LSAT) were used for analysis. A fully Bayesian approach using a Markov chain 
Monte Carlo (MCMC) computation method (Glas, 2012a) was applied. The three-
parameter normal ogive (3PNO) item response model was used to model the data. 
For the testlet model version, the probability of a correct response is given by 

    

                                  ,        (1) 
 

where   is the cumulative normal distribution, that is 
 

                      ∫    ( 
  

 
)  

 

  
,       (2) 
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                            .          (3) 

 

The discrimination parameter of item i is denoted by ai, its difficulty parameter by 
bi, ci denotes the guessing parameter of item i, and        is the random testlet 

parameter for person n on testlet t containing item i. The model was identified by 
restricting the mean and the variance of the distribution of the estimated ability    to 
zero and one, respectively. The software package MIRT (Glas, 2010) was used to 
calibrate the model.  

 
Model Building: Tree-Based Regression 

 
In Step 1, univariate models were estimated in SPSS (SPSS, 2007), using the 

average a, b, and c parameters per testlet as dependent variables, respectively. 
Testlet features served as independent variables. In Step 2, the testlet features that 
showed a significant effect in Step 1 were used as independent variables, and a 
multivariate tree was estimated using the R (R, 2004) package mvpart (Therneau & 
Atkinson, 2009). 

 
Step 1: Univariate Trees 

 
The C&RT module in SPSS closely follows the algorithm called classification and 

regression trees (CART) described by Breiman, Friedman, Olshen, and Stone 
(1984). A short description follows. Using TBR, clusters of testlets with similar values 
on the predictor variable were formed by successively splitting the testlets into 
increasingly homogeneous subsets (“nodes”). The testlet feature that maximized the 
homogeneity with respect to the dependent variable in the two nodes was identified 
and selected at each stage of the algorithm. The split that maximizes the difference 
in deviance between the parent node (original set of items) and the sum of the child 
nodes (subsets of items created by the independent variable) results in a low value 
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for the impurity measure. The impurity measure R(t) is measured by the prediction 
error in node t: 

 

              
 

 
∑ (    ̅   )

 
   ,         (4) 

  

where    are the observed values of the dependent variable and  ̅    is the mean 
value of the dependent variable in the node t. The impurity of the tree is given by the 
sum of the impurity measures of all terminal nodes (nodes that are not split further). 
In SPSS, this value is reported as the “risk estimate.” To indicate the fit of a tree, the 

relative error (RE) can be used, which is calculated by dividing R(t) by the total 
variance of the dependent variable. The proportion variance explained by the model 
is then given by: 

 

             
    

      
            (5) 

 
Initially, a large tree that overfits the data was grown, to avoid missing important 

structures. Pruning the large tree yielded a nested sequence of subtrees; 
subsequently, a subtree of optimal size was selected from the sequence. Pruning 
entails collapsing pairs of child nodes with common parents by removing a split at 
the bottom of the tree.  

Model building in Step 1 was done in a similar fashion to that in our previous work 
(Paap et al., 2012; Paap & Veldkamp, 2012). First, models were evaluated 
separately for each category of testlet features. In other words, a separate model 
was estimated containing all structure testlet features first, then a separate model 
was estimated containing the theme variables, and finally a separate model was 
estimated containing the linguistic testlet features as independent variables. The 
independent variables that were selected by the algorithm in each of these three 
models were then entered as independent variables in one joint model; only the ones 
that had a significant effect in this model were retained. In the case of competing 
models, the final model would be the one with the greatest number of splits resulting 
in a large difference in the mean of the dependent variable for the resulting nodes.  

Following Matteucci, Mignani, and Veldkamp (2012), the rule of one standard 

error (SE) was adopted to choose the best tree size. Let       denote the R(t) value 
of the large, overfitted tree. Then, according to the 1−SE rule, the large tree was 

automatically trimmed to the smallest subtree that had an R(t) value that did not 
exceed          . A minimum change of improvement smaller than 0.000001 was 
used as a stopping rule. The change of improvement equals the decrease in impurity 
required to split a node (SPSS Inc., 2007). The maximum tree depth was set to 10 
levels, and the minimum number of cases was set to 5 for parent nodes and 3 for 
child nodes. 

 
Step 2: A Multivariate Tree 

 

In the second step, we fitted a multivariate tree in R, using the package mvpart. 
Using multivariate analyses when there are several dependent variables has an 
added value over just using univariate analyses. Most importantly, in a multivariate 
analysis, the relationship between the dependent variables is taken into account. 
This is especially favorable if the correlation between the dependent variables is 
moderate: If it is very low, not much is gained; if it is very high, the two variables may 
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in fact measure the same construct. Also, a multivariate analysis can distinguish 
among groups of testlets based on a combination of scores on the dependent 
variables. Two general approaches are available in this package: building the tree in 
an “exploratory” way based on a predefined algorithm, and building the tree in a 
“user driven” way, where the user can interactively choose the preferred tree. The 
selection of the final model in the exploratory algorithm in this package differs 
somewhat from the C&RT procedure available in SPSS (i.e., a different impurity 
measure is used). To ensure comparability, we used the user-driven option and 
interactively chose a tree similar in size to the unidimensional trees. The 
independent variables entered were the ones selected in the univariate trees. 

Results 

Tree-Based Regression Step 1: Univariate Trees 
 

Average a-Parameter as Dependent Variable 
 
Visual inspection of the distribution of the average a-parameter per testlet 

indicated that it was normally distributed (mean = 0.74, SD = 0.21). The final tree 
had 10 (Figure 2) nodes and contained the following independent variables: Word 
Diversity, Average Characters, Ordered Positions, and Number of Entities. Word 
Diversity and Average Characters were normally distributed with a mean of 0.51 
(SD = 0.06) and 4.47 (SD = 0.51), respectively. Sixty percent of the stimuli contained 
Ordered Positions, 35% did not, and the remaining 5% contained only Partially 
Ordered Positions. The Number of Entities was slightly positively skewed with a 
mean of 7.33 (SD = 3.28). 

The variable Word Diversity was common to all stimuli and was used for the first 
split: stimuli containing 42.9% or lower Word Diversity were placed in the left branch 

(smaller average a-parameter) while stimuli with a Word Diversity score of at least 
42.9% were placed in the right branch (larger average a-parameter). The left node 
was not split further. It can be seen from Figure 2 that the variable Average 
Characters was used to create three subgroups for the stimuli with 43% or higher 
Word Diversity: Stimuli with an Average Characters score of 3.982 or lower (Group 
1, Node 3), stimuli with a score between 3.982 and 5.053 (Group 2, Node 5), and 
stimuli with a score higher than 5.053 (Group 3, Node 6). The first group (Node 3) 

had the highest average a-parameter, followed by Group 2 (Node 5). The fifth node 
was split further using the variable Ordered Positions: Stimuli that did not contain 

ordered positions were placed in the left node (smaller average a-parameter), while 
stimuli with (partially) ordered positions were placed in the right one (larger average 

a-parameter). The sixth node was split using the variable Number of Entities:  
stimuli with seven entities or fewer were placed in the left node (larger average  

a-parameter) and those with more than seven entities in the right node (smaller 
average a-parameter). Note that the largest average a-parameter was found for 
Node 3 and the smallest for Node 10. The proportion explained variance for this 
model was 0.35. 
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FIGURE 2. Univariate regression tree for the average a-parameter per stimulus/testlet contained in 
the AR section of the LSAT 
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In the following paragraphs, the trees are presented and explained in detail. For 
each split, the relevant independent variable and its associated cut-score will be 
presented. Furthermore, it is indicated per child-node pair whether the dependent 
variable has a larger value compared to the other child node, or a smaller value.  

 
Average b-Parameter as Dependent Variable 

 

The average b-parameter per testlet had a bimodal distribution (Mode 1 at 0.25, 
Mode 2 at 1.1) with a mean of 0.59 (SD = 0.56). The final tree (Figure 3) had 16 
nodes and contained the following independent variables: Brown News Popularity, 
Word Diversity, Percentage of Negative Words, and Percentage of Content Words. 
The Brown News Popularity was slightly positively skewed with a mean of 26.55  
(SD = 11.52). Percentage of Negative Words was highly positively skewed with a 
mean of 2.13% (SD = 1.87%). Percentage of Content Words was normally 
distributed with a mean of 32.21% (SD = 5%). 
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FIGURE 3. Univariate regression tree for the average b-parameter per stimulus/testlet contained 
in the AR section of the LSAT 
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The Brown News Popularity was common to all stimuli and was used for the first 
split: Stimuli with a score of 15.286 or lower were placed in the left branch (larger 

average b-parameter) while stimuli with a score over 15.286 were placed in the right 
branch (smaller average b-parameter). For both resulting branches, the same value 
of Word Diversity was used for the subsequent split: Stimuli with 44.1% or lower 

Word Diversity were associated with a larger b-parameter than stimuli with a higher 
percentage Word Diversity. For both branches, a terminal node (see Figure 3, Nodes 
3 and 5) was reached for the group of stimuli with 44.1% or lower Word Diversity, 
whereas the other nodes were split further using the variable Percentage of Negative 
Words. In the left branch, stimuli with at most 1.1% negative words were placed in 

the left terminal node (smaller average b-parameter), and stimuli with more than 

1.1% negative words were placed in the right terminal node (larger average b-
parameter). In the right branch, three subgroups were created using Percentage of 
Negative words: Stimuli with 1.4% (Group 1, Node 11) or less, stimuli with more than 
1.4% but less than or equal to 1.7% (Group 2, Node 12), and stimuli with more than 
1.7% negative words (Group 3, Node 10). The second group ended up in a terminal 
node (Node 12). Node 11 was split further using the variable Word Diversity: Stimuli 

with a score of up to 50.8% were placed in the left terminal node (larger average b-
parameter), and those with a score of more than 50.8% were placed in the right 

terminal node (smaller average b-parameter). Node 10 was split using the variable 
Percentage of Content Words: Stimuli with 38% or less were placed in the left 

terminal node (smaller average b-parameter) and those with more than 38% content 
words were placed in the right terminal node (larger average b-parameter). Note that 
the largest b-parameter was found for Node 3 and the smallest for Node 12. The 
proportion explained variance for this model was 0.56. 
 
Average c-Parameter as Dependent Variable 

 

The average c-parameter had a mean of 0.22 (SD = 0.06). Since the spread was 
so small, there was not much to be gained by creating subgroups (nodes) using 
TBR: The largest difference in node means was 0.08. Therefore, the model is not 
shown here. 

 
Tree-Based Regression Step 2: Multivariate Tree 

 

In this model, both the a- and b-parameters served as dependent variables.1 The 
correlation between the variables was −.26. The final model is depicted in Figure 4. 
The means are not printed in numbers in this figure; instead bar plots are used. Note 

that the height of the light blue bars represents the mean average a-parameter in 
each of the nodes, and the height of the dark blue bars represents the mean average 

b-parameter. The final tree had 16 nodes and contained the following independent 
variables: Brown News Popularity, Word Diversity, Percentage of Negative Words, 
Percentage of Content Words, Ordered Positions, and Number of Entities. 

                                                      

1
 Since the univariate analysis of the average c-parameter showed the node means differed little  

from each other, the c-parameter was not incorporated into the multivariate tree. Note that the 
average c-parameter had a correlation of .52 and −.05 with the average a- and b-parameters, 
respectively. 
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The first two splits were based on the variables that were used for the first split  
in the two univariate trees: The Brown News Popularity was used for the first split 
(cut-score 15.29, identical to the cut-score for the univariate tree based on the  

b-parameter), followed by Word Diversity (cut-score 44.1%, versus 42.9% for the 
univariate tree based on the a-parameter and 44.1% for the b-parameter tree). As 
was true for the univariate tree, a relatively large mean score on The Brown News 

Popularity was associated with a lower average b-parameter. It can be seen from the 
bar plots in Figure 4 that this variable does not have a strong association with the 

average a-parameter. This can be seen as a confirmation of the results of the 
univariate a-parameter model which did not include The Brown News Popularity. 
Word Diversity was included in both univariate trees, and its effect is similar to that 
found in those models: A relatively large Word Diversity score is associated with  

a somewhat higher average a-parameter and a low average b-parameter. Three 
subgroups were created using Percentage of Negative words using the same  

cut-scores as in the b-parameter tree: stimuli with 1.4% (group 1, node 9, small 

average b-parameter) or less, stimuli with 1.5–1.7% (Group 2, Node 10, very small 
average b-parameter), and stimuli with more than 1.7% negative words (Group 3, 
Node 5, larger average b-parameter). The average a-parameter was not much 
different for these groups. Node 10 was a terminal node. Node 9 was split once 
more, using the variable Word Diversity: Stimuli with a score of 50.76% or higher 

were placed in terminal Node 16 (larger average a-parameter, smaller average  

b-parameter), and those with a score lower than 50.76% were placed in terminal 
Node 15 (smaller average a-parameter, larger average b-parameter). Node 5 was 
split using the variable Number of Entities: Stimuli with five entities or fewer were 

placed in Node 7 (larger average a- and b-parameters) and those with more than five 
entities in Node 8 (smaller average a- and b-parameters). Node 7 was split once 
more, using the variable Ordered Positions: Stimuli that contained ordered positions 

were placed in Node 11 (larger average a- and b-parameters), while stimuli that 
contained partially or no ordered positions were placed in Node 12 (smaller average 

a- and b-parameters). Node 8 was split using the variable Percentage of Content 
Words: Stimuli with 39.3% or less were placed in the left terminal node (larger 

average a-parameter, smaller average b-parameter) and those with more than 
39.3% content words were placed in the right terminal node (smaller average a-
parameter, larger average b-parameter). The proportion explained variance for this 
model was 0.47. 
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FIGURE 4. Multivariate regression tree for the average a- and b-parameters per stimulus/testlet contained in the AR section of the LSAT 
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Discussion 

In recent studies, we showed that stimulus features were related to the size of the 
testlet effect (Paap et al., 2012; Paap & Veldkamp, 2012). In this study, we showed 
that the average item difficulty and discrimination parameter can be predicted using 
stimulus features.  

The part of the LSAT that we analyzed in this study, the AR section, assesses the 
ability to reason within a given set of circumstances. These circumstances are 
described in a stimulus. Our results showed that stimuli associated with easy items 
consisted of many different but commonly used words (relatively high score on Word 
Diversity and Brown News Popularity) and an intermediate proportion of negative 
words. The most difficult stimuli were those with infrequently used words (low score 
on Brown News Popularity) and a low Word Diversity. It may be inferred that stimuli 
that are rich in information content that is easy to process generally have items that 
are rather straightforward to solve, whereas stimuli that have rather specific 
information that is not that easy to process have items that on average are more 
difficult. 

Our results also showed that the average discrimination parameter per testlet 
was associated with both structural features and linguistic features. The average 
discrimination was highest for stimuli with a relatively high Word Diversity and a 
relatively low number of Average Characters. Thus, stimuli that contain many 
different words that are relatively short, and thus have a high information density, are 
very useful for distinguishing between respondents with different ability levels. The 
average discrimination was lowest for relatively lengthy stimuli containing many 
different words and a complicated set of circumstances (a relatively high Word 
Diversity, number of Average Characters, and Number of Entities). A possible 
explanation could be that other skills (i.e., skills other than analytical reasoning, such 
as reading comprehension) are needed to solve these kinds of problems. 

The multivariate analyses, where the a- and b-parameters were predicted jointly, 

contained three variables that were only present in the univariate b-parameter tree, 
two that were only present in the a-parameter tree, and two that were present in 
both. An important advantage of the multivariate analysis is that one can see at a 

glance the effect of a predictor on both the a-parameter and the b-parameter, as well 
as the relationship between the two.  

In previous studies, we identified testlet features that distinguished groups of 
testlets according to the size of the testlet effect, and we showed that the average 
item difficulty per testlet has a strong influence on testlet effect size. In the current 
study, we showed that a set of testlet features could distinguish between groups of 
testlets with varying average item difficulty. A future study could unravel the 

relationship among testlet features, a- and b-parameters, and the testlet effect even 
further—for example, by investigating whether average item difficulty does in fact 
moderate the relationship between testlet features and the testlet effect. Future 
research may also be directed at assessing the generalizability of our finding. A 
future study could investigate whether our results can be replicated for another set of 
stimuli—stimuli that measure both the same construct (analytical reasoning) and 
other constructs.  

Both our current findings and the findings of our earlier reports (Paap et al., 2012, 
Paap & Veldkamp, 2012) provide further insight into the relationship between testlet 
features and their psychometric properties. It was promising to see that the results of 
our statistical analysis were validated by content experts, who were able to translate 
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our results to cognitive processes that are presupposed to underlie the response 
behavior. Even though Glas (2012b) revealed that the incremental validity of our 
ETRM is still relatively small, the model provides some information about how stimuli 
can be selected or manipulated in the test development phase to produce more 
favorable psychometric properties in terms of testlet effects and average item 
parameters. 
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